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ESTIMATION AND FILTER STABILITY OF
STOCHASTIC DELAY SYSTEMS*

RAYMOND H. KWONGt AND ALAN S. WILLSKY

Abstract. Linear and nonlinear filtering for stochastic delay systems are studied. A representation
theorem for conditional moment functionals is obtained, which, in turn, is used to derive stochastic
differential equations describing the optimal linear or nonlinear filter. A complete characterization of the
optimal filter is given for linear systems with Gaussian noises. Stability of the optimal filter is studied in the
case where there are no delays in the observations. Using the duality between linear filtering and control,
asymptotic stability of the optimal filter is proved. Finally, the cascade of the optimal filter and the
deterministic optimal quadratic control system is shown to be asymptotically stable as well.

1. Introduction. In recent years, the control of delay differential systems has
received considerable attention. Optimal control problems for both linear as well as
nonlinear delay systems have been studied intensively. In particular, there is a rather
well-developed theory for the optimal control of linear delay systems with a quadratic
criterion [1]-[4]. In contrast, optimal filtering for delay systems has not yet received an
in-depth study. There is very little literature on the filtering of nonlinear stochastic
delay systems which takes into account the structure of such systems. The linear
filtering problem on a finite interval has been studied by Kwakernaak [5], Lindquist
[6], Mitter and Vinter [7], and recently by Bagchi [8]. Kwakernaak’s derivations in [5]
were formal; Lindquist [6] did not characterize the covariance of the optimal filter;
and Mitter and Vinter [7] restricted their considerations to time-invariant systems and
excluded point delays in their observation equations. Bagchi [8] recently gave a
rigorous derivation of the filter equations for linear systems with only point delays,
using martingale theory and functional analytic methods very different from those in
this paper. Stability of the linear filter was also studied recently by Vinter [9],
independently of our work. He used infinite dimensional filtering methods, again quite
different from our approach. In this paper, we shall study the filtering problem for
both nonlinear and linear delay systems. We give a representation theorem which
characterizes conditional moment functionals of nonlinear delay systems. Under
certain conditions, stochastic differential equations for conditional moment function-
als can be derived from the representation theorem. We then specialize these results
to obtain the filtering equations for general linear delay systems. We study the stability
of the optimal filter in the case of time-invariant systems with no delays in the
observations. Under suitable stabilizability and detectability assumptions, we prove
that the optimal filter is asymptotically stable. Finally, we combine the linear deter-
ministic control results and the linear filtering results to show that the closed-loop
linear stochastic control system is also asymptotically stable.
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2. Stochastic delay differential systems. We shall study the filtering problem for
stochastic delay differential systems of the form

(2.1)
dx(t) f(x,, t) dt + F(t) dw(t),

x(O)=xo(O), 0[-,0].

The observation equation is given by

(2.2)
dz(t)= h(xt, t) dt + N(t) dr(t),

z(t)= 0, t-<0.

[0, T],

[0, T],

and

Unless otherwise stated, we shall let the process xt take values in , the space of
Rn-valued continuous functions on [-z, 0]. For simplicity, we take w(t) and v(t) to be
standard Wiener processes in R" and R p respectively, completely independent of
each other. The initial function x0 is taken to be some random function on I-z, 0],
independent of w(t) and v(t). The maps f and h are respectively R" and RP-valued
functionals defined on c[0, T]. The maps F(t) and N(t) are n m and p p
matrix-valued continuous functions respectively. Furthermore, N(t) is assumed to be
nonsingular. We shall also write F(t)F’(t)= Q(t) and N(t)N’(t)= R (t).

In order for our estimation problem to be well defined, we need conditions which
guarantee existence and uniqueness of solutions to the stochastic functional differen-
tial equations (2.1) and (2.2). Such questions have been studied by various authors
[10]-[12]. Following their work, we assume that the following conditions are satisfied:

(A1) f(, t) is Borel measurable on oC x [0, T];
(A2) there exists a bounded measure F on [-z, 0] and a positive constant K such

that for & and in
0

I/(, t)-f(O, t)l <= K I_ I(s)- (s)l dF(s)

o

(A3) on the interval [-z, 0], x(t) is continuous with probability 1 with Elx(O)l4 <
o, -z<__ O<_O;

(A4) h(, t) is Borel measurable on c [0, T];

(A5) T

Io E[h(x,, t)’h(xt, t)] dt <

Under these assumptions, (2.1) and (2.2) can be shown ([10]-[12]) to have a solution
which is continuous w.p.1 and has bounded second moment. Furthermore xt is a
Markov process.

Since linear stochastic delay systems admit a much more complete theory, we
shall, for greater clarity in our exposition, use a different notation for such system. We

x,(0) x(t + 0), 0 6 [-’, 0].

All stochastic processes are defined ielative to a given probability space (f, ow, P) and
on an interval of the form [0, T]. The system process x(t) takes values in R", the
observation process z(t) in R p. The process x, is a function on I-z, 0] derived from
x(t) and is defined by
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write

(2.3) dx(t)= a(xt, t) dt + F(t) dw(t),

(2.4) dz(t) c(xt, t) dt + N(t) dr(t),

where a(x,, t) and c(x,, t) are given by the Lebesgue-Stieltjes integrals
ot"

a(xt, t)= | doA(t, O)x(t + 0),

o

c(x,, t)= / doC(t, O)x(t + 0).

Here A(t, O) is a function on R R jointly measurable in (t, 0), continuous in t, of
bounded variation in 0 for each t, with Var-,,0 A(t,. )<-re(t), a locally integrable
function on R ". Furthermore A(t, O) 0 for 0 ->_ 0, A(t, O) A(t, -’) for 0 -< -’, and it
is continuous from the left in 0 on (--, 0). The function C(t, O) is assumed to satisfy
similar conditions.

It is not difficult to show (see e.g. [6], [13]) that the linear stochastic delay system
(2.3)-(2.4) has a unique solution (up to almost everywhere equivalence) given by the
formula

0

(2.5) x(t): ,(t, 0)Xo(0)+ f_. do {fo ,(t, s)A(s,-s)ds}xo(B)+ fo ,(t, s)F(s)dw(s)

where (t, s) is the fundamental matrix associated with the homogeneous delay
differential system

(see e.g. [14]).

