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Abstract—The problem of detection and identification of cardiac
transient rhy thms, using the associated R-R interval sequence, is studied.
A generalized likelihood ratio technique is proposed, in which the tran-
sient rhythm category is identified by means of a maximum-likelihood
hypothesis test. Simultaneously, the magnitude of the change in the
R-R interval pattern is estimated. The method is easily mechanized
on-line using a moving window of data and prestored gains. Experi-
mental results using actual data are presented to indicate the utility of
the method.

I. INTRODUCTION

HIS PAPER is the second of a two-part series on the de-

velopment of an automated technique for cardiac ar-
rhythmia detection and identification. In Part I [1] the
motivation and background for this study were given, and a
multiple model technique was developed for detection and
identification of persistent rhythms, i.e., thythms which are
essentially unchanged over approximately 8-10 heartbeats.
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In addition, we presented results that showed that, with the
aid of an outlier test, the multiple model algorithm was ca-
pable of detecting and adapting to switches between persistent
thythm patterns. Although this method does allow one to
detect certain sudden changes in a rhythm pattern, its sim-
plicity does not allow one to correctly identify many ectopic
events such as compensatory prematures and interpolated
beats.

In this paper we investigate the use of a Generalized Likeli-
hood Ratio (GRL) technique [2-4] for detection and identi-
fication of transient arrhythmias;e.g., arrhythmias that persist
over less than 8-10 heartbeats. The GLR approach is a prac-
tical method for detecting and classifying several types of tran-
sient events and for estimating the parameters that character-
ize the events (e.g., the degree of prematurity of a PVC). This
approach has previously been found to give good experimental
results [3] and will be shown to give excellent results in this
application.

Following the methodology in Part I, our approach to
modeling is phenomenological in nature; that is, the models
are based on rather simple observations concerning the distin-
guishing characteristics of the R-R interval patterns corre-
sponding to the various transient events. This produces a
simple and quite reliable statistical identification procedure.
The diagnostic capabilities of this technique are limited only
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by the amount of information contained in the observed pat-
tern of R-R intervals. Thus, the technique we propose can
detect all arrhythmias that cause some type of aberrancy in
this pattern, (which includes most arrhythmias), but it cannot
distinguish between those that cause the same type of distur-
bance. The point of view taken here for transient arrhythmia
analysis is that the R-R interval pattern is a transient variation
from an underlying regular rhythm pattern. This appears to be
the way in which these patterns are viewed by the cardiologist.
Taking this point of view, we will see that the GLR technique
operates by performing statistical tests on the measurement in-
novations produced by a filter based on the “small variation”
rhythm model described in Part I.

II. CHARACTERIZATION OF AND MODELS FOR
TRANSIENT ARRHYTHMIAS

Let y(1), y(2), - -, y(V) be a sequence of observed R-R
intervals. As described in [1], if the y’s come from a regular
rhythm containing only small random variations about the
mean R-R interval, an appropriate sequential phenomenologi-
cal scalar model is

x(K)=x(k-1), yk)=x(k) +v(k) 2.1)

where x is the ideal, perfectly constant sequence of R-R inter-
vals, and v(k) is a sequence of zero-mean, uncorrelated random
variables with variance R. If the sequence of R-R intervals
contains an ectopic event, the model (2.1) must be modified.
In the rest of this section we describe a number of such events
and develop the modifications to (2.1).

Rhythm Jump: This class is characterized by a sudden
change of the heart rate, which occurs in the case of onset of
bradycardia or tachycardia. The model for this is

x(k)=x(k - 1) +v84 1. 2.2)

Here, v is the unknown size of the shift in the average R-R in-
terval at the unknown time, @, of the shift of the thythm and
8, is the Kronecker delta (§;; =1;8; =0, i#j). Thusv >0
models bradycardia onset and » < 0 models tachycardia onset.

Non-Compensatory Beat: This class is characterized by in-
termittent premature QRS complexes, in which there is incom-
plete compensation of the R-R interval subsequent to the
premature beat, or by dropped QRS complexes in which a
much longer than normal R-R interval results. This class in-
cludes sinus arrest, SA block and atrial prematures.

