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T
his article presents a survey of recent research on 
sparsity-driven synthetic aperture radar (SAR) imag-
ing. In particular, it reviews 1) the analysis and synthe-
sis-based sparse signal representation 
formulations for SAR image for-

mation together with the associated im-
aging results, 2) sparsity-based 
methods for wide-angle SAR im-
aging and anisotropy charac-
terization, 3) sparsity-based 
methods for joint imaging 
and autofocusing from 
data with phase errors, 
4) techniques for exploit-
ing sparsity for SAR imag-
ing of scenes containing 
moving objects, and 5) re-
cent work on compressed 
sensing (CS)-based analysis and 
design of SAR sensing missions. 

InTroducTIon
SAR imaging and sparse signal representation 
are well-established distinct lines of research. That said, spar-
sity has been of interest for SAR imaging implicitly over many 
years, and more explicitly within the last 15 years or so. In fact, a 
considerable fraction of recent developments for SAR imagery have 
been driven by moving from a purely Fourier transform type pro-
cessing paradigm to one that couples physics-motivated sensing 
models with some form of sparsity-based priors. Ideas based on 
sparse signal representation, proposed by a number of research 
groups, have recently led to advanced image formation 

methods offering a number of benefits for SAR, including increased 
resolvability of point scatterers, reduced speckle, easier-to-segment 
regions, and robustness to limitations in data quality and quantity. 

Furthermore, the sparse signal representation per-
spective has provided inspiration for new ways 

to think about and produce solutions 
for several important problems for 

SAR, which are also motivated 
by a number of emerging SAR 

data collection scenarios. 
These problems include 
autofocusing, wide-angle 
imaging, interferometry, 
SAR tomography (Tomo-
SAR), through-the-wall 
radar imaging, multiple-in-

put, multiple-output (MIMO) 
radar imaging, passive radar 

imaging, and moving target 
imaging, among others. Finally, 

recent results on CS, built upon sparse 
signal representation, have generated con-

siderable interest in radar waveform design as 
well as analysis and design of radar sensing scenarios under 

data collection constraints. Pursuing this overall new line of inqui-
ry on SAR imaging leads to the discovery of a variety of technical 
problems that fall outside the standard domain of sparse signal 
representation, but that involve issues of critical concern for 
SAR imaging. The result is a rich, new area of research that has 
already shown its promise but that also motivates interesting 
lines of inquiry for the future. In this article, we present an over-
view of the recent line of research pursued by several research 
groups on sparsity-driven SAR imaging. Our article shares some 
aspects of two recent survey papers [1], [2]. The first of these pa-
pers [1] provides a broad introduction to the use of CS in radar, 
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and considers three applications: pulse compression, radar imag-
ing, and air space surveillance with antenna arrays. The second 
paper [2] provides an overview and examples of how central 
themes in sparsity and CS have been present in the array pro-
cessing literature in general, and in radar imaging in particular, 
over many years. Our article complements these papers in sever-
al ways and presents a focused and up-to-date picture of sparsity-
driven radar imaging. In particular, we provide a comprehensive 
coverage of recent use of sparsity in a variety of radar imaging 
scenarios, with a signal processing focus and perspective. Appli-
cations and connections covered include wide-angle imaging, 
autofocusing, moving target imaging, as well as CS. 

AnAlysIs And synThesIs-bAsed  
spArse reconsTrucTIon for sAr
SAR imaging can be viewed as a linear inverse problem in which 
an unknown spatial reflectivity field is reconstructed from noisy 
measurements of waves backscattered from a scene. After cer-
tain steps of preprocessing of the radar returns, the resulting 
data can be related to the underlying reflectivity field through a 
discretized model of the following form, which essentially 
involves a spatial Fourier transform: 

 ( , ) ( , ) ( , ),r f s x y e n f( )cos sin
k l

m
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m m
j c
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where c  denotes the speed of light. We can stack the entire set 
of noisy phase history measurements ( , ),r fk li  and the noise 
( , )n fk li  at all available frequencies ,fk  , , ,k K1 f=  and view-

ing angles ,li  , , ,l L1 f=  as well as the reflectivity function or 
scattering response ( , )s x ym m  at all spatial locations ( , ),x ym m  

, ,m M1 f=  (which include all the points containing the non-
negligible scatterers), into vectors to obtain the following 
observation model: 

 ,r Hs n= +  (2)

where s  denotes the underlying, complex-valued reflectivity 
image and H  is the mathematical model of the observation pro-
cess described by (1). While this model and the ideas described in 
this article can be used in the context of a variety of SAR operat-
ing modes, for basic SAR imaging we will mostly assume spot-
light-mode operation for concreteness. Given limitations in the 
bandwidth of the measured data and in the diversity of look 
angles, as well as the inherently noisy nature of the measurement 
process, the inverse problem in (2) is ill posed. To generate a solu-
tion, implicit or explicit assumptions need to be made. Principled 
ways to incorporate such assumptions, in the form of constraints 
or prior information, include regularization and Bayesian estima-
tion methods. Within this context, the information or constraint 
that the underlying reflectivity field admits a sparse representa-
tion has proved to be a very useful asset for SAR imaging. The 
simplest form of sparsity (or compressibility) to exploit would be 
a scene consisting of a small number of dominant scatterers (e.g., 

man-made metallic objects). Exploitation of this type of sparsity 
has led to superresolution imaging in SAR (see Figure 1) [56]. 
More generally, the scene could be sparse in a different domain, 
as we discuss in more detail below. The remainder of this section 
provides an overview of analysis and synthesis-based sparse signal 
representation methods applied to SAR imaging. 

