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Abstract

We consider the problem of high-dimensional Gaussian graphical model selection. We identify

a set of graphs for which an efficient estimation algorithm exists, and this algorithm is based on

thresholding of empirical conditional covariances. Under a set of transparent conditions, we es-

tablish structural consistency (or sparsistency) for the proposed algorithm, when the number of

samples n = Ω(J−2
min log p), where p is the number of variables and Jmin is the minimum (absolute)

edge potential of the graphical model. The sufficient conditions for sparsistency are based on the

notion of walk-summability of the model and the presence of sparse local vertex separators in the

underlying graph. We also derive novel non-asymptotic necessary conditions on the number of

samples required for sparsistency.

Keywords: Gaussian graphical model selection, high-dimensional learning, local-separation prop-

erty, walk-summability, necessary conditions for model selection

1. Introduction

Probabilistic graphical models offer a powerful formalism for representing high-dimensional dis-

tributions succinctly. In an undirected graphical model, the conditional independence relationships

among the variables are represented in the form of an undirected graph. Learning graphical models

using its observed samples is an important task, and involves both structure and parameter estima-
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tion. While there are many techniques for parameter estimation (e.g., expectation maximization),

structure estimation is arguably more challenging. High-dimensional structure estimation is NP-

hard for general models (Karger and Srebro, 2001; Bogdanov et al., 2008) and moreover, the num-

ber of samples available for learning is typically much smaller than the number of dimensions (or

variables).

The complexity of structure estimation depends crucially on the underlying graph structure.

Chow and Liu (1968) established that structure estimation in tree models reduces to a maximum

weight spanning tree problem and is thus computationally efficient. However, a general charac-

terization of graph families for which structure estimation is tractable has so far been lacking. In

this paper, we present such a characterization based on the so-called local separation property in

graphs. It turns out that a wide variety of (random) graphs satisfy this property (with probability

tending to one) including large girth graphs, the Erdős-Rényi random graphs (Bollobás, 1985) and

the power-law graphs (Chung and Lu, 2006), as well as graphs with short cycles such as the small-

world graphs (Watts and Strogatz, 1998) and other hybrid/augmented graphs (Chung and Lu, 2006,

Ch. 12). The small world and augmented graphs are especially relevant for modeling data from

social networks. Note that these graphs can simultaneously possess many short cycles as well as

large node degrees (growing with the number of nodes), and thus, we can incorporate a wide class

of graphs for high-dimensional estimation.

Successful structure estimation also relies on certain assumptions on the parameters of the

model, and these assumptions are tied to the specific algorithm employed. For instance, for convex-

relaxation approaches (Meinshausen and Bühlmann, 2006; Ravikumar et al., 2011), the assumptions

are based on certain incoherence conditions on the model, which are hard to interpret as well as ver-

ify in general. In this paper, we present a set of transparent conditions for Gaussian graphical model

selection based on walk-sum analysis (Malioutov et al., 2006). Walk-sum analysis has been previ-

ously employed to analyze the performance of loopy belief propagation (LBP) and its variants in

Gaussian graphical models. In this paper, we demonstrate that walk-summability also turns out to

be a natural criterion for efficient structure estimation, thereby reinforcing its importance in charac-

terizing the tractability of Gaussian graphical models.

1.1 Summary of Results

Our main contributions in this work are threefold. We propose a simple local algorithm for Gaussian

graphical model selection, termed as conditional covariance threshold test (CMIT) based on a set of

conditional covariance thresholding tests. Second, we derive sample complexity results for our al-

gorithm to achieve structural consistency (or sparsistency). Third, we prove a novel non-asymptotic

lower bound on the sample complexity required by any learning algorithm to succeed. We now

elaborate on these contributions.

Our structure learning procedure is known as the Conditional Covariance Test1 (CMIT) and is

outlined in Algorithm 1. Let CMIT(xn;ξn,p,η) be the output edge set from CMIT given n i.i.d.

samples xn, a threshold ξn,p (that depends on both p and n) and a constant η ∈ N, which is related

to the local vertex separation property (described later). The conditional covariance test proceeds

1. An analogous test is employed for Ising model selection in Anandkumar et al. (2012b) based on conditional mutual

information. We later note that conditional mutual information test has slightly worse sample complexity for learning

Gaussian models.
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Algorithm 1 Algorithm CMIT(xn;ξn,p,η) for structure learning using samples xn.

Initialize Ĝn
p = (V, /0).

For each i, j ∈V , if

min
S⊂V\{i, j}

|S|≤η

|Σ̂(i, j|S)|> ξn,p, (1)

then add (i, j) to Ĝn
p.

Output: Ĝn
p.

in the following manner. First, the empirical absolute conditional covariances2 are computed as

follows:

Σ̂(i, j|S) := Σ̂(i, j)− Σ̂(i,S) Σ̂
−1
(S,S) Σ̂(S, j),

where Σ̂(·, ·) are the respective empirical variances. Note that Σ̂
−1
(S,S) exists when the number of

samples satisfies n > |S| (which is the regime under consideration). The conditional covariance is

thus computed for each node pair (i, j) ∈V 2 and the conditioning set which achieves the minimum

is found, over all subsets of cardinality at most η; if the minimum value exceeds the threshold ξn,p,

then the node pair is declared as an edge. See Algorithm 1 for details.

The computational complexity of the algorithm is O(pη+2), which is efficient for small η. For

the so-called walk-summable Gaussian graphical models, the parameter η can be interpreted as an

upper bound on the size of local vertex separators in the underlying graph. Many graph families

have small η and as such, are amenable to computationally efficient structure estimation by our

algorithm. These include Erdős-Rényi random graphs, power-law graphs and small-world graphs,

as discussed previously.

We establish that the proposed algorithm has a sample complexity of n = Ω(J−2
min log p), where p

is the number of nodes (variables) and Jmin is the minimum (absolute) edge potential in the model.

As expected, the sample complexity improves when Jmin is large, that is, the model has strong edge

potentials. However, as we shall see, Jmin cannot be arbitrarily large for the model to be walk-

summable. We derive the minimum sample complexity for various graph families and show that

this minimum is attained when Jmin takes the maximum possible value.

We also develop novel techniques to obtain necessary conditions for consistent structure estima-

tion of Erdős-Rényi random graphs and other ensembles with non-uniform distribution of graphs.

We obtain non-asymptotic bounds on the number of samples n in terms of the expected degree and

the number of nodes of the model. The techniques employed are information-theoretic in nature

(Cover and Thomas, 2006). We cast the learning problem as a source-coding problem and develop

necessary conditions which combine the use of Fano’s inequality with the so-called asymptotic

equipartition property.

Our sufficient conditions for structural consistency are based on walk-summability. This char-

acterization is novel to the best of our knowledge. Previously, walk-summable models have been

extensively studied in the context of inference in Gaussian graphical models. As a by-product of

our analysis, we also establish the correctness of loopy belief propagation for walk-summable Gaus-

sian graphical models Markov on locally tree-like graphs (see Section 5 for details). This suggests

2. Alternatively, conditional independence can be tested via sample partial correlations which can be computed via

regression or recursion. See Kalisch and Bühlmann (2007) for details.
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that walk-summability is a fundamental criterion for tractable learning and inference in Gaussian

graphical models.

1.2 Related Work

Given that structure learning of general graphical models is NP-hard (Karger and Srebro, 2001;

Bogdanov et al., 2008), the focus has been on characterizing classes of models on which learning

is tractable. The seminal work of Chow and Liu (1968) provided an efficient implementation of

maximum-likelihood structure estimation for tree models via a maximum weighted spanning tree

algorithm. Error-exponent analysis of the Chow-Liu algorithm was studied (Tan et al., 2011a, 2010)

and extensions to general forest models were considered by Tan et al. (2011b) and Liu et al. (2011).

Learning trees with latent (hidden) variables (Choi et al., 2011) have also been studied recently.

For graphical models Markov on general graphs, alternative approaches are required for struc-

ture estimation. A recent paradigm for structure estimation is based on convex relaxation, where an

estimate is obtained via convex optimization which incorporates an ℓ1-based penalty term to encour-

age sparsity. For Gaussian graphical models, such approaches have been considered in Meinshausen

and Bühlmann (2006) and Ravikumar et al. (2011) and d’Aspremont et al. (2008), and the sample

complexity of the proposed algorithms have been analyzed. A major disadvantage in using convex-

relaxation methods is that the incoherence conditions required for consistent estimation are hard to

interpret and it is not straightforward to characterize the class of models satisfying these conditions.

An alternative to the convex-relaxation approach is the use of simple greedy local algorithms

for structure learning. The conditions required for consistent estimation are typically more trans-

parent, albeit somewhat restrictive. Bresler et al. (2008) propose an algorithm for structure learning

of general graphical models Markov on bounded-degree graphs, based on a series of conditional-

independence tests. Abbeel et al. (2006) propose an algorithm, similar in spirit, for learning factor

graphs with bounded degree. Spirtes and Meek (1995), Cheng et al. (2002), Kalisch and Bühlmann

(2007) and Xie and Geng (2008) propose conditional-independence tests for learning Bayesian

networks on directed acyclic graphs (DAG). Netrapalli et al. (2010) proposed a faster greedy algo-

rithm, based on conditional entropy, for graphs with large girth and bounded degree. However, all

the works (Bresler et al., 2008; Abbeel et al., 2006; Spirtes and Meek, 1995; Cheng et al., 2002;

Netrapalli et al., 2010) require the maximum degree in the graph to be bounded (∆ = O(1)) which

is restrictive. We allow for graphs where the maximum degree can grow with the number of nodes.

Moreover, we establish a natural tradeoff between the maximum degree and other parameters of the

graph (e.g., girth) required for consistent structure estimation.

Necessary conditions for consistent graphical model selection provide a lower bound on sample

complexity and have been explored before by Santhanam and Wainwright (2008) and Wang et al.

(2010). These works consider graphs drawn uniformly from the class of bounded degree graphs

and establish that n = Ω(∆k log p) samples are required for consistent structure estimation, in an

p-node graph with maximum degree ∆, where k is typically a small positive integer. However,

a direct application of these methods yield poor lower bounds if the ensemble of graphs has a

highly non-uniform distribution. This is the case with the ensemble of Erdős-Rényi random graphs

(Bollobás, 1985). Necessary conditions for structure estimation of Erdős-Rényi random graphs were

derived for Ising models by Anandkumar et al. (2012b) based on an information-theoretic covering

argument. However, this approach is not directly applicable to the Gaussian setting. We present a

novel approach for obtaining necessary conditions for Gaussian graphical model selection based on
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the notion of typicality. We characterize the set of typical graphs for the Erdős-Rényi ensemble and

derive a modified form of Fano’s inequality and obtain a non-asymptotic lower bound on sample

complexity involving the average degree and the number of nodes.

We briefly also point to a large body of work on high-dimensional covariance selection under

different notions of sparsity. Note that the assumption of a Gaussian graphical model Markov on

a sparse graph is one such formulation. Other notions of sparsity include Gaussian models with

sparse covariance matrices, or having a banded Cholesky factorization. Also, note that many works

consider covariance estimation instead of selection and in general, estimation guarantees can be

obtained under less stringent conditions. See Lam and Fan (2009), Rothman et al. (2008), Huang

et al. (2006) and Bickel and Levina (2008) for details.

1.3 Paper Outline

The paper is organized as follows. We introduce the system model in Section 2. We prove the main

result of our paper regarding the structural consistency of conditional covariance thresholding test in

Section 3. We prove necessary conditions for model selection in Section 4. In Section 5, we analyze

the performance of loopy belief propagation in Gaussian graphical models. Section 7 concludes the

paper. Proofs and additional discussion are provided in the appendix.

2. Preliminaries and System Model

We now provide an overview of Gaussian graphical models and the problem of structure learning

given samples from the model.

2.1 Gaussian Graphical Models

A Gaussian graphical model is a family of jointly Gaussian distributions which factor in accordance

to a given graph. Given a graph G = (V,E), with V = {1, . . . , p}, consider a vector of Gaussian

random variables X = [X1,X2, . . . ,Xp]
T , where each node i ∈V is associated with a scalar Gaussian

random variable Xi. A Gaussian graphical model Markov on G has a probability density function

(pdf) that may be parameterized as

fX(x) ∝ exp

[
−1

2
xT JGx+hT x

]
, (2)

where JG is a positive-definite symmetric matrix whose sparsity pattern corresponds to that of the

graph G. More precisely,

JG(i, j) = 0 ⇐⇒ (i, j) /∈ G.

