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Abstract—Low-dimensional statistics of measurements play an
important role in detection problems, including those encountered
in sensor networks. In this work, we focus on learning low-di-
mensional linear statistics of high-dimensional measurement data
along with decision rules defined in the low-dimensional space in
the case when the probability density of the measurements and
class labels is not given, but a training set of samples from this dis-
tribution is given. We pose a joint optimization problem for linear
dimensionality reduction and margin-based classification, and de-
velop a coordinate descent algorithm on the Stiefel manifold for its
solution. Although the coordinate descent is not guaranteed to find
the globally optimal solution, crucially, its alternating structure
enables us to extend it for sensor networks with a message-passing
approach requiring little communication. Linear dimensionality
reduction prevents overfitting when learning from finite training
data. In the sensor network setting, dimensionality reduction not
only prevents overfitting, but also reduces power consumption
due to communication. The learned reduced-dimensional space
and decision rule is shown to be consistent and its Rademacher
complexity is characterized. Experimental results are presented
for a variety of datasets, including those from existing sensor
networks, demonstrating the potential of our methodology in
comparison with other dimensionality reduction approaches.

Index Terms—Linear dimensionality reduction, sensor net-
works, Stiefel manifold, supervised classification.

I. INTRODUCTION

ENSOR networks are systems used for distributed de-
tection and data fusion that operate with severe resource
limitations; consequently, minimizing complexity in terms
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of communication and computation is critical [3]. A current
interest is in deploying wireless sensor networks with nodes
that take measurements using many heterogeneous modalities
such as acoustic, infrared and seismic to monitor volcanoes [4],
detect intruders [5], [6] and perform many other classification
tasks. Sensor measurements may contain much redundancy,
both within the measurement dimensions of a single sensor and
between measurement dimensions of different sensors due to
spatial correlation.

Resources can be conserved if sensors do not transmit irrel-
evant or redundant data, but it is usually not known in advance
which measurement dimensions or combination of dimensions
are most useful for the detection or classification task. The trans-
mission of irrelevant and redundant data can be avoided through
dimensionality reduction; specifically, a low-dimensional rep-
resentative form of measurements may be transmitted by sen-
sors to a fusion center, which then detects or classifies based on
those low-dimensional measurement representations. As mea-
surements or low-dimensional measurement representations are
transmitted from sensor to sensor, eventually reaching the fusion
center, dimensionality reduction at the parent node eliminates
redundancy between parent and child node measurements. Even
areduction from two-dimensional measurements to one-dimen-
sional features is significant in many hostile-environment mon-
itoring and surveillance applications.

Decision rules in detection problems, both in the sensor net-
work setting and not, are often simplified through sufficient sta-
tistics such as the likelihood ratio [7]. Calculation of a suffi-
cient statistic losslessly reduces the dimensionality of high-di-
mensional measurements before applying a decision rule de-
fined in the reduced-dimensional space, but requires knowledge
of the probability distribution of the measurements. The statis-
tical learning problem supervised classification deals with the
case when this distribution is unknown, but a set of labeled
samples from it, known as the training dataset, is available. For
the most part, however, supervised classification methods (not
adorned with feature selection) produce decision rules defined
in the full high-dimensional measurement space rather than in a
reduced-dimensional space, motivating feature selection or di-
mensionality reduction for classification.

In this paper, we propose a method for simultaneously
learning both a dimensionality reduction mapping and a clas-
sifier defined in the reduced-dimensional space. Not only
does dimensionality reduction simplify decision rules, but
it also decreases the probability of classification error by
preventing overfitting when learning from a finite training
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dataset [8]-[11]. We focus on linear dimensionality reduction
mappings represented by matrices on the Stiefel manifold
[12] and on margin-based classifiers, a popular and effective
class of classifiers that includes logistic regression, the support
vector machine (SVM) and the geometric level set (GLS)
classifier [13]-[15]. The importance of the Stiefel manifold is
its role as the set of all linear subspaces with basis specified
and hence it provides precisely the right object for exploring
different subspaces on which to project measurements.

Many methods for linear dimensionality reduction, including
the popular principal component analysis (PCA) and Fisher dis-
criminant analysis (FDA), can be posed as optimization prob-
lems on the Stiefel or Grassmann manifold with different ob-
jectives [12]. In this paper, we propose an optimization problem
on the Stiefel manifold whose objective is that of margin-based
classification and develop an iterative coordinate descent algo-
rithm for its solution. PCA, FDA and other methods do not
have margin-based classification as their objective and are con-
sequently suboptimal with respect to that objective. Coordinate
descent is not guaranteed to find the global optimum; however,
as seen later in the paper, an advantage of coordinate descent is
that it is readily implemented in distributed settings and tends to
find good solutions in practice. We successfully demonstrate the
learning procedure on several real datasets from different appli-
cations.

The idea of learning linear dimensionality reduction map-
pings from labeled training data specifically for the purpose of
classification is not new. For example, the goal of FDA is clas-
sification, but it assumes that the class-conditional distributions
generating the data are Gaussian with identical covariances; it
is also not well suited to datasets of small cardinality [16]. We
reserve discussion of several such methods until Section I-A.!
Our work fits into the general category of learning data represen-
tations that have traditionally been learned in an unsupervised
manner, appended with known class labels and consequently su-
pervision. Examples from this category include learning undi-
rected graphical models [20], sparse signal representations [21],
[22], directed topic models [23], [24], quantizer codebooks [25]
and linear dimensionality reduction matrices, which is the topic
of this paper and others described in Section I-A.

Statistical learning theory characterizes the phenomenon of
overfitting when there is finite training data. The generaliza-
tion error of a classifie—the probability of misclassification
on new unseen measurements (the quantity we would ideally
like to minimize)—can be bounded by the sum of two terms
[8]: the classification error on the training set and a complexity
term, e.g., the Rademacher complexity [26], [27]. We analyti-
cally characterize the Rademacher complexity as a function of
the dimension of the reduced-dimensional space in this work.
Finding it to be an increasing function of the dimension, we
can conclude that dimensionality reduction does in fact prevent
overfitting and that there exists some optimal reduced dimen-
sion.

As the cardinality of the training dataset grows, the general-
ization error of a consistent classifier converges to the Bayes op-

10ur paper focuses on general linear dimensionality reduction and not on
feature subset selection, which is a separate topic in its own right, e.g., see
[17]-[19].
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timal probability of error, i.e., the error probability had the joint
probability distribution been known. We show that our proposed
joint linear dimensionality reduction and margin-based classifi-
cation method is consistent.

The problem of distributed detection has been an object of
study during the last 30 years [28]-[31], but the majority of the
work has focused on the situation when either the joint prob-
ability distribution of the measurements and labels or the like-
lihood functions of the measurements given the labels are as-
sumed known. Recently, there has been some work on super-
vised classification for distributed settings [32]-[34], but in that
work sensors take scalar-valued measurements and dimension-
ality reduction is not involved. Previous work on the linear di-
mensionality reduction of sensor measurements in distributed
settings, including [35]-[37] and references therein, have esti-
mation rather than detection or classification as the objective.