In an analysis model, sparsity is imposed on some transfor-
mation or features of the signal of interest, and, in this case, is 
often called cosparsity. Such an approach for SAR imaging was 
proposed in [3], where an estimate of s  is obtained by minimiz-
ing the following cost functional: 

 ( ) .J s r Hs s sp
p

p
p

2
2

1 2 dm m= - + +  (3)

Here · p  denotes the p, -norm, d  is a discrete approximation to 
the two-dimensional (2-D) derivative operator (gradient), | |s  
denotes the vector of magnitudes of the complex-valued vector ,s  
and 1m  and 2m  are scalar parameters. For p 21  we have promo-
tion of sparsity, which gets weaker as we approach .p 2=  The val-
ues used for p  in sparsity-driven SAR imaging are around 1, so the 
second and third terms enforce sparsity. The relative contribution 
of these two terms are determined through the choice of the 
hyperparameters 1m  and .2m  The second term indicates a prefer-
ence for spatially sparse reflectivity fields. The third term enforces 
sparsity on the gradient of the reflectivity magnitudes, indicating a 
preference for piecewise smooth reflectivity magnitude fields. 
Such piecewise smoothness constraints have a long history in real-
valued image restoration and reconstruction, under various names 
including edge-preserving regularization and total variation resto-
ration. Within the context of SAR imaging, such smoothness is 
expected within homogenenous natural terrain types and within 
some man-made structures. Even in homogeneous regions, the 
phases of the reflectivities in spatially neighboring pixels however 
are generally uncorrelated, hence no such smoothness is expected 
in phase. As a consequence, we need to impose sparsity on | | ,sd  
and not on ,sd  as the latter would lead to smoothing of the real 
and imaginary parts of the reflectivity field, which may not lead to 
the desired smoothing effect on the magnitudes. 

Another perspective on sparsity-driven SAR imaging is that it 
can be used to preserve and enhance features that might be used 
in decision making based on SAR images, such as automatic tar-
get recognition. With this perspective, the image formation 
approach of (3) was called feature-enhanced imaging in [3], with 
a dominant second term leading to point-enhanced imaging and 
a dominant third term leading to region-enhanced imaging. 
Point-enhanced imaging provides improved resolvability in 
sparse scenes, an example of which is provided in Figure 1. 
Region-enhanced imaging imposes sparsity on spatial gradients 
and leads to images with reduced speckle and easier to segment 
regions. Such improvements have partially been quantified in 
terms of feature extraction accuracy and object classification per-
formance [4], [5]. 

Having to use a penalty on the magnitudes makes the optimi-
zation problem in (3) more challenging than its counterparts in 
real-valued sparse signal recovery problems. Efficient algorithms 
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matched to this problem structure have been developed [3]. These 
algorithms are based on half-quadratic regularization, and can be 
viewed as quasi-Newton methods with a specific Hessian update 
scheme. Another interpretation is that the overall nonquadratic 
problem is turned into a series of quadratic problems, each of 
which is efficiently solved in each iteration using conjugate gradi-
ents. The special case of point-enhanced imaging can be solved by 
a variety of algorithms developed for sparse signal representation. 
In [6], a fast and adaptive sequential basis selection strategy is 
employed for point-enhanced imaging. Rather than solving a basis 
pursuit type optimization problem for point-enhanced SAR imag-
ing, an alternative is to use a greedy matching pursuit algorithm, 
as in [7] and [8]. While the development of computationally effi-
cient algorithms matched to the problem structure has been and 
continues to be an important line of research, at the fundamental 
level, the cost of solving the optimization problems involved in 
sparsity-driven SAR imaging is significantly higher than conven-
tional processing. Hence there is certainly a price to be paid for 
potential improvements obtained in image quality. We should also 
note that many cost functionals considered in sparsity-driven SAR 
imaging are nonconvex. Throughout the work surveyed in this 
article, local optimization algorithms aiming to find the local min-
ima of such cost functionals are used.  

Now let us turn to synthesis-based models for sparse represen-
tation. In a synthesis model, the formulation is based on repre-
senting the signal of interest in terms of a dictionary and 
imposing sparsity on the dictionary coefficients. Let us just focus 
on one appealing feature of a synthesis model in the context of 
SAR imaging. We note that (3) uses two different regularization 
terms, one imposing the spatial sparsity of the field, and the other 
its piecewise smoothness. (One could combine the two terms into 
a single terms using a “tall” operator carrying out both analysis 
operations.) These two terms are used together to handle cases in 
which one of these terms does not serve as a good enough con-
straint throughout the scene. However, (3) imposes these two 
potentially conflicting constraints jointly everywhere in the 
scene, leading to some degree of inconsistency with the stated 
objective. This issue may be handled in a more consistent manner 

within a synthesis model. In particular, one can form an over-
complete dictionary consisting of atoms corresponding to the dif-
ferent types of features represented by the two constraints in (3). 
As the atoms can also exhibit spatial locality, one or the other type 
of feature can be “active” at a particular location in the scene, 
avoiding simultaneous use of potentially conflicting constraints. 
This could lead to a sparser representation for scenes exhibiting 
different types of features at different spatial locations. Based on 
these thoughts, a synthesis model for sparsity-driven SAR imag-
ing has been proposed in [9]. As in (3), what admits sparse repre-
sentation is the magnitude of the reflectivity field .s  Hence we 
are interested in a representation of the form | | ,s Da=  where D  
is an overcomplete dictionary with the coefficient vector .a  Let 
us also write | | ,s sU=  where U  is a diagonal matrix, the ith  
diagonal element of which is ,e j ic  with ic  indicating the 
unknown phase of the ith  scene element .si  Based on this nota-
tion, we can rewrite the observation model as 

 .r Hs n H D naU= + = +  (4)

Letting z  be a vector consisting of the diagonal elements of ,U  
we can write the following cost functional to be minimized for 
SAR imaging: 

 ( , ) . . .J s t i1r H D p
p

i2
2 6a a az m zU= - + =  (5)

We note that the variables to be optimized involve the phase of 
the field, and the representation coefficients of its magnitude. 
This problem can be solved using the coordinate descent algo-
rithm developed in [9]. Figure 2 contains a sample reconstruc-
tion using a wavelet transform-based dictionary based on 
TerraSAR-X data [57]. For examples of other dictionaries used in 
this framework, including ones that are better matched to the 
task of representing reflectivity magnitudes, see [9]. This 
approach provides the capability to preserve and enhance multi-
ple distinct features on different spatial regions of the scene uti-
lizing combinations of a variety of standard and custom-made 
signal dictionaries including contourlets, combination of spikes 

(a) (b) (c)

[fIg1] The reconstructions of the slicy target from the MsTAr data set [56]. (a) The reference image reconstructed from high-
bandwidth data. (b) The conventional image reconstructed from limited-bandwidth data. (c) The sparsity-driven, point-enhanced 
image reconstructed from limited-bandwidth data.
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(the canonical basis to represent strong point scatterers) and 
edges, as well as dictionaries of various geometric shapes 
matched to the expected scene structure. Furthermore, the syn-
thesis-based approach can be used to combine a standard dic-
tionary with a learning-based dictionary. For example, [10] 
combines spikes with a learned dictionary. The reconstructed 
SAR scene would then be a composite image that can be decom-
posed into multiple components represented by each dictionary, 
as illustrated in Figure 3. 

