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We consider the problem of high-dimensional Ising (graphical) model
selection. We propose a simple algorithm for structure estimation based on
the thresholding of the empirical conditional variation distances. We intro-
duce a novel criterion for tractable graph families, where this method is ef-
ficient, based on the presence of sparse local separators between node pairs
in the underlying graph. For such graphs, the proposed algorithm has a sam-
ple complexity of n = �(J−2

min logp), where p is the number of variables, and
Jmin is the minimum (absolute) edge potential in the model. We also establish
nonasymptotic necessary and sufficient conditions for structure estimation.

1. Introduction. The use of probabilistic graphical models allows for suc-
cinct representation of high-dimensional distributions, where the conditional-
independence relationships among the variables are represented by a graph. Such
models have found many applications in a variety of areas, including computer vi-
sion [14], bio-informatics [21], financial modeling [15] and social networks [25].
For instance, graphical models are employed for contextual object recognition to
improve detection performance based on object co-occurrences [14] and for mod-
eling opinion formation and technology adoption in social networks [25, 30].

A major challenge involving graphical models is structure estimation, given
samples drawn from the model. It is known that such a learning task is NP-hard
[7, 27]. This challenge is compounded in the high-dimensional regime, where the
number of available observations is typically much smaller than the number of
dimensions (or variables). It is thus imperative to design efficient algorithms for
structure estimation of graphical models with low sample complexity.

In their seminal work, Chow and Liu presented an efficient algorithm for struc-
ture estimation of tree-structured graphical models based on a maximum weight
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spanning tree algorithm [16]. Since then, various algorithms have been proposed
for structure estimation of sparse graphical models. They can be broadly classified
into two categories: combinatorial algorithms [10, 39] and those based on convex
relaxation [11, 37, 41, 42]. The former approach is typically based on certain local
tests on small groups of data, and then combining them to output a graph struc-
ture, while the latter approach involves solving a penalized convex optimization
problem. See Section 1.2 for a detailed discussion of these approaches.

In this paper, we propose a novel local algorithm and analyze its performance
for structure estimation of Ising models, which are pairwise binary graphical mod-
els. Our proposed algorithm circumvents one of the primary limitations of existing
local algorithms [10, 39] for consistent estimation in high-dimensions—that the
graphs have a bounded degree as the number of nodes p tends to infinity. We give a
precise characterization of the class of graphs which can be consistently recovered
by our algorithm with low computational and sample complexities. We demon-
strate that a fundamental property shared by these graphs is that they have sparse
local vertex separators between any two nonneighbors in the graph. A wide variety
of graphs satisfy this property. These include large girth graphs, the Erdős–Rényi
random graphs5 [8] and the power-law graphs [18], as well as graphs with short
cycles such as the small-world graphs [51] and other hybrid graphs [18, Chapter
12].

Our results are applicable in the realms of social networks, bio-informatics,
computer vision and so on. Here, we elaborate on its relevance to social networks.
The aforementioned graphs (i.e., the power-law and the small-world graphs) have
been employed extensively for modeling the topologies of social networks [2, 40].
More recently, Ising models on such topologies have been employed for modeling
various phenomena in social networks [48], such as opinion formation [23, 25, 34]
and technology adoption [30]. A concrete example is the use of an Ising model for
the U.S. senate voting network [52]. The nodes of the graph represent the senators,
and the data are the voting decisions made by the senators. Estimating the graph
reveals interesting relationships between the senators and the effect of political
affiliations on their decisions. Similarly, in many other scenarios (e.g., online social
networks), we have access to a sequence of measurements at the nodes of the
network. For instance, we may gather the opinions of different users or measure
the popularity of new technologies. As a first-order approximation, we can regard
such a sequence of measurements as being independent and identically distributed
(i.i.d.) samples drawn from an Ising model. Our findings imply that the topology
of such social-network models can be efficiently estimated under some mild and
transparent conditions.

5The Erdős–Rényi graphs have sparse local vertex separators asymptotically almost surely (a.a.s.)
with respect to the random graph measure. Indeed, whenever we mention ensembles of random
graphs in the sequel, our statements are taken to hold a.a.s.
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1.1. Summary of results. Our main contributions in this work are threefold.
We propose a simple algorithm for structure estimation of Ising models. The algo-
rithm is based on approximate conditional independence testing based on condi-
tional variation distances. Second, we derive sample complexity results for consis-
tent structure estimation in high dimensions. Third, we prove novel lower bounds
on the sample complexity required for any learning algorithm to be consistent for
model selection.

We propose an algorithm for structure estimation, termed as conditional vari-
ation distance thresholding (CVDT), which tests if two nodes are neighbors by
searching for a node set which (approximately) separates them in the underlying
Markov graph. It first computes the minimum empirical conditional variation dis-
tance in (14) of a given node pair over conditioning sets of bounded cardinality
η. Second, if the minimum exceeds a given threshold (depending on the number
of samples n and the number of nodes p), the node pair is declared as an edge.
This test has a computational complexity of O(pη+2). Thus, the computational
complexity is low if η is small. Further, it requires only low-order statistics (up
to order η + 2). We establish that the parameter η is a bound on the size of lo-
cal vertex-separators between any two nonneighbors in the graph, and is small for
many common graph families, introduced before.

We establish that under a set of mild and transparent assumptions, structure
learning is consistent in high dimensions for CVDT when the number of samples
scales as n = �(J−2

min logp), for a p-node graph, where Jmin is the minimum (ab-
solute) edge-potential of the Ising model. We relate the conditions for success-
ful graph recovery to certain phase transitions in the Ising model. We also derive
(nonasymptotic) PAC guarantees for CVDT and provide explicit results for specific
graph families.

We derive a lower bound (necessary condition) on the sample complexity re-
quired for consistent structure learning with positive probability by any algorithm.
We prove that n = �(c logp) number of samples is required by any algorithm to
ensure consistent learning of Erdős–Rényi random graphs, where c is the average
degree, and p is the number of nodes. We also present a nonasymptotic neces-
sary condition which employs information-theoretic techniques such as Fano’s in-
equality and typicality. We also provide results for other graph families such as the
girth-constrained graphs and augmented graphs.

Our results have several ramifications: we characterize the trade-off between
various graph parameters, such as the maximum degree, threshold for local path
length and the strength of edge potentials for efficient and consistent structure esti-
mation. For instance, we establish a natural relationship between maximum degree
and girth of a graph for consistent estimation: graphs with large degrees can be
consistently estimated by our algorithm when they also have large girths. Indeed,
in the extreme case of trees which have infinite girth, they can be consistently esti-
mated with no constraint on the node degrees, corroborating the initial observation
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by Chow and Liu [16]. We also derive stronger guarantees for many random-graph
families. For instance, for the Erdős–Rényi random graph family and the small-
world family (which is the union of a d-dimensional grid and an Erdős–Rényi
random graph), the minimum sample complexity scales as n = �(c2 logp), where
c is the average degree of the Erdős–Rényi random graph. Thus, when the aver-
age degree is bounded [c = O(1)], the sample complexity of our algorithm scales
as n = �(logp). Recall that the sample complexity of learning tree models is
�(logp) [47]. Thus, we establish that the complexity of learning sparse random
graphs using the proposed algorithm is akin to learning tree models in certain pa-
rameter regimes.