In this paper, we show how the linear dimensionality reduc-
tion of heterogeneous data specifically for margin-based classi-
fication may be distributed in a tree-structured multisensor data
fusion network with a fusion center via individual Stiefel man-
ifold matrices at each sensor. The proposed coordinate descent
learning algorithm is amenable to distributed implementation.
In particular, we extend the coordinate descent procedure so
that it can be implemented in tree-structured sensor networks
through a message-passing approach with the amount of com-
munication related to the reduced dimension rather than the full
measurement dimension. The ability to be distributed is a key
strength of the coordinate descent optimization approach.

Multisensor networks lead to issues that do not typically arise
in statistical learning, where generalization error is the only
criterion. In sensor networks, resource usage presents an addi-
tional criterion to be considered and the architecture of the net-
work presents additional design freedom. In wireless sensor net-
works, the distance between nodes affects energy usage in com-
munication and must therefore be considered in selecting net-
work architecture. We give classification results on real datasets
for different network architectures and touch on these issues em-
pirically.

A. Relationship to Prior Work

The most popular method of linear dimensionality reduction
for data analysis is PCA. PCA and several other methods only
make use of the measurement vectors, not the class labels, in
finding a dimensionality reduction mapping. If the dimension-
ality reduction is to be done in the context of supervised clas-
sification, the class labels should also be used. Several super-
vised linear dimensionality reduction methods exist in the liter-
ature. We can group these methods into three broad categories:
those that separate likelihood functions according to some dis-
tance or divergence [38]—[44], those that try to make the proba-
bility of the labels given the measurements and the probability
of the labels given the dimensionality-reduced measurements
equal [45]-[50] and those that attempt to minimize a specific
classification or regression objective [12], [S1]-[54].

As mentioned previously in the section, FDA assumes that the
likelihood functions are Gaussian with the same covariance and
different means. It returns a dimensionality reduction matrix on
the Stiefel manifold that maximally separates (in Euclidean dis-
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tance) the clusters of the different labels [12]. The method of
[39] also assumes Gaussian likelihoods with the same covari-
ance and different means, but with an even stronger assump-
tion that the covariance matrix is a scalar multiple of the iden-
tity. The probability of error is explicitly minimized using gra-
dient descent; the gradient updates to the dimensionality reduc-
tion matrix do not enforce the Stiefel manifold constraint, but
the Gram—Schmidt orthonormalization procedure is performed
after every step to obtain a matrix that does meet the constraint.
With a weaker assumption only that the likelihood functions
are Gaussian, but without restriction on the covariances, other
methods maximize Bhattacharyya divergence or Chernoff di-
vergence, which are surrogates for minimizing the probability
of error [43].

The method of [38], like FDA, maximally separates the clus-
ters of the different labels but does not make the strong Gaussian
assumption. Instead, it performs kernel density estimation of
the likelihoods and separates those estimates. The optimiza-
tion is gradient ascent and orthonormalization is performed
after every step. Similarly, information preserving component
analysis also performs kernel density estimation and maxi-
mizes Hellinger distance, another surrogate for minimizing the
probability of error, with optimization through gradient ascent
and the Stiefel manifold constraint maintained in the gradient
steps [44]. Other approaches with information-theoretic criteria
include [40]-[42].

Like [38] and [44], the method of [49] also estimates proba-
bility density functions for use in the criterion for linear dimen-
sionality reduction. The particular criterion, however, is based
on the idea that the dimensionality reduction mapping should be
such that the probability of the class labels conditioned on the
unreduced measurements equal the probability conditioned on
the reduced measurements. The same criterion appears in [45],
[46], [48], [50], and many references given in [47]. These papers
describe various methods of finding dimensionality reduction
mappings to optimize the criterion with different assumptions.

Some supervised dimensionality reduction methods explic-
itly optimize a classification or regression objective. A linear
regression objective and a regression parameter/Stiefel mani-
fold coordinate descent algorithm is developed in [53]. The sup-
port vector singular value decomposition machine of [52] has
a joint objective for dimensionality reduction and classifica-
tion with the hinge loss function. However, the matrix it pro-
duces is not guaranteed to be on the Stiefel manifold and the
space in which the classifier is defined is not exactly the dimen-
sionality-reduced image of the high-dimensional space. It also
changes the regularization term from what is standardly used
for the SVM. Maximum margin discriminant analysis is another
method based on the SVM; it finds the reduced-dimensional fea-
tures one by one instead of giving a complete matrix at once and
it does not simultaneously give a classifier [54]. The method of
[12] and [51] is based on the nearest neighbor classifier.

The objective function and optimization procedure we pro-
pose in Section II has some similarities to many of the methods
discussed, but also some key differences. First of all, we do not
make any assumption and indeed do not explicitly make use of
any assumptions on the statistics of likelihood functions (e.g., no
assumption of Gaussianity is employed). Moreover, our method
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does not require nor involve estimation of the probability den-
sity functions under the two hypotheses nor of the likelihood
ratio. Indeed, we are directly interested only in learning deci-
sion boundaries and using margin-based loss functions to guide
both this learning and the optimization over the Stiefel mani-
fold to determine the reduced-dimensional space in which deci-
sion making is to be performed. Density estimation is a harder
problem than finding classifier decision boundaries and it is well
known that when learning from finite data, it is best to only
solve the problem of interest and nothing more. Similarly, the
desire that the conditional distributions of the class label given
the high-dimensional and reduced-dimensional measurements
be equal is more involved than wanting good classification per-
formance in the reduced-dimensional space.

Rather than nearest neighbor classification or linear regres-
sion, the objective in the method we propose is margin-based
classification. Our method finds all reduced-dimensional fea-
tures in a joint manner and gives both the dimensionality re-
duction mapping and the classifier as output. Unlike in [52],
the classifier is defined exactly without approximation in the
reduced-dimensional subspace resulting from applying the di-
mensionality reduction matrix that is found. Additionally, the
regularization term and consequently inductive bias of the clas-
sifier is left unchanged.

The preceding represent the major conceptual differences be-
tween our framework and that considered in previous work. We
use coordinate descent optimization procedures in Section II,
which are also employed in other works, e.g., [52] and [53],
but the setting in which we use these are new. Our framework
also allows us to develop some new theoretical results on con-
sistency and Rademacher complexity. Moreover, as developed
in Section III, our framework allows a natural generalization to
distributed dimensionality reduction for classification in sensor
networks, a problem that has not been considered previously.

Ji and Ye presented an approach to linear dimensionality re-
duction for classification with linear decision boundaries [55]
after the initial presentation of this work [1], which is similar
to our formulation as well as the formulation of [53]. Ji and
Ye restrict themselves to the regularization term of the SVM
and either a regression objective like [53], or the hinge loss. In
our formulation, any regularization term and any margin-based
loss function may be used and the decision boundaries are gen-
erally nonlinear. With the hinge loss, the optimization in [55]
is through coordinate descent similar to ours, but the dimen-
sionality reduction matrix optimization step is carried out via a
convex-concave relaxation (which is not guaranteed to find the
optimum of the true unrelaxed problem) rather than gradient de-
scent along Stiefel manifold geodesics that we do. The work
of Ji and Ye also considers the learning problem when training
samples may have either zero, one, or more than one assigned
class label, which is known as multilabel classification [56] and
is not the focus of our work.