While the sparsity-driven SAR imaging problem was formu-
lated as a regularized optimization problem above, it could alter-
natively be viewed as a maximum a posteriori (MAP) estimation 
problem with a Bayesian perspective, in which the sparsity con-
straint turns into a heavy-tailed prior distribution for the features 
of interest. Continuing with the Bayesian perspective, one could 
also be interested in choosing other costs, leading to other esti-
mators than MAP, or characterizing the posterior density rather 
than finding just a point estimate. There has been some explora-
tion in this direction [11], [12]. There also exists some prelimi-
nary work on automatic regularization parameter selection for 
sparsity-driven SAR imaging [13]. 

Sparsity-driven SAR imaging has been extended to and 
applied in emerging sensing scenarios in which the sensing 
aperture or the data are limited or sparse in some sense (see the 
section “Compressed Sensing-Based Analysis and Design of SAR 
Sensing Missions”), as well as in multistatic active and passive 
radar [14] including MIMO architectures [15]. The benefits pro-
vided by sparsity-driven imaging are even greater in such non-
conventional sensing scenarios. Sparsity-driven imaging has 
also been used for the problem of inverse SAR (ISAR) imaging 
of rotating targets [16], as well as for through-the-wall radar 
imaging [17]. It has also been extended to interferometric SAR 
[18] and SAR tomography (TomoSAR) [19] adding the elevation 
direction into the problem for 3-D imaging, as well as to four-
dimensional (4-D) (differential, i.e., space-time) TomoSAR [20]. 
Sparsity-driven three-dimensional (3-D) image formation has 
also been used to initialize the process of geometric feature 
extraction from SAR data collected over arbitrary, monostatic or 
bistatic SAR apertures [21]. 

WIde-Angle sAr IMAgIng  
of AnIsoTropIc scATTerIng
Wide-angle SAR, a SAR modality in which radar returns are col-
lected over a large azimuth extent or long aperture, has become 
possible due to advances in navigation and avionics that permit 
aircraft to follow precise routes for long distances. In theory, the 
wider the aspect angle covered by the synthetic aperture is, the 
finer the resolution of images in the cross-range direction can be. 
However, there are two main issues that arise in wide-angle SAR 
image formation. First, the sampling pattern of the collected 
radar returns in the frequency domain takes on an arch shape. 
However, the conventional Fourier transform-based polar format 
algorithm [22] is predicated on the polar frequency sampling pat-
tern being a good approximation to a rectangular sampling pat-
tern, which is violated with wide-angle apertures. Violation of this 
assumption leads to an irregular point spread function and to 
artifacts in imagery formed by conventional processing. 

The second issue, and the main point of discussion in this sec-
tion, is that when objects are viewed from diverse aspect angles, 
they have different scattering behaviors, i.e., the scattering response 
is a function of the azimuth angle. Imagine an upright flat metal 
plate; it will reflect radar signals back to the receiver strongly when 
viewed straight on but weakly when viewed obliquely. Angle-depen-
dent scattering, termed angular anisotropy, is only prominent with 
wide-angle apertures, not narrow-angle apertures, in which case it 
is a reasonable assumption that scattering amplitude is constant 
over the aperture. The failure to model anisotropy in conventional 
image formation algorithms results in an averaging of scattering 
response over angle, leading to inaccurate scattering estimates in 
the formed imagery. Moreover, as anisotropy of scatterers is not 
characterized, one misses the opportunity of using it as a feature for 
automatic target recognition and scene understanding. 

The problems of detecting, estimating, and modeling aspect-
dependent scattering behavior have recently been studied. Anisot-
ropy characterization methods may be broadly categorized into 
those employing parameterizations for angle-dependent scatter-
ing in the phase history domain, multiaperture methods that 
operate in the image domain, and sparsity-driven nonparametric 
image formation and anisotropy characterization methods. 
Within the third category, techniques either apply sparse recon-
struction methods described in the previous section indepen-
dently on a set of (possibly overlapping) small subapertures [8], 
[23]–[25] or jointly process wide-aperture data by incorporating 
prior information on aspect-dependent scattering [26]–[28]. The 
independent processing methods have similarities with image 
domain multiaperture methods. In the remainder of this section, 
we describe one example formulation of a sparsity-driven subap-
erture approach and two formulations of joint processing: one 
analysis based and one synthesis based. 

Let us consider the following discrete version of the mea-
surement model with anisotropy: 

 ( , ) ( , ; ) ( , ),r f s x y e n f( )cos sin
k l
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(a) (b)

[fIg2] reconstructions of a scene based on TerrasAr-X data [57]. 
(a) A conventional image. (b) A synthesis-based sparsity-driven 
image reconstructed using a multiresolution wavelet dictionary. 
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where , , ,k K1 f=  and , , .l L1 f=  The difference from the 
previous section is the scattering response now being a function 
of the viewing angle ( , ; ) .s x ym m li  In the narrow-angle setting, 
the entire set of phase history measurements ( , )r fk li  is 
inverted to obtain the isotropic scattering response ( , ) .s x ym m  
For the wide-angle case, if we assume isotropic scattering 
within small ranges of azimuth angles, we can perform the 
inversion separately on intervals of i  to obtain I  separate sub-
aperture images ( , )s x ym miiu  centered at angles ,iiu  , ,i I1 f=

[23]. The ranges of angle, which may overlap from one subaper-
ture image to the next, lead to I  linear systems of equations 

,Hr s ni i i i= +i i i iu u u u  where r iiu  represents the subset of phase his-
tory measurements corresponding to the subaperture centered 
at ,iiu  H iiu  is the corresponding subset of forward operations, 
and s iiu  is the ith  subaperture image we would like to find. 
Using methods described in earlier sections, one can recon-
struct point-enhanced subaperture images by minimizing 

 ( ) , , , .J i I1s r H s s p
p

2
2

i i i i i fm= - + =i i i i iu u u u u  (7)

The resulting set of subaperture images can then be stacked and 
viewed as a 3-D volume in the two spatial dimensions and the 
angular dimension. Also, in a generalized likelihood ratio test 
fashion, a composite image can be formed by taking the maxi-
mum magnitude (over angles) at each pixel location [23], on 
which one might also use color coding to display dominant angu-
lar response directions of scatterers. Noncoherent combination of 
subaperture images is also studied in [24]. Motivated by a number 
of applications including foliage penetration (FOPEN) radar, this 
approach has also been shown to be effective on data with fre-
quency-band omissions. The idea of independent processing of 
small subapertures described above has recently been applied in 
the context of 3-D circular SAR with little elevation diversity, 
where improved image quality is attributed to scattering center 
sparsity that is incorporated into the algorithms [5], [8], [25]. A 
sample 3-D imaging result from [25] is shown in Figure 4. 

