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Abstract-In this paper we describe a technique for detection and
classification of cardiac arrhythmias for ECG or VCG data. The ap-
proach is based on the use of R-R interval data and the development of
simple models that describe the sequential behavior of such intervals
characteristic of different arrhythmias which persist over a period of
about six or more heartbeats. In the second part of this two-paper
series, we will deal with arrhythmias that manifest themselves as abrupt
changes in the observed R-R intervals.
The techniques used to analyze observed R-R intervals are statistical

in nature, allowing one to assign likelihoods or probabilities to various
potential diagnoses. We feel that this approach is potentially quite
useful in the design of detection algorithms containing relatively
simple decision logic.
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I. INTRODUCTION
IN THIS PAPER we consider the problems of automated

rhythm analysis of electrocardiograms (ECG's) and vector-
cardiograms (VCG's)-i.e., the analysis of the sequential
behaviour of cardiac events as measured by the ECG or VCG
[1]. A great amount of work has been done in the past in
rhythm analysis, resulting in several well-known programs
(e.g., [2-51). The importance of arrhythmia detection is
underlined by the increasing recognition of the role of ar-
rhythmias as a cause of sudden death [6]. However, even in
the light of the importance of and the amount of work done
on the problem, it is fair to say that in practice the problem
is not solved.
The key issue in detection of various arrhythmic events is

the recognition of certain temporal patterns in the ECG or
VCG. Pattem recognition in present programs is generally
done using a hierarchical computer logic structure and extrap-
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olating for missing data. These tests are deterministic, in that
specific thresholds are set for the various tests, rather than
statistical, wherein probabilistic statements are given based on
statistical models of the temporal pattern.
Our approach is based on the use of several statistical tech-

niques for sequential detection and hypothesis testing. In
order to apply such techniques, one must develop dynamic
models describing various arrhythmic events. An attempt to
develop such models based on the complex and nonlinear
mechanical, chemical, and electrical mechanisms of cardiac
activity would be extremely formidable and in all probability
extremely sensitive, given the likelihood of modeling errors.
Our approach has been phenomenological in nature. That is,
we have developed simple models that accurately describe
the macroscopic behavior of certain observables-the time
intervals between certain cardiac events, specifically the R-
waves [1]. We have chosen R-waves for our first efforts for
several reasons: (1) they represent the highest signal-to-noise
ratio piece of information available; (2) most arrhythmias do
create disturbances in the R-R interval pattern; (3) the R-wave
problem provides a test-bed for studying the feasibility of our
techniques, since it may be possible to extend this approach
to include P-waves.
Our approach in essence involves the calculation of "suffi-

cient statistics" for the data. Having such informative statis-
tics as probabilities and likelihood ratios, one is in a good posi-
tion to devise simple rhythm decision rules. Thus, a major
advantage of this approach is the condensing of the data via
statistical techniques to a manageable set of parameters; in
this manner, one eliminates the need for extremely complex
decision logic. Another advantage of a statistical approach is
that a continuous gradation of severity can be made on the
basis of probabilities and likelihoods assigned to each ar-
rhythmia class. The results described in this paper and in the
sequel [7] deal with the development of two statistical tech-
niques for the identification of different types of arrhythmias.
The integration of these methods into an overall modular
ECG/VCG analysis system is the subject of ongoing research,
and an overall prototype system is described in [81 .
The use of R-R interval data for rhythm analysis has been

suggested in [9] -[12] . Gersch et al. [91 and Tsui and Wong
[12] modelled the interval sequence as a three-state Markov
chain consisting of either long, normal, or short intervals,
differing by specific amounts from the mean value of all
intervals over the data. The work reported here is different
from these works in the following ways:
(1) In our work, we have made a distinction between two

types of arrhythmic behaviour. In this paper we will concen-
trate on the first type of arrhythmias, which we call persistent-
i.e., where the observed R-R interval pattern possesses some
regularity or repetitive property over at least 6-10 heartbeats.
In [7] we will discuss in detail the second type, the class of
transient rhythms, characterized by R-R interval patterns that
contain abrupt changes or irregularities lasting over a period of
about six beats or less. As we will see, these two classes lend
themselves to somewhat different statistical analysis techniques.