The matrix JG is known as the potential or information matrix, the non-zero entries J(i, j) as the

edge potentials, and the vector h as the potential vector. A model is said to be attractive if Ji, j ≤ 0

for all i 6= j. The form of parameterization in (2) is known as the information form and is related to

the standard mean-covariance parameterization of the Gaussian distribution as

µ = J−1h, Σ= J−1,

where µ := E[X] is the mean vector and Σ := E[(X−µ)(X−µ)T ] is the covariance matrix.
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We say that a jointly Gaussian random vector X with joint pdf f (x) satisfies local Markov

property with respect to a graph G if

f (xi|xN (i)) = f (xi|xV\i)

holds for all nodes i ∈V , where N (i) denotes the set of neighbors of node i ∈V and, V \ i denotes

the set of all nodes excluding i. More generally, we say that X satisfies the global Markov property,

if for all disjoint sets A,B ⊂V , we have

f (xA,xB|xS) = f (xA|xS) f (xB|xS).

where set S is a separator3 of A and B The local and global Markov properties are equivalent for

non-degenerate Gaussian distributions (Lauritzen, 1996).

Our results on structure learning depend on the precision matrix J. Let

Jmin := min
(i, j)∈G

|J(i, j)|, Jmax := max
(i, j)∈G

|J(i, j)|, Dmin := min
i

J(i, i).

Intuitively, models with edge potentials which are “too small” or “too large” are harder to learn than

those with comparable potentials. Since we consider the high-dimensional case where the number

of variables p grows, we allow the bounds Jmin, Jmax, and Dmin to potentially scale with p.

The partial correlation coefficient between variables Xi and X j, for i 6= j, measures their con-

ditional covariance given all other variables. These are computed by normalizing the off-diagonal

values of the information matrix, that is,

R(i, j) :=
Σ(i, j|V \{i, j})√

Σ(i, i|V \{i, j})Σ( j, j|V \{i, j})
=− J(i, j)√

J(i, i)J( j, j)
. (3)

For all i ∈V , set R(i, i) = 0. We henceforth refer to R as the partial correlation matrix.

An important sub-class of Gaussian graphical models of the form in (19) are the walk-summable

models (Malioutov et al., 2006). A Gaussian model is said to be α-walk summable if

‖R‖ ≤ α < 1,

where R := [|R(i, j)|] denotes the entry-wise absolute value of the partial correlation matrix R and

‖·‖ denotes the spectral or 2-norm of the matrix, which for symmetric matrices, is given by the

maximum absolute eigenvalue.

In other words, walk-summability means that an attractive model formed by taking the abso-

lute values of the partial correlation matrix of the Gaussian graphical model is also valid (i.e., the

corresponding potential matrix is positive definite). This immediately implies that attractive mod-

els form a sub-class of walk-summable models. For detailed discussion on walk-summability, see

Section A.1.

2.2 Tractable Graph Families

We consider the class of Gaussian graphical models Markov on a graph Gp belonging to some en-

semble G(p) of graphs with p nodes. We consider the high-dimensional learning regime, where both

3. A set S ⊂V is a separator for sets A and B if the removal of nodes in S partitions A and B into distinct components.
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p and the number of samples n grow simultaneously; typically, the growth of p is much faster than

that of n. We emphasize that in our formulation the graph ensemble G(p) can either be deterministic

or random—in the latter, we also specify a probability measure over the set of graphs in G(p). In the

setting where G(p) is a random-graph ensemble, let PX,G denote the joint probability distribution

of the variables X and the graph G ∼ G(p), and let fX|G denote the conditional (Gaussian) density

of the variables Markov on the given graph G. Let PG denote the probability distribution of graph

G drawn from a random ensemble G(p). We use the term almost every (a.e.) graph G satisfies a

certain property Q if

lim
p→∞

PG[G satisfies Q ] = 1.

In other words, the property Q holds asymptotically almost surely4 (a.a.s.) with respect to the

random-graph ensemble G(p). Our conditions and theoretical guarantees will be based on this

notion for random graph ensembles. Intuitively, this means that graphs that have a vanishing prob-

ability of occurrence as p → ∞ are ignored.

We now characterize the ensemble of graphs amenable for consistent structure estimation under

our formulation. To this end, we define the concept of local separation in graphs. See Fig. 1 for an

illustration. For γ ∈ N, let Bγ(i;G) denote the set of vertices within distance γ from i with respect

to graph G. Let Hγ,i := G(Bγ(i)) denote the subgraph of G spanned by Bγ(i;G), but in addition, we

retain the nodes not in Bγ(i) (and remove the corresponding edges). Thus, the number of vertices in

Hγ,i is p.

Definition 1 (γ-Local Separator) Given a graph G, a γ-local separator Sγ(i, j) between i and j,

for (i, j) /∈ G, is a minimal vertex separator5 with respect to the subgraph Hγ,i. In addition, the

parameter γ is referred to as the path threshold for local separation.

In other words, the γ-local separator Sγ(i, j) separates nodes i and j with respect to paths in G of

length at most γ. We now characterize the ensemble of graphs based on the size of local separators.

Definition 2 ((η,γ)-Local Separation Property) An ensemble of graphs satisfies (η,γ)-local sep-

aration property if for a.e. Gp in the ensemble,

max
(i, j)/∈Gp

|Sγ(i, j)| ≤ η. (4)

We denote such a graph ensemble by G(p;η,γ).

In Section 3, we propose an efficient algorithm for graphical model selection when the under-

lying graph belongs to a graph ensemble G(p;η,γ) with sparse local separators (i.e., small η, for η

defined in (4)). We will see that the computational complexity of our proposed algorithm scales as

O(pη+2). We now provide examples of several graph families satisfying (4).

4. Note that the term a.a.s. does not apply to deterministic graph ensembles G(p) where no randomness is assumed, and

in this setting, we assume that the property Q holds for every graph in the ensemble.

5. A minimal separator is a separator of smallest cardinality.
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j

a b c d

i

S(i, j)

Figure 1: Illustration of l-local separator set S(i, j;G, l) for the graph shown above with l = 4. Note

that N (i) = {a,b,c,d} is the neighborhood of i and the l-local separator set S(i, j;G, l) =
{a,b} ⊂ N (i;G). This is because the path along c connecting i and j has a length greater

than l and hence node c /∈ S(i, j;G, l).

2.2.1 EXAMPLE 1: BOUNDED-DEGREE

We now show that the local-separation property holds for a rich class of graphs. Any (deterministic

or random) ensemble of degree-bounded graphs GDeg(p,∆) satisfies (η,γ)-local separation property

with η = ∆ and arbitrary γ ∈ N. If we do not impose any further constraints on GDeg, the computa-

tional complexity of our proposed algorithm scales as O(p∆+2) (see also Bresler et al., 2008 where

the computational complexity is comparable). Thus, when ∆ is large, our proposed algorithm and

the one in Bresler et al. (2008) are computationally intensive. Our goal in this paper is to relax

the usual bounded-degree assumption and to consider ensembles of graphs G(p) whose maximum

degrees may grow with the number of nodes p. To this end, we discuss other structural constraints

which can lead to graphs with sparse local separators.

2.2.2 EXAMPLE 2: BOUNDED LOCAL PATHS

Another sufficient condition6 for the (η,γ)-local separation property in Definition 2 to hold is that

there are at most η paths of length at most γ in G between any two nodes (henceforth, termed as the

(η,γ)-local paths property). In other words, there are at most η−1 number of overlapping7 cycles

of length smaller than 2γ.

In particular, a special case of the local-paths property described above is the so-called girth

property. The girth of a graph is the length of the shortest cycle. Thus, a graph with girth g satisfies

(η,γ)-local separation property with η = 1 and γ = g/2. Let GGirth(p;g) denote the ensemble of

graphs with girth at most g. There are many graph constructions which lead to large girth. For

example, the bipartite Ramanujan graph (Chung, 1997, p. 107) and the random Cayley graphs

(Gamburd et al., 2009) have large girths.

6. For any graph satisfying (η,γ)-local separation property, the number of vertex-disjoint paths of length at most γ
between any two non-neighbors is bounded above by η, by appealing to Menger’s theorem for bounded path lengths

(Lovász et al., 1978). However, the property of local paths that we describe above is a stronger notion than having

sparse local separators and we consider all distinct paths of length at most γ and not just vertex disjoint paths in the

formulation.

7. Two cycles are said to overlap if they have common vertices.

2300



HIGH-DIMENSIONAL GAUSSIAN GRAPHICAL MODEL SELECTION

The girth condition can be weakened to allow for a small number of short cycles, while not

allowing for typical node neighborhoods to contain short cycles. Such graphs are termed as locally

tree-like. For instance, the ensemble of Erdős-Rényi graphs GER(p,c/p), where an edge between

any node pair appears with a probability c/p, independent of other node pairs, is locally tree-like.

The parameter c may grow with p, albeit at a controlled rate for tractable structure learning. We

make this more precise in Example 3 in Section 3.1. The proof of the following result may be found

in Anandkumar et al. (2012a).

Proposition 3 (Random Graphs are Locally Tree-Like) The ensemble of Erdős-Rényi graphs

GER(p,c/p) satisfies the (η,γ)-local separation property in (4) with

η = 2, γ ≤ log p

4logc
. (5)

Thus, there are at most two paths of length smaller than γ between any two nodes in Erdős-Rényi

graphs a.a.s, or equivalently, there are no overlapping cycles of length smaller than 2γ a.a.s. Simi-

lar observations apply for the more general scale-free or power-law graphs (Chung and Lu, 2006;

Dommers et al., 2010). Along similar lines, the ensemble of ∆-random regular graphs, denoted

by GReg(p,∆), which is the uniform ensemble of regular graphs with degree ∆ has no overlapping

cycles of length at most Θ(log∆−1 p) a.a.s. (McKay et al., 2004, Lemma 1).

2.2.3 EXAMPLE 3: SMALL-WORLD GRAPHS

The previous two examples showed local separation holds under two different conditions: bounded

maximum degree and bounded number of local paths. The former class of graphs can have short

cycles but the maximum degree needs to be constant, while the latter class of graphs can have a large

maximum degree but the number of overlapping short cycles needs to be small. We now provide

instances which incorporate both these features: large degrees and short cycles, and yet satisfy the

local separation property.

The class of hybrid graphs or augmented graphs (Chung and Lu, 2006, Ch. 12) consists of

graphs which are the union of two graphs: a “local” graph having short cycles and a “global”

graph having small average distances. Since the hybrid graph is the union of these local and global

graphs, it has both large degrees and short cycles. The simplest model GWatts(p,d,c/p), first studied

by Watts and Strogatz (1998), consists of the union of a d-dimensional grid and an Erdős-Rényi

random graph with parameter c. It is easily seen that a.e. graph G ∼ GWatts(p,d,c/p) satisfies

(η,γ)-local separation property in (4), with

η = d +2, γ ≤ log p

4logc
.

Similar observations apply for more general hybrid graphs studied in Chung and Lu (2006, Ch. 12).

Thus, we see that a wide range of graphs satisfy the property of having sparse local separators,

and that it is possible for graphs with large degrees as well as many short cycles to have this property.

2.2.4 COUNTER-EXAMPLE: DENSE GRAPHS

While the above examples illustrate that a large class of graphs satisfy the local separation criterion,

there indeed exist graphs which do not satisfy it. Such graphs tend to be “dense”, that is, the

2301



ANANDKUMAR, TAN, HUANG AND WILLSKY

number of edges scales super-linearly in the number of nodes. For instance, the Erdős-Rényi graphs

GER(p,c/p) in the dense regime, where the average degree scales as c = Ω(p2). In this regime,

the node degrees as well as the number of short cycles grow with p. However, there is no simple

decomposition into a local and a global graph with desirable properties, as in the previous example

of small world graphs. Thus, the size of the local separators also grows with p in this case. Such

graphs are hard instances for our framework.

3. Guarantees for Conditional Covariance Thresholding

We now characterize conditions under which the underlying Markov structure can be recovered

successfully under conditional covariance thresholding.

3.1 Assumptions

(A1) Sample Scaling Requirements: We consider the asymptotic setting where both the number

of variables (nodes) p and the number of samples n tend to infinity. We assume that the

parameters (n, p,Jmin) scale in the following fashion:8

n = Ω(J−2
min log p). (6)

We require that the number of nodes p → ∞ to exploit the local separation properties of the

class of graphs under consideration.

(A2) α-Walk-summability: The Gaussian graphical model Markov on Gp ∼G(p) is α-walk summable

a.a.s., that is,

‖RGp
‖ ≤ α < 1, a.e. Gp ∼ G(p), (7)

where α is a constant (i.e., not a function of p), R := [|R(i, j)|] is the entry-wise absolute value

of the partial correlation matrix R and ‖·‖ denotes the spectral norm.

(A3) Local-Separation Property: We assume that the ensemble of graphs G(p;η,γ) satisfies the

(η,γ)-local separation property with η,γ satisfying:

η = O(1), JminD−1
minα−γ = ω(1), (8)

where α is given by (7) and Dmin := mini J(i, i) is the minimum diagonal entry of the potential

matrix J.