The forming of independent subaperture images fails to take 
prior information about the expected angular behavior of scatter-
ers into account. In particular, point scatterers resulting from 
natural and man-made objects tend to have contiguous intervals 
of strong scattering response as a function of angle. Although 
each scatterer has limited persistence over the full wide-angle 
aperture, there exists a high correlation in magnitude response at 
closely spaced aspect angles within its persistence interval. There-
fore, an improvement over independent reconstruction of sub-
apertures is joint reconstruction of all subaperture images with 
an additional regularization term penalizing the q, -norm, 

,q 1#  of the change in scattering magnitude at each spatial 
location across subaperture images [27]. The cost functional for 
such analysis-based joint (point-enhanced) processing is 
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(8)

where p is chosen to be around 1 to promote sparse solutions. 
The second term imposes spatial sparsity on the total scattering 
magnitude response collected over all aspect angles, whereas 
the third term enforces piecewise smoothness of the scattering 
magnitude in the angular dimension. 

An alternative synthesis-based joint processing to take the 
prior information on contiguity of angular persistence into 
account constructs an overcomplete dictionary representation 
for the angular dimension with atoms that are zero over some 
aspect angles and positive-valued over contiguous ranges of 
aspect angles [26]. There are no subaperture images in this 
approach. Specifically, for a single spatial location, the anisotro-
pic scattering function is expanded as  

 ( , ; ) ( ),s x y a b,m m l m n
n

N

n l
1

i i=
=

/  (9)

[fIg3] reconstruction of a scene from the MsTAr data set [56] using a synthesis-based sparse representation approach combining the 
canonical (spike) dictionary with a learned dictionary. (a) A composite image containing six military vehicles and three corner reflectors. 
(b) A component consisting of strong scatterers represented by the spike dictionary. (c) A component represented by the learned 
dictionary. (figure used with permission from [10].)   

(a) (b) (c)
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where the a ,m n  are coefficients and the ( )bn li  are atoms. For each 
spatial location, there is one atom for each possible angular persis-
tence width within the wide-angle aperture and each possible cen-
ter angle. With such a dictionary construction, the number of 
atoms per spatial location is quadratic in ,L  the number of aspect 
angles in the aperture. Substituting the dictionary expansion (9) 
into the anisotropic phase history expression (6), and stacking all 
data points into vector form yields an underdetermined system of 
linear equations of the form ,r aW=  where a  is a vector of all 
coefficients in the problem. The overcomplete dictionary at each 
spatial location can represent all contiguous angular scattering 
functions with a single atom. Hence in addition to spatial sparsity, 
the anisotropic scattering at each pixel can, in principle, be 
sparsely represented as well. So the problem is solved using spar-
sity regularization by minimizing 

 ( ) ,J a r a a p
p

2
2W m= - +  (10)

where p  is chosen to be around 1. Because of the quadratic num-
ber of atoms in the number of aspect angles, it is not tractable to 
optimize (10) directly, however the nesting structure of the dic-
tionary allows the optimization to be approximated using a greedy 
graph search procedure [26]. Another challenge posed by a very 
large dictionary is that the problem becomes more underdeter-
mined and it becomes harder to guarantee perfect recovery. The 
atomic decomposition allows for a direct interpretation of the 
coefficients in terms of the persistence and center angle of scatter-
ing centers. This idea can be taken a step further by setting the 
dictionary atoms to be canonical scattering response magnitudes 
from typical object geometric configurations [28]. 

Image formation and anisotropy characterization from wide-
aperture data collection using sparsity-driven approaches leads to 
improved results over conventional Fourier-based methods. We 
illustrate this point by showing results on a 110˚ aperture data set 
corresponding to a scene containing a backhoe loader [58]. 
Numerical quantifications of algorithm performance may be 
found in the respective papers [23], [26], and [27]. In this data set, 
the radar signals are generated using a high fidelity electromag-
netic scattering code. Backhoe results from the conventional, 
independent point-enhanced subaperture, joint subaperture 

reconstruction, and overcomplete dictionary algorithms are 
shown in Figure 5 (b)–(e), respectively. The image formed by con-
ventional processing is quite unresolved and full of artifacts—it is 
difficult to even discern that the scene contains a backhoe. The 
backhoe is much more recognizable in the sparsity-driven results. 
Among the sparsity-driven approaches, joint processing gives finer 
resolution of the scattering behavior. The approaches we have 
described produce more than 2-D reflectivity images, in particular, 
these methods essentially reconstruct an angular scattering 
response at each pixel, leading to anisotropy characterization. This 
is demonstrated in Figure 6 for the analysis-based joint processing 
approach of [27]. The figure shows varying persistence of scat-
tering as a function of angle in different parts of the backhoe. 
Such information could not be recovered by conventional 
image formation methods and could serve as an important fea-
ture for automatic target recognition and scene understanding. 

IMAgIng And AuTofocusIng  
In The presence of phAse errors
Phase errors in SAR phase history data arise due to errors in the esti-
mation of the time required for the transmitted signal to propagate 
from the SAR platform to the scene and back. The most common 
causes of inaccuracies on the roundtrip propagation time are 
SAR platform position uncertainties and propagation induced 
errors due to atmospheric effects. The implication of such errors 
on conventional SAR imagery is the convolution of the image 
with a blurring kernel. Because of the defocusing effect of such 
errors, techniques developed for removing phase errors are called 
autofocus techniques. Existing well-known autofocus techniques 
commonly postprocess conventionally reconstructed defocused 
images to estimate the phase errors. One of these state-of-the-art 
techniques is mapdrift autofocus [29] which uses subaperture 
data to estimate the phase errors. Subaperture based techniques 
are suitable mostly for quadratic and slowly varying phase errors 
across the aperture. One of the most widely used autofocus tech-
niques, phase gradient autofocus (PGA) [30], estimates phase 
errors using the data obtained by isolating several defocused tar-
gets via center-shifting and windowing operations. Another well-
known approach for autofocusing is based on the optimization of 
a sharpness metric. Commonly used metrics are entropy or 
square of the image intensity. A relatively new autofocus tech-
nique, multichannel autofocus, is based on a noniterative algo-
rithm that finds the focused image in terms of a basis formed 
from the defocused image, relying on a condition on the image 
support to obtain a unique solution. 