(2) The estimated magnitude of persistent patterns and
transient events are calculated, along with identification of the

most likely pattern. This allows some measure of the severity
of the arrhythmia.
(3) We do not quantize R-R intervals into a discrete set of

categories (long, normal, short), but rather we allow our sys-
tem to adapt to continuous variations in these quantities. In
particular, the mean R-R interval is computed recursively, and
our system can respond to variations in the mean due, for
example, to gradual slowing of the heart rate or respiration.
(4) Most importantly, we have based our methods on simple

dynamic models which accurately represent certain features in
the R-R interval patterns corresponding to different arrhyth-
mias. The models so obtained are directly in a form that is
amenable to the application of powerful statistical techniques
that have been used with great success in a variety of
applications.

II. DE1ECTION OF R-WAVES
The performance of the rhythm analysis program is highly

dependent on accurate determination of the presence and loca-
tion of each R-wave. If R-waves are missed, arrhythmias may
be indicated when none are present, resulting in program false
alarms. If R-waves are detected where none are actually pres-
ent, false alarms could again be generated. More seriously, if
extra (ectopic) beats are not detected, there is a possibility
that this arrhythmia may not be diagnosed, especially if there
is no coupling to adjacent beats.
The design of the R-wave detector has taken place in two

steps: (1) elimination of low frequency baseline; (2) detection
and identification of R-waves on the cleaned-up signal. The
baseline was removed to provide more accurate measure-
ments of R-wave amplitude. It has been found experimentally
that this step is necessary to prevent missing theR -wave during
high slope portions of the baseline.

Baseline removal was performed by a low pass, zero phase
shift, moving average filter. Window length was 800 ms with a
sampling interval of 40 ms. This yielded a 3 dB point of 0.3
Hz. The high slope segments of the QRS complex relative to
the remainder of the waveform appear to be the most reliable
indicator to identify this complex. In order to have a well-
defined fiducial point for the QRS complex, we use the
maximum startup slope point (the maximum slope point
before the maximum amplitude of the R-wave) as the fiducial
point. All R-waves in the records used for this study were
correctly identified and no false alarms occurred. For details
concerning the R-wave detector, we refer the reader to [13,
41.

III. CATEGORIZATION AND MODELING OF
PERSISTENT RHYTHMS

In this section we develop the basic modeling philosophy
used and describe the four persistent rhythm classes used in
our tests. The models we have used are extremely simple and
phenomenological in nature. We feel that this is of interest
not only because they lead to classification algorithms that
account for variations present in real data but also because the
modeling philosophy is easily adapted to consider a wide
variety of arrhythmias (see the transient rhythm models in
Part II). The categorization of rhythms we consider is based
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solely on R-R intervals. Since many arrhythmias lead to other
disturbances-e.g., in the contours of the P-waves or QRS
complexes, in irregularities in P-P and P-R intervals-the
classes described in this section cannot be used to identify
uniquely every persistent rhythm. Rather, all arrhythmic
patterns possessing the same R-R interval characteristics will
be placed in the same category. Since most arrhythmias do
manifest themselves in some way by altering the R-R interval
pattern, our categories can be used to detect most arrhythmias.
Further identification of the rhythm will require the incorpor-
ation of other information from the ECG or VCG. This
extension is under present investigation.
The models we seek to develop in this section are of the

form

x(k) = Fx(k - 1) (3.1)

y(k) = Hx(k) + v(k)

of reasonable values for them is discussed in subsequent
sections.
Large Variation: This class is characterized by a large but

random variation in the R-R interval sequence from the mean
value. This class includes sinus arrhythmia and atrial fibrilla-
tion, among others. The mathematical model for large variation
is identical in form to that for small variation-i.e., we use
equations (3.3) and (3.4). The only difference is that the
variance, RI of v(k) in the large variation case is chosen to be
substantially larger than RsI
Period-Two Oscillator (P2): This class is characterized by

R-R intervals which are alternately long and short. Possible
causes for this rhythm pattern are a premature impulse follow-
ing very normal impulse (bigeminy) or the presence of an AV
block of every third atrial impulse. A second order model
which describes this oscillating rhythm pattern is