Our sufficient conditions for consistent structure estimation impose transparent
constraints on the graph structure and the parameters. The structural property is
related to the presence of sparse local vertex separators between nonadjacent node
pairs in the graph. The conditions on the parameters require that the edge potentials
of the Ising model be below a certain threshold, which we explicitly characterize.
In fact, we establish that below this threshold, the effect of long-range paths in
the model decays and that graph estimation is feasible via local conditioning, as
prescribed by our algorithm. Similar notions have been previously established in
other contexts, for example, to establish polynomial mixing time for Gibbs sam-
pling of the Ising model [32]. We compare these different criteria and show that we
can guarantee consistent learning in high dimensions under weaker conditions than
those required for polynomial mixing of Gibbs sampling. Ours is the first work (to
the best of the authors’ knowledge) to establish such explicit connections between
structure estimation and the statistical physics properties (i.e., phase transitions) of
Ising models. Establishing these results requires the development and use of tools
(e.g., self-avoiding walk trees), not previously employed for learning problems.

1.2. Related work. The problem of structure estimation of a general graph-
ical model [7, 27] is NP-hard. However, for tree-structured graphical models,
the maximum-likelihood (ML) estimation can be implemented efficiently via the
Chow–Liu algorithm [16] since ML estimation reduces to a maximum-weight
spanning tree problem where the edge weights are the empirical mutual infor-
mation quantities, computed from samples. It can be established that the sample
complexity for the Chow–Liu algorithm scales as n = �(logp), where p is the
number of variables [47]. Error-exponent analysis of the Chow–Liu algorithm was
performed in [45, 46], and extensions to general acyclic models [33, 47] and trees
with latent (or hidden) variables [15] have also been studied recently.

Given the feasibility of structure learning of tree models, a natural exten-
sion is to consider learning the structures of junction trees.6 Efficient algorithms

6Junction trees are formed by triangulating a given graph, and its nodes correspond to the maximal
cliques of the triangulated graph [49]. The treewidth of a graph is one less than the minimum possible
size of the maximum clique in the triangulated graph over all possible triangulations.



1350 ANANDKUMAR, TAN, HUANG AND WILLSKY

have been previously proposed for learning junction trees with bounded treewidth
(e.g., [12]). However, the complexity of these algorithms is exponential in the tree
width, and hence are not practical when the graphs have unbounded treewidth.7

There are mainly two classes of algorithms for graphical model selection: local-
search based approaches [10, 39] and those based on convex optimization [11, 37,
41, 42]. The latter approach typically incorporates an �1 penalty term to encour-
age sparsity in the graph structure. In [41], structure estimation of Ising models
is considered where neighborhood selection for each node is performed, based on
�1-penalized logistic regression. It was shown that this algorithm has a sample
complexity of n = �(�3 logp) under a set of so-called “incoherence” conditions.
However, the incoherence conditions are not easy to interpret and NP-hard to ver-
ify in general models [6]. For more detailed comparison, see Section 3.5.

In contrast to convex-relaxation approaches, the local-search based approach re-
lies on a series of simple local tests for neighborhood selection at individual nodes.
For instance, the work in [10] performs neighborhood selection at each node based
on a series of conditional-independence tests. Abbeel et al. [1] propose an algo-
rithm, similar in spirit to learning factor graphs with bounded degree. The authors
in [44] and [13] consider conditional-independence tests for learning Bayesian
networks. In [39], the authors suggest an alternative, greedy algorithm, based on
minimizing conditional entropy, for graphs with large girth and bounded degree.
However, these works [1, 10, 13, 39, 44] require the maximum degree in the graph
to be bounded (� = O(1)) which may be restrictive in practical scenarios. We
consider graphical model selection on graphs where the maximum degree is al-
lowed to grow with the number of nodes (albeit at a controlled rate). Moreover, we
establish a natural trade-off between the maximum degree and other parameters of
the graph (e.g., girth) required for consistent structure estimation.

Necessary conditions on structure learning provide lower bounds on the sample
complexity for structure learning and have been studied in [38, 43, 50]. However,
a standard assumption that these works make is that the underlying set of graphs
is uniformly distributed with bounded degree. For this scenario, it is shown that
n = �(�k logp) samples are required for consistent structure estimation, for a
graph with p nodes and maximum degree �, for some k ∈ N, say k = 3 or 4. In
contrast, our converse result is stated in terms of the average degree, instead of the
maximum degree.

2. System model. In this section, we define the relevant notation to be used
in the rest of the paper.

7For instance, it is known that for a Erdős–Rényi random graph Gp ∼ G(p, c/p) when (c > 1),
the tree-width is greater than pε , for some ε > 0 [29].
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2.1. Notation. We introduce some basic notions. Let ‖ ·‖1 denote the �1 norm.
For any two discrete distributions P,Q on the same alphabet X , the total variation
distance is given by

ν(P,Q) := 1

2
‖P − Q‖1 = 1

2

∑
x∈X

|P(x) − Q(x)|,(1)

and the Kullback–Leibler distance (or relative entropy) is given by

D(P‖Q) := ∑
x∈X

P(x) log
P(x)

Q(x)
.

Given a pair of discrete random variables (X,Y ) taking values on the set X × Y
and distributed as P = PX,Y , the mutual information is defined as

I (X;Y) := D(P (x, y)‖P(x)P (y)) = ∑
x∈X ,y∈Y

P(x, y) log
P(x, y)

P (x)P (y)
.(2)

Along similar lines, the conditional mutual information of X and Y given another
random variable Z, taking values on a countable set Z , is defined as

I (X;Y |Z) := ∑
x∈X ,y∈Y,z∈Z

P(x, y, z) log
P(x, y|z)

P (x|z)P (y|z) .(3)

It is also well known that I (X;Y |Z) = 0 if and only if X and Y are independent
given Z, that is, P(x, y|z) = P(x|z)P (y|z).

Given n samples drawn i.i.d. from P(x, y), denoted by (xn, yn) = {(xi, yi)}ni=1,
the (joint) empirical distribution or the (joint) type is defined as

P̂ n(x, y;xn, yn) := 1

n

n∑
i=1

I{(x, y) = (xi, yi)}.(4)

We loosely use the term empirical distance to refer to distances between empirical
distributions. For instance, the empirical variation distance is given by

ν(P̂ n, Q̂n) := 1

2

∑
x∈X

|P̂ n(x) − Q̂n(x)|.(5)

Our algorithm for graph estimation will be based on empirical variation distance
between conditional distributions. We employ such empirical estimates for testing
conditional independencies between specific distributions.

2.2. Ising models. A graphical model is a family of multivariate distributions
which are Markov in accordance to a particular undirected graph [31]. Each node
in the graph i ∈ V is associated to a random variable Xi , taking value in a set
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X . The set of edges8 E ⊂ (V
2

)
captures the set of conditional-independence rela-

tionships among the random variables. We say that a vector of random variables
X := (X1, . . . ,Xp) with a joint probability mass function (p.m.f.) P is Markov on
the graph G if the local Markov property

P
(
xi |xN (i)

) = P(xi |xV \i )(6)

holds for all nodes i ∈ V . More generally, we say that P satisfies the global Markov
property, if for all disjoint sets A,B ⊂ V such that A ∩ N (B) = N (A) ∩ B = ∅,
we have

P
(
xA,xB |xS(A,B;G)

) = P
(
xA|xS(A,B;G)

)
P

(
xB |xS(A,B;G)

)
.(7)

where the set S(A,B;G) is a node separator9 between A and B , and N (A) de-
notes the neighborhood of A in G. The local and global Markov properties are
equivalent under the positivity condition, given by P(x) > 0, for all x ∈ X p [31].