The SAR autofocus problem has recently been handled in the 
context of sparsity-driven imaging as well. In [31], phase error 
estimation is performed by comparing and aligning sparsity-
driven images produced from a sequence of smaller coherent 
processing intervals, for which motion errors can be assumed to 
be tolerable. For sparse aperture ISAR imaging, [32] proposes 
first to remove the phase errors by a weighted eigenvector-based 
phase correction method and then to form the image by spar-
sity-driven imaging. The study in [33] demonstrates the effects 
of phase errors on sparsity-driven imaging and presents results 

(a) (b) (c)

[fIg4] sparsity-driven 3-d sAr imaging of a car. (a) Isometric 
view. (b) side view. (c) Top view. (figure used with permission 
from [25].)
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obtained by implementing PGA on sparsity-driven reconstruc-
tions. In these pieces of work, the process of sparsity-driven 
imaging and that of autofocusing are rather isolated. 

Going one step further, one can perform autofocusing and 
imaging simultaneously in a sparsity-driven framework, which 
has been shown to produce promising results [5], [34]–[37]. As 
an example of such an approach, the sparsity-driven autofocus 
(SDA) method [34] for an isotropic scattering scenario is based 
on the following observation model in which phase errors are 
considered as model errors: 

 ( ) .r H s ne= +  (11)

Here, ( )H e  denotes the model matrix that takes the phase errors 
e  into account. Assuming spatial sparsity of the reflectivity field, 
the following cost functional is minimized over both the field and 
the phase errors using a coordinate descent approach: 

 ( , ) ( .)J S r H s s2
2

1e e m= - +  (12)

Hence, SDA estimates the phase errors and performs sparsity-
driven imaging jointly by solving this optimization problem. SDA 
has been used to compensate a variety of commonly encountered 
types of phase errors. A sample result on the backhoe data for a 
case involving randomly varying phase errors along the aperture 

with a uniform distribution in [ , ],r r-  is displayed in Figure 7. 
Note that this is a wide-angle imaging scenario and SDA is applied 
on subapertures within the framework of the wide-angle imaging 
method of [23]. Figure 7(a) and (b) show the reconstructions 
obtained by conventional imaging, and direct application of spar-
sity-driven imaging without phase error compensation, respec-
tively. The result of joint sparsity-driven imaging and phase error 
compensation through SDA is shown in Figure 7(c), which dem-
onstrates the effectiveness of SDA in removing phase errors and 
reconstructing a high-quality image. The experimental analysis in 
[34] also shows how SDA provides improvements over existing 
autofocus methods. 

More recently, [35] and [36] have used similar ideas to 
achieve autofocusing of undersampled SAR data. The method 
proposed in [35] is based on minimizing a constrained version 
of the cost functional in (12). Optimization is performed 
through a three-block relaxation approach by using an extra 
surrogate parameter for the field to guarantee convergence. In 
[36], motion compensation and image reconstruction are per-
formed for SAR data obtained at a fraction of the Nyquist rate 
using reduced rate analog-to-digital converters. A total variation 
penalty on the field is incorporated into the optimization prob-
lem as well. In [37], the idea of joint sparsity-driven imaging 
and autofocusing is used for 3-D imaging based on undersam-
pled linear array SAR data. 

(b)(a)
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[fIg5] Wide-angle sAr imaging of a backhoe loader. (a) A cAd model. (b) conventional reconstruction. (c) A composite independent 
subaperture image. (d)  A composite joint subaperture image imposing piecewise smoothness in angular scattering. (e) A composite 
joint subaperture image based on an overcomplete dictionary for angular scattering. (Images used courtesy of [26] and [27].)
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MovIng TArgeT IMAgIng
Joint SAR imaging and ground moving target localization has 
proven to be an important but challenging task due to an inher-
ent ambiguity in target geolocation and velocity. While the com-
ponents of the received signal belonging to a particular stationary 
target have the same phase in successive radar returns, the phase 
of a moving target varies due to its varying range. Hence, to the 
conventional SAR imager working under the assumption that the 
scene is stationary during aperture synthesis, motion amounts to 
phase errors and results in defocusing and even displacement of 
moving target energy. On the other hand, if the SAR imager 
assumes a particular nonzero scene motion, the moving target 
with a matching velocity appears focused, while all stationary and 
velocity mismatched targets appear defocused. 

A common approach for SAR moving target imaging is first to 
find the smeared imagery of moving targets in a conventionally 
formed image and then perform phase error estimation and com-
pensation for the corresponding image parts. Space-time adaptive 
processing uses data obtained from multiple channels to suppress 
clutter and separate moving targets from the background. Velocity 
SAR exploits phase information from multiple receive antennas, 
whereas dual-speed SAR processes the data collected by a platform 
flying with two different speeds in the radar observation duration. 

Sparsity-based methods have recently made their way into 
moving target SAR imaging. In [38]–[41], sparse representation 
techniques are used to search for a solution over an overcom-
plete dictionary that consists of atoms for several velocity-posi-
tion combinations. The overcomplete dictionary approach 
amounts to linearizing the nonlinear problem of target scatter-
ing and motion estimation and subsequently to solving the prob-
lem as a larger, unified regularized inversion problem involving 
sparsity constraints. A sample multistatic imaging result from 
[38] is illustrated in  Figure 8. When a scene consisting of a 

stationary, a slowly moving, and a fast-moving target [shown in 
Figure 8(a) at time zero] is conventionally imaged under a zero-
velocity assumption, the slowly moving target is defocused, while 
the fast-moving target disappears [Figure 8(b)]. The conventional 
reconstruction over a set of hypothesized velocities accurately 
localizes the moving targets, albeit with residual blur. Finally, 
Figure 8(d) shows that target features can be recovered by the 
sparsity-enforcing overcomplete dictionary approach [38]. In 
[40], a similar optimization problem to the one in [38] is solved 
after a clutter cancellation procedure is applied to the data. 