For this class of ectopic events, there is either a shortened
or lengthened R-R interval, followed by a return to the regular
pattern. Thus:

x(k)=x(k-1)+v[dg - 8g,x-1]- 23)

Here v < 0 models a premature beat, while » > 0 can be used
to model a skipped beat.

Compensatory Beat: This class of arrhythmias is character-
ized by intermittent premature QRS complexes in which com-
plete compensation of the R-R interval is achieved subsequent
to the premature beat. Thus, the interval between the QRS
complex preceeding the premature and the post-premature
QRS complex is equal to two normal R-R intervals. This class
includes AV nodal prematures and ventricular prematures.
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The model for this is:

x(k)=x(k- 1) +v[6gx - 289,51 +8g,k-2]- 24

Double Non-Compensatory Beat: This arrthythmia class is
characterized by one of the following patterns: (1) an under-
lying uniform R-R interval upon which is superposed intermit-
tent extra or ectopic beats called interpolated beats (these
beats do not interfere with the normal ventricular rhythm),
(2) a double premature, or (3) the dropping of alternate beats
(2:1 block). For this case, we are seeking a model which is
characterized by two successive lengthened or shortened R-R
intervals. The model for this is

x(k)=x(k-1)+v[8g 1 - 84 x-]. (2.5)
III. THE GENERALIZED LIKELIHOOD RATIO (GLR)
ALGORITHM

In this section we develop the necessary equations that de-
fine the algorithm for the detection and classification of what
we have termed “transient arrthythmias.” Recall from the pre-
vious section that each of the arrhythmia models developed in
Section II is of the form

x(k)=x(k- 1)+ F,(k,0) v (3.1)

y (k) =x(k) +v(k) (32)

where F; takes on the forms implied in Equations (2.2)-(2.5).
Here the term F;(k, ) v represents an abrupt system change of
type i. The purpose of the GLR method is to determine if
such a change has occurred, and to ascertain the type i of the
change, the time 8 of its occurrence, and its magnitude ».

Suppose we design a Kalman filter for the “small variation”
persistent rhythm model (see Part I) based on the assumption
that there are no abrupt changes. The filter is defined by the
equations

(k) = X (k- 1)+ M(k) y(k) (33)
Y& =y(®) - x(k- 1) 34)
where we have the precomputable equations
V(k)=P(k-1)+R 3.5)
Mk)=Pk- 1)/V(k) 3.6)
P(k)=[1-M(k)] P(k- 1). 3.7

Here we must initialize the equations with the a priori statis-
tics of x(0)—i.e., values for the mean ¥(0) and the covariance
P(0). Also under the hypothesis of no abrupt change, the
measurement innovations y(k) is a zero-mean, uncorrelated
process with covariance V(k). As in the multiple model ap-
proach, the GLR method relies on the examination of these
innovations.

Suppose now that an abrupt change F;(k,8)» occurs.
Straightforward calculations [3] show that the innovations
can then be written in the form

v(k)=Gi(k,0) v + ¥(k) (38

where ¥ is the innovations when there is no abrupt change,
and the term G;(k, 6) v reflects the effect of the abrupt change
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on the innovations. The matrix G;(k,0) is defined by the

equations
Gi(k,0)= [1-M(k-1)] Gi(k- 1,0) + Fi(k,0)
Gi(8,0)=F;0,0).
(Note that F and G are all zero for k <9.)

(3.9)
(3.10)

The GLR method consists of the following two steps:

(a) Assuming each type of change has occurred, compute
the most likely time of its occurrence and the most likely
magnitude.

(b) Given these maximum likelihood estimates, we choose

the most likely type and decide if it is likely enough to have
actually occurred.
The details of this approach (for a more general model than
(3.1), (3.2)) are discussed in [5], and we limit ourselves here
to the presentation of the relevant equations. Define the (pre-
computable) quantity

k
Ci(k,0) =2 G2(,0O/V()). (3.11)

j=6
We can then find an expression for the best estimate of v as
a function of assumed values of & and i and of the observed
innovations (1), - - -, v(k)

D(k,0,1)=d;(k, 0)/Ci(k,0) (3.12)
k
di(k,0)= 2 Gi(j,6) Y(DIV (D). (3.13)
j=0
We also compute the log-likelihood ratios

and compute the best estimates 7 (k), § (k) as those values that
maximize I(k,8,7). The estimate »(k) is the corresponding
v(k,8,1).