3. A representation theorem for conditional moment functionals. In filtering
problems for stochastic differential systems, one is usually interested in estimating
some function of the system process x(t) given the observations z(s), O<-s <-t. It is
well known that the optimal estimate with respect to a large class of criteria is the
conditional expectation E{(x(t))/z’} where z’ denotes the or-algebra generated by
the observations z(s), O<=s<-t. We shall also write E{$(x(t))/z’} as E’{$[x(t)]}, and
we shall omit the qualification of almost sure equivalence for conditional expectations.
Fujisaki et al [15] have given a stochastic differential equation for the evolution of
Et[ck(x(t))] for rather general stochastic systems, which include our delay model.
Specifically, they showed that for the delay system (2.1) and (2.2)

dE’[ck(x(t))] Ett#(x(t))] dt +{E’[ck(x(t))h’(x,, t)]-E’[ck(x(t))]E’[h’(x,, t)]}

R-X(t)[dz(t)-E’(h(xt, t)) dt]

where is a differential operator (see (4.7)). However, the right hand side of (3.1)
contains terms of the form E[g(x, t)], which we shall call conditional moment
functionals. It is not clear how one can obtain an equation for these conditional
moment functionals from (3.1). Equation (3.1), therefore, does not constitute a
complete solution. It appears that the fundamental quantities we need to calculate are
the conditional moment functionals E[&(x)] (see also 4 and 5). In this section, we
will derive a representation theorem for E[$(x)].

Our derivation is based on the work of Kunita [16]. Kunita obtained a represen-
tation theorem under the assumptions:
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(i) The signal process is a stationary Markov process with compact state space,
and the functional h is independent of time and continuous.

(ii) The functional b: ( R is bounded.
We shall extend his results by making only the assumptions:

(A6)
T

(A7) | El,t)(x,)h(x,, t)l2 dt < 00.
.o

THEOREM 3.1. Suppose (A1)-(A7) hold. Then we have the following represen-
tation for the conditional expectation of b given z’:

(3.2) Et[qb(xt)] E[,Tb(xt)]+ ES{E[,Tb(xt)lxsl[h’(xs, s)-ES(h’(xs, s))]}R-I(s) de(s)

where e(t)= z(t)-’oES[h(xs, s)] ds is the innovations.

Proof. We follow the approach of Kunita [16]. First suppose that (h is bounded.
Let qd denote the g-algebra tr{x(s), v(s); s -< t}. Clearly z’c qd’. Moreover, by the
Markov property of xt and the independence of the x and v processes, E[O(xt)[q]
E[qb(xt)[Xs], for >_- s.

By the assumptions of the theorem, all terms in (3.2) are in L2(fL z ’, P). Thus,
just as in [16], it is sufficient to verify that

E{[E (cD (xt ))-E(6 (xt ))] Yt}
(3.3)

I0E{ E[E(qb(xt)lx,)[h’(x, s)-E’(h’(x, s))]]Rrl(s) de(s)Yt

for all Yt represented as g’de(s), with g a jointly measurable and zt-adapted
process such that Elg, )

ds <.
Using the independence of the x and v processes, we conclude, on following the

same argument as Kunita [16], that

(3.4)
Io E{6(xt)g;[h(xs, s)-E(h(x, s))]} ds

E{E[6(xt)[]g’s[h(x, s)-E(h(x, s))]} ds

Io E{E[6(xt)[x]g’[h(x, s)-ES(h(xs, s))]} ds.

Since

E E[E(6(x,)]x)[h’(x, s)-ES(h’(x, s))]]R-I(s) de(s) g’ de(s)
(3.5)

E{[(x)lxl[h’(x, s)-(h’(x, s))l} ds

we obtain, on combining (3.4) and (3.5), the desired equation (3.3). Thus the theorem
is true if 4 is bounded.
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In the general case, let qbN(X,) qb(x,)XN, where ,N 1 if I&(X,)I----< N, and XN 0 if
I(x,)l> N. Clearly Elu(x,)-(x,)l-0 as N 0o. Since bN is bounded, the above
development yields

Et[6N(x,)] E[6(x,)]

(3 6) I0+ ES{E[qbu(xt)]xs][h(xs, s)-ES(h(x, s))]’}R-l(s) du(s).

By assumption (A7), the last term on the right hand side of (3.6) converges in
probability to

fo .E{E[(x,)lx][h(x, s)-E(h(x, s))]’}e-a(s) de(s)

(see, for example, [17]). Hence, on letting N -0o in (3.6), we finally obtain (3.2). The
proof is completed.

The following corollary is immediate.
Coo,r 3.1. The smoothed estimate Et[x(t + 0)], -- -< 0 < 0, is given by

Et[x(t + 0)] Et/O[x(t + 0)]

(3.7) + E{x(t + O)[h (x s) -E (h (Xs, s))}R-I(s) dt,(s).
+0

Remark 3.1. Theorem 3.1 remains true if we merely assume that the signal
process is a Markov process with state space a separable complete metric space. The
same proof goes through for this more general case. Theorem 3.1 corresponds to the
special situation where the signal process is the Markov process xt generated by the
stochastic delay equation (2.1). Similar remarks also apply to Theorem 4.1 in the next
section on stochastic differential equations for the nonlinear filtering problem.

4. Stochastic differential equations for nonlinear filtering of delay systems. While
Theorem 3.1 gives an abstract representation for the optimal estimates, it is
completely nonrecursive in the sense that knowledge of E[b(xt)/z’] is of no use in
determining E[qb(xt/a)/zt/a]. In fact, for every t, we must completely reprocess our
past observations. For implementation and approximation purposes, one would like to
obtain a stochastic differential equation for the evolution of E[b(xt)/zt]. In this
section, we shall give conditions on b under which we can obtain a stochastic
differential equation for F_.[qb(xt)/zt]. As we shall see, these conditions are intimately
related to the (extended) infinitesimal generator of the Markov process xt [15].

DErNITION. A family of linear operators At, [0, T] defined on the space of
real-valued measurable functions on is called an (extended) infinitesimal generator if

(4.1) E[6(xt)/Xs]-6(xs)= Js E[Au6(Xu)/Xs] du

is satisfied for all 0=<s <t -< T. We use the notation D(A) to denote the space of all
functionals b satisfying El(x,)l < o, EIA,6(x,)I at < oo, and (4.1).