(A4) Condition on Edge-Potentials: The minimum absolute edge potential of an α-walk summable

Gaussian graphical model satisfies

Dmin(1−α) min
(i, j)∈Gp

J(i, j)

K(i, j)
> 1+δ, (9)

for almost every Gp ∼ G(p), for some δ > 0 (not depending on p) and9

K(i, j) := ‖J(V \{i, j},{i, j})‖2,

8. The notations ω(·), Ω(·) refer to asymptotics as the number of variables p → ∞.

9. Here and in the sequel, for A,B ⊂V , we use the notation J(A,B) to denote the sub-matrix of J indexed by rows in A

and columns in B.
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is the spectral norm of the submatrix of the potential matrix J, and Dmin := mini J(i, i) is the

minimum diagonal entry of J. Intuitively, (9) limits the extent of non-homogeneity in the

model and the extent of overlap of neighborhoods. Moreover, this assumption is not required

for consistent graphical model selection when the model is attractive (Ji, j ≤ 0 for i 6= j).10

(A5) Choice of threshold ξn,p: The threshold ξn,p for graph estimation under CMIT algorithm is

chosen as a function of the number of nodes p, the number of samples n, and the minimum

edge potential Jmin as follows:

ξn,p = O(Jmin), ξn,p = ω

(
αγ

Dmin

)
, ξn,p = Ω

(√
log p

n

)
, (10)

where α is given by (7), Dmin := mini J(i, i) is the minimum diagonal entry of the potential

matrix J, and γ is the path-threshold (4) for the (η,γ)-local separation property to hold.

Assumption (A1) stipulates how n, p and Jmin should scale for consistent graphical model se-

lection, that is, the sample complexity. The sample size n needs to be sufficiently large with respect

to the number of variables p in the model for consistent structure reconstruction. Assumptions

(A2) and (A4) impose constraints on the model parameters. Assumption (A3) restricts the class of

graphs under consideration. To the best of our knowledge, all previous works dealing with graphi-

cal model selection, for example, Meinshausen and Bühlmann (2006), Ravikumar et al. (2011), also

impose some conditions for consistent graphical model selection. Assumption (A5) is with regard

to the choice of a suitable threshold ξn,p for thresholding conditional covariances. In the sequel, we

compare the conditions for consistent recovery after presenting our main theorem.

3.1.1 EXAMPLE 1: DEGREE-BOUNDED ENSEMBLES

To gain a better understanding of conditions (A1)–(A5), consider the ensemble of graphs GDeg(p;∆)
with bounded degree ∆ ∈ N. It can be established that for the walk-summability condition in (A2)

to hold,11 we require that for normalized precision matrices (J(i, i) = 1),

Jmax = O

(
1

∆

)
.

See Section A.2 for detailed discussion. When the minimum potential achieves the bound (Jmin =
Θ(1/∆)), a sufficient condition for (A3) to hold is given by

∆αγ = o(1), (11)

where γ is the path threshold for the local-separation property to hold according to Definition 2.

Intuitively, we require a larger path threshold γ, as the degree bound ∆ on the graph ensemble

increases.

Note that (11) allows for the degree bound ∆ to grow with the number of nodes as long as

the path threshold γ also grows appropriately. For example, if the maximum degree scales as

∆ = O(poly(log p)) and the path-threshold scales as γ = O(log log p), then (11) is satisfied. This

implies that graphs with fairly large degrees and short cycles can be recovered successfully using

our algorithm.

10. The assumption (A5) rules out the possibility that the neighbors are marginally independent. See Section B.3 for

details.

11. We can provide improved bounds for random-graph ensembles. See Section A.2 for details.
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3.1.2 EXAMPLE 2: GIRTH-BOUNDED ENSEMBLES

The condition in (11) can be specialized for the ensemble of girth-bounded graphs GGirth(p;g) in a

straightforward manner as

∆α
g
2 = o(1), (12)

where g corresponds to the girth of the graphs in the ensemble. The condition in (12) demonstrates

a natural tradeoff between the girth and the maximum degree; graphs with large degrees can be

learned efficiently if their girths are large. Indeed, in the extreme case of trees which have infinite

girth, in accordance with (12), there is no constraint on node degrees for successful recovery and

recall that the Chow-Liu algorithm (Chow and Liu, 1968) is an efficient method for model selection

on tree distributions.

3.1.3 EXAMPLE 3: ERDŐS-RÉNYI AND SMALL-WORLD ENSEMBLES

We can also conclude that a.e. Erdős-Rényi graph G ∼ GER(p,c/p) satisfies (8) when

c = O(poly(log p)) under the best-possible scaling of Jmin subject to the walk-summability con-

straint in (7) (i.e., Jmin achieves the upper bound).

This is because it can be shown that Jmin = O(1/
√

∆) for walk-summability in (7) to hold. See

Section A.2 for details. Noting that a.a.s., the maximum degree ∆ for G ∼ GER(p,c/p) satisfies

∆ = O

(
log p logc

log log p

)
,

from Bollobás (1985, Ex. 3.6) and γ = O( log p
logc

) from (5). Thus, the Erdős-Rényi graphs are

amenable to successful recovery when the average degree c = O(poly(log p)). Similarly, for the

small-world ensemble GWatts(p,d,c/p), when d = O(1) and c = O(poly(log p)), the graphs are

amenable for consistent estimation.

3.2 Consistency of Conditional Covariance Thresholding

Assuming (A1)–(A5), we now state our main result. The proof of this result and the auxiliary

lemmata for the proof can be found in Sections B and Section C.

Theorem 4 (Structural consistency of CMIT) For structure learning of Gaussian graphical mod-

els Markov on a graph Gp ∼ G(p;η,γ), CMIT(xn;ξn,p,η) is consistent for a.e. graph Gp. In other

words,

lim
n,p→∞

n=Ω(J−2
min log p)

P [CMIT({xn};ξn,p,η) 6= Gp] = 0

Remarks:

1. Consistency guarantee: The CMIT algorithm consistently recovers the structure of Gaussian

graphical models asymptotically, with probability tending to one, where the probability mea-

sure is with respect to both the random graph (drawn from the ensemble G(p;η,γ) and the

samples (drawn from ∏n
i=1 f (xi|G)).
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2. Analysis of sample complexity: The above result states that the sample complexity for the

CMIT (n = Ω(J−2
min log p)), which improves when the minimum edge potential Jmin is large.12

This is intuitive since the edges have stronger potentials in this case. On the other hand,

Jmin cannot be arbitrarily large since the α-walk-summability assumption in (7) imposes an

upper bound on Jmin. The minimum sample complexity (over different parameter settings) is

attained when Jmin achieves this upper bound. See Section A.2 for details. For example, for

any degree-bounded graph ensemble G(p,∆) with maximum degree ∆, the minimum sample

complexity is n = Ω(∆2 log p), that is, when Jmin = Θ(1/∆), while for Erdős-Rényi random

graphs, the minimum sample complexity can be improved to n = Ω(∆ log p), that is, when

Jmin = Θ(1/
√

∆).

3. Comparison with Ravikumar et al. (2011): The work by Ravikumar et al. (2011) employs an

ℓ1-penalized likelihood estimator for structure estimation in Gaussian graphical models. Un-

der the so-called incoherence conditions, the sample complexity is n = Ω((∆2 + J−2
min) log p).

Our sample complexity in (6) is the same in terms of its dependence on Jmin, and there is no

explicit dependence on the maximum degree ∆. Moreover, we have a transparent sufficient

condition in terms of α-walk-summability in (7), which directly imposes scaling conditions

on Jmin. It is an open question if the models satisfying incoherence conditions are walk-

summable or viceversa. However, for random graph models, we can obtain better guarantees

in terms of average degrees while the incoherence conditions are based on maximum degree in

the graph. We also present experimental comparison between this method and our developed

method in Section 6.

4. Comparison with Meinshausen and Bühlmann (2006): The work by

Meinshausen and Bühlmann (2006) considers ℓ1-penalized linear regression for neighbor-

hood selection of Gaussian graphical models and establish a sample complexity of n=Ω((∆+
J−2

min) log p). We note that our guarantees allow for graphs which do not necessarily satisfy the

conditions imposed by Meinshausen and Bühlmann (2006). For instance, the assumption of

neighborhood stability (assumption 6 in Meinshausen and Bühlmann, 2006) is hard to ver-

ify in general, and the relaxation of this assumption corresponds to the class of models with

diagonally-dominant covariance matrices. Note that the class of Gaussian graphical mod-

els with diagonally-dominant covariance matrices forms a strict sub-class of walk-summable

models, and thus satisfies assumption (A2) for the theorem to hold. Thus, Theorem 4 ap-

plies to a larger class of Gaussian graphical models compared to Meinshausen and Bühlmann

(2006). Furthermore, the conditions for successful recovery in Theorem 4 are arguably more

transparent.

5. Local vs. Global Conditions for Success: The conditions required for the success of our

methods as well as the ℓ1 penalized MLE of Ravikumar et al. (2011) are global, meaning

that the entire model (i.e., all the parameters) need to satisfy the specified conditions for

recovering the entire graph. It does not appear straightforward to characterize local conditions

for successful recovery under our formulation, that is, when our algorithm may succeed in

recovering some parts of the graph, but not others. On the other hand, the ℓ1 penalized

neighborhood selection method of Meinshausen and Bühlmann (2006) provides a separate

12. Note that the sample complexity also implicitly depends on walk-summability parameter α through (8).
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set of conditions for recovery of each neighborhood in the graph. However, as discussed

above, these conditions appear stronger and more opaque than our conditions.

6. Comparison with Ising models: Our above result for learning Gaussian graphical models

is analogous to structure estimation of Ising models subject to an upper bound on the edge

potentials (Anandkumar et al., 2012b), and we characterize such a regime as a conditional

uniqueness regime. Thus, walk-summability is the analogous condition for Gaussian models.

Proof Outline: We first analyze the scenario when exact statistics are available. (i) We establish that

for any two non-neighbors (i, j) /∈ G, the minimum conditional covariance in (1) (based on exact

statistics) does not exceed the threshold ξn,p. (ii) Similarly, we also establish that the conditional

covariance in (1) exceeds the threshold ξn,p for all neighbors (i, j) ∈ G. (iii) We then extend these

results to empirical versions using concentration bounds.

3.2.1 PERFORMANCE OF CONDITIONAL MUTUAL INFORMATION TEST

We now employ the conditional mutual information test, analyzed in Anandkumar et al. (2012b)

for Ising models, and note that it has slightly worse sample complexity than using conditional co-

variances. Using the threshold ξn,p defined in (10), the conditional mutual information test CMIT is

given by the threshold test

min
S⊂V\{i, j}

|S|≤η

Î(Xi;X j|XS)> ξ2
n,p,

and node pairs (i, j) exceeding the threshold are added to the estimate Ĝn
p. Assuming (A1)–(A5),

we have the following result.

Theorem 5 (Structural consistency of CMIT) For structure learning of the Gaussian graphical

model on a graph Gp ∼ G(p;η,γ), CMIT(xn;ξn,p,η) is consistent for a.e. graph Gp. In other

words,

lim
n,p→∞

n=Ω(J−4
min log p)

P [CMIT({xn};ξn,p,η) 6= Gp] = 0

The proof of this theorem is provided in Section C.3.

Remarks:

1. For Gaussian random variables, conditional covariances and conditional mutual information

are equivalent tests for conditional independence. However, from above results, we note that

there is a difference in the sample complexity for the two tests. The sample complexity of

CMIT is n = Ω(J−4
min log p) in contrast to n = Ω(J−2

min log p) for CMIT. This is due to faster

decay of conditional mutual information on the edges compared to the decay of conditional

covariances. Thus, conditional covariances are more efficient for Gaussian graphical model

selection compared to conditional mutual information.

4. Necessary Conditions for Model Selection

In the previous sections, we proposed and analyzed efficient algorithms for learning the structure of

Gaussian graphical models Markov on graph ensembles satisfying local-separation property. In this

section, we study the problem of deriving necessary conditions for consistent structure learning.
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- - -

Xm ∼ Pm(x)
Encoder

M ∈ [2mR]

Decoder
X̂m

Figure 2: The canonical source coding problem. See Chapter 3 in Cover and Thomas (2006).

For the class of degree-bounded graphs GDeg(p,∆), necessary conditions on sample complexity

have been characterized before (Wang et al., 2010) by considering a certain (limited) set of ensem-

bles. However, a naı̈ve application of such bounds (based on Fano’s inequality (Cover and Thomas,

2006, Ch. 2)) turns out to be too weak for the class of Erdős-Rényi graphs GER(p,c/p), where the

average degree13 c is much smaller than the maximum degree.

We now provide necessary conditions on the sample complexity for recovery of Erdős-Rényi

graphs. Our information-theoretic techniques may also be applicable to other ensembles of random

graphs. This is a promising avenue for future work.

