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Suppose we observe samples of a subset of a collection of random
variables. No additional information is provided about the number
of latent variables, nor of the relationship between the latent and
observed variables. Is it possible to discover the number of latent
components, and to learn a statistical model over the entire collec-
tion of variables? We address this question in the setting in which
the latent and observed variables are jointly Gaussian, with the con-
ditional statistics of the observed variables conditioned on the latent
variables being specified by a graphical model. As a first step we
give natural conditions under which such latent-variable Gaussian
graphical models are identifiable given marginal statistics of only the
observed variables. Essentially these conditions require that the con-
ditional graphical model among the observed variables is sparse, while
the effect of the latent variables is “spread out” over most of the ob-
served variables. Next we propose a tractable convex program based
on regularized maximum-likelihood for model selection in this latent-
variable setting; the regularizer uses both the �1 norm and the nuclear
norm. Our modeling framework can be viewed as a combination of
dimensionality reduction (to identify latent variables) and graphical
modeling (to capture remaining statistical structure not attributable
to the latent variables), and it consistently estimates both the num-
ber of latent components and the conditional graphical model struc-
ture among the observed variables. These results are applicable in
the high-dimensional setting in which the number of latent/observed
variables grows with the number of samples of the observed variables.
The geometric properties of the algebraic varieties of sparse matrices
and of low-rank matrices play an important role in our analysis.

1. Introduction and Setup. Statistical model selection in the high-
dimensional regime arises in a number of applications. In many data analysis
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problems in geophysics, radiology, genetics, climate studies, and image pro-
cessing, the number of samples available is comparable to or even smaller
than the number of variables. As empirical statistics in these settings may
not be well-behaved (see [19, 24]), high-dimensional model selection is there-
fore both challenging and of great interest. A model selection problem that
has received considerable attention recently is the estimation of covariance
matrices in the high-dimensional setting. As the sample covariance matrix
is poorly behaved in such a regime, some form of regularization of the sam-
ple covariance is adopted based on assumptions about the true underlying
covariance matrix [1, 2, 14, 15, 22, 39].

Graphical models. A number of papers have studied covariance estimation
in the context of Gaussian graphical model selection. A Gaussian graphical
model [21, 32] (also commonly referred to as a Gauss-Markov random field)
is a statistical model defined with respect to a graph, in which the nodes
index a collection of jointly Gaussian random variables and the edges repre-
sent the conditional independence relations (Markov structure) among the
variables. In such models the sparsity pattern of the inverse of the covariance
matrix, or the concentration matrix, directly corresponds to the graphical
model structure. Specifically, consider a Gaussian graphical model in which
the covariance matrix is given by a positive-definite Σ∗ and the concentra-
tion matrix is given by K∗ = (Σ∗)−1. Then an edge {i, j} is present in
the underlying graphical model if and only if K∗

i,j �= 0. In particular the ab-
sence of an edge between two nodes implies that the corresponding variables
are independent conditioned on all the other variables. The model selection
method usually studied in such a Gaussian graphical model setting is �1-
regularized maximum-likelihood, with the �1 penalty applied to the entries
of the concentration matrix to induce sparsity. The consistency properties
of such an estimator have been studied [20, 28, 31], and under suitable
conditions [20, 28] this estimator is also “sparsistent”, i.e., the estimated
concentration matrix has the same sparsity pattern as the true model from
which the samples are generated. An alternative approach to �1-regularized
maximum-likelihood is to estimate the sparsity pattern of the concentration
matrix by performing regression separately on each variable [25]; while such
a method consistently estimates the sparsity pattern, it does not directly
provide estimates of the covariance or concentration matrix.

In many applications throughout science and engineering (e.g., psychol-
ogy, computational biology, and economics), a challenge is that one may not
have access to observations of all the relevant phenomena, i.e., some of the
relevant variables may be latent or unobserved. In general latent variables
pose a significant difficulty for model selection because one may not know
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the number of relevant latent variables, nor the relationship between these
variables and the observed variables. Typical algorithmic methods that try
to get around this difficulty usually fix the number of latent variables as well
as the structural relationship between latent and observed variables (e.g.,
the graphical model structure between latent and observed variables), and
use the EM algorithm to fit parameters [10]. This approach suffers from
the problem that one optimizes non-convex functions, and thus one may
get stuck in sub-optimal local minima. An alternative suggestion [13] is one
based on a greedy, local, combinatorial heuristic that assigns latent variables
to groups of observed variables, via some form of clustering of the observed
variables; however, this approach has no consistency guarantees.

Our setup. In this paper we study the problem of latent-variable graph-
ical model selection in the setting where all the variables, both observed
and latent, are jointly Gaussian. More concretely X is a Gaussian random
vector in R

p+h, O and H are disjoint subsets of indices in {1, . . . , p + h}
of cardinalities |O| = p and |H| = h, and the corresponding subvectors
of X are denoted by XO and XH respectively. Let the covariance matrix
underlying X be denoted by Σ∗

(O H). The marginal statistics corresponding
to the observed variables XO are given by the marginal covariance matrix
Σ∗
O, which is simply a submatrix of the full covariance matrix Σ∗

(O H). How-
ever suppose that we parameterize our model by the concentration matrix
K∗

(O H) = (Σ∗
(O H))

−1, which as discussed above reveals the connection to

graphical models. Here the submatrices K∗
O,K

∗
O,H ,K

∗
H specify (in the full

model) the dependencies among the observed variables, between the ob-
served and latent variables, and among the latent variables, respectively. In
such a parametrization, the marginal concentration matrix (Σ∗

O)
−1 corre-

sponding to the observed variables XO is given by the Schur complement
[18] with respect to the block K∗

H :

(1.1) K̃∗
O = (Σ∗

O)
−1 = K∗

O −K∗
O,H(K

∗
H)

−1K∗
H,O.

Thus if we only observe the variables XO, we only have access to Σ∗
O (or

K̃∗
O). The two terms that compose K̃∗

O above have interesting properties.
The matrix K∗

O specifies the concentration matrix of the conditional statis-
tics of the observed variables given the latent variables. If these conditional
statistics are given by a sparse graphical model then K∗

O is sparse. On the
other hand the matrix K∗

O,H(K
∗
H)

−1K∗
H,O serves as a summary of the ef-

fect of marginalization over the latent variables XH . This matrix has small
rank if the number of latent, unobserved variables XH is small relative to
the number of observed variables XO. Therefore the marginal concentra-
tion matrix K̃∗

O is generally not sparse due to the additional low-rank term
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K∗
O,H(K

∗
H)

−1K∗
H,O. Hence standard graphical model selection techniques

applied directly to the observed variables XO are not useful.
A modeling paradigm that infers the effect of the latent variables XH

would be more suitable in order to provide a concise explanation of the un-
derlying statistical structure. Hence we approximate the sample covariance
by a model in which the concentration matrix decomposes into the sum of a
sparse matrix and a low-rank matrix, which reveals the conditional graphical
model structure in the observed variables as well as the number of and effect
due to the unobserved latent variables. Such a method can be viewed as a
blend of principal component analysis and graphical modeling. In standard
graphical modeling one would directly approximate a concentration matrix
by a sparse matrix to learn a sparse graphical model, while in principal com-
ponent analysis the goal is to explain the statistical structure underlying a
set of observations using a small number of latent variables (i.e., approxi-
mate a covariance matrix as a low-rank matrix). In our framework we learn
a sparse graphical model among the observed variables conditioned on a few
(additional) latent variables. These latent variables are not principal com-
ponents, as the conditional statistics (conditioned on these latent variables)
are given by a graphical model. Therefore we refer to these latent variables
informally as latent components.

Contributions. Our first contribution in Section 3 is to address the fun-
damental question of identifiability of such latent-variable graphical models
given the marginal statistics of only the observed variables. The critical point
is that we need to tease apart the correlations induced due to marginaliza-
tion over the latent variables from the conditional graphical model struc-
ture among the observed variables. As the identifiability problem is one of
uniquely decomposing the sum of a sparse matrix and a low-rank matrix
into the individual components, we study the algebraic varieties of sparse
matrices and low-rank matrices. An important theme in this paper is the
connection between the tangent spaces to these algebraic varieties and the
question of identifiability. Specifically let Ω(K∗

O) denote the tangent space at
K∗
O to the algebraic variety of sparse matrices, and let T (K∗

O,H(K
∗
H)

−1K∗
H,O)

denote the tangent space at K∗
O,H(K

∗
H)

−1K∗
H,O to the algebraic variety of

low-rank matrices. Then the statistical question of identifiability of K∗
O

and K∗
O,H(K

∗
H)

−1K∗
H,O given K̃∗

O is determined by the geometric notion of

transversality of the tangent spaces Ω(K∗
O) and T (K

∗
O,H(K

∗
H)

−1K∗
H,O). The

study of the transversality of these tangent spaces leads to natural conditions
for identifiability. In particular we show that latent-variable models in which
(1) the sparse matrix K∗

O has a small number of nonzeros per row/column,
and (2) the low-rank matrix K∗

O,H(K
∗
H)

−1K∗
H,O has row/column spaces that
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are not closely aligned with the coordinate axes, are identifiable. These con-
ditions have natural statistical interpretations. The first condition ensures
that there are no densely-connected subgraphs in the conditional graphical
model structure among the observed variables, i.e., that these conditional
statistics are indeed specified by a sparse graphical model. Such statisti-
cal relationships may otherwise be mistakenly attributed to the effect of
marginalization over some latent variable. The second condition ensures
that the effect of marginalization over the latent variables is “spread out”
over many observed variables; thus, the effect of marginalization over a la-
tent variable is not confused with the conditional graphical model structure
among the observed variables. In fact the first condition is often assumed in
standard graphical model selection without latent variables (e.g., [28]).