Define the process eh(t) h(xt, t)-Et[h(xt, t)]. Then we have
THEOREM 4.1. Let the conditions of Theorem 3.1 be satisfied. In addition, let qb

belong to D(A) and suppose that
TIo El[Atqb(xt)]h(xt, t)] 2 dt < 0o.
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Then the functional E[(x,)lz’] satisfies the stochastic differential equation

(4.2) dE[(x,)[z’] E[ad(xt)/z’] dt + E[(x,)e’a(t)/z’]R-l(t) du(t).

Proof. For any 6 [0, T] and e > 0, we have, by a simple calculation,

E[(x,+)/z ’+ E[(x,)/z’]

(4.3) =E[(x,+)-(xt)]+ E{E[(x+)-(x)/x]e’h(S)/z}R-(s)dv(s)

+ I E{E[(x,+)/xle’a(s)/zS}R-l(s) dv(s).

Using (4.1), we get that

Io E{E[$(xt+ )- (xt)/xs]e’a(s)/zS}R-l(s) dr(s)

Ic E{E{ I‘+*

du/xs}e (s)/z}R-E[A,&(x,)/x,] ’ (s) dr(s)
(4.4)

E E[A,(x,)/Xsle’(s)/zS}R-a(s) du dr(s)

t+

with the last equality justified in view of the assumptions of the theorem. Similarly

E{E[(x+)/x,]e(s)/z}R-l(s) d(s)

(4.5) =[ [(x)e(s)/z]R-(s)d.(s)

t+ t+

Finally, using the representation theorem for A(x), we find that

(4. = [(xl/zlu

+

0- {[A.(x.)/xle(s)/z}R-(s) d(s) du.

Adding up (4.4) to (4.6) yields

[(x.)/z* -[(x)/z’l

which is precisely (4.2).

665

t+

E[Au&(Xu)/zl du + [ E[da(x)e’(u)/z UlR-l(u) dv(u)
at
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Remark 4.1. Theorem 4.1 is a generalization to systems with delays of the usual
formula for conditional moments of ordinary diffusion processes. While the form of
the stochastic differential equation is exactly the same as that for diffusion processes,
here we need to know the structure of the infinitesimal generator of the xt process. We
know from (4.1) that functionals of the form d[x(t + 0)], 0 (-’, 0) do not belong to
D(A), since x(t) is not in general differentiable. Hence it is not possible to derive a
stochastic differential equation for a functional of the form 4[x(t+ 0)]. Indeed, a
complete characterization of the operators At is not known, although certain special
classes of functionals which are in the domain of At have been stated in Kushner [12].
We mention these results to illustrate Theorem 4.1.

Case 1. Suppose the functional d(xt)=cb[x(t)], and is twice continuously
differentiable in its argument. Thn

(4.7) A[x(t)] =--?[x (t)] f(xt, t)’cx[x(t)] + 1/2 tr O(t)x[x(t)]
where b is the n-vector whose ith component is (04/Oxi)[x(t)]. In particular

(4.8) dEt[x(t)] E’[f(xt, t)] dt +{Et[x(t)h’(xt, t)]-Et[x(t)]Et[h’(xt, t)]}R-l(t) du(t)

In this case, (4.2) reduces to the well-known results of Fujisaki et al. [15].
Case 2. Let b(xt) _o3- O(O)g[x(t + 0), x(t)] dO, where is continuously differen-

tiable on [--, 0], and g is twice continuously differentiable in its second argument.
Then

Ab(x,) d/(O)g[x(t), x(t)]- 4t(-’)g[x(t-’), x(t)]
(4.9) o t,o

I d/(O)g[x(t + 0), x(/)] dO + I (O)tg[x(t + 0), x(/)] dO

where t is the operator defined in Case 1. and acts on g as a function of x(t) only.
Case 3. Let cb(xt)=D[F(xt)] where D is a twice continuously differentiable

real-valued function, and F(xt)= i_03- O(O)g[x(t + 0), x(t)] dO is the type of functional
described in Case 2. Then

Ab(xt) D(t)[,=F(x,)AtF(xt)+ 1/2D(a )I==F(x,) G

where

0 o

G= I_ I_ d/(O)d/(rl) " gt’[x(t + O)’ x(t)]g’[x(t + O)’ x(t)]Qii(t) dO drt

and go, denotes partial differentiation of g with respect to the ith component of the
second argument.

From the above special cases, we can see that basically we need twice continuous
differentiability of b with respect to the dependence on x(t), and Fr6chet differen-
tiability with respect to the dependence on the piece of the trajectory xt. As discussed
before, this rules out functionals of the form [x(t+O)], 0e[--, 0). Hence for
nonlinear systems with point delays, any attempt in deriving stochastic differential
equations for conditional moment functionals will have to face the difficulty of
functionals not being in the domain of the generator of the Markov process xt. For
example, if the observation process is of the form

dz(t)= {h[x(t)] + h2[x(t-’)]} dt + dr(t)

O[x(t)]h2[x(t-’)] will not be in the domain of At. On the other hand, in order to



ESTIMATION AND FILTER STABILITY 667

analyze (4.2), we do need to calculate the conditional expectation for

49 [x (t)]h2[x (t ’)]

Of course, there are many physical problems (for example, radar problems with
read targets [23]) where the observations are of the form h(xt)
4(O)H[x(t+O),x(t)] dO. Moreover, one can approximate point delays by dis-

tributed delays of the above form. This will allow us to write a stochastic differential
equation for cb[x(t)]h(xt). However, we will then get the unknown Ae4)[x(t)]h(xt) in
our equation for 4)[x(t)]h(xe). If O(-’)#0, A[x(t)]h(xe)will contain a term with
point delay (see Case 2 above), and we are faced with the same problems as before. In
general, if the functionals involved are in the domain of At, 1,. , n, we can write
n coupled stochastic differential equations involving the moment functionals, just as in
the diffusion process case. It should be clear from the above discussion that this puts
rather severe restrictions on the functionals involved.

There is, however, one special case where the optimal filter can be completely
specified even when there are point delays in the system. This is the linear case with
Gaussian distributions and will be treated next.