B. Organization of Paper

The paper is organized as follows. Section II combines the
ideas of margin-based classification and optimization on the
Stiefel manifold to give a joint linear dimensionality reduction
and classification objective as well as an iterative algorithm. An
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analysis of Rademacher complexity and consistency is also pre-
sented in the section. Section III shows how the basic method
of Section II extends to multisensor data fusion networks, in-
cluding wireless sensor networks. In Section IV, an illustra-
tive example and results on several real datasets are given. Also
given are experimental results of classification performance as
a function of transmission power in wireless sensor networks.
Section V concludes.

II. LINEAR DIMENSIONALITY REDUCTION FOR
MARGIN-BASED CLASSIFICATION

In this section, we formulate a problem for composite dimen-
sionality reduction and margin-based classification. We develop
a coordinate descent minimization procedure for this formula-
tion, characterize the complexity of the formulation from a sta-
tistical learning theory perspective and show the consistency of
the formulation.

A. Formulation

Consider the binary detection or classification problem
with measurement vectors X € @ C RP and class labels
Y € {+1,—1} drawn according to the probability density
function px y(x,y). We would like to find the classifier
g : Q — {+1,—1} that minimizes the error probability
PrlY # g(X)]. We do not have access to px y(x,y), but
instead are given training data {(x1,%1),...,(Xn,¥n)}. The
true objective we would like to minimize in learning ¥ is the
generalization error Pr[Y" # ¢(X)], but a direct minimization
is not possible since the joint distribution of X and Y is not
known. In practice, the classifier ¢ is selected from a function
class F to minimize a loss function of the training data.

Margin-based classifiers take the form §(-) = sign(¢(+)),
where ¢ is a decision function whose specifics are tied to the
specific margin-based classifier. The decision function is chosen
to minimize the functional:

n

L(p) = > Uyje(x;)) + M (¢) 0

=1

where the value y¢(x) is known as the margin; it is related to the
distance between x and the classifier decision boundary ¢(x) =
0. The function ¢ is known as a margin-based loss function.
Examples of such functions are the logistic loss function

logistic(z) = log (14 e7%)
and the hinge loss function
lhinge(z) = max{0,1 — z}.

The second term on the right side of (1), with non-negative
weight A, represents a regularization term that penalizes the
complexity of the decision function [13], [14]. In the kernel
SVM, / is the hinge loss, the decision functions ¢ are in a repro-
ducing kernel Hilbert space H and .J is the squared norm in that
space ||¢l|3, [13], [14]. In the GLS classifier, any margin-based
loss function may be used and the decision functions are in
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the space of signed distance functions [2], [15]. The magni-
tude of p(x) equals the Euclidean distance of x to the decision
boundary. The regularization term .J is the surface area of the
zero level set of p, i.e., J(p) = f,’ozo ds, where ds is an infini-
tesimal surface area element on the decision boundary.

The new contribution of this section is the formulation of
a joint linear dimensionality reduction and classification min-
imization problem by extension of the margin-based functional
(1). The decision function ¢ is defined in the reduced d-dimen-
sional space and a linear dimensionality reduction mapping ap-
pears in its argument, but otherwise, the classification objective
is left unchanged. In particular, the regularization term .J is not
altered, thereby allowing any regularized margin-based classi-
fier to be extended for dimensionality reduction.

The margin-based classification objective is extended to in-
clude a matrix A € RP*? with elements a;; as follows:

n

L(p, A) =) Uyje(ATx;)) + M () (2)

=1

with the constraint that A lie on the Stiefel manifold of D x d
matrices, i.e., A € V(D, d), where

V(D,d)={A eR”*" d< DIATA=T}.  (3)

With a data vector x € RP, ATx is in d dimensions. Typi-
cally—and especially in our framework—we are uninterested
in scalings of the reduced-dimensional data ATx, so we limit
the set of possible matrices to those which involve orthogonal
projection, i.e., to the Stiefel manifold.

The formulation as presented is for a fixed value of d. If gen-
eralization error is the only criterion, then any popular model se-
lection method from the machine learning literature, including
those based on cross-validation, bootstrapping and information
criteria, can be used to find a good value for the reduced dimen-
sion d. However, other criteria besides generalization error be-
come important in various settings, including sensor networks.
System resource usage is one such criterion; it is not typically
statistical in nature and is often a deterministic increasing func-
tion of d. As such, it may be used as an additional cost with
information criteria or as a component in modified cross-val-
idation and bootstrapping. If different types of errors such as
false alarms and missed detections incur different costs, then the
criterion is not strictly generalization error, but cross-validation
and bootstrapping may be modified accordingly.

B. Coordinate Descent Minimization

An option for performing the minimization of L(p, A) given
in (2) is coordinate descent: alternating minimizations with
fixed A and with fixed ¢. The problem is conceptually similar
to level set image segmentation along with pose estimation for
a shape prior [57]. With A fixed, we are left with a standard
margin-based classification problem in the reduced-dimen-
sional space. The optimization step may be performed using
standard methods for margin-based classifiers.

With ¢ fixed, we have a problem of minimizing a function
of A lying on the Stiefel manifold. For differentiable functions,
several iterative minimization algorithms exist [58]-[60]. The
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function L(A) = Y7, £(y;(ATx;)) is differentiable with
respect to A for differentiable loss functions. Using L s to de-
note the D X d matrix with elements % , the first derivative is:

La =Yyl (y;0(A"x;))
j=1

xx; [p1(ATx;) va(ATx;)]. @)
Note that x; is a D x 1 vector and that
[p1(ATx;) 0a(ATx;)] is a 1 x d vector,
where @ (-) is the partial derivative of the decision function
with respect to dimension k. For the logistic loss function
! _ e_z
logistic(z) - 1+ ez’

and for the hinge loss function

hinge(2) = —step(1 — 2)

hinge

where step(-) is the Heaviside step function.
We perform gradient descent along geodesics of the Stiefel
manifold [58]. The gradient is

G =La - ALLA. 5)

Starting at an initial A(0), a step of length 7 in the direction
-G to A(7) is

A(7) = A(0)M(7) + QN(r) (6)
where QR is the QR decomposition of (AATG — G) and

0]l [ 50 )

The step size 7 may be optimized by a line search.

The coordinate descent is not guaranteed to find the global
optimum, only a local optimum; however, as seen in the illus-
trative example in Section IV-A, even poor initializations lead
to the globally optimal solution in practice. For the results given
in Section IV-B, A is initialized by making use of estimates of
the mutual informations between the label ¢ and individual data
dimensions zp, kK = 1,...,D. Mutual information provides
an indication of whether a measurement dimension is individu-
ally relevant for classification and thus projection onto dimen-
sions with high mutual information is a good starting point. Of
course, these dimensions may be correlated and that is precisely
what the Stiefel manifold optimization iterations uncover. The
first column of A is taken to be the canonical unit vector corre-
sponding to the dimension with the largest mutual information.
The second column of A is taken to be the canonical unit vector
corresponding to the dimension with the second largest mutual
information and so on. The last, i.e., dth, column of A is zero
in the rows already containing ones in the first (d — 1) columns
and nonzero in the remaining rows with values proportional to
the mutual informations of the remaining dimensions. Kernel
density estimation is used in estimating mutual information.