As our next contribution we propose a regularized maximum-likelihood
decomposition framework to approximate a given sample covariance matrix
by a model in which the concentration matrix decomposes into a sparse
matrix and a low-rank matrix. Based on the effectiveness of the �1 norm as
a tractable convex relaxation for recovering sparse models [4, 11, 12] and
the nuclear norm for low-rank matrices [5, 16, 29], we propose the following
penalized likelihood method given a sample covariance matrix ΣnO formed
from n samples of the observed variables:

(1.2)
(Ŝn, L̂n) = argmin

S,L
− �(S − L; ΣnO) + λn (γ‖S‖1 + tr(L))

s.t. S − L � 0, L � 0.

The constraints � 0 and � 0 impose positive-definiteness and positive-
semidefiniteness. The function � represents the Gaussian log-likelihood �(K; Σ) =
log det(K)− tr(KΣ) for K � 0, where tr is the trace of a matrix and det is
the determinant. Here Ŝn provides an estimate of K∗

O, which represents the

conditional concentration matrix of the observed variables; L̂n provides an
estimate of K∗

O,H(K
∗
H)

−1K∗
H,O, which represents the effect of marginaliza-

tion over the latent variables. The regularizer is a combination of the �1 norm
applied to S and the nuclear norm applied to L (the nuclear norm reduces to
the trace over the cone of symmetric, positive-semidefinite matrices), with
γ providing a tradeoff between the two terms. This variational formulation
is a convex optimization problem, and it is a regularized max-det program
that can be solved in polynomial time using general-purpose solvers [36].

Our main result in Section 4 is a proof of the consistency of the estima-
tor (1.2) in the high-dimensional regime in which both the number of ob-
served variables and the number of latent components are allowed to grow
with the number of samples (of the observed variables). We show that for



6 CHANDRASEKARAN, PARRILO, WILLSKY

a suitable choice of the regularization parameter λn, there exists a range of
values of γ for which the estimates (Ŝn, L̂n) have the same sparsity (and
sign) pattern and rank as (K∗

O,K
∗
O,H(K

∗
H)

−1K∗
H,O) with high probability

(see Theorem 4.1). The key technical requirement is an identifiability con-
dition for the two components of the marginal concentration matrix K̃∗

O

with respect to the Fisher information (see Section 3.4). We make connec-
tions between our condition and the irrepresentability conditions required for
support/graphical-model recovery using �1 regularization [28, 35, 40]. Our
results provide numerous scaling regimes under which consistency holds in
latent-variable graphical model selection. For example we show that under
suitable identifiability conditions consistent model selection is possible even
when the number of samples and the number of latent variables are on the
same order as the number of observed variables (see Section 4.2).

Related previous work. The problem of decomposing the sum of a sparse
matrix and a low-rank matrix via convex optimization into the individual
components was initially studied in [8] by a superset of the authors of the
present paper, with conditions derived under which the convex program ex-
actly recovers the underlying components. In subsequent work Candès et al.
[6] also studied this sparse-plus-low-rank decomposition problem, and pro-
vided guarantees for exact recovery using the convex program proposed in
[8]. The problem setup considered in the present paper is quite different and
is more challenging because we are only given access to an inexact sample
covariance matrix, and we wish to produce an inverse covariance matrix that
can be decomposed as the sum of sparse and low-rank components (preserv-
ing the sparsity pattern and rank of the components in the true underlying
model). In addition to proving the consistency of the estimator (1.2), we
also provide a statistical interpretation of our identifiability conditions and
describe natural classes of latent-variable Gaussian graphical models that
satisfy these conditions. As such our paper is closer in spirit to the many
recent papers on covariance selection, but with the important difference that
some of the variables are not observed.

Outline. Section 2 gives some background and a formal problem state-
ment. Section 3 discusses the identifiability question, Section 4 states the
main results of this paper, and Section 5 gives some proofs. We provide ex-
perimental demonstration of the effectiveness of our estimator on synthetic
and real data in Section 6, and conclude with a brief discussion in Section 7.
Some of our technical results are deferred to supplementary material [7].

2. Problem Statement and Background. We give a formal state-
ment of the latent-variable model selection problem. We also briefly describe
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various properties of the algebraic varieties of sparse matrices and of low-
rank matrices, and the properties of the Gaussian likelihood function.

The following matrix norms are employed throughout this paper. ‖M‖2
denotes the spectral norm, or the largest singular value of M . ‖M‖∞ de-
notes the largest entry in magnitude of M . ‖M‖F denotes the Frobenius
norm, or the square-root of the sum of the squares of the entries of M .
‖M‖∗ denotes the nuclear norm, or the sum of the singular values of M
(this reduces to the trace for positive-semidefinite matrices). ‖M‖1 denotes
the sum of the absolute values of the entries of M . A number of matrix
operator norms are also used. For example, let Z : Rp×p → R

p×p be a lin-
ear operator acting on matrices. Then the induced operator norm is defined
as ‖Z‖q→q � maxN∈Rp×p, ‖N‖q≤1 ‖Z(N)‖q . Therefore, ‖Z‖F→F denotes the
spectral norm of the operator Z. The only vector norm used is the Eu-
clidean norm, which is denoted by ‖ · ‖. Given any norm ‖ · ‖q (either a
vector norm, a matrix norm, or a matrix operator norm) the dual norm is
given by ‖M‖∗q � sup{〈M,N〉 | ‖N‖q ≤ 1}.

2.1. Problem statement. In order to analyze latent-variable model selec-
tion methods, we need to define an appropriate notion of model selection
consistency for latent-variable graphical models. Given the two components
K∗
O and K∗

O,H(K
∗
H)

−1K∗
H,O of the concentration matrix of the marginal dis-

tribution (1.1), there are infinitely many configurations of the latent vari-
ables (i.e., matrices K∗

H � 0,K∗
O,H = (K∗

H,O)
T ) that give rise to the same

low-rank matrix K∗
O,H(K

∗
H)

−1K∗
H,O. Specifically for any non-singular matrix

B ∈ R
|H|×|H|, one can apply the transformations K∗

H → BK∗
HB

T ,K∗
O,H →

K∗
O,HB

T and still preserve the low-rank matrix K∗
O,H(K

∗
H)

−1K∗
H,O. In all of

these models the marginal statistics of the observed variables XO remain the
same upon marginalization over the latent variables XH . The key invariant
is the low-rank matrix K∗

O,H(K
∗
H)

−1K∗
H,O, which summarizes the effect of

marginalization over the latent variables. Consequently from here on we use
the notation S∗ = K∗

O and L∗ = K∗
O,H(K

∗
H)

−1K∗
H,O. These observations

give rise to the following notion of structure recovery:

Definition 2.1. An pair of |O| × |O| symmetric matrices (Ŝ, L̂) is an
algebraically correct estimate of a latent-variable Gaussian graphical model
given by the concentration matrix K∗

(O H) if the following conditions hold:

1. The sign-pattern of Ŝ is the same as that of S∗ (here sign(0) = 0):

sign(Ŝi,j) = sign(S∗
i,j), ∀i, j.
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2. The rank of L̂ is the same as the rank of L∗:

rank(L̂) = rank(L∗).

3. The concentration matrix Ŝ − L̂ can be realized as the marginal con-
centration matrix of an appropriate latent-variable model:

Ŝ − L̂ � 0, L̂ � 0.

When a sequence of estimators is algebraically correct with probability
approaching one in a suitable high-dimensional scaling regime, then we say
that the estimators are algebraically consistent. The first condition ensures
that Ŝ provides the correct structural estimate of the conditional graphi-
cal model of the observed variables conditioned on the latent components.
This property is the same as the “sparsistency” property studied in stan-
dard graphical model selection [20, 28]. The second condition ensures that
the number of latent components is properly estimated. Finally, the third
condition ensures that the pair of matrices (Ŝ, L̂) leads to a realizable latent-
variable model. In particular this condition implies that there exists a valid
latent-variable model in which (a) the conditional graphical model structure
among the observed variables is given by Ŝ, (b) the number of latent vari-
ables is equal to the rank of L̂, and (c) the extra correlations induced due
to marginalization over the latent variables is equal to L̂. Any method for
matrix factorization (e.g., [38]) can be used to further factorize L̂, depending
on the property that one desires in the factors (e.g., sparsity).

We also study estimation error rates in the usual sense, i.e., we show
that one can produce estimates (Ŝ, L̂) that are close in various norms to
the matrices (S∗, L∗). Notice that bounding the estimation error in some
norm does not in general imply that the support/sign-pattern and rank of
(Ŝ, L̂) are the same as those of (S∗, L∗). Therefore bounded estimation error
is different from algebraic correctness, which requires that (Ŝ, L̂) have the
same support/sign-pattern and rank as (S∗, L∗).

Goal. Let K∗
(O H) denote the concentration matrix of a Gaussian model.

Suppose that we have n samples {Xi
O}ni=1 of the observed variables XO.

We would like to produce estimates (Ŝn, L̂n) that, with high-probability, are
algebraically correct and have bounded estimation error (in some norm).

Our approach. We propose the regularized likelihood convex program (1.2)
to produce estimates (Ŝn, L̂n). Specifically, the sample covariance matrix ΣnO
in (1.2) is defined as:

ΣnO � 1

n

n∑
i=1

Xi
OX

i
O
T
.
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We give conditions on the underlying model K∗
(O H) and suitable choices for

the parameters λn, γ under which the estimates (Ŝn, L̂n) are consistent (see
Theorem 4.1).