Based on the observation that radar returns from a scene with 
motion can be viewed as data from a stationary scene, but with 
phase errors due to motion, a recently proposed idea is to view 
moving target imaging as a generalized, spatially variant autofo-
cusing problem. The work in [42] does just that and extends the 
SDA framework, described in the previous section, to the problem 
of moving target imaging. Due to the spatially variant nature of 
the defocusing (due to the possibility of targets with different 
velocities at different locations), the number of unknowns is much 
greater than a basic autofocusing problem, making this a very ill-
posed problem, requiring effective constraints for a successful 
solution. Based on this observation, [42] not only exploits the 
sparsity of the reflectivity field, but also imposes a constraint on 
the spatial sparsity of the phase errors based on the assumption 
that motion in the scene will be limited to a small number of spa-
tial locations. The phase errors corresponding to all points in the 
scene, for all aperture positions are incorporated into the problem 
using the vector ,b  whose elements are in the form of .e sj \e  The 
following cost functional is minimized jointly with respect to the 
field and the phase errors: 

 
( , ) ( )

. . ( ) .

J

s t i i11
s r H s s2

2
1 1

2 1 6

b b m

m b b

= - +

+ - =
 

(13)

(b)(a)

[fIg6] Anisotropy characterization for a subset of pixels in the backhoe loader using joint subaperture reconstruction imposing 
piecewise smoothness in angular scattering. The individual small plots in (b) have subaperture angle iu  as the abscissa and the 
scattering magnitude | ( ) |s iu  as the ordinate. They are arranged to match the pixel locations in (a).
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Here, 1 is a vector of ones. Assuming that the number of mov-
ing points constitutes a small percentage of the total number of 
points in the scene, most of the e  values are zero, and subse-
quently most of the elements in the vector b  are one. There-
fore, this sparsity on the phase errors is incorporated into the 
problem formulation by using the regularization term 

.1 1b -  Results of an experiment on a synthetic scene con-
taining two moving targets are shown in Figure 9. The six 
pointlike targets are stationary. To simulate the SAR returns 
from the two large targets moving with constant cross-range 
velocities, quadratic phase errors with a center to edge ampli-
tude of r  radians and .2 5r  radians have been added to the data 
of these particular targets. These phase errors correspond to 
velocities of 2 m/s and 5 m/s, respectively, for the SAR system 
used in this experiment. Figure 9(a) and (b) show the results of 
conventional imaging and sparsity-driven imaging without 
phase error compensation, respectively. The result of sparsity-
driven moving target imaging [42], displayed in Figure 9(c), 
shows the effectiveness of the method in removing the phase 
errors due to motion, as well as in producing an image that 
exhibits the qualities of sparsity-driven SAR imaging. 

There exist several other pieces of recent work exploiting 
sparsity for moving target SAR imaging. The work in [39] con-
centrates on targets with micromotions that are mainly embod-
ied with rotation and vibration. To enforce sparsity, generalized 
Gaussian and student-t prior models are considered, and the 
variational Bayes’ approximation estimator is applied to the hier-
archical Bayesian models involved in the problem. The paper [41] 
considers the problem of motion parameter estimation of mov-
ing targets with Doppler spectrum ambiguity and Doppler cen-
troid frequency ambiguity encountered in SAR systems with low 
pulse repetition frequency, and presents a sparsity-based method 
that involves the use of the Radon transform to acquire unam-
biguous across-track velocities and range positions in the range 
profile domain. The paper [43] proposes an adaptive CS-based 
SAR system for dynamic sparse target scenes. The proposed sys-
tem uses the recovered target scene information to detect if the 
scene has changed and optimizes the transmission waveform and 
sensing matrix accordingly. Finally, the paper [44] presents an 
approach that combines sparsity-driven radar imaging and 
change detection for detecting and localizing moving humans 
behind walls and inside enclosed structures. 

[fIg7] Imaging in the presence of phase errors uniformly distributed in [ , ] .r r-  (a) conventional imaging. (b) sparsity-driven imaging 
without phase error compensation. (c) sdA.

[fIg8] Multistatic moving target imaging. (a) A simulated ground truth scene at time .t 0=  The upper left target is stationary, the upper 
right target moves slowly, and the bottom target moves at a faster velocity. (b) conventional reconstruction when motion is ignored.  
(c) conventional reconstruction over a set of velocity hypotheses. (d) sparsity-enforcing overcomplete dictionary reconstruction.  
(Images used courtesy of [38].) 
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coMpressed sensIng-bAsed AnAlysIs  
And desIgn of sAr sensIng MIssIons
As discussed in previous sections, ideas based on sparse signal rep-
resentation have led to advanced image formation methods that 
offer a number of benefits for SAR such as increased resolvability 
of point scatterers and reduced speckle, as well as robustness to 
limitations in data quality and quantity. Robustness to missing or 
undersampled data has recently become a particularly critical con-
cern due to new mission requirements and sensor geometries that 
result in nondense and irregular sampling patterns in the SAR 
measurement space. Current radar systems are capable of accom-
modating multiple operational modes such as searching, tracking, 
and imaging on the same platform. Timeline constraints of a 
higher priority mode may require interrupts in SAR data collec-
tion and lead to gaps in the synthetic aperture. Likewise, jamming 
and interference from nearby transmitters may lead to frequency 
gaps in SAR data collection. Furthermore, multiplatform and pas-
sive sensing from transmitters of opportunity result in sparse 
sensing geometries and irregular sampling of the SAR measure-
ment space. Such irregular and undersampled data scenarios 
motivate the application of CS [45] ideas and signal processing 
algorithms to SAR. Sparsity-driven methods described in previous 
sections serve as the main computational tool for inverting such 
limited data. In this section, we provide an overview of a subset of 
recent work on the use of CS theory and principles for analysis 
and design of monostatic and multistatic SAR sensing missions 
under various constraints on data collection. 

CS seeks to acquire as few measurements as possible about an 
unknown signal, and given these measurements, reconstruct the 
signal either exactly or with provably small probability of error. 
Reconstruction methods used in CS involve sparsity-constrained, 
nonquadratic regularization ideas and algorithms similar to the 
ones discussed in previous sections. Based on CS theory, such 
methods can successfully recover the signal sampled well below the 
Nyquist rate provided that the signal has a sparse representation in 
some suitable domain and that its measurement process satisfies 
certain properties (such as incoherence [46]) with respect to the sig-
nal’s sparsifying basis [45]. For example, signals sparse in the canon-
ical basis (which is what we will assume in this section) can be 

accurately reconstructed from measurements involving extremely 
few, but randomly chosen Fourier samples of a signal. Since both 
monostatic and multistatic SAR sensing can be viewed as obtain-
ing samples of the spatial Fourier transform of the scattering field, 
these results open opportunities for reduced-data SAR sensing. 