5. Optimal filtering of linear stochastic delay systemS.. Consider the linear sto-
chastic delay system defined by

dx(t)= a(x,, t) dt + F(t) dw(t),

x(O)=xo(O),

(5.2) dz(t) c(x,, t) dt + N(t) dr(t)

where a(.,. ) and c(.,. ) are as described in 2. Also, we take Xo to be a Gaussian
process on [-r, 0] with mean o(0) and cov [Xo(0); Xo(:)] Yo (0, so). By an argument
similar to the case without delays, it is readily seen that the conditional distribution of
x(t+O), for any 0 I-z, 0], given z(s), O<=s<-t, is Gaussian. We shall write 2(t+O/t)
to denote E(x(t + O)/z’}, 0 [-z, 0]. Using (4.8), we immediately obtain the following
stochastic differential equation for the conditional mean

o

d(t/t)= I doA(t, O)(t + O/t) dt

o

+ [I_ E’(x(t)x(t + 0)’) doC’(t, O)

0I_ (tlt)(t + OIt)’ doC’(t, 01] R-l(t) d,(t)

with the innovations u(t) given by
0

,(t) z(t)- fo I_, do C(s, O)2(s + O/s)ds.

Define the "smoothed" conditional error covariance as

P(t, O,()=Et{[x(t+O)-2(t+O/t)][x(t+()-2(t+(/t)]’}, -z<__O, <-_0.

Then (5.3)can be rewritten as

(5.4) d2(t/t)= doA(t, O)2(t + O/t) dt + P(t, O, O) do C’(t, O)R-l(t) d,(t).
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To evaluate the unknown terms on the right hand side of (5.4), we use (3.16) to write
the smoothed estimate as

ro
(5.5) (t + O/t)= (t + O/t + O)+ I I P(s, + 0 s, ) de C(s, )’R-I(s) du(s)

at+0 J-’r
for 0 [-’, 0 ].

An inspection of (5.4) and (5.5) shows that the optimal linear filter is completely
characterized by (t + O/t),-r <-0 _-<0, and the "smoothed" error covariance function
P(t, 0, ). It remains only to derive appropriate equations for P(t, 0, ). Since the
processes x and z are jointly Gaussian, the error process x(t+O)-(t+O[t) is
independent of z(s), s -<_ (see, for example, Bagchi [8]). Hence P(t, 0, sc) is indepen-
dent of the observations and equals E{[x(t + O)-(t + O[t)][x(t + )-(t + ]t)]’}. This
fact will enable us to simplify the derivations of the equations for P(t, 0, so). The next
theorem summarizes the complete structure of the optimal filter.

THEOREM 5.1. The optimal filter for the system (5.1)-(5.2) is characterized as

follows:
(i) The conditional mean (t/t) satisfies (5.4).
(i) The smoothed estimate (t + O/t) satisfies (5.5).
(iii) The smoothed error covariance P(t, O, ) satisfies the equations

-P(t, O, 0)= P(t, O, O) doA’(t, 0)+ doA(t, O)P(t, O, O)
(5.6) o o

| | P(t, O, O) do C’(t, O)R-(d) d, C(t, Oe(t, , 0)+ O(t),

o o 0

:)R-l(t)

d C(t, a)P(t, a, 0),
0 o

x/P(t, O, so) I_ I_ P(t, O, ) d C’(t, /3)R-l(t) d C(t, a)P(t, a, )

where 1 is the unit vector in the (1,-1, 0) direction, tr the unit vector in the (1,-1,-1)
direction, and Pn(t, O, O) and P(t, O, ) are the directional derivatives of P(t, O, O) and
P(t, O, ) in the directions rl and tr respectively. The initial conditions are given by

(0/0) o(0), 0 [-, 0],

P(O, O, )= Eo (0, ), --<_0, _<-0.

Proof. See Appendix A.
Remark 5.1. Equations similar to those of (5.6)--(5.8) for P(t, 0, ) were formally

derived by Kwakernaak in [5], and rigorously rederived by Bagchi in [8], for systems
with point delays only. Instead of directional derivatives, they used partial derivations
with respect to the variables 0 and :. In the general case, however, P(t, O, ) will not be
continuously differentiable in (t, 0, :). This is why directional derivatives have to be
used. A similar situation has already been noted in the quadratic optimal control
problem for linear delay systems [20].

In the special case where x0-=0, a(xt, t)=Ax(t)+Bx(t-z), c(x,, t)=Cx(t), Q, R
constant matrices, it can be shown directly or by exploiting the connection between
linear optimal filtering and optimal control with quadratic criterion (see 6) that
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P(t, 0, :) is in fact continuously differentiable in (t, 0, ’). When we compare the
solutions to the linear optimal control and optimal linear filtering problems in our
study of filter stability, it will be helpful to use the notation P0(t) P(t, O, 0), Pl(t, O)=
P(t, 0, 0), and Pz(t, O, )= P(t, O, ). In this case, the optimal filter is given by the
equations

(5.9) d(t/t)=a(t/t)dt+B(t-z/t)dt+Po(t)C’R-l[dz(t)-C(t/t)dt];

(t-z/t)= (t-z/t-z)+ Pl(S, t-z-s)C’R-[dz(s)-dx(s/s) ds],

(5.10) (0/0) 0, - =< 0 <= 0;
d
eo(t) APo(t) + eo(t)A’- eo(t)C’R-CPo(t) + 0 + BPI(t, )

(5.11) +P (t, --)B’;

P(t, O)=P(t, O)[A’-C’R-CPo(t)]+P2(t, O,-r)B’;

(5.13) (0 0

Ot O0 0)P2(t, 0, :)=-P(t, O)C’R-aCP (t, );

with

(5.14)

P0(0) PI(0, 0)--- P2(0, 0, )= 0,

P(t, 0)= Po(t), P2(t, O, 0)= Pa(t, 0),

Po(t) P,(t), P(t, O, )= P’(t, , 0).

Notice that in this special case where there are no delays in the observations,
(t/t) depends only on ;(s/s), t-r<-s<=t, and from (5.9) and (5.10), we can obtain
the following explicit stochastic delay equation for 2(t/t):

d(tlt)= [A(tlt)+B(t-[t-r)] dt +Po(t)C’R-[dz(t)-C(tlt) dt]

+| BPI(S, t-r-s)C’R-[dz(s)-C(sls) ds] dr,
at

(olo)=o, -_-<o<-o.

This will not be true if we have delays in the observations (see the discussions in
[18] and [24]).