C. Rademacher Complexity

The generalization error can be bounded by the sum of the
error of ¢ on the training set and a penalty that is larger for more
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complex F. One such penalty is the Rademacher complexity
I:’Ln(f ) [26], [27]. A classifier with good generalizability bal-
ances training error and complexity; this is known as the struc-
tural risk minimization principle [8].

With probability greater than or equal to 1 — §, Bartlett and
Mendelson give the following bound on the generalization error

for a specified decision rule 3 [27]:

(N

where I is an indicator function. The first term on the right-hand
side is the training error and the second term is complexity. As
discussed in [9]-[11], dimensionality reduction reduces classi-
fier complexity and thus prevents overfitting. Here, we analyti-
cally characterize the Rademacher complexity term R,, (F) for
the joint linear dimensionality reduction and margin-based clas-
sification method proposed in this paper. It is shown in [61] that
the Rademacher average of a function class F satisfies

R 42 [ ,
Ru(F) <2+ 22 / JH_ (P @®

where H,_ .(F) is the e-entropy of F with respect to the L.,
metric.2

In classification, it is always possible to scale and shift the
data and this is often done in practice. Forgoing some book-
keeping and without losing much generality, we consider the
domain of the unreduced measurement vectors to be the unit
hypercube, that is x € Q = [0, 1]”. The reduced-dimensional
domain is then the zonotope3 Z = ATQ C R?, where A is on
the Stiefel manifold. We denote the set of decision functions ¢
defined on (2 as Fq and those defined on Z as F .

Given the generalization bound based on Rademacher
complexity (7) and the Rademacher complexity term (8), we
must find an expression for H, _ .(Fz) to characterize the
prevention of overfitting by linear dimensionality reduction.
The function class Fz is tied to the specific margin-based
classification method employed. In order to make concrete
statements, we select the GLS classifier; similar analysis may
be performed for other margin-based classifiers such as the
kernel SVM. Such analysis would also be similar to [11]. As
mentioned in Section II-A, the decision function ¢ in the GLS

2The e-covering number of a metric space is the minimal number of sets with
radius not exceeding € required to cover that space; the e-entropy is the base-two
logarithm of the e-covering number [62]. The Lo, metric is poo (¥1,92) =
sup [£1(x) — pa(x)|.

3The set Z = AT[0,1]P C R, the orthogonal shadow cast by [0, 1]” due
to the projection A € V(D, d), is a zonotope, a particular type of polytope that
is convex, centrally symmetric and whose faces are also centrally symmetric in
all lower dimensions [63], [64]. For reference, Fig. 1 shows several zonotopes
for D = 4 andd = 2. The matrix AT is known as the generator of the zonotope
Z;, we use the notation Z(A) to denote the zonotope generated by A 7. Also,
let

Z(D.d) = {Z(A)|A € V(D.d)}. ©)
Although the relationship between zonotopes and their generators is not bijec-

tive, zonotopes provide a good means of visualizing Stiefel manifold matrices,
especially when d = 2.
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Fig. 1. Several zonotopes in Z(4, 2).

classifier is a signed distance function and F is the set of all
signed distance functions whose domain is the zonotope Z.

For classification without dimensionality reduction, it is
shown in [15] that

D
H,_ (Fa) < H . (10)

€

This result follows from the fact that [1/¢]” D-dimensional
hypercubes with side of length € fit as a Cartesian grid into
Q = [0,1]P. To find an expression for the e-entropy of the di-
mensionality-reduced GLS classifier, the same analysis applies
and consequently, we need to determine how many d-dimen-
sional hypercubes with side of length € fit into Z. The number of
small hypercubes that fit inside Z is related to its content V(7).

An upper bound for V(Z) is developed in [63] that is asymp-
totically of the correct order of magnitude for fixed d as D goes
to infinity. Specifically,

d
Wi—1 D

— (1)

Wy d

V(Z) S Wy

where w, = \/7_rd /T (1 + %) is the content of the d-dimensional
unit hypersphere and I'(-) is Legendre’s gamma function. Based

on (11), we find that
@i [17 /D
wag | € d

For fixed reduced dimension d, H,__ .(Fz) increases as a func-
tion of the measurement dimension D, i.e., the classifier func-
tion class is richer for larger measurement dimension with the
same reduced-dimension. Importantly, H,__ .(Fz) increases as
a function of d for fixed D.

Substituting the H,__ (F) expression (12) into (8), we find
that for a fixed measurement dimension D, the more the dimen-
sionality is reduced, that is the smaller the value of d, the smaller

H,  (Fz)<V(Z2) E-‘dﬁwd

. (12)
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Fig. 2. Rademacher average as a function of the reduced dimension d for D =
5 (dotted blue line), D = 10 (dashed and dotted green line), D = 15 (dashed
red line) and D = 20 (solid cyan line) for € = 0.01 and » = 1000.

the Rademacher complexity. This is shown in Fig. 2, a plot of
the complexity value as a function of d for different values of D.
Although larger measurement dimension D does result in larger
complexity, the effect is minor in comparison to the effect of d.
Since training error increases as d decreases, and the general-
ization error is related to the sum of the Rademacher complexity
and the training error: the more we reduce the dimension, the
more we prevent overfitting. However, if we reduce the dimen-
sion too much, we end up underfitting the data; the training error
component of the generalization error becomes large. There is
an optimal reduced dimension that balances the training error
and the complexity components of the generalization error.4

D. Consistency

With a training dataset of cardinality n drawn from
px,v(X,y), a consistent classifier is one whose probability of
error converges in the limit as 7 goes to infinity to the probability
of error of the Bayes risk optimal decision rule ¢* when both
types of classification errors have equal cost.5 For consistency
to be at all meaningful, we assume in this analysis that there is
a reduced-dimensional statistic A7x so that the optimal Bayes
decision rule based on this statistic achieves the same perfor-
mance as the optimal decision rule based on the complete data x,
that is, we assume that there exists at least one A* € V(D,d)
such that Pr[Y # §*(A*TX)] = Pr[Y # §*(X)], where
y* takes the appropriate dimensional argument and d is
known. We also assume that the optimization method used in
training finds the global optimum. The question is whether

4Note the purpose of generalization bounds in statistical learning theory as
stated by Bousquet [65]: “one should not be concerned about the quantitative
value of the bound or even about its fundamental form but rather about the terms
that appear in the bound. In that respect a useful bound is one which allows to
understand which quantities are involved in the learning process. As a result,
performance bounds should be used for what they are good for. They should
not be used to actually predict the value of the expected error. Indeed, they usu-
ally contain prohibitive constants or extra terms that are mostly mathematical
artifacts. They should not be used directly as a criterion to optimize since their
precise functional form—may also be a mathematical artifact. However, they
should be used to modify the design of the learning algorithms or to build new
algorithms.”

5The Bayes optimal decision rule is a likelihood ratio test involving
px|v(x|y = —1) and px|v (x|y = +1) with threshold equal to the ratio of
the class prior probabilities.
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for a sequence of classifiers learned from training data
7™ (x) = sign(p™ (AMTx)), where

. .1
min min —

AM oMY — are
( ¥ ) are AeV(D,d) p€EFz(ay N

> (A7),

J

does Pr[Y # ¢(™] — Pr[Y # ¢*] converge in probability to
zero. Note that Pr[Y" # §(")] is a random variable that depends
on the data.