2.2. Likelihood function and Fisher information. Given n samples {Xi}ni=1

of a finite collection of jointly Gaussian zero-mean random variables with
concentration matrix K∗, it is easily seen that the log-likelihood function is
given by:

(2.1) �(K; Σn) = log det(K)− tr(KΣn),

where �(K; Σn) is a function of K. Notice that this function is strictly con-
cave for K � 0. In the latent-variable modeling problem with sample covari-
ance ΣnO, the likelihood function with respect to the parametrization (S,L)
is given by �(S − L; ΣnO). This function is jointly concave with respect to the
parameters (S,L) whenever S−L � 0, and it is employed in our variational
formulation (1.2) to learn a latent-variable model.

In the analysis of a convex program involving the likelihood function,
the Fisher information plays an important role as it is the negative of the
Hessian of the likelihood function and thus controls the curvature. As the
first term in the likelihood function is linear, we need only study higher-order
derivatives of the log-determinant function in order to compute the Hessian.
In the latent-variable setting with the marginal concentration matrix of the
observed variables given by K̃∗

O = (Σ∗
O)

−1 (see (1.1)), the corresponding
Fisher information matrix is

(2.2) I(K̃∗
O) = (K̃∗

O)
−1 ⊗ (K̃∗

O)
−1 = Σ∗

O ⊗ Σ∗
O.

Here ⊗ denotes the tensor product between matrices. Notice that this is
precisely the |O|2 × |O|2 submatrix of the full Fisher information matrix
I(K∗

(O H)) = Σ∗
(O H) ⊗ Σ∗

(O H) with respect to all the parameters K∗
(O H) =

(Σ∗
(O H))

−1 (corresponding to the situation in which all the variables XO∪H
are observed). In Section 3.4 we impose various conditions on the Fisher
information matrix I(K̃∗

O) under which our regularized maximum-likelihood
formulation provides consistent estimates.

2.3. Algebraic varieties of sparse and low-rank matrices. The set of sparse
matrices and the set of low-rank matrices can be naturally viewed as alge-
braic varieties (solution sets of systems of polynomial equations). Here we
describe these varieties, and discuss some of their geometric properties such
as the tangent space and local curvature at a (smooth) point.
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Let S(k) denote the set of matrices with at most k nonzeros:

(2.3) S(k) � {M ∈ R
p×p | |support(M)| ≤ k}.

Here support denotes the locations of nonzero entries. The set S(k) is an

algebraic variety, and can in fact be viewed as a union of
(
p2

k

)
subspaces in

R
p×p. This variety has dimension k, and it is smooth everywhere except at

those matrices that have support size strictly smaller than k. For any matrix
M ∈ R

p×p, consider the variety S(|support(M)|); M is a smooth point of
this variety, and the tangent space at M is given by

(2.4) Ω(M) = {N ∈ R
p×p | support(N) ⊆ support(M)}.

Next let L(r) denote the algebraic variety of matrices with rank at most
r:

(2.5) L(r) � {M ∈ R
p×p | rank(M) ≤ r}.

It is easily seen that L(r) is an algebraic variety because it can be defined
through the vanishing of all (r+1)×(r+1) minors. This variety has dimension
equal to r(2p−r), and it is smooth everywhere except at those matrices that
have rank strictly smaller than r. Consider a rank-r matrixM with singular
value decomposition (SVD) given by M = UDV T , where U, V ∈ R

p×r and
D ∈ R

r×r. The matrix M is a smooth point of the variety L(rank(M)), and
the tangent space at M with respect to this variety is given by

(2.6) T (M) = {UY T
1 + Y2V

T | Y1, Y2 ∈ R
p×r}.

We view both Ω(M) and T (M) as subspaces in R
p×p. In Section 3 we explore

the connection between geometric properties of these tangent spaces and the
identifiability problem in latent-variable graphical models.

Curvature of rank variety. The sparse matrix variety S(k) has the prop-
erty that it has zero curvature at any smooth point. The situation is more
complicated for the low-rank matrix variety L(r), because the curvature at
any smooth point is nonzero. We analyze how this variety curves locally, by
studying how the tangent space changes from one point to a neighboring
point. Indeed the amount of curvature at a point is directly related to the
“angle” between the tangent space at that point and the tangent space at a
neighboring point. For any linear subspace T of matrices, let PT denote the
projection onto T . Given two subspaces T1, T2 of the same dimension, we
measure the “twisting” between these subspaces by considering the following
quantity.

(2.7) ρ(T1, T2) � ‖PT1 − PT2‖2→2 = max
‖N‖2≤1

‖[PT1 − PT2 ](N)‖2.
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In the supplement [7] we review relevant results from matrix perturbation
theory, which suggest that the magnitude of the smallest nonzero singular
value is closely tied to the local curvature of the variety. Therefore we con-
trol the twisting between tangent spaces at nearby points by bounding the
smallest nonzero singular value away from zero.

3. Identifiability. In the absence of additional conditions, the latent-
variable model selection problem is ill-posed. In this section we discuss a set
of conditions on latent-variable models that ensure that these models are
identifiable given marginal statistics for a subset of the variables. Some of
the discussion in Section 3.1 and Section 3.2 is presented in greater detail
in [8].

3.1. Structure between latent and observed variables. Suppose that the
low-rank matrix that summarizes the effect of the latent components is it-
self sparse. This leads to identifiability issues in the sparse-plus-low-rank de-
composition problem. Statistically the additional correlations induced due
to marginalization over the latent variables could be mistaken for the con-
ditional graphical model structure of the observed variables. In order to
avoid such identifiability problems the effect of the latent variables must be
“diffuse” across the observed variables. To address this point the following
quantity was introduced in [8] for any matrix M , defined with respect to
the tangent space T (M):

(3.1) ξ(T (M)) � max
N∈T (M), ‖N‖2≤1

‖N‖∞.

Thus ξ(T (M)) being small implies that elements of the tangent space T (M)
cannot have their support concentrated in a few locations; as a result M
cannot be too sparse. This idea is formalized in [8] by relating ξ(T (M)) to
a notion of “incoherence” of the row/column spaces, where the row/column
spaces are said to be incoherent with respect to the standard basis if these
spaces are not aligned closely with any of the coordinate axes. Typically a
matrix M with incoherent row/column spaces would have ξ(T (M)) � 1.
This point is quantified precisely in [8]. Specifically, we note that ξ(T (M))

can be as small as ∼
√

r
p for a rank-r matrix M ∈ R

p×p with row/column

spaces that are almost maximally incoherent (e.g., if the row/column spaces
span any r columns of a p×p orthonormal Hadamard matrix). On the other
hand ξ(T (M)) = 1 if the row/column spaces of M contain a standard basis
vector.

Based on these concepts we roughly require that the low-rank matrix that
summarizes the effect of the latent variables be incoherent, thereby ensuring
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that the extra correlations due to marginalization over the latent compo-
nents cannot be confused with the conditional graphical model structure of
the observed variables. Notice that the quantity ξ is not just a measure of the
number of latent variables, but also of the overall effect of the correlations
induced by marginalization over these variables.

Curvature and change in ξ: As noted previously an important techni-
cal point is that the algebraic variety of low-rank matrices is locally curved
at any smooth point. Consequently the quantity ξ changes as we move along
the low-rank matrix variety smoothly. The quantity ρ(T1, T2) introduced in
(2.7) allows us to bound the variation in ξ as follows (proof in Section 5):

Lemma 3.1. Let T1, T2 be two linear subspaces of matrices of the same
dimension with the property that ρ(T1, T2) < 1, where ρ is defined in (2.7).
Then we have that

ξ(T2) ≤ 1

1− ρ(T1, T2)
[ξ(T1) + ρ(T1, T2)].

3.2. Structure among observed variables. An identifiability problem also
arises if the conditional graphical model among the observed variables con-
tains a densely connected subgraph. These statistical relationships might be
mistaken as correlations induced by marginalization over latent variables.
Therefore we need to ensure that the conditional graphical model among
the observed variables is sparse. We impose the condition that this condi-
tional graphical model must have small “degree”, i.e., no observed variable
is directly connected to too many other observed variables conditioned on
the latent components. Notice that bounding the degree is a more refined
condition than simply bounding the total number of nonzeros as the sparsity
pattern also plays a role. In [8] the authors introduced the following quan-
tity in order to provide an appropriate measure of the sparsity pattern of a
matrix:

(3.2) μ(Ω(M)) � max
N∈Ω(M),‖N‖∞≤1

‖N‖2.

The quantity μ(Ω(M)) being small for a matrix implies that the spectrum
of any element of the tangent space Ω(M) is not too “concentrated”, i.e., the
singular values of the elements of the tangent space are not too large. In [8]
it is shown that a sparse matrix M with “bounded degree” (a small number
of nonzeros per row/column) has small μ(M). Specifically, if M ∈ R

p×p is
any matrix with at most deg(M) nonzero entries per row/column, then we
have that

μ(Ω(M)) ≤ deg(M).
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3.3. Transversality of tangent spaces. Suppose that we have the sum of
two vectors, each from two known subspaces. It is possible to uniquely re-
cover the individual vectors from the sum if and only if the subspaces have
a transverse intersection, i.e., they only intersect at the origin. This simple
observation leads to an appealing geometric notion of identifiability. Sup-
pose now that we have the sum of a sparse matrix and a low-rank matrix,
and that we are also given the tangent spaces at these matrices with re-
spect to the algebraic varieties of sparse and low-rank matrices respectively.
Then a necessary and sufficient condition for identifiability with respect to
the tangent spaces is that these spaces have a transverse intersection. This
transverse intersection condition is also sufficient for local identifiability in
a neighborhood around the sparse matrix and low-rank matrix with respect
to the varieties of sparse and low-rank matrices (due to the inverse function
theorem). It turns out that these tangent space transversality conditions are
also sufficient for the convex program (1.2) to provide consistent estimates
of a latent-variable graphical model (without any side information about the
tangent spaces).