6. Stability of linear optimal filters and control systems. In this section, we study
the stability of optimal linear filters and stochastic control systems for linear delay
systems. We shall concentrate on the filters defined by (5.9)-(5.13). The extension to
the case with multiple delays in the system dynamics is straightforward. However, the
situation for systems with delays in the observations is much more complicated and
will be treated separately in a forthcoming paper. In our analysis, we make essential
use of the duality between optimal filtering of linear stochastic delay systems and
optimal control of linear delay systems with quadratic cost. These results complete the
extension of the well-known linear quadratic Gaussian theory to systems with delays in
the dynamics.
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We begin by summarizing the results for the optimal control of linear delay
systems with quadratic cost [1]-[4]. Consider the system

dx
Ax(t)+ Bx(t-z)+ Cu(t),

dt
(6.1) x(0)= Xo(O), 0 [-z, 01.
In previous sections, we have used the space as our state space. For this system,
however, we may allow the initial function Xo to lie in the larger space R L2 (see [4]
or [20]). The admissible control set U is the set of R’-valued L2 functions on [0, T].
The cost functional is given by

T

JT(U, Xo) Jo [x’(t)Mx(t)+ u’(t)Su(t)] dt

where M and S are symmetric matrices of appropriate dimensions, M-> 0, S > 0.
When T < oo, the optimal control is given by

o

(6.2) u*(/)= -S-1C’Ko(t)x(t)-S-1C | Kl(t, O)x(t + O) dO.

The feedback gains satisfy the following coupled set of partial differential equations"

d
(6.3)-Ko(t)=-A’Ko(t)-Ko(t)A + Ko(t)CS-1C’Ko(t)-M KI(t, O)- K’x (t, 0),

(6.4) --- Kl(t, 0)=-[A’-Ko(t)CS-IC’]KI(t, o)-g2(t, O, 0),

(6.5) (00-t ,9 ()K2(t, 0, so) K’I (t, O)CS-IC’KI(t, :),
00

with

(6.6)

Ko(T) KI(T, 0) K2(T, 0, :)= 0 --7" < 0,

K(t, --r)= Ko(t)B,

K2(t, -7", 0) B’Kx (t, 0),

Ko(t) K’o (t), K2(t, 0, :)= K2(t, , 0)’.

The optimal cost can be expressed as

(6.7)

0

J-(x0) X’o(O)Ko(O)xo(O)+ I_ x)(0)KI(0, O)Xo(O) dO

o o o

+ I_ X’o(O)K’ (0, O)xo(O)dO + I_ I_ X’o(O)K2(O, O, sC)Xo(s) dO d.

We now consider the infinite time control problem, i.e., T c. To discuss this
problem, we need some condition to ensure that the optimal cost will be finite. The
relevant concepts are those of stabilizability and detectability. These definitions for
the case of delay systems are given below.

DEFINITION 6.1. The system

(6.8) (t) Ax(t)+Bx(t-z)+ Cu(t)
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is said to be stabilizable if there exist matrices Lo, L1, and L2(0), 0 E [-’/’, 0], with L2
strongly measurable and bounded, such that

0

(6.9) (t):(A+CLo)x(t)+(B+CL1)x(t-r)+I_ CLz(O)x(t+O)dO

is asymptotically stable. We then also say that (A, B, C) is stabilizable.
DEFINITION 6.2. The system

(t)= ax(t)+ Bx(t-r),
(6.10)

z(t)= Cx(t)
is said to be detectable if there exist matrices Ko, Ka, and K2(0), 0 E f-r, 0], with K2
strongly measurable and boundec, such that

o

(6.11) 2(t)=Ax(t)+Bx(t-r)+Koz(t)+KlZ(t-r)+I_ K2(O)z(t+O)dO

is asymptotically stable. We then also say (A, B, C) is detectable.
The following proposition can be easily proved from the above definitions [18].
PROPOSITION 6.1. The system (6.10) is detectable if and only if the "adfoint"

system (which runs backwards in time)

(6.12) 3) (t) -A’y(t)-B’y(t +z)-C’u(t)
is stabilizable.

The properties of stabilizability and detectability, and their relationships to
controllability and observability, are further discussed in [18], [25], [26], to which the
reader is referred.

We can now state the result concerning the infinite time quadratic control
problem. Let M H’H.

PROPOSITION 6.2 ([19], [20], [21]). Assume that (A, B, C) is stabilizable and (A,
B, H) is detectable. Then the gains Ko(t), Kl(t, 0), and Kz(t, O, ), for each fixed < T,
converge to Ko, KI(0) and K2(O, ) respectively as T-oo in the following sense:

Kl(t, ")-+Ka(’) strongly in L2[-’r, 0],

K2(t, "," )- K2("," strongly in L2[-z, 0] x L2[-r, 0].

The optimal control law for the infinite time problem is given by
o

(6.13) u*(t) -S-1C’Kox(t) I_ S-aC’gl(O)x(t + O) dO

where Ko, Ka(O) and K2(0, :) satisfy the following set of equations
(6.14) A’Ko+KoA-KoCS-aC’Ko+M+K’ (0)+KI(0) 0,

d
(6.15)

dO
KI(0) [A’-KoCS-1C’]KI(O)+ K2(0, 0),

(6.16)

with

+ K2(0, )= -K’I (O)CS-1C’KI(),

Kl(-’r) KoB,
(6.17)

Ko K’0,

K2(0,-r) K (0)B,

K(O, )=K (, 0).
Furthermore, the optimal closed-loop system is asymptotically stable with the optimal
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cost given by
o

j* (X)= x(O)Kx(O) + I x(O)Kl(O)x(O) dO

(6.18) o o 0

/ I x’o(O)iCx (O)xo(O) o / I I e)xo(e) o

Remark 6.1. Proposition 6.2 is an extension of the result of [19] and [20] where
the matrix M is assumed to be positive definite. One of the authors first proved in [18]
that the condition M> 0 can be relaxed to (A, B, H) observable. Subsequently, the
work of Zabczyk [21] became known to the authors and the present conclusions,
assuming the still weaker condition of detectability, can be obtained from the results
of [21].

To connect the optimal control result of Proposition 6.2 with those of optimal
filtering, we need the following duality theorem which can be deduced from the work
of Lindquist 13 ].

PROPOSITION 6.3. Consider the optimal filtering problem over the interval [0, T]
for the system

(6.19) dx(t)= [ax(t)+Bx(t-z)] dt +Fdw(t),

x(0)= 0, 0_-<0;

(6.20) dz(t) Cx(t) dt +Ndr(t).