The properties of Pr[Y # ()] are affected by both the
margin-based loss function £ and by the classifier function space
Fz. Conditions on the loss function necessary for a margin-
based classifier to be consistent are given in [13], [14], [66].
A loss function that meets the necessary conditions is termed
Fisher consistent in [13]. Common margin-based loss functions
including the logistic loss and hinge loss are Fisher consistent.¢
Fisher consistency of the loss function is not enough, however,
to imply consistency of the classifier overall; the function class
must also be analyzed.

We apply [13, Theorem 4.1], which is, in turn, an application
of [67, Theorem 1] to show consistency. The theorem is based
on H,_ (Fz).In order to apply this theorem, we need to note
three things. First, that ¢ is a Fisher consistent loss function.
Second, that signed distance functions on Z are bounded in the
L. norm. Third, that there exists a constant B > 0 such that
H,_ (Fz) < Be~4, which follows from (12). Then, from [13]
we have that”

Pr[Y # 9] = Pr[Y # §*] = Op(n™") (13)
where
1 _
T giogn
T = 1 leoggnl’ =
1 d>3

2d° =

The dimensionality reduction and classification method is con-
sistent: Pr[Y" # 4] — Pr[Y # §*] goes to zero as n goes to
infinity because n~" goes to zero.

III. DIMENSIONALITY REDUCTION IN
TREE-STRUCTURED NETWORKS

As discussed in Section I, a classification paradigm that in-
telligently reduces the dimensionality of measurements locally
at sensors before transmitting them is critical in sensor network
settings. In this section, we make use of and appropriately ex-
tend the formulation of joint linear dimensionality reduction and
classification presented in Section II for this task. For ease of
exposition, we begin the discussion by first considering a setup

6The conditions on ¢ for it to be Fisher consistent are mainly related to it being
such that incorrect classifications incur more loss than correct classifications.

"The notation ¥,, = O p(2),,) means that the random variable ¥, = ¥, =,,,
where =,, is a random variable bounded in probability [68]. Thus, if ¢,, con-
verges to zero, then ¥, converges to zero in probability.
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with a single sensor and then come to the general setting with m
sensors networked according to a tree graph with a fusion center
at the root of the tree. Also for simplicity of exposition, we as-
sume that the fusion center does not take measurements, that it
is not also a sensor; this assumption is by no means necessary.
We make the assumption, as in [32]-[34], that the class labels
y; of the training set are available at the fusion center.

A. Network With Fusion Center and Single Sensor

Consider a network with a single sensor and a fusion
center. The sensor measures data vector x € RP and re-
duces its dimensionality using A. The sensor transmits
% g = ATx € R? to the fusion center, which applies
decision rule sign(p(Xs—f.)) to obtain a classification for
x. Clearly in its operational phase, the linear dimensionality
reduction reduces the amount of transmission required from
the sensor to the fusion center.

Moreover, the communication required in training depends
on the reduced dimension d rather than the dimension of the
measurements D. The coordinate descent procedure described
in Section II-B is naturally implemented in this distributed set-
ting. With A fixed, the optimization for ¢ occurs at the fu-
sion center. The information needed by the fusion center to per-
form the optimization for ¢ are the X — ¢ ;, the dimension-
ality-reduced training examples. With ¢ fixed, the optimization
for A occurs at the sensor. Looking at (4), we see that the in-
formation required by the sensor from the fusion center to op-
timize A includes only the scalar value y;¢'(y;o(Xs — tc ;)
and the column vector [ @1 (Xs — ¢ ;) 0a(Xs —te)] >
which we denote @, ., ; € RY, forj =1,... n.

Thus the alternating minimizations of the coordinate descent
are accompanied by the alternating communication of messages
Xs — fc,j and @ _, s,;+ The more computationally demanding
optimization for ¢ (the application of a margin-based classifi-
cation algorithm) takes place at the fusion center. A computa-
tionally simple Stiefel manifold gradient update occurs at the
sensor.8 One may ask whether it is more efficient to perform
training by just transmitting the full-dimensional measurements
to the fusion center. The total communication involved in that
case is D(n + d) scalar values, whereas with the distributed im-
plementation, this total is (2d+ 1)n multiplied by the number of
coordinate descent iterations. Frequently D is much larger than
d (an example in Section IV-B has D = 10000 and optimal
d = 20) and the number of iterations is typically small (usually
less than ten or twelve). In such cases, the distributed implemen-
tation provides quite a bit of savings. This scheme extends to the
more interesting case of multisensor networks, as we describe
next. The transmission savings of training with distributed im-
plementation are further magnified in the multisensor network
case.

8The Stiefel manifold constraint requires QR factorization or other orthonor-
malization which may be prohibitive on certain existing sensor nodes, but as is
demonstrated in [69] and references therein, efficient FPGA implementations
of QR factorization have been developed and could be integrated into existing
or new sensor nodes.
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B. Multisensor Networks

We now consider networks with m sensors con-
nected in a tree topology with the fusion center at the
root. We denote the yxf. children of the fusion center as
child, (fc), . .., child,,. (fc); we also denote the x; children of
sensor 4 as child; (¢), ..., child,, (¢) and we denote the parent
of sensor i as parent(i). Training data vector x; ; € RPi is
measured by sensor 7.2 The sensor receives dimensionality-re-
duced measurements from its children, combines them with
its own measurements and transmits a dimensionality-reduced
version of this combination to its parent. Mathematically, the
transmission from sensor ¢ to its parent is

Xi,5
Xchild; (i) — 4,5

(14)

X — parent(i),j — A'7,

Xehildy, (i) —i,j

where A; € V (D, + Ef;l dchildk. (i) dl)

As an extension to the margin-based classification and
linear dimensionality reduction objective (2), we propose the
following objective for sensor networks:

L((p7A17 s 7Am)

=Y 4|y
j=1

Xchild, (fc) — fe,j

+ M (). (15)

Xchildy,_ (fc) — fc,j

Just as in the single sensor network in which the fu-
sion center needed to receive the message Xs— ¢ ; from
its child in order to optimize ¢, in the multisensor net-
work the fusion center needs to receive the messages
Xchild; (fo) — fe,js - - - ,ichildm (fc) — fc,j from all of its children
in order to optimize . The messages coming from the children
of the fusion center are themselves simple linear functions of
the messages coming from their children, as given in (14). The
same holds down the tree to the leaf sensors. Thus, to gather
the information required by the fusion center to optimize ¢, a
message-passing sweep occurs from the leaf nodes in the tree
up to the root.