In order to quantify the level of transversality between the tangent spaces
Ω and T we study the minimum gain with respect to some norm of the
addition operator (which adds two matrices) A : R

p×p × R
p×p → R

p×p

restricted to the cartesian product Y = Ω×T . Then given any matrix norm
‖ · ‖q on R

p×p ×R
p×p, the minimum gain of A restricted to Y is defined as:

ε(Ω, T, ‖ · ‖q) � min
(S,L)∈Ω×T, ‖(S,L)‖q=1

‖PYA†APY(S,L)‖q,

where PY denotes the projection onto Y, and A† denotes the adjoint of the
addition operator (with respect to the standard Euclidean inner-product).
The “level” of transversality of Ω and T is measured by the magnitude of
ε(Ω, T, ‖·‖q), with transverse intersection being equivalent to ε(Ω, T, ‖·‖q) >
0. Note that ε(Ω, T, ‖ · ‖F ) is the square of the minimum singular value of
the addition operator A restricted to Ω× T .

A natural norm with which to measure transversality is the dual norm
of the regularization function in (1.2), as the subdifferential of the regular-
ization function is specified in terms of its dual. The reasons for this will
become clearer as we proceed through this paper. Recall that the regular-
ization function used in the variational formulation (1.2) is given by:

fγ(S,L) = γ‖S‖1 + ‖L‖∗,

where the nuclear norm ‖ · ‖∗ reduces to the trace function over the cone
of positive-semidefinite matrices. This function is a norm for all γ > 0. The
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dual norm of fγ is given by

gγ(S,L) = max

{‖S‖∞
γ

, ‖L‖2
}
.

Next we define the quantity χ(Ω, T, γ) as follows in order to study the
transversality of the spaces Ω and T with respect to the gγ norm:

(3.3) χ(Ω, T, γ) � max

{
ξ(T )

γ
, 2μ(Ω)γ

}

Here μ and ξ are defined in (3.2) and (3.1). We then have the following
result (proved in Section 5):

Lemma 3.2. Let S ∈ Ω, L ∈ T be matrices such that ‖S‖∞ = γ and
let ‖L‖2 = 1. Then we have that gγ(PYA†APY(S,L)) ∈ [1 − χ(Ω, T, γ), 1 +
χ(Ω, T, γ)], where Y = Ω×T and χ(Ω, T, γ) is defined in (3.3). In particular
we have that 1− χ(Ω, T, γ) ≤ ε(Ω, T, gγ).

The quantity χ(Ω, T, γ) being small implies that the addition operator
is essentially isometric when restricted to Y = Ω × T . Stated differently
the magnitude of χ(Ω, T, γ) is a measure of the level of transversality of
the spaces Ω and T . If μ(Ω)ξ(T ) < 1

2 then γ ∈ (ξ(T ), 1
2μ(Ω)) ensures that

χ(Ω, T, γ) < 1, which in turn implies that the tangent spaces Ω and T have
a transverse intersection.

Observation: Thus we have that the smaller the quantities μ(Ω) and
ξ(T ), the more transverse the intersection of the spaces Ω and T as measured
by ε(Ω, T, gγ).

3.4. Conditions on Fisher information. The main focus of Section 4
is to analyze the regularized maximum-likelihood convex program (1.2)
by studying its optimality conditions. The log-likelihood function is well-
approximated in a neighborhood by a quadratic form given by the Fisher
information (which measures the curvature, as discussed in Section 2.2). Let
I∗ = I(K̃∗

O) denote the Fisher information evaluated at the true marginal
concentration matrix K̃∗

O (see (1.1)). The appropriate measure of transver-
sality between the tangent spaces1 Ω = Ω(S∗) and T = T (L∗) is then in
a space in which the inner-product is given by I∗. Specifically, we need to
analyze the minimum gain of the operator PYA†I∗APY restricted to the

1We implicitly assume that these tangent spaces are subspaces of the space of symmetric
matrices.



LATENT VARIABLE MODEL SELECTION 15

space Y = Ω× T . Therefore we impose several conditions on the Fisher in-
formation I∗. We define quantities that control the gains of I∗ restricted to
Ω and T separately; these ensure that elements of Ω and elements of T are
individually identifiable under the map I∗. In addition we define quantities
that, in conjunction with bounds on μ(Ω) and ξ(T ), allow us to control the
gain of I∗ restricted to the direct-sum Ω⊕ T .

I∗ restricted to Ω: The minimum gain of the operator PΩI∗PΩ re-
stricted to Ω is given by

αΩ � min
M∈Ω,‖M‖∞=1

‖PΩI∗PΩ(M)‖∞.

The maximum effect of elements in Ω in the orthogonal direction Ω⊥ is given
by

δΩ � max
M∈Ω,‖M‖∞=1

‖PΩ⊥I∗PΩ(M)‖∞.

The operator I∗ is injective on Ω if αΩ > 0. The ratio δΩ
αΩ

≤ 1 − ν im-
plies the irrepresentability condition imposed in [28], which gives a suffi-
cient condition for consistent recovery of graphical model structure using
�1-regularized maximum-likelihood. Notice that this condition is a general-
ization of the usual Lasso irrepresentability conditions [35, 40], which are
typically imposed on the covariance matrix. Finally we also consider the
following quantity, which controls the behavior of I∗ restricted to Ω in the
spectral norm:

βΩ � max
M∈Ω,‖M‖2=1

‖I∗(M)‖2.

I∗ restricted to T : Analogous to the case of Ω one could control the gains
of the operators PT⊥I∗PT and PTI∗PT . However as discussed previously
one complication is that the tangent spaces at nearby smooth points on the
rank variety are in general different, and the amount of twisting between
these spaces is governed by the local curvature. Therefore we control the
gains of the operators PT ′⊥I∗PT ′ and PT ′I∗PT ′ for all tangent spaces T ′

that are “close to” the nominal T (at the true underlying low-rank matrix),
measured by ρ(T, T ′) (2.7) being small. The minimum gain of the operator
PT ′I∗PT ′ restricted to T ′ (close to T ) is given by

αT � min
ρ(T ′,T )≤ ξ(T )

2

min
M∈T ′,‖M‖2=1

‖PT ′I∗PT ′(M)‖2.

Similarly the maximum effect of elements in T ′ in the orthogonal direction
T ′⊥ (for T ′ close to T ) is given by

δT � max
ρ(T ′,T )≤ ξ(T )

2

max
M∈T ′,‖M‖2=1

‖PT ′⊥I∗PT ′(M)‖2.
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Implicit in the definition of αT and δT is the fact that the outer minimum
and maximum are only taken over spaces T ′ that are tangent spaces to the
rank-variety. The operator I∗ is injective on all tangent spaces T ′ such that
ρ(T ′, T ) ≤ ξ(T )

2 if αT > 0. An irrepresentability condition (analogous to
those developed for the sparse case) for tangent spaces near T to the rank
variety would be that δT

αT
≤ 1 − ν. Finally we also control the behavior of

I∗ restricted to T ′ close to T in the �∞ norm:

βT � max
ρ(T ′,T )≤ ξ(T )

2

max
M∈T ′,‖M‖∞=1

‖I∗(M)‖∞.

The two sets of quantities (αΩ, δΩ) and (αT , δT ) essentially control how
I∗ behaves when restricted to the spaces Ω and T separately (in the natural
norms). The quantities βΩ and βT are useful in order to control the gains of
the operator I∗ restricted to the direct sum Ω⊕T . Notice that although the
magnitudes of elements in Ω are measured most naturally in the �∞ norm,
the quantity βΩ is specified with respect to the spectral norm. Similarly
elements of the tangent spaces T ′ to the rank variety are most naturally
measured in the spectral norm, but βT provides control in the �∞ norm.
These quantities, combined with μ(Ω) and ξ(T ) (defined in (3.2) and (3.1)),
provide the “coupling” necessary to control the behavior of I∗ restricted to
elements in the direct sum Ω⊕T . In order to keep track of fewer quantities,
we summarize the six quantities as follows:

α � min(αΩ, αT ); δ � max(δΩ, δT ); β � max(βΩ, βT ).

Main assumption There exists a ν ∈ (0, 12 ] such that:

δ

α
≤ 1− 2ν.

This assumption is to be viewed as a generalization of the irrepresentabil-
ity conditions imposed on the covariance matrix [35, 40] or the Fisher in-
formation matrix [28] in order to provide consistency guarantees for sparse
model selection using the �1 norm. With this assumption we have the fol-
lowing proposition, proved in Section 5, about the gains of the operator I∗

restricted to Ω⊕T . This proposition plays a fundamental role in the analysis
of the performance of the regularized maximum-likelihood procedure (1.2).
Specifically, it gives conditions under which a suitable primal-dual pair can
be specified to certify optimality with respect to (1.2) (see Section 5.2 for
more details).
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Proposition 3.3. Let Ω and T be the tangent spaces defined in this
section, and let I∗ be the Fisher information evaluated at the true marginal
concentration matrix. Further let α, β, ν be as defined above. Suppose that

μ(Ω)ξ(T ) ≤ 1

6

(
να

β(2 − ν)

)2

,

and that γ is in the following range:

γ ∈
[
3ξ(T )β(2 − ν)

να
,

να

2μ(Ω)β(2 − ν)

]
.

Then we have the following two conclusions for Y = Ω× T ′ with ρ(T ′, T ) ≤
ξ(T )
2 :

1. The minimum gain of I∗ restricted to Ω⊕ T ′ is bounded below:

min
(S,L)∈Y , ‖S‖∞=γ, ‖L‖2=1

gγ(PYA†I∗APY(S,L)) ≥ α

2
.

Specifically this implies that for all (S,L) ∈ Y

gγ(PYA†I∗APY(S,L)) ≥ α

2
gγ(S,L).