Define the dual control system by

(6.21) 3) (t) -A’y(t)- B’y(t + ’)- C’u(t)

with

(6.22) y(T)= b, y(s)=0, s>T.

The dual control problem is defined to be to minimize
T

(6.23) Jr(b, u)= Jo [y’(t)Oy(t)+ u’(t)Ru(t)] dt

where O FF’>- 0 and R -NN’> O. Let the optimal linear least squares estimate o[
x(T) be (T/ T), and let the optimal control [or the dual problem be ur. Then b’(T/ T) is
related to ur by

T

(6.24) b’(T/T)= Jo u’(s) dz(s).

We now have two representations of b’(T/T), one directly from (5.9)-(5.13),
the other indirectly from (6.24). Our strategy is to compare the two representations
and identify the control and filter gains appropriately. This will enable us to exploit the
known results of the optimal control problem to conclude filter stability. We begin by
stating the following lemma.

LEMMA 6.1. The conditional mean o[ x (T), denoted by (T/ T), is given either by
T

(6.25)
min(,r, T-s)

+ I *(T,s + O)BPI(s, 0 -’/’)C’R -1 dO} dZ(S)
aO I
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or by

(6.26)

T

(T/T)= Io Y’(t, T)Io(t)C’R -1

+ f
min(,T-t)

a0
Y(t + O, T)’Il(t, O)Cte -1 dO} dz(t).

Here Po(t), P(t, 0), and P2(t, 0,) are given by (5.11)-(5.14) and (t,s) is the
.fundamental matrix [14] associated with the delay equation

(6.27)
(t) [A Po(t)C’R -1 fix (t) + Bx (t r)

o

-B I_yl(t-- 0,-0 -,l-)CtR-afx(t q- O)dO.

The ]’unctions Io(t), /l(t, 0) and/2(t, 0, sc) satisfy the equations

(6.28) /o(t) AIo(t)+ Io(t)A’-Io(t)C’R-CIo(t)+ 0 + Ia(t, 0)+ I’1 (t, 0),

(6.29) --]---d /l(t, 0)= [A-to(t)C’R-1C]II(t, 0)+/2(t, 0, 0),

(6.30)
0t 00 0)/2(t, 0, so) " CI(t, )-K (t, O)C’R-

with

(6.31)

/0(0)=/1(0, 0)=/2(0, 0, so)=0, 0<--0, <--z,
/(t, r)= Io(t)B’,

/2(t, r, so) Bill(t, ),
/o(t) "Ko (t), R(t, O, ) R’2 (t, , O)

and Y(t, s) is the fundamental matrix associated with the system

dy ,R_X y Io(6.32) -=-[A’-C CIo(t)]y(t)-B (t+r)+ C’R CI(t, O)y(t+O)dO.

Proof. This simply involves solving for (T/T) explicitly from (5.9)-(5.13) and
from (6.24) and making appropriate changes of variables. For details, the reader may
consult 18].

Next, we relate the various quantities involved in (6.25) and (6.26) in
LEMMA 6.2. The optimal filter gains (5.11)-(5.14) are related to the optimal

control gains (6.28)-(6.31) for the dual problem by

(6.33) Po(t) go(t),

(6.34) P’ (t, 0-r)B’= I(t, 0),

(6.35) BP2(t,O-z,-’)B’=Iz(t,O,), O<=t<-T, 0<-_0, <-r.
The systems (6.27) and (6.32) are ad]oints of each other [14] so that

(6.36) (I)(t, s)= Y’(s, t).
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Proof. For proving (6.33)-(6.35), we simply verify that they satisfy the same
equations and boundary conditions. By uniqueness of the optimal control and optimal
filter, we conclude that (6.33)-(6.35) hold. Substituting these results into (6.32), we
see that Y(t, s) is the fundamental matrix of

(t) -[A’- C’R-1CPo(t)]y (t)- B’y (t + -)

(6.37) I+ C’R-1CP’(t,-O--)B’y(t-O)dO.

But (6.37) is precisely the adjoint equation [14] to (6.27), and it is well-known [14]
that (t, s)= Y’(s, t).

We are now ready to prove asymptotic stability of the optimal filter.
THZOREM 6.1. Consider the system defined by (6.19)--(6.20). Suppose (A, B, C) is

detectable and (A, B, F) is stabilizable. Then the gains of the optimal filter defined by
(5.7)-(5.11) converge, and the steady state optimal filter is asymptotically stable.

Proof. Proposition 6.1 shows that the dual system (A’, B’, C’) defined by (6.21) is
stabilizable and (A’, B’, F’) is detectable. Proposition 6.2 then shows that the gains
/o(t), /l(t, 0,), 2(/, 0, f)for the dual control problem, as given by (6.28)--(6.31)
converge to Ko, KI(O), K2(O, ) respectively as oo. By Lemma 6.2, we conclude that
as co, Po(t)- Po, BPI(t, 0) BPI(O), and BP2(t, O, )B’ - BP2(O, )B’, where

(6.38) APo+PoA’-PoC’R-CPo+O+P(-)+P’I(-)n’=O,
d
BPI(O)= -BPx(O)[A’- C’R -1CPo]- BP2(O, --)B’(6.39) d--

(6.40)

with

+ BP2(O, )B’= BPI(O)C’R-1CP’a )B’

PI(O) Po, P2(O, O) PI(O),
(6.41)

Po P’o, P2(O, )= P’ (, 0).

In view of (5.9) and (5.10), stability of the steady state filter is then governed by the
stability of the equation

0d
,R_ I_(6.42) -x(t)=[A-PoC C]x(t)+Bx(t--)-B e(-O-r)C’R-Cx(t+O)dO

But the adjoint to (6.42) is given by

(6.43) (t)=-[A’-C’R-1CPo]y(t)-B’y(t+-)+ C’R-1Cp’(O-r)B’y(t+O)dO.

By Lemma 6.2 again, this corresponds to the closed-loop optimal system for the dual
control problem. Proposition 6.2 then shows that (6.43) is asymptotically stable.
Hence, the system defined by (6.42), being the adjoint of that of (6.43), is asymp-
totically stable as well.