(3.2)

where y (k) denotes the actually observed kth R-R interval and
x(k) is the n-dimensional pattern state vector defined such
that Hx(k) represents the ideal kthR-R interval. The additive
"noise" term v(k) represents the deviations from the ideal R-R
pattern arising from two sources:

(i) the unavoidable errors in computing the R-R intervals,
caused by inaccuracies in locating the fiducial points;

(ii) variations due to the fact that actual rhythms are never
"textbook perfect" -i.e., even in the most regular normal
pattern, the R-R intervals are not exactly the same-rather
there are small, apparently random variations about the ideal
underlying pattern.
We model v(k) as an uncorrelated sequence of zero-mean
random variables with variance R. The n X n matrix (F models
the periodicity of the particular persistent rhythm and H is a
row vector. As we will see, each of these can be modeled by
(3.1 )-3.2) with particular choices for (D, H, and R.
Small Variation: This is the category forR-R intervals which

exhibit small but random deviations from their mean value.
This class includes normal sinus rhythm (60-100 beats/min),
sinus tachycardia (> 100 beats/min), and sinus bradycardia
(< 60 beats/min). Note that 2: 1 SA block may be indistin-
guishable from sinus bradycardia. For this class, the ideal pat-
tern is identically constant. This leads to the model

x(k) = x(k - 1) (3.3)

y (k) = x(k) + v(k). (3.4)
Here we see that (F =H = 1. The value of R for this case is
denoted Rs. In the following sections, in which we are inter-
ested in estimating the ideal pattern, it will become necessary
to hypothesize initial conditions for the above model. We will
assume that x(0) is a random variable with mean m(O) and
variance P(0).1 The parameters m(0), P(0) and R. are the
three free parameters in the above model. The determination

1Throughout this development we will assume that all random quan-
tities have Gaussian distributions. This is not true physically, since
Gaussian variables can be negative, while all our intervals are positive.
However, this assumption is simply a mathematical convenience that
has been used often in order to facilitate the development of algorithms.
As we will see, our results will justify the use of this assumption.

(3.5)

y(k) = [1 01 x(k) + v(k) (3.6)

where x(k)= [xl(k), x2(k) ' is a two-dimensional vector.
The initial state x(0) is a two-dimensional random vector with
a given mean m(0) and covariance P(0), and the noise v(k) is
again a white Gaussian sequence with variance R2. Again,
P(0), m(0), and R2 are free parameters to be specified. Note
that, ignoring the noise, y(k) altemates between xl(0) and
x2(0), which represent the nominal long and short intervals.
Also note that, assuming we do not know a priori if the first
beat is long or short, we cannot be certain whether it is xl (0)
or x2 (0) that represents the long beat. This is reflected in a
choice of ml (0) = m2 (0) andPll (0) = P22 (0).
Period-Three Oscillator (P3): This class is characterized by

an R-R interval sequence which repeats over a period of three
beats. Causes for such a pattern include the following cardiac
disturbances: a premature impulse that regularly follows every
two normal heart beats (trigeminy); two consecutive premature
impulses following a normal heart beat; a complete AV block
of every fourth impulse. A model which has the desired
periodicity is

[ 0 1

x(k)= 1 0 0 x(k- 1)
y O 0 Ok

y(k)= [I 0 O] X(k)+ v(k)

(3.7)

(3.8)

where x(k) is a three-dimensional vector, and v(k) has variance
R3. Again, we assumex(0) has meanm(0) and covariance P(0),
and we see that the components of x represent one period of
the ideal periodic sequence ofR-R intervals. As in the P2 case,
if we do not know where the pattern begins, we should choose
m1 (0) = m2(0) = m3(0) and P11 (0) = P22(0) = P33(0).

IV. THE KALMAN FILTER

The basis for our approach to the classification of persistent
rhythms is the design of a set of systems that "track" the four
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persistent rhythm categories. Each category has been described
by a model of the form (3.1), (3.2) where x(k) is an n-vector
and v is a zero-mean Gaussian white noise process with variance
R. Also, we assume that x(O) is a Gaussian random variable
with mean m (O) and covariance P(O).
For a given model of the form (3.1), (3.2), the Kalman filter

is the dynamic system that takes y as its input and produces
the best (minimum-variance) estimate ofx given these data. We
refer the reader to [15] for the derivation of the following
equations for the fiter. Let (j/i) denote the best estimate of
x(j) based on the datay(l), -, y(i). Then we have

(4.1)

Fig. 1. Multiple Model Rhythm Identification System.