2. The effect of elements in Y = Ω × T ′ on the orthogonal complement
Y⊥ = Ω⊥ × T ′⊥ is bounded above:∥∥∥∥PY⊥A†I∗APY

(
PYA†I∗APY

)−1
∥∥∥∥
gγ→gγ

≤ 1− ν.

Specifically this implies that for all (S,L) ∈ Y

gγ(PY⊥A†I∗APY(S,L)) ≤ (1− ν)gγ(PYA†I∗APY(S,L)).

The last quantity we consider is the spectral norm of the marginal covari-
ance matrix Σ∗

O = (K̃∗
O)

−1:

(3.4) ψ � ‖Σ∗
O‖2 = ‖(K̃∗

O)
−1‖2.

A bound on ψ is useful in the probabilistic component of our analysis, in
order to derive convergence rates of the sample covariance matrix to the
true covariance matrix. We also observe that

‖I∗‖2→2 = ‖(K̃∗
O)

−1 ⊗ (K̃∗
O)

−1‖2→2 = ψ2.
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Remarks. The quantities α, β, δ bound the gains of the Fisher information
I∗ restricted to the spaces Ω and T (and tangent spaces near T ). One can
make stronger assumptions on I∗ that are more easily interpretable. For
example αΩ, βΩ could bound the minimum/maximum gains of I∗ for all
matrices (rather than just those in Ω), and δΩ the I∗-inner-product for all
pairs of orthogonal matrices (rather than just those in Ω and Ω⊥). Similarly
αT , βT could bound the minimum/maximum gains of I∗ for all matrices
(rather than just those near T ), and δT the I∗-inner-product for all pairs of
orthogonal matrices (rather than just those near T and T⊥). Such bounds
would apply in either the ‖ · ‖2→2 norm (for αT , δT , βΩ) or the ‖ · ‖∞→∞
norm (for αΩ, δΩ, βT ). These modified assumptions are global in nature (not
restricted just to Ω or near T ) and are consequently stronger (they lower
bound the original αΩ, αT and they upper bound the original βΩ, βT , δΩ, δT ),
and they essentially control the gains of the operator I∗ in the ‖ · ‖2→2

norm and the ‖ · ‖∞→∞ norm. In contrast previous works on covariance
selection [1, 2, 31] consider well-conditioned families of covariance matrices
by bounding the minimum/maximum eigenvalues (i.e., gain with respect to
the spectral norm).

4. Consistency of Regularized Maximum-Likelihood Program.

4.1. Main results. Recall that K∗
(O H) denotes the full concentration ma-

trix of a collection of zero-mean jointly-Gaussian observed and latent vari-
ables. Let p = |O| denote the number of observed variables, and let h = |H|
denote the number of latent variables. We are given n samples {Xi

O}ni=1

of the observed variables XO. We consider the high-dimensional setting
in which (p, h, n) are all allowed to grow simultaneously. We present our
main result next demonstrating the consistency of the estimator (1.2), and
then discuss classes of latent-variable graphical models and various scaling
regimes in which our estimator is consistent. Recall from (1.2) that λn is a
regularization parameter, and γ is a tradeoff parameter between the rank
and sparsity terms. Notice from Proposition 3.3 that the choice of γ de-
pends on the values of μ(Ω(S∗)) and ξ(T (L∗)). While these quantities may
not be known a priori, we discuss a method to choose γ numerically in our
experimental results (see Section 6). The following theorem shows that the
estimates (Ŝn, L̂n) provided by the convex program (1.2) are consistent for
a suitable choice of λn. In addition to the appropriate identifiability con-
ditions (as specified by Proposition 3.3), we also impose lower bounds on
the minimum magnitude nonzero entry θ of the sparse conditional graphical
model matrix S∗ and on the minimum nonzero singular value σ of the low-
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rank matrix L∗ summarizing the effect of the latent variables. The theorem
is stated in terms of the quantities α, β, ν, ψ, and we particularly emphasize
the dependence on μ(Ω(S∗)) and ξ(T (L∗)) because these control the com-
plexity of the underlying latent-variable graphical model given by K∗

(O H).

A number quantities play a role in our theorem: Let D = max{1, να
3β(2−ν)},

C1 = ψ(1 + α
6β ), C2 = 48

α + 1
ψ2 , Csamp = αν

32(3−ν)D min
{

1
4C1

, αν
256D(3−ν)ψC2

1

}
,

Cλ = 48
√
2Dψ(2−ν)
ξ(T )ν , CS = max

{(
6(2−ν)
ν + 1

)
C2
2ψ

2D,C2 +
3αC2

2 (2−ν)
16(3−ν)

}
, and

CL = C2να
β(2−ν) .

Theorem 4.1. Let K∗
(O H) denote the concentration matrix of a Gaus-

sian model. We have n samples {Xi
O}ni=1 of the p observed variables denoted

by O. Let Ω = Ω(S∗) and T = T (L∗) denote the tangent spaces at S∗ and
at L∗ with respect to the sparse and low-rank matrix varieties respectively.

Assumptions: Suppose that the quantities μ(Ω) and ξ(T ) satisfy the as-
sumption of Proposition 3.3 for identifiability, and γ is chosen in the range
specified by Proposition 3.3. Further suppose that the following conditions
hold:

1. Let n ≥ p
ξ(T )4

max
{

128ψ2

C2
samp

, 2
}
, i.e., we require that n � p

ξ(T )4
.

2. Set λn = 48
√
2Dψ(2−ν)
ξ(T )ν

√
p
n , i.e., we require that λn � 1

ξ(T )

√
p
n .

3. Let σ ≥ CLλn
ξ(T )2

, i.e., we require that σ � 1
ξ(T )3

√
p
n .

4. Let θ ≥ CSλn
μ(Ω) , i.e., we require that θ � 1

ξ(T )μ(Ω)

√
p
n .

Conclusions: Then with probability greater than 1− 2 exp{−p} we have
algebraic correctness and estimation error given by:

1. sign(Ŝn) = sign(S∗) and rank(L̂n) = rank(L∗);
2. gγ(Ŝn − S∗, L̂n − L∗) ≤ 512

√
2(3−ν)Dψ
ναξ(T )

√
p
n � 1

ξ(T )

√
p
n .

The proof of this theorem is given in Section 5. The theorem essentially
states that if the minimum nonzero singular value of the low-rank piece
L∗ and minimum nonzero entry of the sparse piece S∗ are bounded away
from zero, then the convex program (1.2) provides estimates that are both
algebraically correct and have bounded estimation error (in the �∞ and
spectral norms).

Notice that the condition on the minimum singular value of L∗ is more
stringent than the one on the minimum nonzero entry of S∗. One role played
by these conditions is to ensure that the estimates (Ŝn, L̂n) do not have
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smaller support size/rank than (S∗, L∗). However the minimum singular
value bound plays the additional role of bounding the curvature of the low-
rank matrix variety around the point L∗, which is the reason for this condi-
tion being more stringent. Notice also that the number of latent variables h
does not explicitly appear in the bounds in Theorem 4.1, which only depend
on p, μ(Ω(S∗)), ξ(T (L∗)). However the dependence on h is implicit in the
dependence on ξ(T (L∗)), and we discuss this point in greater detail in the
following section.

Finally we note that consistency holds in Theorem 4.1 for a range of

values of γ ∈
[
3β(2−ν)ξ(T )

να , να
2β(2−ν)μ(Ω)

]
. In particular the assumptions on

the sample complexity, the minimum nonzero singular value of L∗, and the
minimum magnitude nonzero entry of S∗ are governed by the lower end
of this range for γ. These assumptions can be weakened if we only require
consistency for a smaller range of values of γ. The next result conveys this
point with a specific example.

Corollary 4.2. Consider the same setup and notation as in Theo-
rem 4.1. Suppose that the quantities μ(Ω) and ξ(T ) satisfy the assumption
of Proposition 3.3 for identifiability, and that γ = να

2β(2−ν)μ(Ω) (the upper

end of the range specified in Proposition 3.3), i.e., γ � 1
μ(Ω) . Further sup-

pose that: (1) n � μ(Ω)4 p; (2) λn � μ(Ω)
√

p
n ; (3) σ � μ(Ω)2

ξ(T )

√
p
n ; (4)

θ �
√

p
n . Then with probability greater than 1 − 2 exp{−p} we have esti-

mates (Ŝn, L̂n) that are algebraically correct, and with the error bounded as

gγ(Ŝn − S∗, L̂n − L∗) � μ(Ω)
√

p
n .

The proof of this corollary2 is analogous to that of Theorem 4.1. We
emphasize that in practice it is often beneficial to have consistent estimates
for a range of values of γ (as in Theorem 4.1). Specifically the stability
of the sparsity pattern and rank of the estimates (Ŝn, L̂n) for a range of
tradeoff parameters is useful in order to choose a suitable value of γ, as prior
information about the quantities μ(Ω(S∗)) and ξ(T (L∗)) is not typically
available (see Section 6).

We remark here that the identifiability conditions of Proposition 3.3 are
the main sufficient conditions required for Theorem 4.1 and Corollary 4.2 to

2By making stronger assumptions on the Fisher information matrix I∗, one can fur-
ther remove the factor of ξ(T ) in the lower bound for σ. Specifically the lower bound
σ � μ(Ω)3

√
p
n

suffices for consistent estimation if the bounds defined by the quantities
αT , βT , δT can be strengthened as described in the remarks at the end of Section 3.4.



LATENT VARIABLE MODEL SELECTION 21

hold. It would be interesting to obtain necessary conditions as well for these
results, analogous to the necessity and sufficiency of the irrepresentability
conditions for the Lasso [35, 40].