4.1 Setup

We now describe the problem more formally. A graph G is drawn from the ensemble of Erdős-Rényi

graphs G ∼ GER(p,c/p). The learner is also provided with n conditionally i.i.d. samples Xn :=
(X1, . . . ,Xn) ∈ (X p)n (where X = R) drawn from the conditional (Gaussian) product probability

density function (pdf) ∏n
i=1 f (xi|G). The task is then to estimate G, a random quantity. The estimate

is denoted as Ĝ := Ĝ(Xn). It is desired to derive tight necessary conditions on n (as a function of c

and p) so that the probability of error

P
(p)
e := P(Ĝ 6= G)→ 0 (13)

as the number of nodes p tends to infinity. Note that the probability measure P in (13) is associated

to both the realization of the random graph G and the samples Xn.

The task is reminiscent of source coding (or compression), a problem of central importance in

information theory (Cover and Thomas, 2006)—we would like to derive fundamental limits associ-

ated to the problem of reconstructing the source G given a compressed version of it Xn (Xn is also

analogous to the “message”). However, note the important distinction; while in source coding, the

source coder can design both the encoder and the decoder, our problem mandates that the code is

fixed by the conditional probability density f (x|G). We are only allowed to design the decoder. See

comparisons in Figs. 2 and 3.

4.2 Necessary Conditions for Exact Recovery

To derive the necessary condition for learning Gaussian graphical models Markov on sparse Erdős-

Rényi graphs G ∼ GER(p,c/p), we assume that the strict walk-summability condition with param-

eter α, according to (7). We are then able to demonstrate the following:

Theorem 6 (Weak Converse for Gaussian Models) For a walk-summable Gaussian graphical

model satisfying (7) with parameter α, for almost every graph G ∼ GER(p,c/p) as p → ∞, in order

13. The techniques in this section are applicable when the average degree (c) of GER(p,c/p) ensemble is a function of p,

for example, c = O(poly(log p)).
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- - -

G ∼ GER(p, c
p
) n

∏
i=1

f (xi|G)

Xn ∈ (Rp)n

Decoder
Ĝ

Figure 3: The estimation problem is analogous to source coding: the “source” is G ∼ GER(p, c
p
),

the “message” is Xn ∈ (Rp)n and the “decoded source” is Ĝ. We are asking what the

minimum “rate” (analogous to the number of samples n) are required so that Ĝ = G with

high probability.

for P
(p)
e → 0, we require that

n ≥ 2

p log2

[
2πe

(
1

1−α +1
)]
(

p

2

)
Hb

(
c

p

)
(14)

for all p sufficiently large.

The proof is provided in Section D.1. By expanding the binary entropy function, it is easy to see

that the statement in (14) can be weakened to the necessary condition:

n ≥ c log2 p

log2

[
2πe

(
1

1−α +1
)] .

The above condition does not involve any asymptotic notation, and also demonstrates the depen-

dence of the sample complexity on p,c and α transparently. Finally, the dependence on α can be

explained as follows: any α-walk-summable model is also β-walk-summable for all β > α. Thus,

the class of β-walk-summable models contains the class of α-walk-summable models. This results

in a looser bound in (14) for larger α.

4.3 Necessary Conditions for Recovery with Distortion

In this section, we generalize Theorem 6 to the case where we only require estimation of the under-

lying graph up to a certain edit distance: an error is declared if and only if the estimated graph Ĝ

exceeds an edit distance (or distortion) D of the true graph. The edit distance d :Gp×Gp →N∪{0}
between two undirected graphs G = (V,E) and G = (V,E ′) is defined as d(G,G′) := |E△E ′|, where

△ denotes the symmetric difference between the edge sets E and E ′. The edit distance can be

regarded as a distortion measure between two graphs.

Given an positive integer D, known as the distortion, suppose we declare an error if and only if

d(G,G′)> D, then the probability of error is redefined as

P
(p)
e := P(d(G, Ĝ(Xn))> D). (15)

We derive necessary conditions on n (as a function of p and c) such that the probability of error (15)

goes to zero as p → ∞. To ease notation, we define the ratio

β := D/

(
p

2

)
. (16)

Note that β may be a function of p. We do not attempt to make this dependence explicit. The

following corollary is based on an idea propounded by Kim et al. (2008) among others.
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Corollary 7 (Weak Converse for Discrete Models With Distortion) For P
(p)
e → 0, we must have

n ≥ 2

p log2

[
2πe

(
1

1−α +1
)]
(

p

2

)[
Hb

(
c

p

)
−Hb (β)

]
(17)

for all p sufficiently large.

The proof of this corollary is provided in Section D.7. Note that for (17) to be a useful bound,

we need β < c/p which translates to an allowed distortion D < cp/2. We observe from (17) that

because the error criterion has been relaxed, the required number of samples is also reduced from

the corresponding lower bound in (14).

4.4 Proof Techniques

Our analysis tools for deriving necessary conditions for Gaussian graphical model selection are

information-theoretic in nature. A common and natural tool to derive necessary conditions (also

called converses) is to resort to Fano’s inequality (Cover and Thomas, 2006, Chapter 2), which

(lower) bounds the probability of error P
(p)
e as a function of the equivocation or conditional entropy

H(G|Xn) and the size of the set of all graphs with p nodes. However, a direct and naı̈ve application

Fano’s inequality results in a trivial lower bound as the set of all graphs, which can be realized by

GER(p,c/p) is, loosely speaking, “too large”.

To ameliorate such a problem, we employ another information-theoretic notion, known as typi-

cality. A typical set is, roughly speaking, a set that has small cardinality and yet has high probability

as p → ∞. For example, the probability of a set of length-m sequences is of the order ≈ 2mH (where

H is the entropy rate of the source) and hence those sequences with probability close to this value

are called typical. In our context, given a graph G, we define the d̄(G) to be the ratio of the number

of edges of G to the total number of nodes p. Let Gp denote the set of all graphs with p nodes. For

a fixed ε > 0, we define the following set of graphs:

T
(p)

ε :=

{
G ∈Gp :

∣∣∣∣
d̄(G)

c
− 1

2

∣∣∣∣≤
ε

2

}
.

The set T
(p)

ε is known as the ε-typical set of graphs. Every graph G ∈ T
(p)

ε has an average number

of edges that is c
2
ε-close in the Erdős-Rényi ensemble. Note that typicality ideas are usually used

to derive sufficient conditions in information theory (Cover and Thomas, 2006) (achievability in

information-theoretic parlance); our use of both typicality for graphical model selection as well as

Fano’s inequality to derive converse statements seems novel. Indeed, the proof of the converse of

the source coding theorem in Cover and Thomas (2006, Chapter 3) uses only Fano’s inequality. We

now summarize the properties of the typical set.

Lemma 8 (Properties of T
(p)

ε ) The ε-typical set of graphs has the following properties:

1. P(T
(p)

ε )→ 1 as p → ∞.

2. For all G ∈ T
(p)

ε , we have14

exp2

[
−
(

p

2

)
Hb

(
c

p

)
(1+ ε)

]
≤ P(G)≤ exp2

[
−
(

p

2

)
Hb

(
c

p

)]
.

14. We use the notation exp2( ·) to mean 2( ·).
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3. The cardinality of the ε-typical set can be bounded as

(1− ε)exp2

[(
p

2

)
Hb

(
c

p

)]
≤ |T (p)

ε | ≤ exp2

[(
p

2

)
Hb

(
c

p

)
(1+ ε)

]

for all p sufficiently large.

The proof of this lemma can be found in Section D.2. Parts 1 and 3 of Lemma 8 respectively say that

the set of typical graphs has high probability and has very small cardinality relative to the number of

graphs with p nodes |Gp|= exp2(
(

p
2

)
). Part 2 of Lemma 8 is known as the asymptotic equipartition

property: the graphs in the typical set are almost uniformly distributed.

5. Implications on Loopy Belief Propagation

An active area of research in the graphical model community is that of inference—that is, the task

of computing node marginals (or MAP estimates) through efficient distributed algorithms. The

simplest of these algorithms is the belief propagation15 (BP) algorithm, where messages are passed

among the neighbors of the graph of the model. It is known that belief propagation (and max-

product) is exact on tree models, meaning that correct marginals are computed at all the nodes

(Pearl, 1988). On the other hand on general graphs, the generalized version of BP, known as loopy

belief propagation (LBP), may not converge and even if it does, the marginals may not be correct.

Motivated by the twin problems of convergence and correctness, there has been extensive work on

characterizing LBP’s performance for different models. As a by-product of our previous analysis

on graphical model selection, we now show the asymptotic correctness of LBP on walk-summable

Gaussian models when the underlying graph is locally tree-like.

5.1 Background

The belief propagation (BP) algorithm is a distributed algorithm where messages (or beliefs) are

passed among the neighbors to draw inferences at the nodes of a graphical model. The computa-

tion of node marginals through naı̈ve variable elimination (or Gaussian elimination in the Gaussian

setting) is prohibitively expensive. However, if the graph is sparse (consists of few edges), the com-

putation of node marginals may be sped up dramatically by exploiting the graph structure and using

distributed algorithms to parallelize the computations.

For the sake of completeness, we now recall the basic steps in LBP, specific to Gaussian graph-

ical models. Given a message schedule which specifies how messages are exchanged, each node

j receives information from each of its neighbors (according to the graph), where the message,

mt
i→ j(x j), from i to j, in t th iteration is parameterized as

mt
i→ j(x j) := exp

[
−1

2
∆Jt

i→ jx
2
j +∆ht

i→ jx j

]
.

Each node i prepares message mt
i→ j(x j) by collecting messages from neighbors of the previous

iteration (under parallel iterations), and computing

Ĵi\ j(t) = J(i, i)+ ∑
k∈N (i)\ j

∆Jt−1
k→i, ĥi\ j(t) = h(i)+ ∑

k∈N (i)\ j

∆hk→i(t),

15. The variant of the belief propagation algorithm which computes the MAP estimates is known as the max-product

algorithm.
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where

∆Jt
i→ j =−J( j, i)Ĵ−1

i\ j
(t)J( j, i), ∆ht

i→ j =−J( j, i)Ĵ−1
i\ j

(t)ĥk→i(t).

5.2 Results

Let ΣLBP(i, i) denote the variance at node i at the LBP fixed point.16 Without loss of generality, we

consider the normalized version of the precision matrix

J = I−R,

which can always be obtained from a general precision matrix via normalization. We can then renor-

malize the variances, computed via LBP, to obtain the variances corresponding to the unnormalized

precision matrix.

We consider the following ensemble of locally-tree like graphs. Consider the event that the

neighborhood of a node i has no cycles up to graph distance γ, given by

Γ(i;γ,G) := {Bγ(i;G) does not contain any cycles}.
We assume a random graph ensemble G(p) such that for a given node i ∈V , we have

P[Γc(i;γ,G)] = o(1). (18)

Proposition 9 (Correctness of LBP) Given an α-walk-summable Gaussian graphical model on

a.e. locally tree-like graph G ∼ G(p;γ) with parameter γ satisfying (18), we have

|ΣG(i, i)−ΣLBP(i, i)| a.a.s.
= O(max(αγ,P[Γc(i;γ,G)])).

The proof is given in Section B.4.

Remarks:

1. The class of Erdős-Rényi random graphs, G ∼ GER(p,c/p) satisfies (18), with

γ = O(log p/ logc) for a node i ∈V chosen uniformly at random.

2. Recall that the class of random regular graphs G ∼ GReg(p,∆) have a girth of O(log∆−1 p).
Thus, for any node i ∈V , (18) holds with γ = O(log∆−1 p).

6. Experiments

In this section we present some experimental results on real and synthetic data. We implement

the proposed CMIT method as well the convex relaxation methods, namely, the ℓ1 penalized maxi-

mum likelihood estimate (MLE) (Ravikumar et al., 2011) and ℓ1 penalized neighborhood selection

(Meinshausen and Bühlmann, 2006). We measure the performance of methods using the notion

of the edit distance between the true and estimated graphs (for synthetic data). We also compare

the penalized likelihood scores of the estimated models using the notion of Bayesian information

criterion (BIC) for both synthetic and real data. We implement the proposed CMIT method in

MATLAB and the convex relaxation methods using the YALMIP package.17 We also used CON-

TEST18 to generate the synthetic graphs. The data sets, software code and results are available at

http://newport.eecs.uci.edu/anandkumar.

16. Convergence of LBP on walk-summable models has been established by Malioutov et al. (2006).

17. YALMIP is available at http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.Download.

18. CONTEST is at http://www.maths.strath.ac.uk/research/groups/numerical_analysis/contest.
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6.1 Data Sets

Synthetic data: In order to evaluate the performance of our algorithm in terms of error in reconstruct-

ing the graph structure, we generated samples from Gaussian graphical models for different graphs.