The fundamental quantity used in the GLR test is the tran-
sient thythm “Signature” G;(k,8). The signature for a given
transient event describes the systematic behavior of the pre-
diction errors of the Kalman filter when the transient event
takes place, and the loglikelihood ratio I(k,8,i) is a direct
measure of how closely the actual prediction errors resemble
the signature G;(k,8). For example, in the case of a rhythm
jump, the Kalman filter predicts the next R-R interval based
on the old heart rate, and one would expect to observe a con-
sistent deviation between the predicted and the actual R-R
intervals following the jump. In this case I(k, 8, i) will reflect
the presence or absence of this deviation. Of course, since the
filter has nonzero gain, it will eventually adjust to the new
heart rate, and thus the mean prediction error will decay to
zero. Clearly the rate at which this decay occurs depends on
the filter gain—the larger the gain, the faster the decay. Here
we see a potential tradeoff in the system design: one wants
enough filter gain in order for the filter to be able to track
slowly changing heart rates, but a large gain leads to fast de-
cay of the signatures which in turn makes event detection
more difficult.

Figure 1 depicts the GLR algorithm for the rhythm models
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Fig. 1. Transient Rhythm Detection Configuration.

described in Section II. The residuals from the Kalman filter
are fed into four systems, one looking for each type of tran-
sient event. Each GLR system computes a log-likelihood ratio
(), IV), I(C), I(D)) which measures the likelihood that the
particular arrhythmia actually occurred. Decision logic then
chooses the most likely arrhythmia type and decides if it is
sufficiently likely to have actually occurred. The decision rule
for the GLR system is of the form

. DECLARE DETECTION
max {I(/), I(NV), 1(C), (D)} < €
NO DETECTION

(3.15)

The choice of € is determined by consideration of the prob-
lems of false positives and missed detections. The results pre-
sented in the next section indicate that € = 15 is an appropri-
ate value.

We note that GLR in principle requires a growing memory—
ie., at time k we must consider all possible values of 6 €
{1,---,k}. A practical and reasonable method for avoiding
this difficulty is to consider a “sliding window.” At any time
k we only consider the last NV values of

6{k-N+1,---,k}.

The idea here is that any change occurring more than N time
units in the past would have been detected already. The size
N must be chosen with care. If it is taken to be large, we are
able to collect a great deal of information and can make a de-
cision with more certainty. However, the larger V is, the larger
the computational load. Also, if a particular R-R interval se-
quence contains several transient events, we want to keep N
small to minimize the confusion in separating the various
events. In connection with this, we note that GLR is directed
at detecting a single transient event. However, as we will see,
the technique can be used successfully to detect several events
without adjusting the filter subsequent to the detection of an
event. There are methods for adjusting the filter after event
detection, and we refer the reader to [3, 5] for details.

One difficulty with the GLR method as described so far is
the detection of transient events that occur at the start of a
record. The GLR filter, which is trying to estimate the av-
erage R-R interval, initially has no data on which to base its
estimate. Thus, the filter tends to “follow” the first few in-
tervals, and the GLR detector, which is looking at the filter
behavior in order to determine if a transient event has oc-
curred, will be fooled. Of course, as we smooth the data by
processing more and more data points, the GLR will, in prin-
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TABLE 1
“SMALL VARIATION” FILTER PARAMETERS
Kalman Filter Parameters
P(0) = 32 P(0) = 1600
mx:ber Gain Innovations Gain Innovations
of beats M(i) Variance V(i) M(i) Variance V(i)
1 0.333 96.0 0.962 1664.0
2 0.250 85.3 0.490 125.5
3 0.200 80.0 0.329 95.4
4 0.167 76.8 0.248 85.1
5 0.143 74.7 0.198 79.8
6 0.125 73.1 0.166 76.7
7 0.111 72.0 0.142 74.6
8 0.100 71.1 0.124 73.1
9 0.100 70.4 0.111 72.0
10 0.100 69.8 0.100 71.1
11 0.100 69.3 0.100 70.4
12 0.100 68.9 0.100 69.8
13 0.100 68.6 0.100 69.3
14 0.100 68.3 0.100 68.9
15 0.100 68.0 0.100 68.6