4.2. Scaling regimes. Next we consider classes of latent-variable models
that satisfy the conditions of Theorem 4.1. Recall from Section 3.2 that
μ(Ω(S∗)) ≤ deg(S∗). Throughout this section, we consider latent-variable
models in which the low-rank matrix L∗ is almost maximally incoherent, i.e.,

ξ(T (L∗)) ∼
√

h
p so the effect of marginalization over the latent variables is

diffuse across almost all the observed variables. We suppress the dependence
on the quantities α, β, ν, ψ defined in Section 3.4 in our scaling results, and
specifically focus on the tradeoff between ξ(T (L∗)) and μ(Ω(S∗)) for consis-
tent estimation (we also suppress the dependence of these quantities on n).
Thus, based on Proposition 3.3 we study latent-variable models in which

ξ(T (L∗)) μ(Ω(S∗)) = O
(√

h
p deg(S∗)

)
= O(1).

As we describe next, there are non-trivial classes of latent-variable graphical
models in which this condition holds.

Bounded degree: The first class of latent-variable models that we con-
sider are those in which the conditional graphical model among the observed
variables (given by K∗

O) has constant degree:

deg(S∗) = O(1), h ∼ p.

Such models can be estimated consistently from n ∼ p samples. Thus con-
sistent latent-variable model selection is possible even when the number of
samples and the number of latent variables are on the same order as the
number of observed variables.

Polylogarithmic degree: The next class of models that we consider are
those in which the degree of the conditional graphical model of the observed
variables grows polylogarithmically with p:

deg(S∗) ∼ log(p)q, h ∼ p

log(p)2q
,

Such latent-variable graphical models can be consistently estimated as long
as n ∼ p polylog(p).

For standard graphical model selection with no latent variables �1-regularized
maximum likelihood is shown to be consistent with n = O(log p) samples
[28]. On the other hand our results prove consistency in the setting with
latent variables when n = O(p) samples. It would be interesting to study
whether these rates are inherent to latent-variable model selection.
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4.3. Rates for covariance matrix estimation. Theorem 4.1 gives condi-
tions under which we can consistently estimate the sparse and low-rank
parts that compose the marginal concentration matrix K̃∗

O. Here we state a
corollary that gives rates for covariance matrix estimation, i.e., the quality
of the estimate (Ŝn − L̂n)

−1 with respect to the “true” marginal covariance
matrix Σ∗

O.

Corollary 4.3. Under the same conditions as in Theorem 4.1, we have
with probability greater than 1− 2 exp{−p} that

gγ(A†[(Ŝn − L̂n)
−1 − Σ∗

O]) ≤ λn

[
1 + ν

6(2−ν)
]
.

This corollary implies that ‖(Ŝn − L̂n)
−1 −Σ∗

O‖2 � 1
ξ(T )

√
p
n based on the

choice of λn in Theorem 4.1, and that ‖(Ŝn − L̂n)
−1 − Σ∗

O‖2 � μ(Ω)
√

p
n

based on the choice of λn in Corollary 4.2.

5. Proofs.

5.1. Proofs of Section 3. Here we give proofs of the results stated in
Section 3.

Proof of Lemma 3.1: Since ρ(T1, T2) < 1 the largest principal angle
between T1 and T2 is strictly less than π

2 . Consequently, the mapping PT2 :
T1 → T2 restricted to T1 is bijective (as it is injective, and the spaces T1, T2
have the same dimension). Consider the maximum and minimum gains of
PT2 restricted to T1; for any M ∈ T1, ‖M‖2 = 1:

‖PT2(M)‖2 = ‖M + [PT2 − PT1 ](M)‖2 ∈ [1− ρ(T1, T2), 1 + ρ(T1, T2)].

Therefore, we can rewrite ξ(T2) as follows:

ξ(T2) = max
N∈T2,‖N‖2≤1

‖N‖∞ = max
N∈T2,‖N‖2≤1

‖PT2(N)‖∞
≤ max

N∈T1,‖N‖2≤ 1
1−ρ(T1,T2)

‖PT2(N)‖∞

≤ max
N∈T1,‖N‖2≤ 1

1−ρ(T1,T2)

[‖N‖∞ + ‖[PT1 − PT2 ](N)‖∞]

≤ 1

1 − ρ(T1, T2)

[
ξ(T1) + max

N∈T1,‖N‖2≤1
‖[PT1 − PT2 ](N)‖∞

]

≤ 1

1 − ρ(T1, T2)

[
ξ(T1) + max

‖N‖2≤1
‖[PT1 − PT2 ](N)‖2

]

≤ 1

1 − ρ(T1, T2)
[ξ(T1) + ρ(T1, T2)] .
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This concludes the proof of the lemma. �
Proof of Lemma 3.2: We have that A†A(S,L) = (S + L,S + L);

therefore, PYA†APY(S,L) = (S + PΩ(L),PT (S) + L). We need to bound
‖S + PΩ(L)‖∞ and ‖PT (S) + L‖2. First, we have

‖S + PΩ(L)‖∞ ∈ [‖S‖∞ − ‖PΩ(L)‖∞, ‖S‖∞ + ‖PΩ(L)‖∞]

⊆ [‖S‖∞ − ‖L‖∞, ‖S‖∞ + ‖L‖∞]

⊆ [γ − ξ(T ), γ + ξ(T )].

Similarly, one can check that

‖PT (S) + L‖2 ∈ [−‖PT (S)‖2 + ‖L‖2, ‖PT (S)‖2 + ‖L‖2]
⊆ [1− 2‖S‖2, 1 + 2‖S‖2]
⊆ [1− 2γμ(Ω), 1 + 2γμ(Ω)].

These two bounds give us the desired result. �
Proof of Proposition 3.3: Before proving the two parts of this propo-

sition we make a simple observation about ξ(T ′) using the condition that

ρ(T, T ′) ≤ ξ(T )
2 by applying Lemma 3.1:

ξ(T ′) ≤ ξ(T )+ρ(T,T ′)
1−ρ(T,T ′) ≤

3ξ(T )
2

1− ξ(T )2

≤ 3ξ(T ).

Here we used the property that ξ(T ) ≤ 1 in obtaining the final inequality.

Consequently, noting that γ ∈
[
3β(2−ν)ξ(T )

να , να
2β(2−ν)μ(Ω)

]
implies that

(5.1) χ(Ω, T ′, γ) = max
{
ξ(T ′)
γ , 2μ(Ω)γ

}
≤ να

β(2−ν) .

Part 1: The proof of this step proceeds in a similar manner to that of
Lemma 3.2. First we have for S ∈ Ω, L ∈ T ′ with ‖S‖∞ = γ, ‖L‖2 = 1:

‖PΩI∗(S + L)‖∞ ≥ ‖PΩI∗S‖∞ − ‖PΩI∗L‖∞ ≥ αγ − ‖I∗L‖∞ ≥ αγ − βξ(T ′).

Next under the same conditions on S,L,

‖PT ′I∗(S + L)‖2 ≥ ‖PT ′I∗L‖2 − ‖PT ′I∗S‖2 ≥ α− 2‖I∗S‖2 ≥ α− 2βμ(Ω)γ.

Combining these last two bounds with (5.1), we conclude that

min(S,L)∈Y , ‖S‖∞=γ, ‖L‖2=1 gγ(PYA†I∗APY(S,L))

≥ α− βmax
{
ξ(T ′)
γ , 2μ(Ω)γ

}
≥ α− να

2−ν = 2α(1−ν)
2−ν ≥ α

2 ,



24 CHANDRASEKARAN, PARRILO, WILLSKY

where the final inequality follows from the assumption that ν ∈ (0, 12 ].
Part 2: Note that for S ∈ Ω, L ∈ T ′ with ‖S‖∞ ≤ γ, ‖L‖2 ≤ 1

‖PΩ⊥I∗(S + L)‖∞ ≤ ‖PΩ⊥I∗S‖∞ + ‖PΩ⊥I∗L‖∞ ≤ δγ + βξ(T ′).

Similarly

‖PT ′⊥I∗(S + L)‖2 ≤ ‖PT ′⊥I∗S‖2 + ‖PT ′⊥I∗L‖2 ≤ βγμ(Ω) + δ.

Combining these last two bounds with the bounds from the first part, we
have that ∥∥∥PY⊥A†I∗APY

(PYA†I∗APY
)−1

∥∥∥
gγ→gγ

≤ δ+βmax
{

ξ(T ′)
γ

,2μ(Ω)γ
}

α−βmax
{

ξ(T ′)
γ

,2μ(Ω)γ
} ≤ δ+ να

2−ν

α− να
2−ν

≤ (1−2ν)α+ να
2−ν

α− να
2−ν

= 1− ν.

This concludes the proof of the proposition. �

5.2. Proof strategy for Theorem 4.1. Standard results from convex anal-
ysis [30] state that (Ŝn, L̂n) is a minimum of the convex program (1.2) if the
zero matrix belongs to the subdifferential of the objective function evaluated
at (Ŝn, L̂n) (in addition to (Ŝn, L̂n) satisfying the constraints). Elements of
the subdifferentials with respect to the �1 norm and the nuclear norm at a
matrix M have the key property that they decompose with respect to the
tangent spaces Ω(M) and T (M) [37]. This decomposition property plays a
critical role in our analysis. In particular it states that the optimality con-
ditions consist of two parts, one part corresponding to the tangent spaces Ω
and T and another corresponding to the normal spaces Ω⊥ and T⊥.