The Hammersley–Clifford theorem [9] states that under the positivity condition,
a distribution P satisfies the Markov property according to a graph G if and only
if it factorizes according to the cliques of G, that is,

P(x) = 1

Z
exp

(∑
c∈C

�c(xc)

)
,(8)

where C is the set of cliques of G, and xc is the set of random variables on clique
c. The quantity Z is known as the partition function and serves to normalize the
probability distribution. The functions �c are known as potential functions. An
important class of graphical models is the class of pairwise models, which factorize
according to the edges of the graph,

P(x) = 1

Z
exp

(∑
e∈E

�e(xe)

)
.(9)

One of the most well-studied pairwise models is the Ising model. Here, each
random variable Xi takes values in the set X = {−1,+1} and the probability mass
function (p.m.f.) is given by

P(x) = 1

Z
exp

[
1

2
xT JGx + hT x

]
, x ∈ {−1,1}p,(10)

where JG is known as the potential matrix, and h as the potential vector. By con-
vention, J (i, i) = 0 for all i ∈ V . The sparsity pattern of JG corresponds to that
of the graph G, that is, Ji,j = 0 for (i, j) /∈ G. A model is said to be attractive or

8We use the notation E and G interchangeably to denote the set of edges.
9A set S(A,B;G) ⊂ V is a separator of sets A and B if the removal of nodes in S(A,B;G)

separates A and B into distinct components.
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ferromagnetic if Ji,j ≥ 0 and hi ≥ 0, for all i, j ∈ V . An Ising model is said to be
symmetric if h = 0.

We assume that there exists Jmin, Jmax ∈ R such that the absolute values of the
edge potentials are uniformly bounded, that is,

|Ji,j | ∈ [Jmin, Jmax] ∀(i, j) ∈ G.(11)

We can provide guarantees on structure recovery, subject to conditions on Jmin
and Jmax. We assume that the node potentials hi are uniformly bounded away
from ±∞.

Given an Ising model, nodes i, j ∈ V and a subset S ⊂ V \ {i, j}, we define
conditional variation distance as

νi|j ;S := min
xS∈{±1}|S|

ν
(
P(Xi |Xj = +,XS = xS),P (Xi |Xj = −,XS = xS)

)
(12)

= min
xS∈{±1}|S|

1

2

∑
xi=±1

|P(Xi = xi |Xj = +,XS = xS)

(13)
− P(Xi = xi |Xj = −,XS = xS)|.

The empirical conditional variation distance ν̂i|j ;S is defined by replacing the ac-
tual distributions with their empirical versions

ν̂n
i,j ;S := min

xS∈{±1}|S|
ν
(
P̂ n(Xi |Xj = +,XS = xS), P̂ n(Xi |Xj = −,XS = xS)

)
.(14)

Our algorithm will be based on empirical conditional variation distances. This is
because the conditional variation distances10 can be used as a test for conditional
independence

{Xi ⊥⊥ Xj |XS} ≡ {νi|j ;S = 0} ∀i, j ∈ V,S ⊂ V \ {i, j}.(15)

2.3. Tractable graph families. We consider the class of Ising models Markov
on a graph Gp belonging to some ensemble G(p) of graphs with p nodes. We
consider the high-dimensional regime, where both p and the number of samples
n grow simultaneously; typically, the growth of p is much faster than that of n.
We emphasize that in our formulation, the graph ensemble G(p) can either be
deterministic or random—in the latter, we also specify a probability measure over
the set of graphs in G(p). In the setting where G(p) is a random-graph ensemble,
let PX,G denote the joint probability distribution of the variables X and the graph
G ∼ G(p), and let PX|G denote the conditional distribution of the variables given
a graph G. Let PG denote the probability distribution of graph G drawn from a
random ensemble G(p). In this setting, we use the term almost every (a.e.) graph
G satisfies a certain property Q if

lim
p→∞PG[G satisfies Q] = 1.

10Note that the conditional variation distances are in general asymmetric, that is, νi|j ;S = νj |i;S .
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In other words, the property Q holds asymptotically almost surely11 (a.a.s.) with
respect to the random-graph ensemble G(p). Our conditions and theoretical guar-
antees will be based on this notion for random graph ensembles. Intuitively, this
means that graphs that have a vanishing probability of occurrence as p → ∞ are
ignored.

We now characterize the ensemble of graphs amenable for consistent structure
estimation under our formulation. To this end, we characterize the so-called local
separators in graphs. See Figure 1 for an illustration. For γ ∈ N, let Bγ (i;G)

denote the set of vertices within distance γ from i with respect to graph G. Let
Fγ,i := G(Bγ (i)) denote the subgraph of G spanned by Bγ (i;G), but in addition,
we retain the nodes not in Bγ (i) (and remove the corresponding edges).

DEFINITION 1 (γ -Local separator). Given a graph G, a γ -local separator
Sγ (i, j) between i and j , for (i, j) /∈ G, is a minimal vertex separator12 with re-
spect to the subgraph Fγ,i . In addition, the parameter γ is referred to as the path
threshold for local separation.

In other words, the γ -local separator Sγ (i, j) separates nodes i and j with re-
spect to paths in G of length at most γ . We now characterize the ensemble of
graphs based on the size of local separators.

DEFINITION 2 ((η, γ )-Local separation property). An ensemble of graphs
G(p;η, γ ) satisfies (η, γ )-local separation property if for a.e. Gp ∈ G(p;η, γ ),

max
(i,j)/∈Gp

|Sγ (i, j)| ≤ η.(16)

In Section 3, we propose an efficient algorithm for graphical model selection
when the underlying graph belongs to a graph ensemble G(p;η, γ ) with sparse
local separators [i.e., small η, for η defined in (16)]. We will see that the compu-
tational complexity of our proposed algorithm scales as O(pη+2). In Section 3.3,
we provide examples of many graph families satisfying (16), which include the
random regular graphs, Erdős–Rényi random graphs and small-world graphs.

REMARK. The criterion of local separation for tractable learning is novel to
the best of our knowledge. The complexity of a graphical model is usually ex-
pressed in terms of its tree-width [49]. We note that the criterion of sparse local
separation is weaker than the tree-width; that is, η ≤ t , where t is the tree-width of
the graph. In fact, our criterion is also weaker than the criterion of bounded local
tree-width, introduced in [22].

11Note that the term a.a.s. does not apply to deterministic graph ensembles G(p) where no ran-
domness is assumed, and in this setting, we assume that the property Q holds for every graph in the
ensemble.

12A minimal separator is a separator of smallest cardinality.
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FIG. 1. Illustration of l-local separator set S(i, j ;G, l) for the graph shown above with
l = 4. Note that N (i) = {a, b, c, d} is the neighborhood of i and the l-local separator set

S(i, j ;G, l) = {a, b} ⊂ N (i;G). This is because the path along c connecting i and j has a length
greater than l and hence node c /∈ S(i, j ;G, l).

3. Method and guarantees.

3.1. Assumptions.

(A1) Sample complexity: We consider the asymptotic setting where both the
number of variables (nodes) p and the number of i.i.d. samples n go to infinity.
The required sample complexity is

n = �(J−2
min logp).(17)

We require that the number of nodes p → ∞ to exploit the local-separation prop-
erties of the class of graphs under consideration.

(A2) Bounded edge potentials: The Ising model Markov on a.e. Gp ∼ G(p) has
the maximum absolute potential below a threshold J ∗. More precisely,

α := tanhJmax

tanhJ ∗ < 1,(18)

where the threshold J ∗ depends on the specific graph ensemble G(p). See Sec-
tion 8.1 in the supplementary material [4] for an explicit characterization of J ∗ for
specific ensembles.