Remark 6.2. Theorem 6.1 is not the most general form of the filter stability
result for delay systems. Generalization to cases where we can have delays in the
observations, random initial conditions, etc., will be treated in a forthcoming paper
(see also [24]).
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Remark 6.3. Vinter [9] has independently obtained a similar filter stability result
using infinite dimensional filtering methods quite different from ours. In addition to
the conclusion given in Theorem 6.1, he also proved that II ,,oll- 0 as t c, where t,s
is the evolution operator connected with the error process for the time-varying filter
(5.9)-(5.14). His arguments can be readily adapted to our setting to prove the same
result.

7. Stochastic control of linear delay systems. We can now combine the results for
optimal control with quadratic cost and optimal linear filtering to obtain a stochastic
control scheme which is asymptotically stable. To that end, we define the stochastic
control problem as that of minimizing the cost functional

(7.) (u, xo)= E Io [x’(t)Mx(t)+ u’(t)Su(t)] dt

for u in some set of admissible control laws, subject to the constraint

(7.2) dx(t)= [Ax(t)+Bx(t-’)] dt + Gu(t) dt +Fdw(t),

(7.3)

x(O)=xo(O), 0[-,0],

dz(t) Cx(t) dt +Ndv(t).

We can evidently write

(7.4)

Define the set U0 consisting of the class of processes u(t) satisfying the following
conditions"

(i) u(t) is measurable with respect to tr{z(s), O<=s<=t}, i.e., there is a Borel
measurable function II such that u(t)= I-l(t; z(s), O<=s <- t).

(ii) For each u U0, the feedback system, obtained by using II(t; z(s), O<-s <= t)
for u(t) in (7.2) and (7.3), has a unique solution.

(iii) Elu(t)l2 dt <.
(iv) For each u U0, o’{z (s), 0 -< s -< t} tr{Zo(S), 0 <= s <= t}.
We shall take U0 to be the set of admissible controls. For a discussion on this

choice, see [18], [22].
The following result has been proved by Lindquist [6].
PROr’OSITION 7.1. The problem of determining u Uo so as to minimize (7.1) has

the following solution

o

u*(t)=-S-1G’Ko(t)(tlt)-S-1G’ I_ Kl(t, O)(t+Olt)dO

where Ko(t) and gl(t, 0) are the optimal gains ]or the deterministic optimal control
problem and are given by (6.3)-(6.6), and (slt), t-<=s <= t, is the conditional expec-
tation o] x(s) given z(tr), O<-_ tr <= t.

We now give the expression for the optimal cost, obtained in [18].
LEMMA 7.1. Corresponding to the optimal control (7.5), the optimal cost associated



676 RAYMOND H. KWONG AND ALAN S. WILLSKY

with the stochastic control problem (7.1)-(7.4) is given by

T

J* EV(xo)+ fo tr FF’Ko(t) dt

T

+ fo tr{K(t)GS-lG’K(t)P(t)
o

(7.6) + I_ K (t, O)GS-1G’Ko(t)P’I (t, O) dO

o

+ I_ K(t)GS-IG’KI(t’ O)Pl(t, O) dO

o o
-[- I-- I-- Ki (t, O)GS-IGtKI(t, )P2(t, , O)dO d} dt

where

(7.7)

0

V(xt) x’(t)Ko(t)x(t)+ I_ x’(t)Kl(t, O)x(t + O) dO

o o o

i I_ I_ o, .o

Proof. See Appendix B.
We turn our attention now to the stochastic control system defined by using the

steady state version of (7.5). The behavior of the closed-loop system under this law is
summarized in the following theorem.

THEOREM 7.1. Let M H’H. Suppose (A, B, G) and (A, B, F) are stabilizable,
and (A, B, C) and (A, B, H) are detectable. Then the control law

o

(7.8) u(tl= -S-1G’Ko(tlt)-S-IG’ I_ K(Ol(t + Oltl dO

where (t + OIt), - <- 0 <- O, is generated by the steady state filter of Theorem 6.1, and
Ko, KI(O) are given by the deterministic stationary control law of Proposition 6.2, gives
rise to an asymptotically stable closed-loop system. Furthermore, the cost "rate"

(7.9) J lim E [x’(t)Mx(t)+ u’(t)Su(t)] dt
r

associated with the above law is given by

(7.10)

J tr FF’Ko + tr KGS-1G’KP
0

+ I_ K’x (O)GS-1G’KoP’I (0) dO

o
/ I_ KGS-1G’Kx(O)PI(O) dO

o o
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Proof. Stabilizability of (A, B, G) and detectability of (A, B, H) ensure that Ko,
KI(O), K2(O, ) are well defined and that the solutions of the system

o

(7.11) 2(t)=(A-GS-IG’Ko)x(t)+Bx(t-r)-I_ GS-IG’KI(O)x(t+O)dO

are asymptotically stable (see Proposition 6.2). Detectability of (A, B, C) and stabil-
izability of (A, B, F) guarantee that the steady state filter is well defined and asymp-
totically stable (see Theorem 6.1). The closed-loop system is defined by the coupled
set of equations

dx(t)= lax(t)+ Bx(t-r)] dt- GS-G’Ko2(tlt) dt

(7 12) If GS-aG’Kl(O)(t+O[t)dOdt+Fdw(t),

d;(tlt)= A;(tlt) dt + B;(t-’[t-r) dt

(7.13)
+PoC’R-[dz(t)- C(tlt) dt]

I+B P(t-s-r)C’R-[dz(s)-C2(s/s) ds] dr.

Let the estimation error e(t+O/t),
x(t+O)-(t+O/t). We then get

-r=<0_-<0, be defined as e(t+O/t)=

(7.14)

and

(7.15)

dx(t)= (A- GS-1G’Ko)x(t) dt + Bx(t-r) dt
o

f_ GS-1G’Kl(O)x(t+O)dOdt+Fdw(t)
0

+GS-1G’Koe(tlt) dt + I_ GS-IG’K(O)e(t + Olt) dO dt

de(tit) (A PoC’R -1C)e(tlt) dt + Be(t tit- r) dt
0

+ I_ BPl(-O-r)C’R-1Ce(t+OIt+O)dOdt

+Fdw(t)-PoC’R- dv(t)-B I-, Pa(t-s-’)C’R-I dv(s)dt.

Since (7.15) is decoupled from (7.14), the stability properties of the closed-loop
system are precisely those of (7.11) and the steady state optimal filter. Since both of
these are asymptotically stable as a consequence of our assumptions, the closed-loop
stochastic control system is asymptotically stable as well. The expression for J follows
readily from Lemma 7.1.