ciple, be able to determine that it is the first few beats that
contain the problem, but for short record lengths or for nar-
row GLR windows, one may not be able to obtain enough
smoothing in this manner. Motivated by the observed problem
of one aberrant interval causing an error in computing an ini-
tial average, the following initialization scheme was used:

Step (1): Search the first 5 beats and find the first two con-
secutive intervals y (k) and y(k + 1) that satisfy

ly(k) - y(k + 1) <8.
Step (2): Set the initial filter estimate equal to their average

200) = y(k)+32;(k+ 1)

and set the initial covariance P(0) to % of the noise covariance
associated with the measurement of a normal R-R interval.
This reflects accurately the variance associated with an esti-
mate of a random variable obtained by averaging two samples.

Step (3): If none of the first 5 beats is less than § apart,
the initial filter estimate is set equal to the average of the first
5 beats, and P(0) is set to a lower value.

For the actual runs described in the next section, we have
taken 8= 20 and P(0) = 32.!

IV. EXPERIMENTAL RESULTS

The GLR detection system presented in Section III has been
implemented and tested on a variety of idealized and actual
R-R interval data. All R-R intervals were determined using
the R-wave detector documented in [5]. The idealized data
were used to evaluate performance under ideal conditions when
the transients followed one of the models exactly. Our results
consist of plots of the log-likelihood ratios. The performance
of the decision rule (3.15) can be directly assessed from these
plots by choosing a value of e. We have found that € = 15
yields good results.

A summary of the parameters of the “‘small variation”

! As discussed in Part I, the unit in which R-R intervals is expressed is
4 ms. Thus, for example, 8 = 80 ms.

Kalman filter used to generate the R-R interval estimates
under the “no transient” hypothesis is given in Table I. Shown
are the values of filter gain for two values of initial error co-
variance; P(0) = 32 and P(0) = 1600, in units of (samples)?,
at 4 ms/sample. Note that the gain decreases monotonically
to M(k) = 0.100 and is held at that value thereafter in order to
keep the filter active;i.e., so that the “small variation” filter
can track a slowly varying rthythm. Also shown in the table
are the corresponding innovations variances, which are used in
the GLR tests.

The first test made consisted of a pure jump. The data were
obtained by piecing together two actual normal sinus rhythm
strips with different heartbeat rates. The results are shown
in Figures 2-6. In the figures the likelihoods L (k,8)? are
plotted vs. 8 for constant k. The vertical marks along the ab-
scissa represent the actual time at which the R-wave occurred.
The numbers along the abscissa represent the number of 4 ms
samples and seconds in each heartbeat. The values for £ < 6
have been suppressed for convenience. Note that L(k, 6) in-
creases monotonically with & for ¥ > 6 in Figure 3, a strong
indication that a jump took place at 8 = 6. The likelihoods for
the other three categories considered are shown in Figures 3-5
and show no strong monotonicity at any point. From this, it
is concluded that a jump occurred at 8 = 6. The jump estimate
in Figure 2 is seen to be quite accurate. The results in Figures
2-5 may be summarized, in this case, by plotting max, L (k, 6)
vs. k for each transient event class. The results are shown in
Figure 6. Note that the jump is identified at k¥ = 8 (i.e., it is
distinguished from the other possible arrhythmias). It cannot
be identified at £ = 7 since the “double non-compensatory”
category is equivalent to a jump of length two. Note that all
transient thythm categories are equally likely at & = 6, since
only a single “outlier”” (event of length one) has been detected.

The next test was performed on an actual rhythm strip in
which there was gradual slowing to sinus bradycardia followed
by slow nodal rthythm. A summary plot is shown in Figure 7.