(A3) Local-separation property: We consider the ensemble of graphs G(p)

such that almost every graph G drawn from G(p) satisfies the local-separation
property (η, γ ), according to Definition 2, for some η = O(1) and γ ∈ N such
that13

Jminα
−γ = ω̃(1),(19)

where we say that a function f (p) = ω̃(g(p)), if f (p)
g(p) logp

→ ∞ as p → ∞.

13The condition in (19) involving ω̃(1) is required for random graph ensembles such as Erdős–
Rényi random graphs. It can be weakened as Jminα−γ = ω(1) for degree-bounded ensembles
GDeg(�).
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(A4) Generic edge-potentials: The edge potentials {Ji,j , (i, j) ∈ G} of the Ising
model are assumed to be generically drawn from [−Jmax,−Jmin] ∪ [Jmin, Jmax];
that is, our results hold except for a set of Lebesgue measure zero. We also char-
acterize specific classes of models where this assumption can be removed, and
we allow for any choice of edge potentials. See Section 8.3 in the supplementary
material [4] for details.

Assumption (A1) provides on the bound on the sample complexity. Assumption
(A2) limits the maximum edge potential Jmax of the model. Assumption (A3) re-
lates the path threshold γ with the minimum edge potential Jmin in the model. For
instance, if Jmin = �(1) and γ = O(log logp), we require that α := tanhJmax

tanhJ ∗ =
1 − �(1) < 1.

Condition (A4) guarantees the success of our method for generic edge poten-
tials. Note that if the neighbors are marginally independent, then our method fails,
and thus, we cannot expect our method to succeed for all edge potentials. Con-
dition (A4) can be removed if we limit to attractive models (see Section 8.3.1 in
the supplementary material [4]), or if we allow for nonattractive models, but limit
to graphs with bounded local paths (see Section 8.3.3 in the supplementary ma-
terial [4]). For general models, we guarantee success of our methods for generic
potentials; that is, we establish that the set of edge potentials where our method
fails has Lebesgue measure zero. Similar assumptions have been previously em-
ployed; for example, in [26] where learning directed models is considered, it is
assumed that the graphical model is faithful with respect to the underlying graph.

3.2. Conditional variation distance thresholding. We now propose an algo-
rithm, termed as conditional variation distance thresholding (CVDT) which is
proven to be consistent for graph reconstruction under the above assumptions.
The procedure for CVDT is provided in Algorithm 1. Denote CVDT(xn; ξn,p) as
the output edge set from CVDT given n i.i.d. samples xn and threshold ξn,p . The
conditional variation distance test in the CVDT algorithm computes the empirical
conditional variation distance in (14) for each node pair (i, j) ∈ V 2 and finds the
conditioning set which achieves the minimum over all sets of cardinality η. If the
minimum exceeds the threshold ξn,p , the node pair is declared an edge.

The threshold ξn,p needs to separate the edges and the nonedges in the Ising
model. It is chosen as a function of both number of nodes p and number of samples
n and needs to satisfy the following conditions:

ξn,p = O(Jmin), ξn,p = ω̃(αγ ), ξn,p = �

(√
logp

n

)
.(20)

For example, when Jmin = �(1), α < 1, γ = �(logp), n = �(gp logp), for some
sequence gp = ω(1), we can choose ξn,p = 1

min(gp,logp)
.
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Algorithm 1 Algorithm CVDT(xn; ξn,p, η) for structure learning from xn samples
based on empirical conditional variation distances. See (14).

Initialize Ĝn
p = (V ,∅).

For each i, j ∈ V , if

min
S⊂V \{i,j}

|S|≤η

ν̂i|j ;S > ξn,p,(21)

then add (i, j) to Ĝn
p .

Output: Ĝn
p .

Note that there is dependence on both n and p, since we need to regularize for
sample size, as well as for the size of the graph. In other words, with finite num-
ber of samples n, the empirical conditional variation distances are noisy, and the
threshold ξn,p takes this into account via its inverse dependence on n. Similarly,
as the graph size p increases, we establish that the true conditional variation dis-
tance decays at a certain rate under assumption (A2). Hence the threshold ξn,p also
depends on the graph size p. Moreover, note that for all the conditions in (20) to
be satisfied, the number of samples n should scale at least at a certain rate with
respect to p, as given by (17).

3.2.1. Structural consistency of CVDT. Assuming (A1)–(A4), we have the fol-
lowing result on asymptotic graph structure recovery.

THEOREM 1 (Structural consistency of CVDT). The algorithm CVDT is con-
sistent for structure recovery of Ising models Markov on a.e. graph Gp ∼
G(p;η, γ ):

lim
n,p→∞

n=�(J−2
min logp)

P [CVDT({xn}; ξn,p, η) = Gp] = 0.(22)

The proof of this theorem is provided in Section 8 in the supplementary mate-
rial [4].

REMARKS.

(1) Consistency guarantee: The CVDT algorithm consistently recovers the
structure of the graphical models, with probability tending to one, where the prob-
ability measure is with respect to both the graph and the samples. We extend our
results and provide finite sample guarantees for specific graph families in Sec-
tion 3.2.2. Moreover, if we require a parameter-free threshold, that is, we do not
know the exact value of Jmin but only its scaling with p, then we need to choose
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ξn,p = o(Jmin) rather than ξn,p = O(Jmin). In this case, the sample complexity
scales as n = ω(J−2

min logp).
(2) Other tests for conditional independence: We consider a test based on

variation distances. Alternatively other distance measures can be employed. For
instance, it can be proven that the Hellinger distance and the Kullback–Leibler
distance have similar sample complexity results, while a test based on mutual in-
formation has a worse sample complexity of �(J−4

min logp) under the assumptions
(A1)–(A4). We term the test based on mutual information as CMIT and compare
its experimental performance with CVDT in Section 5.

(3) Extension to other models: The CVDT algorithm can be extended to gen-
eral discrete models by considering pairwise variation distance between different
configurations. For instance, we can set

νi|j ;S := ∑
λ1 =λ2

λ1,λ2∈X

min
xS∈X |S|

ν
(
P(Xi |Xj = λ1,XS = xS),P (Xi |Xj = λ2,XS = xS)

)
.

(23)
In [3], we derive analogous conditions for Gaussian graphical models. Our ap-
proach is also applicable to models with higher order potentials since it does not
depend on the pairwise nature of Ising models. The conditions for recovery are
based on the notion of conditional uniqueness and can be imposed on any model.
Indeed the regime of parameters where conditional uniqueness holds depends on
the model and is harder to characterize for more complex models. Notice that our
algorithm requires only low-order statistics [up to O(η+2)] for any class of graph-
ical models which is relevant when we are dealing with models with higher order
potentials.