$. Concluding remarks. We have treated the problem of filtering and control for
stochastic delay systems. The general filtering problem is studied for both linear and
nonlinear stochastic delay systems. A representation theorem for conditional moment
functionals is given, which forms the basis for derivations of stochastic differential
equations describing the optimal linear or nonlinear filter. For linear systems with
Gaussian initial conditions and noises, the optimal filter is completely specified by the
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equations derived for the conditional mean and covariance functions. The linear
time-invariant case with delays in the system dynamics is investigated in detail, with
particular emphasis on the stability of the optimal filter and stochastic control system.
These results, together with those on deterministic optimal control or linear delay
systems with quadratic cost, give a rather complete linear-quadratic-Gaussian theory
for this class of delay systems. In a forthcoming paper, we will extend this theory to
systems with delays in the control and delays in the observations.

Appendix A.
Proof of Theorem 5.1. It is only necessary to derive the equations for P(t, O, ).

For systems with point delays only, Bagchi [8] derived the equations for P(t, O, )
using properties of the innovatio/as and martingale theory. Although our approach is
different, we shall use some of his results to simplify our derivations (a more compli-
cated proof was given in [18]).

It is easy to see that

(A.1) P(t, O, :)= E[x(t + O)x’(t + so:)]-E[2,(t + Olt)(t + :lt)’].

Using (5.5), we obtain

(A.2)

E[(t + OIt)(t + 1t)’l
0

E{ [2(/+ Olt+ 0)+ It I_ P(s, t+O-s, )doC(s,/)’R-I(s) d,(s)J
+0

0

+

For any e such that -- <_- 0 + e <- 0, - <_- 5 + e <- 0, we get, using (A. 1) and (A.2),
that

P(t, O, ’)- P(t- , 0 + , +
0

-E{ (t + OIt + O) P(a, +-, a)d,C(e, a)’R-(e) du()
0

+0

p(.t+-..)ac(..),-()a()
+

t-e 0

+0

+
Using the fact that E[u(t)-u(s)lz]=0 as in [8], we see that the first two terms
in (A.3) vanish. By the same argument, the last two terms can be easily simplified to
yield
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(A.4)

P(t, O, )-P(t , 0 + e, tj + e )
0

0

o o

=-I- f-, P(s, t+ O-s, t)deC(s, /3)’R-l(s) . dC(s, c)P(s, c, t+ (-s) ds.

Since P(t, O, ) is clearly continuous in (t, 0, :), we may divide (A.4) throughout by e
and let e go to 0. This gives (5.8). The same arguments apply to the derivations of
(5.6) and (5.7). Finally, the initial conditions follow immediately from the properties
of conditional expectations.

Appendix B.
Proo[ o[ Lemma 7.1. We apply the Its5 differential rule to the function V(xt)

defined in (7.7). We calculate the first and second terms to illustrate the computations
involved"

d[x’(t)Ko(t)x(t)] [dx’(t)]Ko(t)x(t)

+x’(t)[dKo(t)]x(t)+ x’(t)Ko(t)[dx(t)] + tr FF’Ko(t) dt

x’(t-’)B’Ko(t)x(t) dt + u’(t)G’Ko(t)x(t) dt

+dw’(t)F’Ko(t)x(t) dt + x’(t)Ko(t)Bx(t-’) dt

+x’(t)Ko(t)Gu (t) dt + x’ (t)Ko(t)Fdw (t)- x’(t)Mx (t) dt

+x’(t)Ko(t)GR -1G’Ko(t)x(t) dt- x’(t)K’l (t, O)x(t) dt

-x’(t)Kl(t, O)x(t) dt + tr FF’Ko(t) dt,
0

dt[f_ x’(t)ga(t, O)x(t+ O)dO]

o

{[x’(t)A’+ x’(t r)B’ + u’(t)G’l dt + dw’(t)F’} | g(t, O)x(t + O) dO

+x’(t)g(t, O)x(t) dt-x’(t)g(t, --)x(t--) dt

+ x’(t) | dtK(t, o.- t)x(o.) do" dt
at

0t"

[x’(t)A’ + x’(t-r)B’+ u’(t)G’] I K(t, O)x(t + O) dO dt

o

+dw’(t)F’ I Ka(t, O)x(t + O) dO + x’(t)gx(t, O)x(t) dt

-x’(t)gx(t,-r)x(t-r)dt+x’(t) --- K(t, O) x(t+O)dOdt.
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Similar calculations for the last two terms on the right hand side of (7.7) yield the
following expression

dV(x,)- V(t) dt+ dw’(t)F’Ko(t)x(t) dt + x’(t)Ko(t)Fdw(t)

(B.1)

o

+tr FF’Ko(t) dt+ dw’(t)F’ I_ Kl(t, O)x(t + O) dO

o

+ I_ x’(t+O)K’l (t, O)dOFdw(t)-x’(t)Mx(t)-u’(t)Su(t)dt

where

(B.2)

0

Vl(t)-- [u(t)/ S-lG’Ko(t)x(t)+ I_ S-IG’KI(t’ O)x(t + O)dO]
o

S[u(t)+ S-XG’go(t)x(t)+ I_ s-la’gl(t’ )x(t+ )d].
Using the boundary conditions at T for Ko(t), Kl(t, O) and K2(t, O, t), we see that
V(xr) 0. Therefore, integrating (B.1) from 0 to T and taking expectations, we get

T t’T t"T

(B.3) E | [x’(t)Mx(t)+u’(t)Su(t)] dt :EV(xo)+E | Vx(t)dt+ | trFF’Ko(t)d,.
Jo o o

Now
T T T

by the use of Fubini’s theorem and properties of conditional expectations. Substituting
the control law in (7.5) into (B.2), we get that

E[ Wl(t)/z t] tr Ko(t)GIR -1G’Ko(t)Po(t)
o

+ I K’ (t, O)GR -1 G’Ko(t)P (t, O) dO

(B.4) ot"

+ I K(t)OR-1O’Kl(t’ O)Pl(t, O) dO

0 0

E{Vl(t)/z } is now seen to be a deterministic function and hence equal to EVI(t).
Substituting (B.4) into (B.3) yields the conclusion of the lemma.
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