E((xi(O) - mi(O))(xi(O) - mi(O))') = Pi(O)

7y(k) = y(k) - H2(k/k - 1) (4.2)
2(k1k) = 2(k1k - 1) + M(k),y(k). (4.3)

The filter is initialized by setting .(O/O) = m(O). The gain
matrix M(k) is calculated from the precomputable equations

P(k/k - 1) = FP(k - l/k - 1)F' (4.4)

V(k) = HP(kfk - l)H'+ R (4.5)

M(k) = P(k/k - l)H'V-W(k) (4.6)

P(k/k)=P(k/k- l)-M(k)HP(klk- 1) (4.7)

where P(j/i) is the covariance of the estimate error, x(j) -

x (j/i). We initialize the covariance with P(O/O) = P(O).
Thus the design of the filter is determined once the a priori

data m (O), P(O), and R are specified. These may be obtained
by extensive statistical analysis of R-R interval data for each
rhythm category (see [13, 14] for the description of statistical
tests of this type), or they can be viewed as design parameters
to be set in order to achieve good overall performance. A
combination of these methods was used in this study.

Finally, note that equation (4.3) consists solely of the incor-
poration of the latest measurement y(k) into the estimate.
Note that the increment in .' due to this measurement is pro-
portional to the measurement innovation y(k), which from
(4.2) represents the error in predicting y(k) based on the best
estimate of x(k) using data up to but not including y(k). If
the model (3.1), (3.2) accurately represents the physical sys-
tem that produces the observed data {y(k)}, then the y(k)
form an uncorrelated, zero-mean sequence with covariance
V(k). If the model does not accurately represent the data, the
'y(k) will not have this statistical description. This fact is of
central importance in the classification algorithm described in
the next section.

V. THE MULTIPLE MODEL TECHNIQUE

In the setting we have established, the persistent rhythm
classification problem can be formulated as follows. We are
given an observed sequence of R-R intervals y(l), y(2), * * ,

and we hypothesize that y(k) comes from one of a finite set
of dynamical systems.

xi(k) =bIjx1(k - 1) (5.1)

y(k) = Hixi(k) + vi(k) (5.2)
E(v?(k)) =Ri,E(xi (0)) = m,(O) (5.3)

where i e (1, *. *, N). We want to determine which model
represents the data most closely. That is we wish to compute
for each i the quantity

pj(k) = Probability, given observed datay(l), *y(k), that
the correct model is given by (5.1) through (5.3)
with i = j.

Having these quantities we can easily devise a decision rule for
choosing the most likely model.
Following [16, 17] , the calculation of the pi(k) proceeds in

the following sequential manner. We implement N Kalman
filters operating on the observed data-one based on each of
the hypothesized models. From these filters we obtain the
residual sequences yi(k), i = 1, * , N. Then we can update
the probabilities via

(5.4)pi (k) =
N(yi (k), Vi (k)) pi (k - 1 )
N

E N(jyi(k), Vj(k)) pij(k - 1)
i=i

where N(ct, P) is the normal density

N(x, P) = (2f)m/2(detP)1/2 exp (- 2 )'Pla) (5.5)

(here y is m-dimensional). The procedure requires an initiali-
zation of the probabilities. If we have no a priori information,
we choose

i
N

(5.6)

In our case, we have four persistent categories (N = 4), and the
structure of the resulting persistent rhythm classifer is given in
Fig. 1. Essentially what the probability calculator does is
match each of the residual sequences to the expected behaviour
if the corresponding model were the correct one. The result of
this is the four probabilities-ps (k), p,(k), P2 (k), p3 (k),-which
can then be fed into extremely simple decision logic (e.g.,
declare "undetermined rhythm" if all four probabilities are
less than .8 or choose the class whose probability exceeds this
threshold). The multiple model classifier is an extremely
simple system to implement (all of the models are of low
dimension). Also, in addition to the probabilities, the output
of the classifier includes estimates of the state vectors for each
model, from which one can estimate heart rate.