2y (k, 6) for class i is the statistical log-likelihood ratio /(k, @, 7) of
Eq. (3.14).
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Note the increasing likelihood of a jump as k increases, as com-
pared to the leveling off seen for the pure jump of Figure 6.
This is indicative of a persistently changing rthythm.

The next test was made by artificially lengthening one R-R
interval in an otherwise normal sinus rhythm strip. The results
are shown in Figure 8 and indicate strong identification of the
non-compensatory beat with an accurate jump estimate.

The next test was made using an actual rhythm strip which
included a single, interpolated atrial premature contraction
close to the middle of the normal R-R interval. This corre-
sponds to the double non-compensatory model. A summary
plot is given in Figure 9 and shows that the transient rthythm
is correctly identified.

The results presented thus far have involved a single transient
event. It was decided to test the GLR system by using data in
which multiple transients occurred within the window.® The

31n this paper, the data window includesall thedata (9 € {1, - - -,k }),
since the rhythm strips were of short duration. In normal operation, a
fixed window length must be used. It should be noted that shorter
windows are contained in the longer ones. Hence, from these results

we can determine the effects of using windows of various lengths. We
will comment on this in the conclusions.
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Fig. 11. Non-Compensatory Likelihoods for Multiple Second Degree
Blocks (Actual Data). These are identified correctly since L (k, 4),
L(k,8) and L(k, 11) increase monotonically until next arrhythmia
occurs, and then decrease only slightly.

results of a typical test on actual data are shown in Figures
10-13, in which second degree A-V block of the Wenckebach
type appears. The lengthening PR intervals are not detected
since we have not as yet included P-waves in the analysis.
However, the three dropped beats, which manifest themselves
as non-compensatory in nature, are easily detected (Figure
11). Note that the jump estimates, which are less in magni-
tude than the underlying normal sinus rhythm, would suggest
that the PR interval prior to the dropped beat is longer than
the one following it, as is the case with Wenckebach phenom-
enon. Note also from Figures 10-13 that the GLR detectors
for all events respond to the non-compensatory beats; how-
ever, the largest, most consistent values are obtained by the
proper detector.

The experimental results up to this point have been obtained
using all the data and without the initialization technique of
Section III. It was found by experiment that a transient
thythm near the beginning of the data resulted in poor per-
formance. An example of this is shown in Figures 14-15 in
which L(k, 0) is plotted for the first five intervals for all four
categories. The first R-wave was a PVC, which was difficult to
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(Actual Data). Likelihoods decrease after initial rise, indicating that
no compensatory beats occurred.
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Possible interpretations are: (1) a non-

compensatory beat at 8 = 1, (2) a jump at @ = 2, (3) a compensatory beat at 6 = 1.

identify, as shown in Figure 14, with no initialization. The
low value of L(1, 1) is due to the large initial error variance as-
sociated with the initial R-R interval estimate of 200. With
proper initialization, as shown in Figure 15, the value of
L(1,1) is much higher and there is no confusion as to the ex-
istence of a non-compensatory beat at § = 1.

V. CONCLUSION
In this paper, we have developed a systematic approach to
the problem of cardiac transient rhythm detection and identi-
fication using R-R intervals. The R-R intervals are modeled as
being composed of two terms: (1) an underlying normal sinus
rhythm, and (2) an unknown and unpredictable transient. The
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Fig. 15. Likelihoods for Initial Non-Compensatory Beat—With Initialization. The non-compensatory beat is detected
without confusion.

normal sinus rhythm is estimated by a Kalman filter. The
filter residuals are then monitored to detect and identify the
transient rhythms. Identification is performed by comparing
the residual sequence to a set of ‘‘signatures,” or templates,
one for each category modeled. Maximum likelihood de-
tection is performed by correlation of the data to these
“signatures.”  Simultaneously, an estimate of the value of
the transient is obtained, which gives additional diagnostic
information.