Random sampling of SAR data in 2-D Fourier space closely 
matches observation scenarios assumed in existing CS theory. 
While random subsampling can be primarily used to reduce on-
board data storage requirements, it may not represent data limita-
tions due to more structured interrupts and it may not enable 
reallocation of SAR sensing resources to other tasks. To enable 
such resource management and retasking, one could consider col-
lecting returns of, e.g., a reduced number of transmitted wave-
forms by imposing randomness into the synthetic aperture [47], 
[48]. It would then be of interest to analyze and design sensing mis-
sions, i.e., practical data sampling configurations, based on the 
expected signal reconstruction quality and assess how well metrics 
appearing in CS theory (and that are defined by the measurement 
scenario) predict reconstruction performance from such limited 
data. Recent work on this question suggests CS principles may be 
used to analyze and guide the design of monostatic and multistatic 
SAR sensing missions under various constraints on data collection. 

Here we provide highlights of such an analysis. One idea is 
to study sensitivity to data limitations and to the sampling pat-
terns through mutual-coherence based metrics, which appear 
in CS theory. The mutual coherence of a measurement operator 
was proposed as a simple, but conservative measure of the abil-
ity of sparsity-enforcing reconstruction to accurately recon-
struct a signal [46]. The mutual coherence of a complex-valued 
matrix ,H  which in our case becomes the mutual coherence of 
a sensing configuration, is defined as

 ( ) ,
| , |

, ,max g g i jH
h h

h hi j i j

i j

2 2
ij ij !

G H
n = =

!
 (14)

where hi  is the ith  column of the matrix ,H  and the inner prod-
uct is defined as , .h h h hi j i

H
jG H=  The ith  column vector hi  can 

be viewed as a range-aspect “steering vector” of a sensing 

(a) (b) (c)

[fIg9] Imaging of a synthetic scene with moving targets. (a) conventional imaging. (b) sparsity-driven imaging assuming a stationary 
scene. (c) Joint sparsity-driven imaging and phase error correction.
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geometry or the contribution of a scatterer at a specific spatial 
location to the received phase history data. The mutual coherence 
measures the worst case correlation between responses of two 
distinct scatterers at different spatial locations. The t% -average 
mutual coherence, ,t%n  has been proposed as a measure more 
closely related to the average reconstruction performance of spar-
sity-driven SAR reconstruction [47] 

 ( ) , ( )
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, ,( )

( )
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g t
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where t%f  denotes the set containing the largest %t  column cross-
correlations .gij  Based on this definition, ( )Ht%n  measures the 
average cross-correlation value within the set of the t% most simi-
lar column pairs. A large value of ( )Ht%n  indicates that there are 
many similar pairs of columns of H  that can potentially confuse the 
reconstruction algorithm. This measure is more robust to outliers, 
which can unfairly dominate the mutual coherence. The %t
-mutual coherence can be related to the cumulative coherence [49] 
that, in the CS literature, has been used to derive sparse signal 
recovery conditions with convex cost function relaxations. The 
cumulative coherence provides an upper bound on the %t -mutual 
coherence. Note that ( )Ht%n  can be computed for a sensing config-
uration before actual data collection. The question then is whether 
it can serve as a predictor of reconstruction quality of a sparse scene 
based on data to be collected through a particular configuration. 

Figure 10 provides an example of the utility of t%-average 
mutual coherence on an urban scene from the publicly released 
Gotcha SAR data set [59]. Figure 10(a) shows the scatter plot of 
root-mean-square error (RMSE) of the reconstructions versus 

. %0 5n  when the number of randomly missing aperture positions 
increases linearly up to 50%. Just for visualization, Figure 10(b) 
and (c) shows sample conventional and sparsity-driven recon-
structions of the scene with 24% of the synthetic aperture miss-
ing. The result in Figure 10(a) indicates that configurations with 
sufficiently small values of the %t -average mutual coherence 
achieve high-quality reconstruction and that . %0 5n  appears to be a 
good predictor of reconstruction quality. This is an easily com-
puted parameter that can be utilized for real-time evaluation of 
sensing configurations and task planning of multimode radars. 
Although we have considered a simple monostatic scenario here 
for simplicity, the analysis in [47] suggests that such a CS-moti-
vated metric can be useful in the analysis and design of multistatic 
sensing missions as well. In the multistatic case, CS and sparsity-
driven reconstruction have the potential to allow for sensing with 
fewer transmitted probes and reduced acquisition time. 

Another way CS theory has recently impacted SAR imaging is 
by motivating the design of new radar waveforms. New radar 
waveforms such as Alltop and pseudorandom sequences have 
been shown to lead to high-resolution imaging radar and 
reduced analog-to-digital conversion bandwidth [7], [50]. Com-
pressive sensing through convolution using random noiselike 
transmitted waveforms followed by random time-domain sub-
sampling and its application to SAR was discussed in [51]. These 

waveforms result in incoherent radar sensing matrices and allow 
for accurate reconstruction of sparse target scenes. Multistatic 
and distributed radar waveform design for CS was discussed in 
[52]. CS for MIMO radars was addressed in scenarios involving 
uniform linear antenna array configurations [53], [54] and 
antennas randomly distributed over a small area [55]. 

suMMAry And dIscussIon
We have presented an overview of recent lines of inquiry that lie 
at the intersection of two domains: sparse signal representation 
and SAR image formation. For basic SAR imaging, we have 
described image formation methods founded upon analysis and 
synthesis-based sparse signal representation ideas, and discussed 
how the complex-valued and potentially random-phase nature of 
SAR reflectivities have led to interesting optimization formula-
tions different from those encountered in basic sparse signal rep-
resentation problems. Motivated by emerging applications, 
including those involving sensing by unmanned aerial vehicles, 
we have considered the problem of wide-angle SAR imaging and 
described how exploitation of the sparsity of the scene and that of 
the angular scattering response can lead to effective imaging and 
anisotropy characterization. Then we have turned to the issue of 
phase errors, and described how exploitation of sparsity enables 
autofocusing in challenging conditions. We have pointed to 
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recent pieces of work that attempt to use sparsity for the chal-
lenging problem of moving target SAR imaging. Finally, we have 
discussed how recent developments in CS theory have motivated 
not only the use of sparsity-driven methods for SAR imaging, but 
also the analysis and design of SAR sensing missions under physi-
cal, geometric, or temporal constraints on data collection. 