For fixed ¢ and optimization of the A;, we also see
message-passing, this time sweeping back from the fusion
center toward the leaves that generalizes what occurs in the
single sensor network. Before finding the partial derivative of
L(p,Aq,...,A,,) with respect to A;, let us first introduce
further notation. We slice A ; into blocks as follows:

Ai,self

A, child,
A, =

A child,,

9In real-world situations, there is no reason to expect underlying likelihood
functions for different sensors px, |y, ¢ = 1,...,m to be identical. Different
sensors will certainly be in different locations and may even be measuring dif-
ferent modalities of different dimensions with different amounts of noise.
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where A.,j,self € RDixdi gpd Ai,(‘,hildk € Remitay ()X di Also,

~/
Ptc — childy (fc),j —

Xchild (fc) — fe,j

k—1
(’OZKZI denita, (fe) 1 ~
Xechildy,, (fc) — fc,j

Xchild; (fc) — fe,j

&
(’DZ~:1 denila,, (fc) ~
L Xechildy,, (fc) — fc,j -

is the slice of the decision function gradient corresponding to
the dimensions transmitted by child (fc) to the fusion center.
Additionally, let

=, Cn
Pi — child, (i),j — A17c}111dk<p1)arent(i) g (16)

Then, the matrix partial derivative of the objective function
(15) with respect to A; is
n Xchild, (f) — fe,j
La, =Y ul' | yje
=t Xchild
Xij

Xfe (fc) — fc,j

Xchild, (i) — i, ~IT

parent(i) — 4,5 "

a7

Xehildy, (i) — 4,5

Like in the single sensor network, the information required at
sensor ¢ to optimize A; that it does not already have consists
of a scalar and a vector. The scalar value y,¢'(y,¢) is common
throughout the network. The vector message (o;)arem(i) . has
length d; and is received from parent(z). As seen in (16), the
message a sensor passes onto its child is a simple linear func-
tion of the message received from its parent. To optimize all
of the A,, a message-passing sweep starting from the fusion
center and going down to the leaves is required. Simple gradient
descent along Stiefel manifold geodesics is then performed lo-
cally at each sensor. Overall, the coordinate descent training
proceeds along with the passing of messages X; — parent(s),j
and @) _, childy (i),j» Which are functions of incoming messages
as seen in (14) and (16).

C. Consistency and Complexity

The data vector that is received by the fusion center
is reduced from ) " D; dimensions to Y} depiia, (tc)
dimensions. The fact that the composition of linear dimen-
sionality reduction by two matrices on the Stiefel manifold
can be represented by a single matrix on the Stiefel manifold
leads to the observation that the dimensionality reduction
performed by the sensor network has an equivalent matrix
A € V(XM Di, 38" denitd, (fc) ) - However, A has further
constraints than just the Stiefel manifold constraint due to the
topology of the network. For example, the equivalent A of the
network in which the fusion center has two child sensors must
be block-diagonal with two blocks.
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Thus in the tree-structured sensor network, there is an
equivalent matrix A € 7 (X" Dy, 35 depita, () C
V(X Di, 38 denita, r))» Where T is a subset de-
termined by the tree topology. The consistency analysis
of Section II-D holds under the assumption that there ex-
ists an A* € T (X", Dy, Y5, denitay (i) such that
Pr[Y # §*(ATX)] = Pr[Y # §7(X)]

The constrained set of dimensionality reduction matrices 7°
may have a smaller maximum zonotope content V(Z) than
the full Stiefel manifold, which would in turn mean a smaller
Rademacher complexity. The fusion center receives the x.-ary
Cartesian product of dimensionality-reduced data from its
children. The content of the Cartesian product is the product of
the individual contents and thus

Xte denildy, (tc)

V(Z) S H wdchildk(fc)
k=1

Dy,

denild,, (fe)

Wdpia, (se) =1

Wdniay, (re)

which is less than or equal to the bound (11) for
Z (X" Di, Y55 denitay (fc)) - A more refined upper bound
may be developed based on the specifics of the tree topology.

The tree-structured network has smaller Rademacher
complexity than a dimensionality-reduced margin-based
classifier of the same overall dimensions due to further con-
straints to the classifier function space resulting from the
network structure. However, similar to D having a minor
effect on complexity seen in Fig. 2, this smaller complexity
for T (X", Dy, 35", denitdy () is not much less than
the complexity for the system without network constraints
V(X Di, 38 denita, re)) . The  network — constraints,
however, may increase the training error. The generalization
error expression (7), being composed of both the training error
and the complexity, increases with network constraints due
to increases in training error that are not offset by decreases
in complexity, resulting in worse classification performance.
However, for sensor networks, the performance criterion of
interest is generally a combination of generalization error and
power expenditure in communication.

D. Wireless Sensor Network Physical Model

Thus far in the section, we describe linear dimensionality
reduction for margin-based classification in sensor networks
abstractly, without considering the physical implementation or
specific tree topologies. Here we set forth a specific physical
model for wireless sensor networks that is used in Section IV-C.
Consider m sensors and a fusion center in the plane that com-
municate wirelessly. The distance between sensor ¢ and its
parent is 7, parent(i) and the power required for communica-
tion from ¢ to its parent is dir?(—)parent (i) Where as before, d; is
the reduced dimension output by the sensor. The model arises
by the common assumption of signal attenuation according to
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the square of the distance [70].10 The total transmission power
used by the network is then

transmission power = Z dir? (18)

i<>parent(z)°
i=1

We consider three network structures: parallel architecture,
serial or tandem architecture and binary tree architecture. In the
parallel architecture, all m sensors are direct children of the fu-
sion center. In the serial architecture, the fusion center has a
single child, which in turn has a single child and so on. In the
binary tree architecture, the fusion center has two children, each
of whom have two children on down the tree. When the number
of sensors is such that a perfect binary tree is not produced, i.e.,
m+ 2 is not a power of two, the bottom level of the tree remains
partially filled.

The sensor and fusion center locations are modeled as fol-
lows. The fusion center is fixed at the center of a circle with unit
area and the m sensor locations are uniformly distributed over
that circle. Given the sensor node locations and desired network
topology, we assume that parent-child links and corresponding
Ti<parent(i) ar€ chosen to minimize (18). In a parallel network,
the links are fixed with the fusion center as the parent of all sen-
sors and thus there is no parent-child link optimization to be
performed. Exact minimization of (18) for the other architec-
tures may not be tractable in deployed ad hoc wireless sensor
networks because it involves solving a version of the traveling
salesman problem for the serial architecture and a version of the
minimum spanning tree problem for the binary tree architecture.
Nevertheless, we assume that the minimization has been per-
formed; we comment on this assumption later in the paper. For
the parallel architecture, the distances are [71]

(parallel) — r (IL + %) r (m + 1)
VaL()T (m + 2)

where sensor 4 is the ¢th closest sensor to the fusion center. There
is no closed form expression for the 7., parent(i) in the serial or
binary tree architectures, but we estimate it through Monte Carlo
simulation.

To fully specify the network, we must also set the reduced di-
mensions of the sensors d;. The choice we make is to set d; pro-
portional to the number of descendants of sensor ¢ plus one for
itself. This choice implies that all d; are equal in the parallel net-
work and that d; is proportional to m —%+1 in the serial network
so that the number of dimensions passed up the chain to the fu-
sion center increases the closer one gets to the fusion center. We
will see that with this choice of d;, all three topologies have es-
sentially the same classification performance. This is not, how-
ever, generally true for different d; assignments; for example, if
we take all d; to be equal in the serial network, the classification
performance is quite poor. The imbalance in d; values among
different nodes is a shortcoming of our approach because nodes

19)

1fc

10The model ¢

s parent(i) for values of a other than two could also be con-
sidered.