The technique can be easily mechanized for on-line opera-
tion and uses prestored gains for all computations. A series
of experimental tests have been made on actual data using
four phenomenological models: (1) rhythm jump, (2) non-
compensatory beat, (3) compensatory beat, (4) double non-
compensatory beat. The results of these tests indicate that
very accurate detection and identification can be obtained.
In addition, multiple transients within the window used for
computations can be accurately identified.

One note of caution must be added. As indicated in Section
IV, the GLR system was able to correctly determine each tran-
sient event. However, when one or more events occur, all of
the detectors respond in some fashion, and one must be care-
ful in devising decision logic that must examine a collection of
likelihood ratios. As the window becorhes wider (increasing
the likelihood of multiple events within the window) the logic
can become rather complex (how many events were there?

when did they occur? what were they?). In preliminary work
being performed at the present time, we have found that a
window length of two (i.e., we examine and only compute
P;(k,k) and Py(k,k- 1)) leads to accurate detection, and
complete separation of successive events, with essentially no
problem of confusion among the various transient rhythm
diagnoses. With this system the decision logic is extremely
simple, and one can devise straightforward rules for identify-
ing events that persist over a time period longer than two in-
tervals (e.g., jumps) by keeping track of consecutive decisions
(e.g., in the jump case, we will detect a sequence of double
non-compensatories over successive windows of length two).
These results will be presented in a future paper.

This technique appears to be a very powerful approach to
transient rhythm detection for several reasons. First, the ap-
proach is statistical and multivariable, allowing complex cor-
relations and uncertainties to be accounted for rather easily.
The cardiologist’s knowledge can be used to set the likelihood
thresholds, based on his overall diagnosis, rather than setting
several, possibly interacting thresholds, on a lower level. Sec-
ond, the approach is phenomenological, simplifying the mod-
eling process. Categories are easily added or deleted, as de-
sired. Third, the method appears to be accurate and relatively
insensitive to modeling errors as indicated by our experimental
results. Finally, the mechanization is relatively simple, and the
critical gains can be computed a priori on the basis of the dy-
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namical models and predicted uncertainty level.

Clearly the techniques for identifying transient and persis-
tent rhythms must be combined into an overall system. This
involves the inclusion of further system logic, and a prototype
system along these lines has recently been developed. The
phototype will be described in a future paper.
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An Adaptive Coherent Optical Processor for Cell
Recognition and Counting
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Abstract—An adaptive coherent optical processor, using discrete sam-
pling of the Fourier spectrum, is described. The discrete sampling
method was used to realize a system for recognizing and counting retic-
ulated red blood cells using conventional blood film slides as the input
field. This process is based on the assumption that a family of cells of
distinct morphology will have a unique Fourier spectrum and that the
intensity of the spectrum from the individual cells is additive when the
population is large, randomly located, and nonoverlapping. Intensity
measurements made at discrete spatial frequencies provide information
on the number of cells of each type present. Inference of the counts
is made through a linear estimation model obtained by a least squares
regression of the intensity measurements against a set of known counts.
If applied to the class of spectra for which the system model is designed,
the estimation error is equal to or better than equivalent hand counting
methods and is of the same order as that inherent in any least squares
regression process.
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INTRODUCTION

UTOMATION of the acquisition and interpretation of

data in cytology [1], and microscopy [2] in general, has
been a focus of biomedical research for nearly two decades
[3, 4]. Several approaches have been employed in the pursuit
of automating the techniques. Ingram and Preston [5, 6] and
Megla [7] have successfully applied microscopic scanning tech-
niques and digital pattern recognition to the differential leuko-
cyte count. Groner [8], Melamed, e al. [9], Kamentsky and
Melamed [10], and Loken, Sweet, and Herzenberg [11, 12]
have applied optical absorption, fluorescence, and scattering
properties of cells in continuous flow systems to successfully
obtain separation of cells and cell classes according to these
properties. The difficulty with the present digital computer
systems [13] appears to be the relatively slow rate of analysis
and the expense of processing. Although the continuous flow
systems can analyze up to several thousand cells per second
[12] with a high degree of repeatability, the classification ob-
tained depends to a large degree on indirect properties of the
cell, such as reactions to chemical processes, and not the
specific cell morphology [1]. Cost is also becoming a factor
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