The body of work on sparsity-driven SAR imaging we have cov-
ered here (and related pieces of work we were not able to cover 
due to space constraints), shows that sparsity can be a useful asset 
for SAR imaging especially in nonconventional data collection sce-
narios (e.g., when the data are sparse, irregular, limited) leading to 
severely underconstrained, ill-posed problems for image forma-
tion. Sparsity-driven imaging should not necessarily be viewed as 
a general-purpose approach that should replace more traditional 
SAR image formation methods completely. When used properly, it 
is a tool that can enable the radar engineer to extract interesting 
pieces of information from SAR data that is not possible through 
more conventional means. As any approach for solving an ill-
posed problem, it relies on a certain type of assumption, which, in 
this particular case, is that the scene admits sparse representation 
in some domain. It performs very well on scenes that exhibit spar-
sity or compressibility, and enhances aspects of a particular scene 
that exhibit these characteristics. If the important characteristics 
of the scene and the sparse structure imposed through a particu-
lar dictionary are mismatched, we would obviously not expect the 
approach to produce improved imagery. This is why we expect 
“learning” to be an important theme in future work, as we 
describe below. Furthermore, when sparsity by itself is not suffi-
cient to capture the rich information content of a scene, it might 
be possible to combine it with other types of priors each of which 
describes a component of a decomposed scene. 

The research we have reviewed provides a principled basis and 
demonstrates how sparsity can be exploited in several contexts in 
SAR imaging. We believe we will witness wider utilization of spar-
sity-based methods in real SAR imaging applications over the 
upcoming years if several challenges are addressed and further 
research is carried out with a broader perspective. These chal-
lenges include reducing computational complexity, establishing 
stronger connections between imaging and decision-making, 
using effective machine-learning ideas to tune the notion of spar-
sity to a particular context, and going beyond sparsity to capture 
other forms of simple structures present in the data. Based on this 
perspective, we briefly describe four lines of research that we 
believe will enrich this problem domain and widen its applicability. 

1) Computational advances. The first issue is computational 
complexity. While we might never expect sparsity-driven 
imaging to be as fast as simple Fourier transform-based imag-
ing methods, more work is needed to develop exact and 
approximate algorithms that exploit the problem structure to 
produce faster solutions. One can think of several related 
research thrusts under this theme. First, given recent develop-
ments in convex optimization methods, it is of interest to 
adapt promising methods to particular SAR imaging problems 
to improve computational efficiency. As an example, aug-
mented Lagrangian methods such as alternating direction 

method of multipliers could be considered not only because of 
their fast convergence properties, but also due to their poten-
tial for distributed implementation leading to parallelization. 
This brings us to our next point, which is whether one could 
exploit parallel processing on graphics processing units 
(GPUs) for sparsity-driven SAR imaging. While there exist 
GPU implementations of sparse signal representation ideas 
used as postprocessing despeckling methods, effective GPU 
implementations of the solution of the inverse problem for 
imaging is more challenging. Finally, for sparsity-driven SAR 
imaging problems involving large dictionaries, it is of interest 
to develop approximate algorithms that intelligently search 
the solution space exploiting the problem structure to achieve 
fast and reasonably accurate solutions. Advances in computa-
tional tools would enable wider utilization of sparsity-driven 
SAR imaging methods especially in relatively large problems 
involving, e.g, 3-D imaging in the context of TomoSAR. 
2) Decision-directed imaging. We envision two potential major 
lines of inquiry suggesting the establishment of closer connec-
tions between SAR imaging and machine learning. The one we 
describe here involves the interplay between SAR imaging and 
further decision making. As discussed in the body of this arti-
cle, one of the early motivations for sparsity-driven SAR imag-
ing has been the preservation and enhancement of features 
important for tasks such as automatic target recognition. 
While this line of thinking has produced images with, e.g., bet-
ter preservation of scatterer locations or easier to segment 
regions, accomplishments have been limited in at least to 
ways: first, only very low-level features have been used, and 
second, this has been an “open-loop” process. It would be 
interesting to bring in higher-level information, such as object 
shapes, into the problem formulation. It would also be inter-
esting to take a decision-directed perspective and use informa-
tion fed back from the inference engine, such as partial 
information on classes of objects in the scene, while solving 
the image formation problem. Whether one could formulate a 
sparse representation perspective to incorporate such high-
level statistical information is a question worthy of exploration. 
3) Closer connections to machine learning. Another major 
line of inquiry we foresee involves close integration of 
machine-learning methods into sparsity-driven SAR imaging. 
We have already mentioned that sparsity-driven imaging can 
be formulated using a Bayesian perspective that involves priors 
on the reflectivity field and the parameters, and in which the 
imaging problem involves characterizing a posterior density. 
While there exists some work with this perspective, using 
machine learning methods to demonstrate the benefits offered 
by such a statistical perspective is of interest for the future. 
Another aspect in which we expect learning methods to play a 
more prominent role is the construction of the dictionaries 
used in sparse representation. While there has been some pre-
liminary work on dictionary learning in the context of SAR 
imaging, significant benefits are yet to be demonstrated. Con-
necting this back to decision-directed processing, one might 
consider performing discriminative dictionary learning as well. 
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4) Other forms of “simplicity.” The final area of research we 
anticipate is about exploiting other types of structures poten-
tially exhibited by SAR data in addition to sparsity. In particular, 
a concrete potential line of work could involve the use of low-
rank models. Recent theoretical work on low-rank models 
shares many aspects of earlier work on sparsity and CS: low-rank 
matrix recovery problems are posed as optimization problems, 
relaxed forms of which, involving nuclear norms of matrices, are 
solved efficiently. Temporal and spatial dependencies in SAR data 
may lead to successful use of low-rank models, in a variety of 
contexts including moving target imaging and wide-angle imag-
ing, and could possibly involve decomposition of some of the sig-
nals into sparse and low-rank components as well. 
Overall, sparsity-driven SAR imaging is an exciting topic of 

study for both radar imaging experts and statistical signal pro-
cessing researchers. Due to its connections to interesting ongo-
ing theoretical work on signal representation and CS, as well as 
due to its potential for real impact on existing and emerging 
applications, we expect that it will continue to be an active area 
of academic and engineering development in the near future. 
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