Our analysis proceeds by constructing a primal-dual pair of variables that
certify optimality with respect to (1.2). Consider the optimization problem
(1.2) with the additional (non-convex) constraints that the variable S be-
longs to the algebraic variety of sparse matrices and that the variable L
belongs to the algebraic variety of low-rank matrices. While this new op-
timization problem is non-convex, it has a very interesting property. At a
globally optimal solution (and indeed at any locally optimal solution) (S̃, L̃)
such that S̃ and L̃ are smooth points of the algebraic varieties of sparse and
low-rank matrices, the first-order optimality conditions state that the La-
grange multipliers corresponding to the additional variety constraints must
lie in the normal spaces Ω(S̃)⊥ and T (L̃)⊥. This basic observation, combined
with the decomposition property of the subdifferentials of the �1 and nuclear
norms, suggests the following high-level proof strategy: Considering the so-
lution (S̃, L̃) of the variety-constrained problem, we show under suitable
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conditions that the second part of the subgradient optimality conditions of
(1.2) (without any variety constraints) corresponding to components in the
normal spaces Ω(S̃)⊥ and T (L̃)⊥ is also satisfied by (S̃, L̃). Thus, we show
that (S̃, L̃) satisfy the optimality conditions of the original convex program
(1.2). Consequently (S̃, L̃) is also the optimum of the convex program (1.2).
As this estimate is obtained as the solution to the problem with the variety
constraints, the algebraic correctness of (S̃, L̃) can be directly concluded.
We emphasize here that the variety-constrained optimization problem is
used solely as an analysis tool in order to prove consistency of the estimates
provided by the convex program (1.2). The key technical complication is
that the tangent spaces at L̃ and L∗ are in general different. We bound the
twisting between these tangent spaces by using the fact that the minimum
nonzero singular value of L∗ is bounded away from zero (as assumed in
Theorem 4.1; see also the supplement [7]).

5.3. Results proved in supplement. In this section we give the statements
of some results that are proved in a separate supplement [7]. These results
are critical to the proof of our main theorem, but they deal mainly with non-
statistical aspects such as the curvature of the algebraic variety of low-rank
matrices. Recall that Ω = Ω(S∗) and T = T (L∗). We also refer frequently
to the constants defined in Theorem 4.1.

As the gradient of the log-determinant function is given by a matrix in-
verse, a key step in analyzing the properties of the convex program (1.2) is
to show that the change in the inverse of a matrix due to small perturbations
is well-approximated by the first-order term in the Taylor series expansion.
Consider the Taylor series of the inverse of a matrix:

(M +Δ)−1 =M−1 −M−1ΔM−1 +RM−1(Δ),

where

RM−1(Δ) =M−1

[ ∞∑
k=2

(−ΔM−1)k

]
.

This infinite sum converges for Δ sufficiently small. The following proposi-
tion provides a bound on the second-order term specialized to our setting:

Proposition 5.1. Suppose that γ is in the range given by Proposi-
tion 3.3. Further suppose ΔS ∈ Ω, and let gγ(ΔS ,ΔL) ≤ 1

2C1
. Then we

have that
gγ(A†RΣ∗

O
(A(ΔS ,ΔL))) ≤ 2DψC2

1gγ(ΔS ,ΔL)
2

ξ(T ) .



26 CHANDRASEKARAN, PARRILO, WILLSKY

Next we analyze the following convex program subject to certain addi-
tional constraints:
(5.2)

(ŜΩ, L̂T̃ ) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]

s.t. S − L � 0, S ∈ Ω, L ∈ T̃ ,

for some subspace T̃ . Comparing (5.2) with the convex program (1.2), we
also do not constrain the variable L to be positive semidefinite in (5.2) for
ease of proof of the next result (see the supplement [7] for more details; recall
that the nuclear norm of a positive semidefinite matrix is equal to its trace).
We show that if T̃ is any tangent space to the low-rank matrix variety such
that ρ(T, T̃ ) ≤ ξ(T )

2 , then we can bound the error (ΔS ,ΔL) = (ŜΩ−S∗, L∗−
L̂T̃ ). Let CT̃ = PT̃⊥(L∗) denote the normal component of the true low-rank

matrix at T̃ , and let En = ΣnO − Σ∗
O denote the difference between the true

marginal covariance and the sample covariance. The proof of the following
result uses Brouwer’s fixed-point theorem [27], and is inspired by the proof of
a similar result in [28] for standard sparse graphical model recovery without
latent variables.

Proposition 5.2. Let the error (ΔS,ΔL) in the solution of the convex

program (5.2) (with T̃ such that ρ(T̃ , T ) ≤ ξ(T )
2 ) be as defined above, and

define

r = max
{

8
α

[
gγ(A†En) + gγ(A†I∗CT̃ ) + λn

]
, ‖CT ′‖2

}
.

If r ≤ min
{

1
4C1

, αξ(T )
64DψC2

1

}
for γ as in Proposition 3.3, then gγ(ΔS ,ΔL) ≤ 2r.

Finally we give a proposition that summarizes the algebraic component
of our proof.

Proposition 5.3. Assume that γ is in the range specified by Propo-
sition 3.3, σ ≥ CLλn

ξ(T )2
, θ ≥ CSλn

μ(Ω) , gγ(A†En) ≤ λnν
6(2−ν) , and that λn ≤

3α(2−ν)
16(3−ν) min

{
1

4C1
, αξ(T )
64DψC2

1

}
. Then there exists a T ′ and a corresponding unique

solution (ŜΩ, L̂T ′) of (5.2) with T̃ = T ′ with the following properties:

1. sign(ŜΩ) = sign(S∗) and rank(L̂T ′) = rank(L∗), with L̂T ′ � 0. Further

T (L̂T ′) = T ′ and ρ(T, T ′) ≤ ξ(T )
4 .

2. Letting CT ′ = PT ′⊥(L∗) we have that gγ(A†I∗CT ′) ≤ λnν
6(2−ν) , and that

‖CT ′‖2 ≤ 16(3−ν)λn
3α(2−ν) .



LATENT VARIABLE MODEL SELECTION 27

Further if gγ(A†RΣ∗
O
(A(ŜΩ−S∗, L∗− L̂T ′))) ≤ λnν

6(2−ν) then the tangent space

constraints S ∈ Ω, L ∈ T ′ are inactive in (5.2). Consequently the unique
solution of (1.2) is (Ŝn, L̂n) = (ŜΩ, L̂T ′).

5.4. Probabilistic analysis. The results given thus far in this section have
been completely deterministic in nature. Here we present the probabilistic
component of our proof by studying the rate at which the sample covariance
matrix ΣnO converges to the true covariance matrix Σ∗

O in spectral norm. This
result is well-known and follows directly from Theorem II.13 in [9]; we mainly
discuss it here for completeness and also to show explicitly the dependence
on ψ = ‖Σ∗

O‖2 defined in (3.4). See the supplement [7] for a proof.

Lemma 5.4. Let ψ = ‖Σ∗
O‖2. Given any δ > 0 with δ ≤ 8ψ, let the

number of samples n be such that n ≥ 64pψ2

δ2
. Then we have that

Pr [‖ΣnO − Σ∗
O‖2 ≥ δ] ≤ 2 exp

{
− nδ2

128ψ2

}
.

The following corollary relates the number of samples required for an error
bound to hold with probability 1− 2 exp{−p}.

Corollary 5.5. Let ΣnO be the sample covariance formed from n sam-

ples of the observed variables. Set δn =

√
128pψ2

n . If n ≥ 2p then

Pr [‖ΣnO − Σ∗
O‖2 ≤ δn] ≥ 1− 2 exp{−p}.

Proof : Note that n ≥ 2p implies that δn ≤ 8ψ, and apply Lemma 5.4. �

5.5. Proof of Theorem 4.1 and Corollary 4.3. We first combine the re-
sults obtained thus far to prove Theorem 4.1. Set En = ΣnO − Σ∗

O, set

δn =

√
128pψ2

n , and then set λn = 6Dδn(2−ν)
ξ(T )ν . This setting of λn is equiv-

alent to the specification in the statement of Theorem 4.1.
Proof of Theorem 4.1: We mainly need to show that the various suffi-

cient conditions of Proposition 5.3 are satisfied. We condition on the event
that ‖En‖2 ≤ δn, which holds with probability greater than 1 − 2 exp{−p}
from Corollary 5.5 as n ≥ 2p by assumption. Based on the bound on n, we
also have that

δn ≤ ξ(T )2
[

αν
32(3−ν)D min

{
1

4C1
, αν
256D(3−ν)ψC2

1

}]
.

In particular, these bounds imply that

(5.3) δn ≤ αξ(T )ν
32(3−ν)D min

{
1

4C1
, αξ(T )
64DψC2

1

}
; δn ≤ α2ξ(T )2ν2

8192ψC2
1 (3−ν)2D2 .
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Both these weaker bounds are used later.
Based on the assumptions of Theorem 4.1, the requirements of Propo-

sition 5.3 on σ and θ are satisfied. Next we verify the bounds on λn and
gγ(A†En). Based on the setting of λn above and the bound on δn from
(5.3), we have that

λn = 6D(2−ν)δn
ξ(T )ν ≤ 3α(2−ν)

16(3−ν) min
{

1
4C1

, αξ(T )
64DψC2

1

}
.

Next we combine the facts that λn = 6Dδn(2−ν)
ξ(T )ν and that ‖En‖2 ≤ δn to

conclude that

(5.4) gγ(A†En) ≤ Dδn
ξ(T ) =

λnν
6(2−ν) .