In practice, one will want to have a system that is capable of
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switching among the various rhythm classes, since switches in
rhythm are possible. The multiple model technique as de-
scribed up to now is very good at locking onto the correct
model quickly at the beginning (see results in the next section).
However, if one of the probabilities becomes very large, it is
very difficult for the others to increase quickly if a rhythm
change occurs (note that pi (k) is proportional to pi(k - 1) in
equation (5.4), and thus if pi (k - 1) is very small, pi(k) will be
also). Therefore, in order to improve the adaptability of the
system, we have set upper and lower bounds on the probabili-
ties. An upper bound of .97 and a lower bound of .01 have
been used (with the constraint that the sum of all the proba-
bilities is 1).
The multiple model algorithm has several parameters to be

adjusted, namely the noise covariances Rs, RI, R2, and R3,
and the initial statistics for x-m(O) and P(0). Appropriate
values for these quantities can be obtained by calculating sam-
ple statistics over an ensemble of R-R interval records. The
values of these parameters should be chosen to yield the best
performance of the identification algorithm over an ensemble
of records. We have made extensive simulation tests to deter-
mine the effect of parameter choice on system performance.

corresponding 2 should have components with different mag-
nitudes. On the other hand, if the rhythm is small variation,
all of the components should be nearly equal. Thus, we can
devise a rule that decreases P2 and p3 if their associated esti-
mate vectors 22 and 23 have components that are too close
in size. Specifically, the following algorithm has been found
to work well: we do not check the components of 22 and 23
until 5 R-R intervals have been processed since initialization
or reinitialization. Subsequent to this, we do the following:
compute 22 (k/k) and the quantity

D=%21(klk) - '22(k/k)j
max [X21 (k/k), -122 (k/k)]

(5.7)

(here 221 and 222 are the two components of 22). Then in
calculating the updated probabilities p5(k), p1(k), P2(k), and
p3(k), we replace p2(k - 1) in equation (5.4) with p2(k - 1)
f(D(k)) where

.2 D<DA.
f(D)= 4D- .2 .1<D<.3.

t1 D> .3
Now for p3, compute '3 (k/k) and the quantity

(5.8)

k= 131 (k/k) - 232 (k/k) + 1'32 (k/k) - !233(k/k) + 1 33(k/k) - 231 (k/k)
max [231 (k/k), 232 (k/k), 233 (k/k)]

Some of these results are described in Section VI. A much
more extensive set of results is described in [13, 141 .

Note that the gains in the Kalman filters decrease monotoni-
cally with time. Thus even if a lower bound on the probabili-
ties is set, a sudden rhythm shift may not be reflected in a

corresponding change in the filter estimates. In order to over-

come this difficulty, we wish to detect sudden changes in
order to reinitialize the probabilities and filter gains. The
design of a sophisticated detection system capable of identify-
ing events such as compensatory prematures and interpolated
beats is the subject ofPart II. For the purposes of the multiple
model algorithm all we need to do is implement an outlier
test. The residuals of the most probable model are monitored.
If the quantity 2(k)/2 V(k) exceeds a preset threshold (taken
to be 2 in the tests described in the next section), the proba-
bilities and filter gains are reset. Since it takes a period of time
for the algorithm to lock onto the new rhythm, we do not re-

initialize the outlier test until one of the probabilities has again
exceeded the decision threshold of .8.
The multiple model algorithm as described to this point has

difficulty distinguishing between small variation and P2 and
between small variation and P3. This is due to the fact that
small variation is periodic with period one and hence also with
period two and three. Thus the P2 and P3 filters can also
track a small variation rhythm by estimating all of the com-

ponents of 2 as being equal. We can improve the distinguish-
ability by increasing the magnitudes of R2 and R3 relative to
Rs. but we cannot increase them too much, since we will run

into distinguishability problems with the large variation filter.
Alternatively, we can look at the relative sizes of the compo-

nents of 2 for P2 and P3. If the rhythm is one of these, the

In calculating the p(k) from (5.4), we then replace p3(k - 1)
withp3(k- l)g(E(k))where

.2 EE <.5

g(E)= E- - .S <E <.8.
*1 EE>.8

(5.10)

We have found experimentally that these choices for f and g
yield excellent system performance. Clearly other choices are

possible.