These include a single cycle graph with p = 80 nodes, an Erdős-Rényi (ER) graph G ∼ GER(p,c/p)
with average degree c = 1.2 and Watts-Strogatz model GWatts(p,d,c/p) with degree of local graph

d = 2 and average degree of the global graph c = 1.2. Given the graph structure G, we generate

the potential matrix JG whose sparsity pattern corresponds to that of G. We set the diagonal el-

ements in JG to unity and nonzero off-diagonal entries are picked uniformly19 from [0,0.1]. We

set the potential vector h to be 0 without loss of generality. We let the number of samples be

n ∈ {102,5×102,103,5×103,104}. Note that for synthetic data, we know η, the size of local sep-

arators for non-neighboring node pairs in the graph, and we incorporate it in the implementation of

the CMIT algorithm. We present edit distance results for CMIT and the above mentioned convex

relaxation methods for different thresholds and regularization parameters.20

Foreign exchange data: We consider monthly trends of foreign exchange rates21 of 19 curren-

cies22 with respect to the US dollar from 10/1/1983 to 02/1/2012. We evaluate the BIC score for

models estimated using our algorithm under different thresholds ξn,p and different sizes of the local

separator sets η, and compared it with the convex relaxation methods under different regularization

parameters.

6.2 Performance Criteria

The BIC score has been extensively used to enable tradeoff between data fitting and model com-

plexity (Schwarz, 1978). We use a modified version of the BIC score proposed for high-dimensional

data sets (Foygel and Drton, 2010) as the performance criterion for model fitting. Given n samples

xn := [x1, . . . ,xn], and parameters θ,

BIC(xn;θ) :=
n

∑
k=1

log f (xk;θ)−0.5|E| logn−2|E| log p,

where |E| is the number of edges in the Markov graph and θ is the set of parameters characterizing

the model. It has been observed elsewhere (Liu et al., 2009) that the BIC score tends to overselect

the edges leading to dense graphs, and thus, we impose a hard threshold on the number of edges

(both for our method and for convex relaxation methods), and select the model with the best BIC

score. For the foreign exchange data, we limited the number of edges to 100, while for synthetic

data, we limited it to 100 for cycle and Erdős-Rényi (ER) graphs and to 200 for the Watts-Strogatz

model. We note that alternatively, the thresholds/regularization parameters can be selected via cross

validation or other mechanisms, see Liu et al. (2009) for details.

19. The choice of parameters and graphs result in valid models in our experiments, that is, the potential matrix is positive

definite.

20. For the convex relaxation methods in Ravikumar et al. (2011) and Meinshausen and Bühlmann (2006), the regular-

ization parameter denotes the weight associated with the ℓ1 term.

21. Data set available at http://research.stlouisfed.org/fred2/categories/15/downloaddata.

22. The European countries which switched to Euro are not considered in our analysis.
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Graph n CMIT ℓ1 MLE ℓ1 Nbd

Cycle 102 1.0000 1.0000 1.0000

ER 102 1.0000 1.0000 1.0000

WS 102 1.0000 1.0000 1.0000

Cycle 103 0.95 0.9875 0.9000

ER 103 0.6825 1.1087 1.0000

WS 103 0.8580 0.9520 0.8063

Cycle 104 0.4125 0.3875 0.3625

ER 104 0.3273 0.3469 0.5435

WS 104 0.3252 0.3313 0.2688

Table 1: Normalized edit distance under CMIT, ℓ1 penalized MLE and ℓ1 penalized neighborhood

selection on synthetic data from graphs listed above, where n denotes the number of sam-

ples.

6.3 Experimental Outcomes

Synthetic data: We compare the performance of our method CMIT with convex relaxation methods

for synthetic data as described earlier. We evaluate the normalized edit distance (normalized with

respect to the number of edges), since we know the ground truth for synthetic data and present the

results in Table 1 for CMIT, ℓ1 penalized MLE and ℓ1 penalized neighborhood selection. methods.

The results are also presented in figures 7a, 7b and 7c. We note that CMIT has better edit distance

performance and BIC scores compared to ℓ1 penalized MLE in most cases, and similar performance

compared to the ℓ1 penalized neighborhood selection.

Foreign exchange data: We evaluate the BIC scores under our algorithm CMIT with differ-

ent values of η (the constraint on the size of subsets used for conditioning)23 and threshold ξn,p.

We present the results in Table 2, where for each value of η, we present the threshold ξn,p which

achieves the best BIC score under the sparsity constraint. We also present the regularization param-

eters for convex relaxation methods with the best BIC. The estimated graphs are shown in figures

4 and 5. We note that while CMIT distributes the edges fairly uniformly across the nodes, the ℓ1

penalized MLE tends to cluster all the edges together between the “dominant” variables leading

to a densely connected component and several isolated nodes. We observe from the reconstructed

graphs that geography plays a crucial role in the foreign exchange trends. In Fig.4 recovered us-

ing the CMIT method, we note that among Asian countries India and S. Korea are high degree

nodes and are connected to countries which are geographically close (e.g., Sri Lanka for India, and

Australia, Thailand, Taiwan and China for S. Korea). On the other hand, the ℓ1 method outputs

a densely connected graph where such geographical relationships are missing. Thus, we see that

in the experiments, the proposed CMIT method tends to enforce local sparsity in the graph, while

the ℓ1 method of Ravikumar et al. (2011) enforces global sparsity, and tends to cluster the edges

together. On the other hand, the ℓ1 penalized neighborhood selection (Meinshausen and Bühlmann,

2006) is better than the MLE in distributing the edges across all the nodes, but carries this out to a

lesser extent than our method.

23. The BIC score for η = 0 is too low and we do not present it in our results. This implies that there is dependence

between the variables.
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Thres.(CMIT) η LL-train×107 LL-test×107 BIC-train×107 BIC-test×107 |E|
0.5 1 -2.9521 -7.4441 -2.9522 -7.4442 23

0.5 2 -3.2541 -8.5923 -3.2541 -8.5923 8

0.01 3 -2.9669 -7.3773 -2.9670 -7.3774 19

0.001 4 -2.9653 -7.3674 -2.9654 -7.3675 25

0.0005 5 -3.2901 -8.8396 -3.3068 -8.8397 24

0.0005 6 -3.2921 -8.8466 -3.2921 -8.8467 18

Thres.(ℓ1 MLE) − LL-train×107 LL-test×107 BIC-train×107 BIC-test×107 |E|
6.5803 − -2.5831 -6.3167 -2.5832 -6.3167 28

Thres.(ℓ1 Nbd) − LL-train×107 LL-test×107 BIC-train×107 BIC-test×107 |E|
13.1606 − -2.7971 -6.9630 -2.7972 -6.9631 26

Table 2: Experimental outcome for CMIT, ℓ1 penalized MLE and ℓ1 penalized neighborhood selec-

tion for different thresholds/regularization parameters and size of conditioning sets η for

foreign exchange data. |E| denotes the number of edges.

India

Japan

S. Korea

Sri Lanka Canada

China

Sweden

S. Africa

Taiwan

Thailand

Australia
New
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UK
Hong
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Malaysia

Norway
Switzerland

Singapore

Figure 4: Graph estimate under CMIT algorithm for foreign exchange data set for η = 4, see Ta-

ble 2.

7. Conclusion

In this paper, we adopted a novel and a unified paradigm for graphical model selection. We pre-

sented a simple local algorithm for structure estimation with low computational and sample com-

plexities under a set of mild and transparent conditions. This algorithm succeeds on a wide range of

graph ensembles such as the Erdős-Rényi ensemble, small-world networks etc. We also employed

novel information-theoretic techniques for establishing necessary conditions for graphical model

selection.
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Figure 5: Graph estimate under ℓ1 penalized MLE for foreign exchange data set. See Table 2.
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Figure 6: Graph estimate under ℓ1 penalized neighborhood selection method for foreign exchange

data set. See Table 2.
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(a) Cycle
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(b) Erdös-Rényi
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(c) Watts-Strogatz

Figure 7: CMIT, ℓ1 penalized MLE and ℓ1 penalized neighborhood selection methods.
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Appendix A. Walk-summable Gaussian Graphical Models

We first provide an overview of the notion of walk-summability for Gaussian graphical models.

A.1 Background on Walk-Summability

We now recap the properties of walk-summable Gaussian graphical models, as given by (7). For

details, see Malioutov et al. (2006). For simplicity, we first assume that the diagonal of the potential

matrix J is normalized (J(i, i) = 1 for all i ∈ V ). We remove this assumption and consider general

unnormalized precision matrices in Section B.2. Consider splitting the matrix J into the identity

matrix and the partial correlation matrix R, defined in (3):

J = I−R. (19)

The covariance matrix Σ of the graphical model in (19) can be decomposed as

Σ= J−1 = (I−R)−1 =
∞

∑
k=0

Rk, ‖R‖< 1, (20)

using Neumann power series for the matrix inverse. Note that we require that ‖R‖ < 1 for (20) to

hold, which is implied by walk-summability in (7) (since ‖R‖ ≤ ‖R‖).

We now relate the matrix power Rl to walks on graph G. A walk w of length l ≥ 0 on graph G is

a sequence of nodes w := (w0,w1, . . . ,wl) traversed on the graph G, that is, (wk,wk+1) ∈ G. Let |w|

2316



HIGH-DIMENSIONAL GAUSSIAN GRAPHICAL MODEL SELECTION

denote the length of the walk. Given matrix RG supported on graph G, let the weight of the walk be

φ(w) :=
|w|

∏
k=1

R(wk−1,wk).

The elements of the matrix power Rl are given by

Rl(i, j) = ∑
w:i

l→ j

φ(w), (21)

where i
l→ j denotes the set of walks from i to j of length l. For this reason, we henceforth refer to

R as the walk matrix.

Let i → j denote all the walks between i and j. Under the walk-summability condition in (7),

we have convergence of ∑w:i→ j φ(w), irrespective of the order in which the walks are collected, and

this is equal to the covariance Σ(i, j).
In Section A.3, we relate walk-summability in (7) to the notion of correlation decay, where the

effect of faraway nodes on covariances can be controlled and the local-separation property of the

graphs under consideration can be exploited.

A.2 Sufficient Conditions for Walk-summability

We now provide sufficient conditions and suitable parameterization for walk-summability in (7) to

hold. The adjacency matrix AG of a graph G with maximum degree ∆G satisfies

λmax(AG)≤ ∆G,

since it is dominated by a ∆-regular graph which has maximum eigenvalue of ∆G. From Perron-

Frobenius theorem, for adjacency matrix AG, we have λmax(AG) = ‖AG‖, where ‖AG‖ is the spec-

tral radius of AG. Thus, for RG supported on graph G, we have

α := ‖RG‖= O(Jmax∆) ,

where Jmax := maxi, j |R(i, j)|. This implies that

Jmax = O

(
1

∆

)

to have α < 1, which is the requirement for walk-summability.

When the graph G is a Erdős-Rényi random graph, G ∼ GER(p,c/p), we can provide better

bounds. When G ∼ GER(p,c/p), we have Krivelevich and Sudakov (2003), that

λmax(AG) = (1+o(1))max(
√

∆G,c),

where ∆G is the maximum degree and AG is the adjacency matrix. Thus, in this case, when c=O(1),
we require that

Jmax = O

(√
1

∆

)
,

for walk-summability (α< 1). Note that when c=O(poly(log p)), w.h.p. ∆Gp
=Θ(log p/ log log p)

(Bollobás, 1985, Ex. 3.6).
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A.3 Implications of Walk-Summability

Recall that ΣG denotes the covariance matrix for Gaussian graphical model on graph G and that

JG = Σ
−1
G with JG = I − RG in (19). We now relate the walk-summability condition in (7) to

correlation decay in the model. In other words, under walk-summability, we can show that the

effect of faraway nodes on covariances decays with distance, as made precise in Lemma 10.

Let Bγ(i) denote the set of nodes within γ hops from node i in graph G. Denote Hγ;i j :=G(Bγ(i)∩
Bγ( j)) as the induced subgraph of G over the intersection of γ-hop neighborhoods at i and j and

retaining the nodes in V \{Bγ(i)∩Bγ( j)}. Thus, Hγ;i j has the same number of nodes as G. We first

make the following simple observation: the (i, j) element in the γth power of walk matrix, R
γ
G(i, j), is

given by walks of length γ between i and j on graph G and thus, depends only on subgraph24 Hγ;i j,

see (21). This enables us to quantify the effect of nodes outside Bγ(i)∩Bγ( j) on the covariance

ΣG(i, j).
Define a new walk matrix RHγ;i j

such that

RHγ;i j
(a,b) =

{
RG(a,b), a,b ∈ Bγ(i)∩Bγ( j),

0, o.w.