Thus, we have from Proposition 5.3 that there exists a T ′ and correspond-
ing solution (ŜΩ, L̂T ′) of (5.2) with the prescribed properties. Next we apply
Proposition 5.2 with T̃ = T ′ to bound the error (ŜΩ−S∗, L∗ − L̂T ′). Noting

that ρ(T, T ′) ≤ ξ(T )
4 , we have that

8
α

[
gγ(A†En) + gγ(A†I∗CT ′) + λn

]
≤ 8

α

[
ν

3(2−ν) + 1
]
λn

= 16(3−ν)λn
3α(2−ν)(5.5)

= 32(3−ν)D
αξ(T )ν δn(5.6)

≤ min
{

1
4C1

, αξ(T )
64DψC2

1

}
.(5.7)

In the first inequality we used the fact that gγ(A†En) ≤ λnν
6(2−ν) (from above)

and that gγ(A†I∗CT ′) is similarly bounded (from Proposition 5.3). In the

second equality we used the relation λn = 6Dδn(2−ν)
ξ(T )ν . In the final inequality

we used the bound on δn from (5.3). This satisfies one of the requirements of
Proposition 5.2. The second requirement of Proposition 5.2 on ‖CT ′‖2 is also

similarly satisfied as we have that ‖CT ′‖2 ≤ 16(3−ν)λn
3α(2−ν) from Proposition 5.3,

and we use the same sequence of inequalities as above. Thus we conclude
from Proposition 5.2 and from (5.5) that

(5.8) gγ(ŜΩ − S∗, L∗ − L̂T ′) ≤ 32(3−ν)λn
3α(2−ν) � 1

ξ(T )

√
p
n .

Here the last inequality follows from the bound on λn.
If we show that (Ŝn, L̂n) = (ŜΩ, L̂T ′) we can conclude the proof of Theo-

rem 4.1 since algebraic correctness of (ŜΩ, L̂T ′) holds from Proposition 5.3
and the estimation error bound follows from (5.8). In order to complete this
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final step, we again revert to Proposition 5.3 and prove the requisite bound
on gγ(A†RΣ∗

O
(A(ŜΩ − S∗, L∗ − L̂T ′))).

Since the bound (5.8) combined with the inequality (5.7) satisfies the
condition of Proposition 5.1 (i.e., we have that gγ(ŜΩ−S∗, L∗− L̂T ′) ≤ 1

2C1
):

gγ(A†RΣ∗
O
(A(ŜΩ − S∗, L∗ − L̂T ′))) ≤ 2DψC2

1
ξ(T ) gγ(ŜΩ − S∗, L∗ − L̂T ′)2

≤ 2DψC2
1

ξ(T )

(
64(3−ν)D
αξ(T )ν

)2
δ2n

=
[
8192ψC2

1 (3−ν)2D2

α2ξ(T )2ν2 δn

]
Dδn
ξ(T )

≤ Dδn
ξ(T )

= λnν
6(2−ν) .

In the second inequality we used (5.6) and (5.8), in the final inequality we
used the bound (5.3) on δn, and in the final equality we used the relation

λn = 6Dδn(2−ν)
ξ(T )ν . �

Proof of Corollary 4.3: Based on the optimality conditions of the mod-
ified convex program (5.2), we have that

gγ(A†[(Ŝn − L̂n)
−1 − ΣnO]) ≤ λn.

Combining this with the bound (5.4) yields the desired result. �

6. Simulation Results. In this section we give experimental demon-
stration of the consistency of our estimator (1.2) on synthetic examples,
and its effectiveness in modeling real-world stock return data. Our choices
of λn and γ are guided by Theorem 4.1. Specifically, we choose λn to be

proportional to
√

p
n . For γ we observe that the support/sign-pattern and

the rank of the solution (Ŝn, L̂n) are the same for a range of values of γ.
Therefore one could solve the convex program (1.2) for several values of
γ, and choose a solution in a suitable range in which the sign-pattern and
rank of the solution are stable (see [8] for details). In practical problems
with real-world data these parameters may be chosen via cross-validation
(it would be of interest to consider methods such as those developed in [26]).
For small problem instances we solve the convex program (1.2) using a com-
bination of YALMIP [23] and SDPT3 [33]. For larger problem instances we
use the special purpose solver LogdetPPA [36] developed for log-determinant
semidefinite programs.
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Fig 1. Synthetic data: Plot showing probability of algebraically correct estimation. The
three models studied are (a) 36-node conditional graphical model given by a cycle with
h = 2 latent variables, (b) 36-node conditional graphical model given by a cycle with h = 3
latent variables, and (c) 36-node conditional graphical model given by a 6×6 grid with h = 1
latent variable. For each plotted point, the probability of algebraically correct estimation is
obtained over 50 random trials.

6.1. Synthetic data. In the first set of experiments we consider a set-
ting in which we have access to samples of the observed variables of a
latent-variable graphical model. We consider several latent-variable Gaus-
sian graphical models. The first model consists of p = 36 observed variables
and h = 2 latent variables. The conditional graphical model structure of the
observed variables is a cycle with the edge partial correlation coefficients
equal to 0.25; thus, this conditional model is specified by a sparse graphical
model with degree 2. The second model is the same as the first one, but with
h = 3 latent variables. The third model consists of h = 1 latent variable,
and the conditional graphical model structure of the observed variables is
given by a 6 × 6 nearest-neighbor grid (i.e., p = 36 and degree 4) with the
partial correlation coefficients of the edges equal to 0.15. In all three of these
models each latent variable is connected to a random subset of 80% of the
observed variables (and the partial correlation coefficients corresponding to
these edges are also random). Therefore the effect of the latent variables is
“spread out” over most of the observed variables, i.e., the low-rank matrix
summarizing the effect of the latent variables is incoherent.

For each model we generate n samples of the observed variables, and use
the resulting sample covariance ΣnO as input to our convex program (1.2).
Figure 1 shows the probability of obtaining algebraically correct estimates
as a function of n. This probability is evaluated over 50 experiments for each
value of n. In all of these cases standard graphical model selection applied
directly to the observed variables is not useful as the marginal concentration
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Fig 2. Stock returns: The figure on the left shows the sparsity pattern (black denotes an
edge, and white denotes no edge) of the concentration matrix of the conditional graphical
model (135 edges) of the stock returns, conditioned on 5 latent variables, in a latent-
variable graphical model (total number of parameters equals 639). This model is learned
using (1.2), and the KL divergence with respect to a Gaussian distribution specified by
the sample covariance is 17.7. The figure on the right shows the concentration matrix
of the graphical model (646 edges) of the stock returns, learned using standard sparse
graphical model selection based on solving an �1-regularized maximum-likelihood program
(total number of parameters equals 730). The KL divergence between this distribution and
a Gaussian distribution specified by the sample covariance is 44.4.

matrix of the observed variables is not well-approximated by a sparse ma-
trix. These experiments agree with our theoretical results that the convex
program (1.2) is an algebraically consistent estimator of a latent-variable
model given (sufficiently many) samples of only the observed variables.

6.2. Stock return data. In the next experiment we model the statistical
structure of monthly stock returns of 84 companies in the S&P 100 index
from 1990 to 2007; we disregard 16 companies that were listed after 1990.
The number of samples n is equal to 216. We compute the sample covariance
based on these returns and use this as input to (1.2).

The model learned using (1.2) for suitable values of λn, γ consists of h = 5
latent variables, and the conditional graphical model structure of the stock
returns conditioned on these latent components consists of 135 edges. There-
fore the number of parameters in the model is 84+135+(5×84) = 639. The
resulting KL divergence between the distribution specified by this model and
a Gaussian distribution specified by the sample covariance is 17.7. Figure 2
(left) shows the conditional graphical model structure. The strongest edges
in this conditional graphical model, as measured by partial correlation, are
between Baker Hughes - Schlumberger, A.T.&T. - Verizon, Merrill Lynch -
Morgan Stanley, Halliburton - Baker Hughes, Intel - Texas Instruments, Ap-
ple - Dell, and Microsoft - Dell. It is of interest to note that in the Standard
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Industrial Classification3 system for grouping these companies, several of
these pairs are in different classes. As mentioned in Section 2.1 our method
estimates a low-rank matrix that summarizes the effect of the latent vari-
ables; in order to factorize this low-rank matrix, for example into sparse
factors, one could use methods such as those described in [38].

We compare these results to those obtained using a sparse graphical
model learned using �1-regularized maximum-likelihood (see for example
[28]), without introducing any latent variables. Figure 2 (right) shows this
graphical model structure. The number of edges in this model is 646 (the
total number of parameters is equal to 646+84 = 730), and the resulting KL
divergence between this distribution and a Gaussian distribution specified
by the sample covariance is 44.4.

These results suggest that a latent-variable graphical model is better
suited than a standard sparse graphical model for modeling stock returns.
This is likely due to the presence of global, long-range correlations in stock
return data that are better modeled via latent variables.

7. Discussion. We have studied the problem of modeling the statistical
structure of a collection of random variables as a sparse graphical model con-
ditioned on a few additional latent components. As a first contribution we
described conditions under which such latent-variable graphical models are
identifiable given samples of only the observed variables. We also proposed
a convex program based on �1 and nuclear norm regularized maximum-
likelihood for latent-variable graphical model selection. Given samples of
the observed variables of a latent-variable Gaussian model we proved that
this convex program provides consistent estimates of the number of latent
components as well as the conditional graphical model structure among the
observed variables conditioned on the latent components. Our analysis holds
in the high-dimensional regime in which the number of observed/latent vari-
ables are allowed to grow with the number of samples of the observed vari-
ables. These theoretical predictions are verified via a set of experiments on
synthetic data. We also demonstrate the effectiveness of our approach in
modeling real-world stock return data.

Several questions arise that are worthy of further investigation. While
(1.2) can be solved in polynomial time using off-the-shelf solvers, it is prefer-
able to develop more efficient special-purpose solvers to scale to massive
datasets by taking advantage of the structure of (1.2). It is also of interest
to develop statistically consistent convex optimization methods for latent-
variable modeling with non-Gaussian variables, e.g., for categorical data.

3See the U.S. SEC website at http://www.sec.gov/info/edgar/siccodes.htm
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