VI. EXPERIMENTAL RESULTS
The multiple model rhythm identification system described

in the previous section has been tested on an extensive data
base which included both idealized and actual R-R interval
data. A total of 12 representative persistent rhythm records
using actual data were selected for study. In this section, the
most significant and representative results obtained with actual
data are presented. More extensive results are available in
[13, 14].
The results given here are for the five different cases described

in Table I. Only the first twenty R-R intervals, found from
lead V5, were used, with the means and standard deviations
given in Table I. The R-waves were detected using the tech-
nique described in Section II, and all R-waves were correctly
identified.
The numerical results are given in Figures 2-12. In the

figures, the abscissa is time, and the locations of the R-waves
are given by the short vertical lines. The values of the R-R
intervals are given along the abscissa, in units of samples (at
4 ms/sample) and in seconds. The a posteriori probabilities

(59)
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TABLE I
ACTUAL DATA USED IN TESTING MULTIPLE MODEL HYPOTHESIS SYSTEM

Description Mean
Standard

Deviation

Small Variation 1 181.9* 4.48

Small Variation 2 234.0 7.59

Large Variation 116.1 17.09

Bigeminy (P2) 204.4 74.07

Trigeminy (P3) 141.6 47.72

*Units are samples at 4 ms/sample.
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Fig. 3. A Posteriori Probabilities for Small Variation 2.

for each of the four classes are plotted along the ordinate.
The lines joining the probabilities at the -discrete times are
used only to facilitate ease of visual interpretation, since
the probabilities are defined only at the sample times, where
the R-waves are located.
A large number of tests were made using different values of

the filter parameters. The following set was found to give best
overall results:

m(0) = 200, Rs = 64, RI = 400, R2 = R3 = 100.

The initial covariance matrix was diagonal with all diagonal
elements equal to 1600. The initial class probabilities were
all set to 0.25.

The mean value m(O) = 200 is based on an average heart rate
of 75 beats/min which, without any a priori information, is a
reasonable estimate. Another approach to determination of
m(0) is to use a smoothed estimate assuming no a priori infor-
mation. For example, m(0) could be selected as the mean of
the first few R-R intervals, or the mean of the first two R-R
intervals sufficiently close together. These estimates would
be noncausal but easily computed. Studies are presently under
way to evaluate these approaches.
The identification performances obtained for normal sinus

rhythms are shown in Figs. 2 and 3. After only five R-R inter-
vals are processed, the probability for "small variation" has
risen to about 90% and monotonically increases thereafter to
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the upper limit of 97%. This performiance was judged to be

adequate.

The performance obtained for a rhythm strip with large, es-

sentially random sinus rhythm variation is shown in Fig. 4.

The data actually corresponded to atrial fibrillation, with an

average heart rate of about 140 beats/min. The "large varia-

tion" probability exceeds 90% after the 8th R-R interval has

been processed. The reason accurate identification was not

obtained sooner than this was the presence of the pattern

( ., 99, 93, 98, - which is more indicative of a small

variation rhythm (although it is indicative of tachycardia).

Note that during this period the normal rhythm probability

is increasing slightly, as would be expected. The increase in

"large variation" probability at R-R = 99 is due to the decrease

in P2 probability.

The performance obtained for the bigeminal rhythm strip is

given in Fig. 5 and shows that the P2 probability rises to 90%1
after only three intervals have been processed, which is intui-

tuively the smallest number necessary to provide unambiguous

identification. The results for the trigeminal rhythm are shown

in Fig. 6.