VARSHNEY AND WILLSKY: LINEAR DIMENSIONALITY REDUCTION FOR MARGIN-BASED CLASSIFICATION

closer to the fusion center consume energy more quickly; fu-
ture work may consider adapting aggregation services with bal-
anced d; [72], which have been used for distributed PCA, to our
problem formulation.

IV. EXAMPLES AND RESULTS

With high-dimensional data, dimensionality reduction aids
in visualization and human interpretation, allows the identifi-
cation of important data components and reduces the computa-
tional and memory requirements of further analysis. An illustra-
tive example is presented in this section, which shows the pro-
posed dimensionality reduction and margin-based classification
method. The key motivation of dimensionality reduction is that
it prevents overfitting, which is shown in this section on several
datasets.

Also in this section, we consider wireless sensor networks
and look at classification performance as a function of transmis-
sion power expended. The phenomenon of overfitting seen in the
centralized case has an important counterpart and implication
for wireless sensor networks: increasing the total allowed trans-
mission power—manifested either by increases in the number
of sensors or increases in the number of transmitted dimensions
per sensor—does not necessarily result in improved classifica-
tion performance. The examples in this section illustrate several
tradeoffs and suggest further lines of research.

A. Illustrative Example

We now present an illustrative example showing the opera-
tion of the classification-linear dimensionality reduction coor-
dinate descent for training from a synthetic dataset. The dataset
contains n = 1000 measurement vectors, of which 502 have
label y7; = —1 and 498 have label y; = +1. The dimension-
ality of the measurements is D = 8. The first two dimensions
of the data, 21 and x9, are informative for classification and the
remaining six are completely uninformative. In particular, an el-
lipse in the z1-z2 plane separates the two classes as shown in
Fig. 3(a). The values in the other six dimensions are indepen-
dent samples from an identical Gaussian distribution without
regard for class label. Linear dimensionality reduction to d = 2
dimensions is sought. Note that the two class-conditional distri-
butions have the same mean and are not Gaussians and thus not
very amenable to FDA. Fig. 4 shows the A matrices obtained
using PCA and FDA, visualized using the zonotope Z(A). Nei-
ther PCA nor FDA is successful at recovering the informative
subspace: the x1-x2 plane.

We run our coordinate descent minimization of (2) to find
both an A matrix and decision boundary using two different
margin-based classifiers: the SVM with radial basis function
kernel and the geometric level set classifier with the logistic
loss function. The matrix A is randomly initialized. At conver-
gence, the optimization procedure ought to give an A matrix
with all zeroes in the bottom six rows, corresponding to a zono-
tope that is a possibly rotated square and an elliptical decision
boundary. Fig. 3(b) shows the decision boundary resulting from
the first optimization for ¢ using the GLS classifier with the
random initialization for A, before the first gradient descent step
on the Stiefel manifold. Fig. 3(c)—(e) shows intermediate itera-
tions, and Fig. 3(f) shows the final learned classifier and linear
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Fig. 3. Illustrative example. Magenta X markers indicate label —1. Black +
markers indicate label +1. The blue line is the classifier decision boundary. The
green line outlines a zonotope generated by A”'. (a) The first two measurement
dimensions. (b) Random initialization for A and first ¢ from GLS classifier.
(c)—(e) Intermediate iterations. (f) Final A and ¢ from GLS classifier.
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Fig. 4. Illustrative example. Magenta X markers indicate label —1. Black +
markers indicate label +1. The green line outlines a zonotope generated by A7
from (a) PCA and (b) FDA.

dimensionality reduction matrix. As the coordinate descent pro-
gresses, the zonotope becomes more like a square, i.e., A aligns
with the x1 -z, plane and the decision boundary becomes more
like an ellipse. Fig. 5 shows the operation of the coordinate de-
scent with the SVM. Here also, the zonotope becomes more like
a square and the decision boundary becomes more like an ellipse
throughout the minimization.

The random initial A matrix and the final A matrix solutions
for the GLS classifier and the SVM are given in Table I. What
we would want for this example is that the correct two-dimen-
sional projection is identified and, assuming that it is, that the
decision boundary is essentially elliptical. First, note that if the
correct projection is identified, we expect the last six rows of
the final A matrix to be small compared to the first two rows
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Fig. 5. Illustrative example. Magenta X markers indicate label —1. Black +
markers indicate label 4-1. The blue line is the classifier decision boundary. The
green line outlines a zonotope generated by AT, (a) Random initialization for
A and first p from SVM. (b)—(c) Intermediate iterations. (d) Final A and ¢
from SVM.

TABLE I
INITIAL AND FINAL A MATRICES IN ILLUSTRATIVE EXAMPLE

Random Initialization GLS Solution SVM Solution
0.0274 —0.4639 0.3386 —0.9355 0.3155 —0.9425
0.4275 0.2572 0.9401 0.3406 0.9446 0.3098
0.4848 0.1231 0.0118 —0.0110 0.0334 0.0936

—0.0644 0.4170 0.0103 —0.0196 0.0037 0.0356
0.0138 0.3373 0.0246 —0.0675 0.0061 —0.0318
0.5523 0.2793| | —0.0172 0.0181| |—0.0716 0.0121
0.1333 0.0283 0.0186 —0.0580( |—0.0411 —0.0410
0.5043 —0.5805] L—0.0108 —0.0027] L[—0.0151 —0.0537

and the corresponding zonotopes to be nearly square. Since ro-
tations and reflections of the space onto which we project are
inconsequential, we do not necessarily expect the first two rows
of A to be the identity matrix, nor do we expect the orientation
of the nearly square zonotopes in Figs. 3(f) and 5(d) to line up
with the coordinate axes. The results shown in Figs. 3(f), 5(d)
and Table I reflect these desired characteristics. Given these final
projections, we see that the resulting decision boundaries are in-
deed nearly elliptical.!! As this example indicates, the procedure
is capable of making large changes to A.

B. Classification Error for Different Reduced Dimensions

We present experimental classification results in this section
on several datasets from the UCI machine learning repos-
itory [73]. The joint linear dimensionality reduction and
margin-based classification method proposed in Section II is
run for different values of the reduced dimension d, showing
that performing dimensionality reduction does in fact improve
classification performance in comparison to not performing
dimensionality reduction. The margin-based classifier that is

II'The curved piece of the decision boundary in the top right corner of the
domain in Fig. 3(f) is an artifact of geometric level sets and does not affect
classification performance.
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used is the SVM with radial basis function kernel and default
parameter settings from the Matlab bioinformatics toolbox.

First, we look at training error and test error!? as a func-
tion of the reduced dimension on five different datasets from
varied application domains: Wisconsin diagnostic breast cancer
(D = 30), ionosphere (D = 34), sonar (D = 60), arrhythmia
(D = 274 after preprocessing to remove dimensions containing
missing values) and arcene (D = 10000). On the first four
datasets, we look at the tenfold cross-validation training and test
errors. The arcene dataset has separate training and validation
sets which we employ for these purposes.