In other words, RHγ;i j
is formed by considering the Gaussian graphical model over graph Hγ;i j. Let

ΣHγ;i j
denote the corresponding covariance matrix.25

Lemma 10 (Covariance Bounds Under Walk-summability) For any walk-summable Gaussian

graphical model (α := ‖RG‖< 1), we have26

max
i, j

|ΣG(i, j)−ΣHγ;i j
(i, j)| ≤ αγ 2α

1−α
= O(αγ). (22)

Thus, for walk-summable Gaussian graphical models, we have α := ‖RG‖ < 1, implying that

the error in (22) in approximating the covariance by local neighborhood decays exponentially with

distance. Parts of the proof below are inspired by Dumitriu and Pal (2009).

Proof: Using the power-series in (20), we can write the covariance matrix as

ΣG =
γ

∑
k=0

Rk
G +EG,

where the error matrix EG has spectral radius

‖EG‖ ≤
‖RG‖γ+1

1−‖RG‖
,

from (20). Thus,27 for any i, j ∈V ,

|ΣG(i, j)−
γ

∑
k=0

Rk
G(i, j)| ≤ ‖RG‖γ+1

1−‖RG‖
. (23)

24. Note that Rγ(i, j) = 0 if Bγ(i)∩Bγ( j) = /0.

25. When Bγ(i)∩Bγ( j) = /0 meaning that graph distance between i and j is more than γ, we obtain ΣHγ;i j
= I.

26. The bound in (22) also holds if Hγ;i j is replaced with any of its supergraphs.

27. For any matrix A, we have maxi, j |A(i, j)| ≤ ‖A‖.
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Similarly, we have

|ΣHγ;i j
(i, j)−

γ

∑
k=0

Rk
Hγ;i j

(i, j)| ≤
‖RHγ;i j

‖γ+1

1−‖RHγ;i j
‖

(a)

≤ ‖RG‖γ+1

1−‖RG‖
, (24)

where for inequality (a), we use the fact that

‖RHγ;i j
‖ ≤ ‖RHγ;i j

‖ ≤ ‖RG‖,

since Hγ;i j is a subgraph28 of G.

Combining (23) and (24), using the triangle inequality, we obtain (22). 2

We also make some simple observations about conditional covariances in walk-summable mod-

els. Recall that RG denotes matrix with absolute values of RG, and RG is the walk matrix over graph

G. Also recall that the α-walk summability condition in (7), is ‖RG‖ ≤ α < 1.

Proposition 11 (Conditional Covariances under Walk-Summability) Given a walk-summable

Gaussian graphical model, for any i, j ∈V and S ⊂V with i, j /∈ S, we have

Σ(i, j|S) = ∑
w:i→ j

∀k∈w,k/∈S

φG(w). (25)

Moreover, we have

sup
i∈V

S⊂V\i

Σ(i, i|S)≤ (1−α)−1 = O(1). (26)

Proof: We have, from Rue and Held (2005, Thm. 2.5),

Σ(i, j|S) = J−1
−S,−S;G(i, j),

where J−S,−S;G denotes the submatrix of potential matrix JG by deleting nodes in S. Since sub-

matrix of a walk-summable matrix is walk-summable, we have (25) by appealing to the walk-sum

expression for conditional covariances.

For (26), let ‖A‖∞ denote the maximum absolute value of entries in matrix A. Using mono-

tonicity of spectral norm and the fact that ‖A‖∞ ≤ ‖A‖, we have

sup
i∈V

S⊂V,i/∈V

Σ(i, i|S)≤ ‖J−1
−S,−S;G‖= (1−‖R−S,−S;G‖)−1

≤ (1−‖R−S,−S;G‖)−1 ≤ (1−‖RG‖)−1 = O(1).

2

Thus, the conditional covariance in (25) consists of walks in the original graph G, not passing

through nodes in S.

28. When two matrices A and B are such that |A(i, j)| ≥ |B(i, j)| for all i, j, we have ‖A‖ ≥ ‖B‖.

2319



ANANDKUMAR, TAN, HUANG AND WILLSKY

Appendix B. Graphs with Local-Separation Property

We now provide bounds on conditional covariance for walk-summable matrices.

B.1 Conditional Covariance between Non-Neighbors: Normalized Case

We now provide bounds on the conditional covariance for Gaussian graphical models Markov on a

graph G ∼ G(p;η,γ) satisfying the local-separation property (η,γ), as per Definition 2.

Lemma 12 (Conditional Covariance Between Non-neighbors) For a walk-summable Gaussian

graphical model, the conditional covariance between non-neighbors i and j, conditioned on Sγ, the

γ-local separator between i and j, satisfies

max
j/∈N (i)

Σ(i; j|Sγ) = O(‖RG‖γ).

Proof: In this proof, we abbreviate Sγ by S for notational convenience. The conditional covariance

is given by the Schur complement, that is, for any subset A such that A∩S = /0,

Σ(A|S) = Σ(A,A)−Σ(A,S)Σ(S,S)−1Σ(S,A). (27)

We use the notation ΣG(A,A) to denote the submatrix of the covariance matrix ΣG, when the

underlying graph is G. As in Lemma 10, we may decompose ΣG as follows:

ΣG =ΣHγ +Eγ,

where Hγ is the subgraph spanned by γ-hop neighborhood Bγ(i), and Eγ is the error matrix. Let Fγ

be the matrix such that

ΣG(S,S)
−1 =ΣHγ(S,S)

−1 +Fγ.

We have ΣHγ(i, j|S) = 0, where ΣHγ(i, j|S) denotes the conditional covariance by considering the

model given by the subgraph Hγ. This is due to the Markov property since i and j are separated by

S in the subgraph Hγ.

Thus using (27), the conditional covariance on graph G can be bounded as

ΣG(i, j|S) = O(max(‖Eγ‖,‖Fγ‖)).

By Lemma 10, we have ‖Eγ‖ = O(‖RG‖γ). Using Woodbury matrix-inversion identity, we also

have ‖Fγ‖= O(‖RG‖γ). 2

B.2 Extension to General Precision Matrices: Unnormalized Case

We now extend the above analysis to general precision matrices J where the diagonal elements are

not assumed to be identity. Denote the precision matrix as

J = D−E,

where D is a diagonal matrix and E has zero diagonal elements. We thus have that

Jnorm := D−0.5JD−0.5 = I−R,
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where R is the partial correlation matrix. This also implies that

J = D0.5JnormD0.5.

Thus, we have that

Σ= D−0.5
ΣnormD−0.5, (28)

where Σnorm := J−1
norm is the covariance matrix corresponding to the normalized model. When the

model is walk-summable, that is, ‖R‖ ≤ α < 1, we have that Σnorm = ∑k≥0 Rk.

We now use the results derived in the previous sections involving the normalized model

(Lemma 10 and Lemma 12) to obtain bounds for general precision matrices.

Lemma 13 (Covariance Bounds for General Models) For any walk-summable Gaussian graph-

ical model (α := ‖RG‖< 1), we have the following results:

1. Covariance Bounds: The covariance entries upon limiting to a subgraph Hγ;i j for any i, j ∈V

satisfies

max
i, j

|ΣG(i, j)−ΣHγ;i j
(i, j)| ≤ αγ

Dmin

2α

1−α
= O

(
αγ

Dmin

)
, (29)

where Dmin := mini D(i, i) = mini J(i, i).

2. Conditional Covariance between Non-neighbors: The conditional covariance between non-

neighbors i and j, conditioned on Sγ, the γ-local separator between i and j, satisfies

max
j/∈N (i)

Σ(i; j|Sγ) = O

(
αγ

Dmin

)
, (30)

where Dmin := mini D(i, i) = mini J(i, i).

Proof: Using (28) and Lemma 10, we have (29). Similarly, it can be shown that for any S ⊂
V \{i, j}, i, j ∈V ,

Σ(i, j|S) = D−0.5Σnorm(i, j|S)D−0.5,

where Σnorm(i, j|S) is the conditional covariance corresponding to the model with normalized pre-

cision matrix. From Lemma 12, we have (30). 2

B.3 Conditional Covariance between Neighbors: General Case

We provide a lower bound on conditional covariance among the neighbors for the graphs under

consideration. Recall that Jmin denotes the minimum edge potentials. Let

K(i, j) := ‖J(V \{i, j},{i, j})‖2,

where J(V \{i, j},{i, j}) is a sub-matrix of the potential matrix J.

Lemma 14 (Conditional Covariance Between Neighbors) For an α-walk summable Gaussian

graphical model satisfying

Dmin(1−α) min
(i, j)∈Gp

J(i, j)

K(i, j)
> 1+δ, (31)
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for some δ > 0 (not depending on p), where Dmin := mini J(i, i), we have

|ΣG(i, j|S)|= Ω(Jmin),

for any (i, j) ∈ G such that j ∈ N (i) and any subset S ⊂V with i, j /∈ S.

Proof: First note that for attractive models,

ΣG(i, j|S)
(a)

≥ΣG1
(i, j|S)

(b)
=

−J(i, j)

J(i, i)J( j, j)− J(i, j)2
= Ω(Jmin),

where G1 is the graph consisting only of edge (i, j). Inequality (a) arises from the fact that in

attractive models, the weights of all the walks are positive, and thus, the weight of walks on G1

form a lower bound for those on G (recall that the covariances are given by the sum-weight of walks

on the graphs). Equality (b) is by direct matrix inversion of the model on G1.

For general models, we need further analysis. Let A = {i, j} and B = V \ {S∪A}, for some

S ⊂V \A. Let Σ(A,A) denote the covariance matrix on set A, and let J̃(A,A) :=Σ(A,A)−1 denote

the corresponding marginal potential matrix. We have for all S ⊂V \A

J̃(A,A) = J(A,A)−J(A,B)J(B,B)−1J(B,A).

Recall that ‖A‖∞ denotes the maximum absolute value of entries in matrix A.

‖J(A,B)J(B,B)−1J(B,A)‖∞

(a)

≤‖J(A,B)J(B,B)−1J(B,A)‖
(b)

≤‖J(A,B)‖2‖J(B,B)−1‖

=
‖J(A,B)‖2

λmin(J(B,B))
,

(c)

≤ K(i, j)2

Dmin(1−α)

where inequality (a) arises from the fact that the ℓ∞ norm is bounded by the spectral norm, (b)

arises from sub-multiplicative property of norms and (c) arises from walk-summability property.

Inequality (b) is from the bound on edge potentials and α-walk summability of the model and since

K(i, j)≥ ‖J(A,B)‖. Assuming (31), we have

|J̃(i, j)|> Jmin −
‖J(A,B)‖2

Dmin(1−α)
= Ω(Jmin).

Since

ΣG(i, j|S) = −J̃(i, j)

J̃(i, i)J̃( j, j)− J̃(i, j)2
,

we have the result. 2
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B.4 Analysis of Loopy Belief Propagation

Proof of Proposition 9: From Lemma 10 in Section A.3, for any α-walk-summable Gaussian

graphical model, we have, for all nodes i ∈V conditioned on the event Γ(i;γ,G),

|ΣG(i, i)−ΣLBP(i, i)|= O(‖RG‖γ).

This is because conditioned on Γ(i;γ,G), it is shown that the series expansions based on walk-sums

corresponding to the variances ΣHγ;i j
(i, i) and ΣLBP(i, i) are identical up to length γ walks, and the

effect of walks beyond length γ can be bounded as above. Moreover, for a sequence of α-walk-

summable, we have Σ(i, i)≤ M for all i ∈V , for some constant M and similarly ΣLBP(i, j)≤ M′ for

some constant M′ since it is obtained by the set of self-avoiding walks in G. We thus have

E [|ΣG(i, i)−ΣLBP(i, i)|]≤
[
O(‖RG‖γ)+P[Γc(i;γ)]

]
= o(1),

where E is over the expectation of ensemble G(p). By Markov’s inequality,29 we have the result. 2

Appendix C. Sample-based Analysis

We now extend our analysis to the setting where we have access to samples instead of exact statistics.

C.1 Concentration of Empirical Quantities

For our sample complexity analysis, we recap the concentration result by Ravikumar et al. (2011,

Lemma 1) for sub-Gaussian matrices and specialize it to Gaussian matrices.

Lemma 15 (Concentration of Empirical Covariances) For any p-dimensional Gaussian random

vector X = [X1, . . . ,Xp], the empirical covariance obtained from n samples satisfies

P
[
| Σ̂(i, j)−Σ(i, j)|> ε

]
≤ 4exp

[
− nε2

3200M2

]
, (32)

for all ε ∈ (0,40M) and M := maxi Σ(i, i).

This translates to bounds for empirical conditional covariance.

Corollary 16 (Concentration of Empirical Conditional Covariance) For a walk-summable

p-dimensional Gaussian random vector X = [X1, . . . ,Xp], we have

P


 max

i6= j
S⊂V,|S|≤η

| Σ̂(i, j|S)−Σ(i; j|S)|> ε


≤ 4pη+2 exp

(
−nε2

K

)
, (33)

where K ∈ (0,∞) is a constant which is bounded when ‖Σ‖∞ is bounded, for all ε ∈ (0,40M) with

M := maxi Σ(i, i), and n ≥ η.