PROOF OUTLINE. We first analyze the scenario when exact statistics are avail-
able. (i) We establish that for any two nonneighbors (i, j) /∈ G, the conditional
variation distance in (21) (based on exact statistics) does not exceed the threshold
ξn,p . (ii) Similarly, we also establish that the conditional variation distance in (21)
exceeds the threshold ξn,p for all neighbors (i, j) ∈ G. (iii) We then extend these
results to empirical versions using concentration bounds. �

3.2.2. PAC Guarantees for CVDT. We now provide stronger results for CVDT
method in terms of the probably approximately correct (PAC) model of learn-
ing [28]. This provides additional insight into the task of graph estimation. Given
an Ising model P on graph Gp , recall the definition of conditional variation dis-
tance

νi|j ;S := min
xS∈{−1,+1}|S|

ν
(
P(Xi |Xj = +,XS = xS),P (Xi |Xj = −,XS = xS)

)
.
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Given a graph Gp and λ,η > 0, define

G′
p(V ;λ) :=

{
(i, j) ∈ Gp : min|S|≤η

S⊂V \{i,j}
νi|j ;S > λ

}
,(24)

νmax(p;η) := max
(i,j)/∈Gp

min|S|≤η

S⊂V \{i,j}
νi|j ;S.(25)

For any δ > 0, choose the threshold ξn,p as

ξn,p(δ) = νmax(p;η) + δ.(26)

Define

Pmin := min
S⊂V,|S|≤η+1

x={±1}|S|

P(XS = xS).(27)

THEOREM 2 (PAC guarantees for CVDT). Given an Ising model Markov on
graph G and threshold ξn,p(δ) according to (26), CVDT({xn}; ξn,p(δ), η) recovers
G′

p(V ;νmax(p;η) + 2δ) for any δ > 0, defined in (24), with probability at least
1 − ε, when the number of samples is

n >
2(δ + 2)2

δ2P 2
min

[
log

(
1

ε

)
+ (η + 2) logp + (η + 4) log 2

]
,(28)

and the computational complexity scales as O(pη+2).

PROOF. The proof is provided in Section 9 in the supplementary material [4].
�

Thus, the above result characterizes the relationship between the separation be-
tween edges and nonedges (in terms of conditional variation distances) and the
number of samples required to distinguish them. A critical parameter in the above
result is νmax(p;η), the maximum conditional variation distance between non-
neighbors. We now provide nonasymptotic bounds on νmax(p;η) for specific graph
families satisfying the (η, γ )-local separation condition. A detailed description of
the graph families considered below is provided in Section 3.3. On lines of as-
sumption (A2) in Section 3.1, define

α := tanhJmax

tanhJ ∗ .(29)

As we noted earlier, the threshold J ∗ depends on the graph family. We characterize
both J ∗ and νmax(p;η) for various graph families below.

LEMMA 1 [Nonasymptotic bounds on νmax(p;η) for graph families]. The fol-
lowing statements hold for α in (29):
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(1) For the degree-bounded ensemble GDeg(p;�),

J ∗
Deg = ∞, νmax(p;�) = 0.(30)

(2) For the girth-bounded ensemble GGirth(p;g,�),

J ∗
Girth = atanh

(
1

�

)
, νmax(p;1) ≤ αg/2,(31)

where � is the maximum degree and g is the girth.
(3) For the ensemble of �-random regular graphs GReg(p;�),

J ∗
Reg = atanh

(
1

�

)
.(32)

Choose any l ∈ N such that l < 0.25(0.25p� + 0.5 − �2). Then, with probability
at least 1 − �16l−2(p� − 4�2 − 16l)−(8l−1),

νmax(p;2) ≤ αl,(33)

where � is the degree.
(4) For the Erdős–Rényi ensemble GER(p, c/p),

J ∗
ER = atanh

(
1

c

)
.(34)

Choose any l ∈ N such that l <
logp
4 log c

. When c > 1, then with probability at least

1 − le
√

125p−2.5 − l!c4l+1p−1,

νmax(p;2) ≤ 2l3αl logp,(35)

where c is the average degree.
(5) For the small-world graph ensemble GWatts(p, d, c/p), similar results ap-

ply.

J ∗
Watts = atanh

(
1

c

)
,(36)

Choose any l ∈ N such that l <
logp
4 log c

. When c > 1, with probability at least 1 −
le

√
125p−2.5 − l!c4l−1p−1,

νmax(p;d + 2) ≤ 4l3αl logp,(37)

where c is the average degree of the Erdős–Rényi subgraph.

PROOF. See Corollaries 1 and 2 in Section 8.1 in the supplementary mate-
rial [4]. �

Thus, we note that the conditional variation distance is small for nonneighbors
when the maximum edge potential Jmax is suitably bounded. Combining the results
above on νmax(p;η) and the PAC guarantees in Theorem 2, we note that a majority
of edges in the Ising model can be learned efficiently under a logarithmic sample
complexity.
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3.3. Examples of tractable graph families. We now show that the local-
separation property in Definition 2 and the assumptions in Section 3.1 hold for
a rich class of graphs.

EXAMPLE 1 (Bounded-degree). Any (deterministic or random) ensemble of
degree-bounded graphs GDeg(p,�) satisfies (η, γ )-local separation property with
η = � and arbitrary γ ∈ N. This is because for any node i ∈ V , its neighborhood
N (i) exactly separates it from nonneighbors. Since there is exact separation, we
can establish that the threshold in (18) is infinite (J ∗

Deg = ∞); that is, there is no
constraint on the maximum edge potential Jmax. However, the computational com-
plexity of our proposed algorithm scales as O(p�+2); see also [10]. Thus, when �

is large, our proposed algorithm, as well as the algorithm in [10], are computation-
ally intensive. Our goal in this paper is to relax the bounded-degree assumption
and to consider sequences of ensembles of graph G(p) whose maximum degrees
may grow with the number of nodes p. To this end, we discuss other structural
constraints which can lead to graphs with sparse local separators.

EXAMPLE 2 (Bounded local paths). Another sufficient condition14 for the
(η, γ )-local separation property in Definition 2 to hold is that there are at most
η paths of length at most γ in G between any two nodes [henceforth, termed as
the (η, γ )-local paths property]. In other words, there are at most η − 1 number of
overlapping15 cycles of length smaller than 2γ . We denote this ensemble of graphs
as GLP(p;η, γ ).

In particular, a special case of the local-paths property described above is the
so-called girth property. The girth of a graph is the length of the shortest cycle.
Thus, a graph with girth g satisfies (η, γ )-local separation property with η = 1
and γ = g/2. Let GGirth(p;g) denote the ensemble of graphs with girth at most
g. There are many graph constructions which lead to large girth. For example,
the bipartite Ramanujan graph [17], page 107 and the random Cayley graphs [24]
have large girths. Recently, efficient algorithms have been proposed to generate
large girth graphs efficiently [5].

The girth condition can be weakened to allow for a small number of short cy-
cles, while not allowing for typical node neighborhoods to contain short cycles.
Such graphs are termed as locally tree-like. For instance, the ensemble of Erdős–
Rényi graphs GER(p, c/p), where an edge between any node pair appears with a

14For any graph satisfying (η, γ )-local separation property, the number of vertex-disjoint paths of
length at most γ between any two nonneighbors is bounded above by η, by appealing to Menger’s
theorem for bounded path lengths [35]. However, the property of local paths that we describe above
is a stronger notion than having sparse local separators, and we consider all distinct paths of length
at most γ and not just vertex disjoint paths in the formulation.

15Two cycles are said to overlap if they have common vertices.
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probability c/p, independent of other node pairs, is locally tree-like. The param-
eter c may grow with p, albeit at a controlled rate for tractable structure learning,
made precise later. In Section 11 in the supplementary material [4], we establish
that there are at most two paths of length smaller than γ <

logp
4 log c

between any
two nodes in Erdős–Rényi graphs a.a.s., or equivalently, there are no overlapping
cycles of length smaller than 2γ a.a.s. Similar observations apply for the more
general scale-free or power-law graphs [18, 20], and we derive the precise rela-
tionships in Section 11 in the supplementary material [4]. Along similar lines, the
ensemble of �-random regular graphs, denoted by GReg(p,�), which is the uni-
form ensemble of regular graphs with degree � has no overlapping cycles of length
at most �(log�−1 p) a.a.s. [36], Lemma 1.