The results in Figs. 2-6 were obtained for pure persistent

rhythms. It is of interest to assess the filter performance when

there are sudden changes in persistent rhythm to assure that
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the response time is not degraded. Several tests were made in
which two persistent rhythm strips were joined together. Al-
though somewhat artificial, this procedure does allow deter-
mination of response to step changes in persistent rhythm.
The results obtained for shifting from "small variation 1 to
large variation" are shown in Fig. 7. The initial response is
identical to Fig. 2 while the response following the rhythm
shift is identical to the initial part of Fig. 4. This is due to
the fact that the reinitialization sequence includes resetting
both the filter parameters and the probabilities to their initial
values when the shift is detected via the outlier test (see Sec-
tion V for a description of the outlier test). Also, the initial
R-R interval is reprocessed after f'ilter reinitialization (non-
causally) to achieve optimum fi'lter response. The results
obtained using other rhythm combinations followed the same
pattern, as shown in Figs. 8-12.

VII. CONCLUSIONS

A new approach has been put forward in his paper for auto-
mated detection and identification of persistent cardiac
rhythms. The R-R interval temporal patterns are modelled by
low-order Markov processes designed to match the observed
correlation functions of the data. Rhythm categories are se -

lected on the basis of both diagnostic criteria and dynamic
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behaviour. Additional categories are easily added if necessary.-
A set of tracking filters, one for each category, is designed to
provide estimates of the variables associated with each cate-
gory. The filter outputs are processed sequentially in a
straightforward manner to obtain estimates of the a posteriori
probability associated with each category. The approach is

entirely statistical and takes into account fiducial point errors
and actual variations within each class, as well as providing a
measure of the likelihood of each rhythm category, given the
data.
Testing of the method has been performed on actual rhythm

data. The preliminary conclusion is that the method provides
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rapid and accurate identification of persistent rhythms. The

method is also appealing in that it is based on phenomenolog-
ical models and does not have to be extensively "tuned" with
the aid of a training set. Hence, one may avoid the sensitivity
problems that often arise in methods that require extensive

use of a training set in order to set thresholds.
In the second part [7] we develop another dynamic model-

based statistical technique for the detection and identification

of transient arrhythmias.
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ECG/VCG Rhythm Diagnosis Using Statistical Signal
Analysis-11. Identification of Transient Rhythms

/ DONALD E. GUSTAFSON, MEMBER, IEEE, ALAN S. WILLSKY, MEMBER, IEEE,
JYH-YUN WANG, STUDENT MEMBER, IEEE, MALCOLM C. LANCASTER, AND JOHN H. TRIEBWASSER

Abstract-The problem of detection and identification of cardiac
transient rhythms, using the associated R-R interval sequence, is studied.
A generalized likelihood ratio technique is proposed, in which the tran-
sient rhythm category is identified by means of a maximum-likelihood
hypothesis test. Simultaneously, the magnitude of the change in the
R-R interval pattern is estimated. The method is easily mechanized
on-line using a moving window of data and prestored gains. Experi-
mental results using actual data are presented to indicate the utility of
the method.

I. INTRODUCTION
THIS PAPER is the second of a two-part series on the de-
Tvelopment of an automated technique for cardiac ar-

rhythmia detection and identification. In Part I [1] the
motivation and background for this study were given, and a
multiple model technique was developed for detection and
identification of persistent rhythms, i.e., rhythms which are
essentially unchanged over approximately 8-10 heartbeats.
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In addition, we presented results that showed that, with the
aid of an outlier test, the multiple model algorithm was ca-
pable of detecting and adapting to switches between persistent
rhythm patterns. Although this method does allow one to
detect certain sudden changes in a rhythm pattern, its sim-
plicity does not allow one to correctly identify many ectopic
events such as compensatory prematures and interpolated
beats.

In this paper we investigate the use of a Generalized Likeli-
hood Ratio (GRL) technique [2-4] for detection and identi-
fication of transient arrhythmias; e.g., arrhythmias that persist
over less than 8-10 heartbeats. The GLR approach is a prac-
tical method for detecting and classifying several types of tran-
sient events and for estimating the parameters that character-
ize the events (e.g., the degree of prematurity of a PVC). This
approach has previously been found to give good experimental
results [31 and will be shown to give excellent results in this
application.
Following the methodology in Part I, our approach to

modeling is phenomenological in nature; that is, the models
are based on rather simple observations concerning the distin-
guishing characteristics of the R-R interval patterns corre-
sponding to the various transient events. This produces a
simple and quite reliable statistical identification procedure.
The diagnostic capabilities of this technique are limited only
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