29. By Markov’s inequality, for a non-negative random variable X , we have P[X > δ] ≤ E[X ]/δ. By choosing δ =
ω(E[X ]), we have the result.
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Proof: For a given i, j ∈V and S ⊂V with η ≤ n, using (27),

P
[
| Σ̂(i, j|S)−Σ(i; j|S)|> ε

]
≤ P

[(
| Σ̂(i, j)−Σ(i; j)|> ε

)

⋃

k∈S

(
| Σ̂(i,k)−Σ(i;k)|> K′ε

)]
,

where K′ is a constant which is bounded when ‖Σ‖∞ is bounded. Using Lemma 15, we have the

result. 2

C.2 Proof of Theorem 4

We are now ready to prove Theorem 4. We analyze the error events for the conditional covariance

threshold test CMIT. For any (i, j) /∈ Gp, define the event

F1(i, j;{xn},Gp) :=
{
|Σ̂(i, j|S)|> ξn,p

}
,

where ξn,p is the threshold in (10) and S is the γ-local separator between i and j (since the minimum

in (1) is achieved by the γ-local separator). Similarly for any edge (i, j) ∈ Gp, define the event that

F2(i, j;{xn},Gp) :=
{
∃S ⊂V : |S| ≤ η, |Σ̂(i, j|S)|< ξn,p

}
.

The probability of error resulting from CMIT can thus be bounded by the two types of errors,

P[CMIT({xn};ξn,p) 6= Gp]≤ P


 ⋃

(i, j)∈Gp

F2(i, j;{xn},Gp)




+P


 ⋃

(i, j)/∈Gp

F1(i, j;{xn},Gp)


 (34)

For the first term, applying union bound for both the terms and using the result (33) of Lemma 15,

P


 ⋃

(i, j)∈Gp

F2(i, j;{xn},Gp)


= O

(
pη+2 exp

[
−n(Cmin(p)−ξn,p)

2

K2

])
(35)

where

Cmin(p) := inf
(i, j)∈Gp

S⊂V,i, j/∈S
|S|≤η

|Σ(i, j|S)|= Ω(Jmin) , ∀ p ∈ N,

from (37). Since ξn,p = o(Jmin), (35) is o(1) when n > L log p/J2
min, for sufficiently large L (depend-

ing on η and M). For the second term in (34),

P


 ⋃

(i, j)/∈Gp

F1(i, j;{xn},Gp)


= O

(
pη+2 exp

[
−n(ξn,p −Cmax(p))2

K2

])
, (36)

where

Cmax(p) := max
(i, j)/∈Gp

|Σ(i, j|S)|= O

(
αγ

Dmin

)
.

For the choice of ξn,p in (10), (36) is o(1) and this completes the proof of Theorem 4.
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C.3 Conditional Mutual Information Thresholding Test

We now analyze the performance of conditional mutual information threshold test. We first note

bounds on conditional mutual information.

Proposition 17 (Conditional Mutual Information) Under the assumptions (A1)–(A5), we have

that the conditional mutual information among non-neighbors, conditioned on the γ-local sepa-

ration satisfies

max
(i, j)/∈G

I(Xi;X j|XSγ) = O(α2γ),

and the conditional mutual information among the neighbors satisfy

min
(i, j)∈G

S⊂V\{i, j}

I(Xi;X j|XS) = Ω(J2
min). (37)

Proof: The conditional mutual information for Gaussian variables is given by

I(Xi;X j|XS) =−1

2
log
[
1−ρ2(i, j|S)

]
,

where ρ(i, j|S) is the conditional correlation coefficient, given by

ρ(i, j|S) :=
Σ(i, j|S)√

Σ(i, i|S)Σ( j, j|S)
.

From (26) in Proposition 11, we have Σ(i, i|S) = O(1) and thus, the result holds. 2

We now note the concentration bounds on empirical mutual information.

Lemma 18 (Concentration of Empirical Mutual Information) For any p-dimensional Gaussian

random vector X = [X1, . . . ,Xp], the empirical mutual information obtained from n samples satisfies

P(|Î(Xi;X j)− I(Xi;X j)|> ε)≤ 24exp

(
− nMε2

204800L2

)
, (38)

for some constant L which is finite when ρmax := maxi6= j |ρ(i, j)| < 1, and all ε < ρmax, and for

M := maxi Σ(i, i).

Proof: The result on empirical covariances can be found in Ravikumar et al. (2011, Lemma

1). The result in (38) will be shown through a sequence of transformations. First, we will bound

2325



ANANDKUMAR, TAN, HUANG AND WILLSKY

P(|ρ̂(i, j)−ρ(i, j)|> ε). Consider,

P(|ρ̂(i, j)−ρ(i, j)|> ε)

= P

(∣∣∣∣∣
Σ̂(i, j)

(Σ̂(i, i)Σ̂( j, j))1/2
− Σ(i, j)

(Σ(i, i)Σ( j, j))1/2

∣∣∣∣∣> ε

)

= P



∣∣∣∣∣∣
Σ̂(i, j)

Σ(i, j)

(
Σ(i, i)

Σ̂(i, i)

Σ( j, j)

Σ̂( j, j)

)1/2

−1

∣∣∣∣∣∣
>

ε

|ρ(i, j)|




(a)

≤P

(
Σ̂(i, j)

Σ(i, j)
>

(
1+

ε

|ρ(i, j)|

)1/3
)
+P

(
Σ̂(i, j)

Σ(i, j)
<

(
1− ε

|ρ(i, j)|

)1/3
)
+ . . .

+P

(
Σ(i, i)

Σ̂(i, i)
>

(
1+

ε

|ρ(i, j)|

)2/3
)
+P

(
Σ(i, i)

Σ̂(i, i)
<

(
1− ε

|ρ(i, j)|

)2/3
)
+ . . .

+P

(
Σ( j, j)

Σ̂( j, j)
>

(
1+

ε

|ρ(i, j)|

)2/3
)
+P

(
Σ( j, j)

Σ̂( j, j)
<

(
1− ε

|ρ(i, j)|

)2/3
)

(b)

≤ P

(
Σ̂(i, j)

Σ(i, j)
> 1+

ε

8|ρ(i, j)|

)
+P

(
Σ̂(i, j)

Σ(i, j)
< 1− ε

8|ρ(i, j)|

)
+ . . .

+P

(
Σ(i, i)

Σ̂(i, i)
> 1+

ε

3|ρ(i, j)|

)
+P

(
Σ̂(i, i)

Σ(i, i)
< 1− ε

3|ρ(i, j)|

)
+ . . .

+P

(
Σ̂( j, j)

Σ( j, j)
> 1+

ε

3|ρ(i, j)|

)
+P

(
Σ̂( j, j)

Σ( j, j)
< 1− ε

3|ρ(i, j)|

)

(c)

≤ 24exp

(
− nMε2

204800|ρ(i, j)|2
)

(d)

≤ 24exp

(
− nMε2

204800

)

where in (a), we used the fact that P(ABC > 1+δ)≤ P(A> (1+δ)1/3 or B> (1+δ)1/3 or C > (1+
δ)1/3) and the union bound, in (b) we used the fact that (1+δ)3 ≤ 1+8δ and (1+δ)−2/3 ≤ 1−δ/3

for δ = ε/|ρ(i, j)|< 1. Finally, in (c), we used the result in (32) and in (d), we used the bounds on

ρ < 1.

Now, define the bijective function I(|ρ|) :=−1/2log(1−ρ2). Then we claim that there exists a

constant L ∈ (0,∞), depending only on ρmax < 1, such that

|I(x)− I(y)| ≤ L|x− y|, (39)

that is, the function I : [0,ρmax] → R
+ is L = L(ρmax)-Lipschitz. This is because the slope of the

function I is bounded in the interval [0,ρmax]. Thus, we have the inclusion

{|Î(Xi;X j)− I(Xi;X j)|> ε} ⊂ {|ρ̂(i, j)−ρ(i, j)|> ε/L} (40)

since if |Î(Xi;X j)− I(Xi;X j)|> ε it is true that L|ρ̂(i, j)−ρ(i, j)|> ε from (39). We have by mono-

tonicity of measure and (40) the desired result. 2

We can now obtain the desired result on concentration of empirical conditional mutual informa-

tion.
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Lemma 19 (Concentration of Empirical Conditional Mutual Information) For a walk-summable

p-dimensional Gaussian random vector X = [X1, . . . ,Xp], we have

P


 max

i6= j
S⊂V\{i, j},|S|≤η

|Î(Xi;X j|XS)− I(Xi;X j|XS)|> ε


≤ 24pη+2 exp

(
− nMε2

204800L2

)
,

for constants M,L ∈ (0,∞) and all ε < ρmax, where ρmax := max i6= j
S⊂V\{i, j},|S|≤η

|ρ(i, j|S)|.

Proof: Since the model is walk-summable, we have that maxi,S Σ(i, i|S) = O(1) and thus, the

constant M is bounded. Similarly, due to strict positive-definiteness we have ρmax < 1 even as

p → ∞, and thus, the constant L is also finite. The result then follows from union bound. 2

The sample complexity for structural consistency of CMIT follows on lines of analysis for

CMIT.

Appendix D. Necessary Conditions for Model Selection

We now provide proofs for necessary conditions for model selection.

D.1 Necessary Conditions for Exact Recovery

We provide the proof of Theorem 6 in this section. We collect four auxiliary lemmata whose proofs

(together with the proof of Lemma 8) will be provided at the end of the section. For information-

theoretic notation, the reader is referred to Cover and Thomas (2006).

Lemma 20 (Upper Bound on Differential Entropy of Mixture) Let α < 1. Suppose asymptoti-

cally almost surely each precision matrix JG = I−RG satisfies (7), that is, that ‖RG‖ ≤ α for a.e.

G ∈ G(p). Then, for the Gaussian model, we have

h(Xn)≤ pn

2
log2

(
2πe

1−α

)
,

where recall that Xn|G ∼ ∏n
i=1 f (xi|G).

For the sake of convenience, we define the random variable:

W =

{
1 G ∈ T

(p)
ε

0 G /∈ T
(p)

ε

.

The random variable W indicates whether G ∈ T
(p)

ε .

Lemma 21 (Lower Bound on Conditional Differential Entropy) Suppose that each precision ma-

trix JG has unit diagonal. Then,

h(Xn|G,W )≥− pn

2
log2(2πe).
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Lemma 22 (Conditional Fano Inequality) In the above notation, we have

H(G|Xn,G ∈ T
(p)

ε )−1

log2(|T
(p)

ε |−1)
≤ P(Ĝ(Xn) 6= G|G ∈ T

(p)
ε ).

Lemma 23 (Exponential Decay in Probability of Atypical Set) Define the rate function

K(c,ε) := c
2
[(1+ ε) ln(1+ ε)− ε]. The probability of the ε-atypical set decays as

P((T
(p)

ε )c) = P(G /∈ T
(p)

ε )≤ 2exp(−pK(c,ε)) (41)

for all p ≥ 1.

Note the non-asymptotic nature of the bound in (41). The rate function K(c,ε) satisfies

limε↓0 K(c,ε)/ε2 = c/4. We prove Theorem 6 using these lemmata.

Proof: Consider the following sequence of lower bounds:

pn

2
log2

(
2πe

1−α

)
(a)

≥ h(Xn)

(b)

≥ h(Xn|W )

= I(Xn;G|W )+h(Xn|G,W )

(c)

≥ I(Xn;G|W )− pn

2
log2(2πe)

= H(G|W )−H(G|Xn,W )− pn

2
log2(2πe), (42)

where (a) follows from Lemma 20, (b) is because conditioning does not increase differential en-

tropy and (c) follows from Lemma 21. We will lower bound the first term in (42) and upper bound

the second term in (42). Now consider the first term in (42):

H(G|W ) = H(G|W = 1)P(W = 1)+H(G|W = 0)P(W = 0)

(a)

≥H(G|W = 1)P(W = 1)

(b)

≥ H(G|G ∈ T
(p)

ε )(1− ε)

(c)

≥(1− ε)

(
p

2

)
Hb

(
c

p

)
, (43)

where (a) is because the entropy H(G|W = 0) and the probability P(W = 0) are both non-negative.

Inequality (b) follows for all p sufficiently large from the definition of W as well as Lemma 8 part

1. Statement (c) comes from fact that

H(G|G ∈ T
(p)

ε ) =− ∑
g∈T

(p)
ε

P(g|g ∈ T
(p)

ε ) log2 P(g|g ∈ T
(p)

ε )

≥− ∑
g∈T

(p)
ε

P(g|g ∈ T
(p)

ε )

[
−
(

p

2

)
Hb

(
c

p

)]
=

(
p

2

)
Hb

(
c

p

)
.
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We are now done bounding the first term in the difference in (42).