We now discuss the conditions under which a general local-paths graph en-
semble GLP(p;η, γ ) satisfies assumption16 (A3) in Section 3.1, required for our
graph estimation algorithm CVDT to succeed. Denote the maximum degree for
the GLP(p;η, γ ) ensemble as � (possibly growing with p). Note that we can
now implement the CVDT algorithm with parameter η. In Section 8.1 in the sup-
plementary material [4], we establish that the threshold J ∗ in (18) is given by
J ∗

LP = �(1/�). When the minimum edge potential Jmin achieves the bound, that
is, Jmin = �(1/�), the assumption (A3) simplifies as

�αγ = o(1).(38)

Note that α < 1 under (A2). We obtain a natural trade-off between the maximum
degree � and the path threshold γ .

When � = O(1), we can allow the path threshold in (38) to scale as γ =
O(log logp). This implies that graphs with fairly small path threshold γ can be
incorporated under our framework. In particular, this includes the class of girth-
bounded graph with fairly small girth [i.e., the girth g scaling as O(log logp)].

We can also incorporate graph families with growing maximum degrees in (38).
For instance, when � = O(poly logp), we require the path threshold to scale as
γ = O(logp). In particular, the �-random-regular ensemble satisfies (38) when
� = O(poly logp).

Thus, (38) represents a natural trade-off between node degrees and path thresh-
old for consistent structure estimation; graphs with large degrees can be learned
efficiently if their path thresholds are large. Indeed, in the extreme case of trees
which have infinite threshold (since they have infinite girth), in accordance with
(38), there is no constraint on node degrees for successful recovery, and recall that
the Chow–Liu algorithm [16] is an efficient method for model selection on tree
distributions.

Moreover, the constraint in (38) can be weakened for random graph ensem-
bles by replacing the maximum degree with the average degree. Recall that in

16In fact, a weaker version of (A3) as Jminα−γ = ω(1) suffices for degree-bounded ensembles
GDeg(�).
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the Erdős–Rényi ensemble GER(p, c/p), an edge between any two nodes occurs
with probability c/p and that this ensemble satisfies the (η, γ ) property with path
threshold γ = O(

logp
log c

) and η = 2. In Section 8.1 in the supplementary material [4],
we establish that the threshold in (18) is given by J ∗

ER = �(1/c). Comparing with
the threshold for �-degree bounded graphs J ∗ = �(1/�) discussed above, we see
that we can obtain better bounds for random-graph ensembles.

When the minimum edge potentials achieves the threshold (Jmin = �(1/c)), the
requirement in assumption (A3) in Section 3.1 simplifies to

cαγ = õ(1),(39)

which is true when c = O(poly logp). Thus, we can guarantee consistent struc-
ture estimation for the Erdős–Rényi ensemble when the average degree scales as
c = O(poly logp). This regime is typically known as the “sparse” regime and is
relevant, since in practice, our goal is to fit the measurements to a sparse graphical
model.

EXAMPLE 3 (Small-world graphs). The previous two examples showed that
local separation holds under two different conditions: bounded maximum degree
and bounded number of local paths. The former class of graphs can have short cy-
cles, but the maximum degree needs to be constant, while the latter class of graphs
can have a large maximum degree but the number of overlapping short cycles needs
to be small. We now provide instances which incorporate both these features, large
degrees and short cycles, and yet satisfy the local separation property.

The class of hybrid graphs or augmented graphs ([18], Chapter 12) consists of
graphs which are the union of two graphs: a “local” graph, having short cycles,
and a “global” graph, having small average distances. Since the hybrid graph is
the union of these local and global graphs, it simultaneously has large degrees and
short cycles. The simplest model GWatts(p, d, c/p), first studied by Watts and Stro-
gatz [51], consists of the union of a d-dimensional grid and an Erdős–Rényi ran-
dom graph with parameter c. It is easily seen that a.e. graph G ∼ GWatts(p, d, c/p)

satisfies (η, γ )-local separation property in (16), with

η = d + 2, γ ≤ logp

4 log c
.

Similar observations apply for more general hybrid graphs studied in [18], Chap-
ter 12.

In Section 8.1 in the supplementary material, we establish that the threshold in
(18) for the small-world ensemble GWatts(p, d, c/p) is given by J ∗

Watts = �(1/c)

and is independent of d , the degree of the grid graph. Comparing with the threshold
J ∗

ER for Erdős–Rényi ensemble GER(p, c/p), we note that the two thresholds are
identical. This further implies that (39) holds for the small-world graph ensemble
as well.
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3.4. Explicit bounds on sample complexity of CVDT. Recall that the sample
complexity of the CVDT is required to scale as n = �(J−2

min logp) for structural
consistency in high dimensions. Thus, the sample complexity is small when the
minimum edge potential Jmin is large. On the other hand, Jmin cannot be arbitrarily
large due to assumption (A2) in Section 3.1, which entails that Jmin < J ∗. The
minimum sample complexity is thus attained when Jmin achieves the threshold J ∗.

We now provide explicit results for the minimum sample complexity for var-
ious graph ensembles, based on the threshold J ∗. Recall that in Section 3.3, we
discussed that for the graph ensemble GLP(p, η, γ,�) satisfying the (η, γ )-local
paths property and having maximum degree �, the threshold is J ∗

LP = 1/�. Thus,
the minimum sample complexity for this graph ensemble is n = �(�2 logp), that
is, when Jmin = �(1/�).

For the Erdős–Rényi random graph ensemble GER(p, c/p) and the small-
world graph ensemble GWatts(p, d, c/p), recall that the thresholds are given by
J ∗

ER = J ∗
Watts = 1/c, where c is the mean degree of the Erdős–Rényi graph. Thus,

the minimum sample complexity can be improved to n = �(c2 logp), by setting
Jmin = �(1/c). This implies that when the Erdős–Rényi random graphs and small-
world graphs have a bounded average degree [c = O(1)], the minimum sample
complexity is n = �(logp). Recall that the sample complexity of learning tree
models is �(logp) [47]. Thus, we observe that the complexity of learning sparse
Erdős–Rényi random graphs and small-world graphs using our algorithm CVDT is
akin to learning tree structures in certain parameter regimes.

3.5. Comparison with previous results. We now compare the performance of
our algorithm CVDT with �1-penalized logistic regression proposed in [41]. We
first compare the computational complexities. The method in [41] has a computa-
tional complexity of O(p4) for any input (assuming p > n). On the other hand,
the complexity of our method depends on the graph family under consideration.
It can be as low as O(p3) for girth-bounded ensembles, O(p4) for random graph
families and as high as O(p�) for degree-bounded ensembles (without any addi-
tional characterization of the local separation property). Clearly our method is not
efficient for general degree-bounded ensembles since it is tailored to exploit the
sparse local-separation property in the underlying graph.

We now compare the sample complexities under the two methods. It was es-
tablished that the method in [41] has a minimum sample complexity of n =
�(�3 logp) for a degree-bounded ensemble GDeg(p,�) satisfying certain “in-
coherence” conditions. The sample complexity of our CVDT algorithm is better
at n = �(�2 logp). Moreover, we can guarantee improved sample complexity of
n = �(c2 logp) for Erdős–Rényi random graphs GER(p, c/p) and small-world
graphs GWatts(p, d, c/p) under the modified CVDT algorithm. Note that these ran-
dom graph ensembles have maximum degrees (�) much larger than the average
degrees (c), and thus, we can provide stronger sample complexity results. More-
over, our algorithm is local and requires only low-order statistics for any class of
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graphical models of arbitrary order, while the method in [41] requires full-order
statistics since it undertakes neighborhood selection through regularized logistic
regression. This is relevant in practice, since our algorithm is better equipped to
handle missing samples.