Now we will bound the second term in (42). First we will derive a bound on H(G|Xn,W = 1).
Consider,

P
(p)
e := P(Ĝ(Xn) 6= G)

(a)
=P(Ĝ(Xn) 6= G|W = 1)P(W = 1)+P(Ĝ(Xn) 6= G|W = 0)P(W = 0)

≥ P(Ĝ(Xn) 6= G|W = 1)P(W = 1)

(b)

≥ P(Ĝ(Xn) 6= G|G ∈ T
(p)

ε )

(
1

1+ ε

)

(c)

≥ H(G|Xn,G ∈ T
(p)

ε )−1

log2 |T
(p)

ε |

(
1

1+ ε

)
, (44)

where (a) is by the law of total probability, (b) holds for all p sufficiently large by Lemma 8 part

1 and (c) is due to the conditional version of Fano’s inequality (Lemma 22). Then, from (44), we

have

H(G|Xn,W = 1)≤ P
(p)
e (1+ ε) log2 |T

(p)
ε |+1

≤ P
(p)
e (1+ ε)

(
p

2

)
Hb

(
c

p

)
+1. (45)

Define the rate function K(c,ε) := c
2
[(1+ ε) ln(1+ ε)− ε]. Note that this function is positive when-

ever c,ε > 0. In fact it is monotonically increasing in both parameters. Now we use (45) to bound

H(G|Xn,W ):

H(G|Xn,W ) = H(G|Xn,W = 1)P(W = 1)+H(G|Xn,W = 0)P(W = 0)

(a)

≤H(G|Xn,W = 1)+H(G|Xn,W = 0)P(W = 0)

(b)

≤ H(G|Xn,W = 1)+H(G|Xn,W = 0)(2e−pK(c,ε))

(c)

≤H(G|Xn,W = 1)+ p2(2e−pK(c,ε))

(d)

≤ P
(p)
e (1+ ε)

(
p

2

)
Hb

(
c

p

)
+1+2p2e−pK(c,ε), (46)

where (a) is because we upper bounded P(W = 1) by unity, (b) follows by Lemma 23, (c) follows

by upper bounding the conditional entropy by p2 and (d) follows from (45).

Substituting (43) and (46) back into (42) yields

pn

2
log2

[
2πe

(
1

1−α
+1

)]
≥ (1− ε)

(
p

2

)
Hb

(
c

p

)
−P

(p)
e (1+ ε)

(
p

2

)
Hb

(
c

p

)
−1−2p2e−pK(c,ε)

=

(
p

2

)
Hb

(
c

p

)[
(1− ε)−P

(p)
e (1+ ε)

]
−Θ(p2e−pK(c,ε)),

which implies that

n ≥ 2

p log2

[
2πe

(
1

1−α +1
)]
(

p

2

)
Hb

(
c

p

)[
(1− ε)−P

(p)
e (1+ ε)

]
−Θ(pe−pK(c,ε)).
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Note that Θ(pe−pK(c,ε))→ 0 as p → ∞ since the rate function K(c,ε) is positive. If we impose that

P
(p)
e → 0 as p → ∞, then n has to satisfy (14) by the arbitrariness of ε > 0. This completes the proof

of Theorem 6. 2

D.2 Proof of Lemma 8

Proof: Part 1 follows directed from the law of large numbers. Part 2 follows from the fact that

the Binomial pmf is maximized at its mean. Hence, for G ∈ T
(p)

ε , we have

P(G)≤
(

c

p

)cp/2(
1− c

p

)(p
2)−cp/2

.

We arrive at the upper bound after some rudimentary algebra. The lower bound can be proved by

observing that for G ∈ T
(p)

ε , we have

P(G)≥
(

c

p

)cp(1+ε)/2(
1− c

p

)(p
2)−cp(1+ε)/2

= exp2

[(
p

2

)
(

c

p
log2

c

p
)(1+ ε)+ [1− c(1+ ε)/p] log2(1−

c

p
)

]

≥ exp2

[(
p

2

)
(

c

p
log2

c

p
)(1+ ε)+(1+ ε)(1− c

p
) log2(1−

c

p
)

]
.

The result in Part 2 follows immediately by appealing to the symmetry of the binomial pmf about

its mean. Part 3 follows by the following chain of inequalities:

1 = ∑
G∈Gn

P(G)≥ ∑
G∈T

(p)
ε

P(G)≥ ∑
G∈T

(p)
ε

exp2

[
−
(

p

2

)
Hb

(
c

p
(1+ ε)

)]

= |T (p)
ε |exp2

[
−
(

p

2

)
Hb

(
c

p

)
(1+ ε)

]
.

This completes the proof of the upper bound on |T (p)
ε |. The lower bound follows by noting that for

sufficiently large n, P(T
(p)

ε )≥ 1− ε (by Lemma 8 Part 1). Thus,

1− ε ≤ ∑
G∈T

(p)
ε

P(G)≤ ∑
G∈T

(p)
ε

exp2

[
−
(

p

2

)
Hb

(
c

p

)]
= |T (p)

ε |exp2

[
−
(

p

2

)
Hb

(
c

p

)]
.

This completes the proof. 2

D.3 Proof of Lemma 20

Proof: Note that the distribution of X (with G marginalized out) is a Gaussian mixture model

given by ∑G∈Gp
P(G)N (0,J−1

G ). As such the covariance matrix of X is given by

ΣX = ∑
G∈Gp

P(G)J−1
G . (47)
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This is not immediately obvious but it is due to the zero-mean nature of each Gaussian probability

density function N (0,J−1
G ). Using (47), we have the following chain of inequalities:

h(Xn)≤ nh(X)

(a)

≤ n

2
log2 ((2πe)p det(ΣX))

=
n

2
[p log2(2πe)+ log2 det(ΣX)]

(b)

≤ n

2
[p log2(2πe)+ p log2 λmax(ΣX)]

=
n

2

[
p log2(2πe)+ p log2 λmax

(

∑
G∈Gp

P(G)J−1
G

)]

(c)

≤ n

2

[
p log2(2πe)+ p log2

(

∑
G∈Gp

P(G)λmax

(
J−1

G

)
)]

=
n

2

[
p log2(2πe)+ p log2

(

∑
G∈Gp

P(G)
1

λmin(JG)

)]

(d)

≤ n

2

[
p log2(2πe)+ p log2

(

∑
G∈Gp

P(G)
1

1−α

)]

=
pn

2
log2

(
2πe

1−α

)
,

where (a) uses the maximum entropy principle (Cover and Thomas, 2006, Chapter 13), that is, that

the Gaussian maximizes entropy subject to an average power constraint (b) uses the fact that the

determinant of ΣX is upper bounded by λmax(ΣX)
n, (c) uses the convexity of λmax( ·) (it equals to

the operator norm ‖ · ‖2 over the set of symmetric matrices, (d) uses the fact that α ≥ ‖RG‖2 ≥
‖RG‖2 = ‖I−JG‖2 = λmax(I−JG) = 1−λmin(JG) a.a.s. This completes the proof. 2
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D.4 Proof of Lemma 21

Proof: Firstly, we lower bound h(Xn|G,W = 1) as follows:

h(Xn|G) = ∑
g∈Gp

P(g)h(Xn|G = g)

(a)
= n ∑

g∈Gp

P(g)h(X|G = g)

(b)
=

n

2
∑

g∈Gp

P(g) log2[(2πe)p det(J−1
g )]

=−n

2
∑

g∈Gp

P(g) log2[(2πe)p det(Jg)]

(c)

≥−n

2
∑

g∈Gp

P(g) log2[(2πe)p]

≥− pn

2
log2(2πe),

where (a) is because the samples in Xn are conditionally independent given G = g, (b) is by the

Gaussian assumption, (c) is by Hadamard’s inequality

det(Jg)≤
p

∏
i=1

[Jg]ii = 1

and the assumption that each diagonal element of each precision matrix Jg = I−Rg is equal to 1

a.a.s. This proves the claim. 2

D.5 Proof of Lemma 22

Proof: Define the “error” random variable

E =

{
1 Ĝ(Xn) 6= G

0 Ĝ(Xn) = G
.

Now consider

H(E,G|Xn,W = 1) = H(E|Xn,W = 1)+H(G|E,Xn,W = 1) (48)

= H(G|Xn,W = 1)+H(E|G,Xn,W = 1). (49)

The first term in (48) can be bounded above by 1 since the alphabet of the random variable E is of

size 2. Since H(G|E = 0,Xn,W = 1) = 0, the second term in (48) can be bounded from above as

H(G|E,Xn,W = 1) = H(G|E = 0,Xn,W = 1)P(E = 0|W = 1)

+H(G|E = 1,Xn,W = 1)P(E = 1|W = 1)

≤ P(Ĝ(Xn) 6= G|G ∈ T
(p)

ε ) log2(|T
(p)

ε |−1).

The second term in (49) is 0. Hence, we have the desired conclusion. 2
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D.6 Proof of Lemma 23

Proof: The proof uses standard Chernoff bounding techniques but the scaling in p is somewhat

different from the usual Chernoff (Cramér) upper bound. For simplicity, we will use M :=
(

p
2

)
. Let

Yi, i = 1, . . . ,M be independent Bernoulli random variables such that P(Yi = 1) = c/p. Then the

probability in question can be bounded as

P(G /∈ T
(p)

ε ) = P

(∣∣∣∣∣
1

cp

M

∑
i=1

Yi −
1

2

∣∣∣∣∣>
ε

2

)

(a)

≤ 2P

(
1

cp

M

∑
i=1

Yi >
1+ ε

2

)

(b)

≤ 2E

[
exp

(
t

M

∑
i=1

Yi − pt
c

2
(1+ ε)

)]
(50)

= 2exp
(
−pt

c

2
(1+ ε)

) M

∏
i=1

E[exp(tYi)], (51)

where (a) follows from the union bound, (b) follows from an application of Markov’s inequality

with t ≥ 0 in (50). Now, the moment generating function of a Bernoulli random variable with

probability of success q is qet +(1−q). Using this fact, we can further upper bound (51) as follows:

P(G /∈ T
(p)

ε ) = 2exp

(
−pt

c

2
(1+ ε)+M ln(

c

p
et +(1− c

p
)

)

(a)

≤ 2exp

(
−pt

c

2
(1+ ε)+

p(p−1)

2

c

p
(et −1)

)

≤ 2exp
(
−p
[
t
c

2
(1+ ε)− c

2
(et −1)

])
, (52)

where in (a), we used the fact that ln(1+ z) ≤ z . Now, we differentiate the exponent in square

brackets with respect to t ≥ 0 to find the tightest bound. We observe that the optimal parameter is

t∗ = ln(1+ ε). Substituting this back into (52) completes the proof. 2

D.7 Necessary Conditions for Recovery with Distortion

We now provide the proof for Corollary 7.

The proof of Corollary 7 follows from the following generalization of the conditional Fano’s

inequality presented in Lemma 22. This is a modified version of an analogous theorem in Kim et al.

(2008).

Lemma 24 (Conditional Fano’s Inequality (Generalization)) In the above notation, we have

H(G|Xn,G ∈ T
(p)

ε )−1− log2 L

log2(|T
(p)

ε |−1)
≤ P(d(G, Ĝ(Xn))> D|G ∈ T

(p)
ε ) (53)

where L =
(

p
2

)
Hb(β) and β is defined in (16).
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We will only provide a proof sketch of Lemma 24 since it is similar to Lemma 22. Proof: The

key to establishing (53) is to upper bound the cardinality of the set {G ∈Gp : d(G,G′)≤ D}, which

is isomorphic to {E ∈ Ep : |E△E ′| ≤ D}, where Ep is the set of all edge sets (with p nodes). For

this purpose, we order the node pairs in a labelled undirected graph lexicographically. Now, we

map each edge set E into a length-
(

p
2

)
bit-string s(E) ∈ {0,1}(

p
2). The characters in the string

s(E) indicate whether or not an edge is present between two node pairs. Define dH(s,s
′) to be the

Hamming distance between strings s and s′. Then, note that

|E△E ′|= dH(s(E),s(E
′)) = dH(s(E)⊕ s(E ′),0) (54)

where ⊕ denotes addition in F2 and 0 denotes the all zeros string. The relation in (54) means that

the cardinality of the set {E ∈ En : |E△E ′| ≤ D} is equal to the number of strings of Hamming

weight less than or equal to D. With this realization, it is easy to see that

|{s ∈ {0,1}(
p
2) : dH(s,0)≤ D}|=

D

∑
k=1

((p
2

)

k

)
≤ 2(

p
2)Hb(D/(p

2)) = 2L.

By using the same steps as in the proof of Lemma 24 (or Fano’s inequality for list decoding), we

arrive at the desired conclusion. 2
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