The incoherence conditions required for the success of �1 penalized logistic re-
gression in [41] are NP-hard to establish for general models since they involve the
partition function of the model [6]. In contrast, our conditions are transparent and
relate to the phase transitions in the model. It is an open question as to whether the
incoherence conditions are implied by our assumptions or vice-versa for general
models. It appears that our conditions are weaker than the incoherence conditions
for random-graph models. For instance, for the Erdős–Rényi model GER(p, c/p),
we require that Jmax = O(1/c), where c is the average degree, while a sufficient
condition for incoherence is Jmax = O(1/�), where � is the maximum degree.
Note that � = O(logp log c) a.a.s. for the Erdős–Rényi model. Similar observa-
tions also hold for the power-law and small-world graph ensembles. This implies
that we can guarantee consistent structure estimation under weaker conditions (i.e.,
a wider range of parameters) and better sample complexity for the Erdős–Rényi,
power-law and small-world models.

4. Necessary conditions for graph estimation. We have so far proposed al-
gorithms and provided performance guarantees for graph estimation given samples
from an Ising models. We now analyze necessary conditions for graph estimation.

4.1. Erdős–Rényi random graphs. Necessary conditions for graph estima-
tion have been previously characterized for degree-bounded graph ensembles
GDeg(p,�) [43]. However, these conditions are too loose to be useful for the en-
semble of Erdős–Rényi graphs GER(p, c/p), where the average degree17 (c) is
much smaller than the maximum degree.

We now provide a lower bound on sample complexity for graph estimation of
Erdős–Rényi graphs using any deterministic estimator. Recall that p is the number
of nodes in the model, and n is the number of samples. In the following result, c is
allowed to depend on p and is thus more general than the previous results.

THEOREM 3 (Necessary conditions for model selection). Assume that c ≤
0.5p and Gp ∼ GER(p, c/p). Then if n ≤ εc logp for sufficiently small ε > 0,
we have

lim
p→∞P [Ĝn

p(Xn
p) = Gp] = 1(40)

for any deterministic estimator Ĝp .

17The techniques in this section is applicable when the average sparsity parameter c of GER(p, c/p)

ensemble is a function of p and satisfies c ≤ p/2.
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Thus, when n ≤ εc logp for sufficiently small ε > 0, the probability of error for
structure estimation tends to one, where the probability measure is with respect to
both the Erdős–Rényi random graph and the samples. The proof of this theorem
can be found in Section 10 in the supplementary material, and is along the lines
of [10], Theorem 1.

The result in Theorem 3 provides an asymptotic necessary condition for struc-
ture learning and involves an additional auxiliary parameter ε. In the following
result, we remove the requirement for the auxiliary parameter ε and provide a
nonasymptotic necessary condition, but at the expense of having a weak (instead
of a strong) converse.

THEOREM 4 (Nonasymptotic necessary conditions for model selection). As-
sume that G ∼ GER(p, c/p), where c may depend on p. Let P

(p)
e := P(Ĝp = Gp)

be the probability of error. If P
(p)
e → 0, the number of samples n must satisfy

n ≥ 1

p log2 |X |
(

p

2

)
Hb

(
c

p

)
.(41)

By expanding the binary entropy function Hb(·), it is easy to see that the state-
ment in (41) can be weakened to the more easily interpretable (albeit weaker)
necessary condition

n ≥ c log2 p

2 log2 |X | .(42)

The above result differs from Theorem 3 in two aspects: the bound in (41) does
not involve any asymptotic notation and is a weak converse result (instead of a
strong converse). The proof is provided in Section 10.3 in the supplementary ma-
terial [4].

REMARKS.

(1) Thus, n = �(c logp) number of samples are necessary for structure re-
covery. Hence, the larger the average degree, the higher is the required sample
complexity. Intuitively this is because as c grows, the graph is denser, and hence
we require more samples for learning. In information-theoretic terms, Theorem 3
is a strong converse [19], since we show that the error probability of structure
learning tends to one (instead of being merely bounded away from zero). On the
other hand, the result in Theorem 4 is a weak converse result.

(2) In [43], it is shown that for graphs uniformly drawn from the class of
graphs with maximum degree �, when n < ε�k logp for some k ∈ N, there exists
a graph for which any estimator fails with probability at least 0.5. These results
cannot be applied here since the probability mass function is nonuniform for the
class of Erdős–Rényi random graphs.
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(3) The result is not dependent on the Ising model assumption, and holds for
any pairwise discrete Markov random field (i.e., X is a finite set).

We now provide an outline for the proof of Theorem 4. A naïve application of
Fano’s inequality for this problem does not yield any meaningful result since the
set of all graphs (which can be realized by GER) is “too large.” We employ another
information-theoretic idea known as typicality. We identify a set of graphs with
p nodes whose average degree is ε-close to c (which is the expected degree for
GER(p, c/p). The set of typical graphs has a small cardinality but high probabil-
ity when p is large. The novelty of our proof lies in our use of both typicality as
well as Fano’s inequality to derive necessary conditions for structure learning. We
can show that (i) the probability of the typical set tends to one as p → ∞; (ii) the
graphs in the typical set are almost uniformly distributed (the asymptotic equipar-
tition property); (iii) the cardinality of the typical set is small relative to the set of
all graphs. A detailed discussion of these techniques is given in [3].

4.2. Other graph families. We now provide necessary conditions for recovery
of graphs belonging to various graph ensembles considered in this paper. We first
recap the results of [10], Theorem 1, which is applicable for any uniform ensemble
of graphs.

THEOREM 5 (Lower bound on sample complexity). Assume that a graph Gp

on p nodes is uniformly drawn from an ensemble G . Given n i.i.d. samples from an
Ising model Markov on G, we have

P [Ĝn
p(Xn

p) = Gp] ≥ 1 − 2np

|G|(43)

for any deterministic estimator Ĝp .

We provide bounds on the number of graphs in specific graph families consid-
ered earlier in the paper which gives us necessary conditions for their recovery.

LEMMA 2 (Bounds on size of graph families). The following bounds hold:

(1) For girth-bounded ensembles GGirth(p;g,�min,�max, k) with girth g,
minimum degree �min, maximum degree �max and number of edges k, we have

pk(p − g�g
max)

k ≤ |GGirth(p;g,�min,�max, k)| ≤ pk(p − �
g
min)

k.(44)

(2) For local-path ensembles GLP(p;η, γ,�min,�max, k) having η paths of
length less than γ > 0 between any two nodes, minimum degree �min > 0, maxi-
mum degree �max and number of edges k,

m1p
k1(p − γ�γ

max)
k1

(
�

γ
min
2

)η−1
≤ |GLP(p;η, γ,�min,�max, k)|

≤ m2p
k2(p − �

γ
min)

k2

(
γ�

γ
max

2

)η−1
,(45)
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where k1 := k − m2(η − 1), k2 := k − m1(η − 1), m1 := p

γ�
γ
max

and m2 := p

�
γ
min

.

(3) For augmented ensembles GAug(p;d,η, γ,�min,�max, k) consisting of a
local graph with (regular) degree d and a global graph GLP(p;η, γ,�min,�max,

k), we have

m1p
k′

1(p − γ�γ
max)

k′
1

(
�

γ
min
2

)η−1 (
p − 1

d

)
≤ |GAug(p;d,η, γ,�min,�max, k)|(46)

≤ m2p
k′

2(p − �
γ
min)

k′
2

(
γ�

γ
max

2

)η−1 (
p − 1

d

)
,

where k′
1 := k1 + 1 − pd

2 and k′
2 := k2 + 1 − pd

2 , for k1, k2,m1,m2 defined previ-
ously.

The proof of the above result is given in Section 10.2 in the supplementary
material [4].

REMARKS. Using the above results on lower bounds on the number of graphs
in a given family, in conjunction with Theorem 5, we can obtain necessary con-
ditions for different graph families. For instance, for girth-constrained families,
when the girth g and maximum degree �max scale as O(poly logp), we have that

n = �

[
k

p
logp

]
(47)

number of samples is necessary for structure estimation, where k is the number of
edges. Similarly, for local path ensembles, when the path threshold γ and maxi-
mum degree �max scale as O(poly logp), the above bound in (47) changes only
slightly, and we have

n = �

[(
k

p
− η − 1

�
γ
min

)
logp

]
as the necessary condition, by substituting for k1, and noting that the other terms
scale slower than logp under the above specified regime. Similarly, for augmented
graphs, we have

n = �

[(
k

p
− η − 1

�
γ
min

− d

2

)
logp

]
as the necessary condition. Thus, for a wide class of graphs, we can characterize
necessary conditions for structure estimation.
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5. Experiments. In this section experimental results are presented on syn-
thetic data. We implement the proposed CVDT (based on conditional variation
distances) and CMIT (based on conditional mutual information) methods under
different thresholds, as well the �1 regularized logistic regression [41] under dif-
ferent regularization parameters.18 The performance of the methods is compared
using the notion of the edit distance between the estimated and the true graphs. We
implement the proposed CVDT and CMIT methods in MATLAB and the �1 regu-
larized logistic regression is evaluated using L1General package.19 CONTEST20

package is used to generate the synthetic graphs, and UGM21 package is used for
implementing Gibbs sampling from the Ising Model. The datasets, software code
and results are available at http://newport.eecs.uci.edu/anandkumar.

5.1. Data sets. In order to evaluate the CVDT performance in terms of quan-
tity of errors in recovering the graph structure, we generate samples from Ising
model for three typical graphs, namely, a single cycle graph whose ηcycle = 2,
Erdős–Rényi random graph GER(p, c/p) with average degree c = 1 and the Watts
and Strogatz model GWS(p, d, c/p) with degree of local graph d = 2 and aver-
age degree of the global graph c = 1. Graphs of size p = 80 and sample size
n ∈ {102,5 × 102,103,5 × 103,104,105} are considered.

Based on the generated graph topologies, we generate the potential matrix JG

whose sparsity pattern corresponds to that of the graph G. By convention, diagonal
elements J(i, i) = 0 for all i ∈ V . We consider both attractive and general models.
For attractive models, we consider the nonzero off-diagonal entries of J as uni-
formly distributed in [0.1,0.2]. For the general model, we consider the nonzero
off-diagonal entries of J as uniformly distributed in [0.1,0.2] ∪ [−0.1,−0.2]. Po-
tential vector is set to 0 resulting in a symmetric Ising model. Gibbs sampling
method is used to generate samples. The knowledge of the bound on local sep-
arators η is assumed to be available in our experiments. We employ normalized
edit distances as the performance criterion. Since we know the ground truth for
synthetic data, it is possible to evaluate this measure. The thresholds ξn,p for
CVDT/CMIT and the regularization parameter λn for the �1 regularized logistic
regression are selected based on the best edit distances for each method.

5.2. Experimental results. Table 1 presents the experimental outcomes, and
an explicit comparison of the three graph estimation methods is illustrated in Fig-
ure 2 for attractive models, and in Figure 3 for mixed models (with both positive
and negative edge potentials). Similar trends are observed for both attractive and

18For the convex relaxation method in [41], the regularization parameter denotes the weight associ-
ated with the �1 term.

19L1General is available at http://www.di.ens.fr/~mschmidt/Software/L1General.html.
20CONTEST is at http://www.mathstat.strath.ac.uk/research/groups/numerical_analysis/contest.
21UGM is at http://www.di.ens.fr/~mschmidt/Software/UGM.html.

http://newport.eecs.uci.edu/anandkumar
http://www.di.ens.fr/~mschmidt/Software/L1General.html
http://www.mathstat.strath.ac.uk/research/groups/numerical_analysis/contest
http://www.di.ens.fr/~mschmidt/Software/UGM.html
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TABLE 1
Normalized edit distance under CVDT (based on conditional variation distances), CMIT (based on
conditional mutual information) and �1 penalized neighborhood selection on synthetic data from
graphs listed above for attractive and mixed Ising models, where n denotes the number of samples

Graph n CVDT CMIT �1 penalty CVDT CMIT �1 penalty
(attractive) (attractive) (attractive) (mixed) (mixed) (mixed)

Cycle 1 × 102 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ER 1 × 102 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
WS 1 × 102 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Cycle 5 × 102 1.0000 0.5000 1.0000 0.975 0.475 1.0000
ER 5 × 102 1.0000 0.5300 1.0000 0.9189 0.5946 1.0000
WS 5 × 102 1.0000 0.3313 1.0000 1.0000 0.3313 1.0000

Cycle 1 × 103 0.7125 0.1750 0.4000 0.7250 0.1500 0.3063
ER 1 × 103 0.7428 0.1020 0.3378 0.6757 0.1351 0.4342
WS 1 × 103 0.9937 0.1438 0.1625 0.9938 0.1438 0.4255

Cycle 5 × 103 0.0125 0.0000 0.1937 0.0125 0.0000 0.1500
ER 5 × 103 0.0000 0.0204 0.2031 0.0000 0.1053 0.0000
WS 5 × 103 0.3827 0.0000 0.0312 0.5688 0.0000 0.2671

Cycle 1 × 104 0.0000 0.0000 0.0000 0.3063 0.0000 0.0000
ER 1 × 104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WS 1 × 104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

mixed models. We note that the edit distance decays as the number of samples in-
creases, as expected. As long as there are enough number of samples (larger than
10,000), all the methods recover the graph structure accurately, that is, with zero
error. In terms of the decaying rate of errors, the �1 logistic regression method has
a faster rate than CVDT for the Watts–Strogatz graph in all regimes, while for the
cycle graph and the Erdős–Rényi graph, the rates for CVDT and the �1 method are
alternatively better depending on n. However, CMIT has the fastest rate of decay of
edit distance for all the three graphs, although theoretically, CVDT has better sam-
ple complexity guarantees compared to CMIT; see Theorem 1 and related remarks.
With regard to the running time, CVDT and CMIT are faster for the graphs under
consideration, since there is one global threshold to be selected for finding all the
edges, while for logistic regression, selection of the regularization parameter needs
to be carried out for each neighborhood in the graph. This is especially expensive
for large graphs.

6. Conclusion. In this paper, we adopted a novel and a unified paradigm for
Ising model selection. We presented a simple local algorithm for structure esti-
mation with low computational and sample complexities under a set of mild and
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(a) Cycle (b) Erdős-Rényi

(c) Watts-Strogatz

FIG. 2. CVDT, CMIT and �1 penalized logistic regression on synthetic data from an attractive Ising
model.

transparent conditions. This algorithm succeeds on a wide range of graph ensem-
bles such as the Erdős–Rényi ensemble, small-world networks etc. based on a local
separation criterion.

SUPPLEMENTARY MATERIAL

Supplement to “High-dimensional structure estimation in Ising models:
Local separation criterion” (DOI: 10.1214/12-AOS1009SUPP; .pdf). Detailed
analysis and proofs.
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(a) Cycle (b) Erdős-Rényi

(c) Watts-Strogatz

FIG. 3. CVDT, CMIT and �1 penalized logistic regression on synthetic data from a mixed Ising
model (with both positive and negative edge potentials).
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