The tenfold cross-validation training error is shown with blue
triangle markers and the tenfold cross-validation test error is
shown with red circle markers for the ionosphere dataset in
Fig. 6(a). The plot also contains error bars showing one standard
deviation above and below the average error over the ten folds.
In Fig. 6(b), the test error for the joint minimization is compared
to the test error if the linear dimensionality reduction is first
performed using PCA, FDA, information preserving component
analysis [44], or sufficient dimension reduction (structured prin-
cipal fitted components [74]), followed by classification with the
kernel SVM. Fig. 7 shows tenfold cross-validation training and
test error for other datasets. Fig. 8 gives the training and test per-
formance for the arcene dataset. For the Wisconsin diagnostic
breast cancer, ionosphere and sonar datasets, we show classifi-
cation performance for all possible reduced dimensions. For the
arrhythmia and arcene datasets, we show reduced dimensions
up to d = 50 and d = 100, respectively.

The first thing to notice in the plots is that the training error
quickly converges to zero with an increase in the reduced dimen-
sion d. The margin-based classifier with linear dimensionality
reduction perfectly separates the training set when the reduced
dimension is sufficiently large. However, this perfect separation
does not carry over to the test error—the error in which we are
most interested. In all of the datasets, the test error first decreases
as we increase the reduced dimension, but then starts increasing.
There is an intermediate optimal value for the reduced dimen-
sion. For the five datasets, these values are d = 3,d = 9,
d = 16,d = 10 and d = 20, respectively. This test error be-
havior is evidence of overfitting if d is too large. Dimensionality
reduction improves classification performance on unseen sam-
ples by preventing overfitting. Remarkably, even the ten thou-
sand-dimensional measurements in the arcene dataset can be
linearly reduced to twenty dimensions. In the ionosphere dataset
test error comparison plot, it can be seen that the minimum test
error is smaller with the joint minimization than when doing
dimensionality reduction separately with PCA, FDA, informa-
tion preserving component analysis, or sufficient dimension re-
duction. Moreover, this minimum test error occurs at a smaller
reduced dimensionality than the minima for PCA, FDA and suf-
ficient dimension reduction. Comparisons on other datasets are
similar.

The classification error as a function of d using our new joint
linear dimensionality reduction and margin-based classification

2Training error is the misclassification associated with the data used to learn
the Stiefel manifold matrix and decision function. Test error is the misclassi-
fication associated with data samples that were not used in training and is a
surrogate for generalization error.
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Fig. 6. (a) Tenfold cross-validation training error (blue triangle markers) and
test error (red circle markers) on ionosphere dataset. Error bars indicate standard
deviation over the ten folds. (b) Tenfold cross-validation test error on ionosphere
dataset using PCA (dashed and dotted cyan line), FDA (dashed magenta line),
information preserving component analysis (dotted blue line), sufficient dimen-
sion reduction (green line with markers) and joint minimization (solid red line).
Error bars are not included because they would make the plot unreadable, but
note that standard deviations for all five methods are approximately the same.

method matches the structural risk minimization principle.
Rademacher complexity analysis supporting these empirical
findings is presented in Section II-C.

C. Classification Error for Different Networks

Given the sensor network model of Section III-D, we look at
classification performance for the three different network archi-
tectures with different amounts of transmission power. Different
transmission powers are obtained by varying the number of sen-
sors and scaling the d; values. We emulate data coming from
a sensor network by slicing the dimensions of the ionosphere,
sonar and arcene datasets and assigning the different dimensions
to different sensors. With DD, = 5 for all sensors in the network
for the ionosphere and sonar datasets and D; = 50 for the arcene
dataset, we assign the dimensions in the order given in the UCI
machine learning repository, so the first sensor “measures” the
first D; dimensions listed, the second sensor “measures” dimen-
sions D; + 1 through 2D;, and so on. The dimensions are not
ordered according to relevance for classification in any way.

We plot results for the ionosphere dataset in Fig. 9. In
Fig. 9(a), we plot tenfold cross-validation training and test error
obtained from the algorithm described in Section III-B with
the parallel network as a function of transmission power. Each
training and test error pair corresponds to a different value of
m = 1,2,...,6 and d; = 1,2,...,5. In Section IV-B, we
plotted classification performance as a function of the reduced

2507

035t ' ' ' ' ' ]
. 03} ]
5 025 ]
g 02} ]
9; 015t } .
= o1t 1 .
gy
% 5 10 s 0 T
d
(@)
0.5 ; ; . ———
] 04t Iﬂiﬂﬁﬂ}ﬁ 11 E{ﬂ
g 0.3 B}}_ﬁmﬂ |
| i |
© 01 x 1
I
R S
0 10 20 30 40 50 60
d
(b)
05+ | | | | i
g 04 } .
| L |
A |
° ol .
R dtatas s ia s sssaans Aadiassans raiasasas .
% 10 20 30 40 50
d
()

Fig. 7. Tenfold cross-validation training error (blue triangle markers) and test
error (red circle markers) on (a) Wisconsin diagnostic breast cancer, (b) sonar,
and (c) arrhythmia datasets. Error bars indicate standard deviation over the ten
folds.

- . , . .:-. ..—_-._....__
- “.”'.“
5 -
E 031 .. -..-. O e 00
g ...m.. o e ... L]
8 02f
E A
E s
S 0ar*
0 W
0 20 40 60 80 100
d

Fig. 8. Training error (blue triangle markers) and test error (red circle markers)
on arcene dataset.

dimension, but here the horizontal axis is transmission power,
taking the distance between sensor nodes into account. As in
Section IV-B, the phenomenon of overfitting is quite apparent.
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Fig. 9. Tenfold cross-validation training error (blue triangle markers) and test
error (red circle markers) on ionosphere dataset for (a) parallel, (b) serial, and
(c) binary tree network architectures.

In Fig. 9(b), classification error is plotted as a function of
transmission power for the serial architecture. The points in the
plot are for different numbers of sensors m = 1,2,...,6 and
different scalings of the reduced dimension d; = (m — i +
1),2(m—i+41),...,5(m—i+1). The classification error values
in Fig. 9(b) are quite similar to the ones for the parallel case.!3
The plot for the parallel architecture appearing to be a horizon-
tally compressed version of the serial architecture plot indicates
that to achieve those similar classification performances, more
transmission power is required by the serial architecture. Al-
though the distances between parents and children tends to be
smaller in the serial architecture, the chosen d; are larger closer
to the fusion center leading to higher transmission power.

The binary tree architecture’s classification error plot is given

in Fig. 9(c). The training and test error values are similar to

131n fact, they are the same for the five pairs of points when m = 1 because
the parallel and serial networks are the same when there is a single sensor.
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the other two architectures.!4 The transmission power needed
to achieve the given classification errors is similar to that of
the parallel architecture and less than the serial architecture.
Among the three architectures with the d; assigned as described
in Section III-D, all have approximately the same classification
performance, but the serial network uses more power.

The same experiments are repeated for the sonar and arcene
datasets with plots given in Figs. 10 and 11. For the sonar
dataset, m varies from one to eleven and d; of leaf nodes from
one to five. For the arcene dataset, m varies from one to ten
and d; of leaf nodes from one to fifteen. The same trends can
be observed as in the ionosphere dataset; similar plots are
produced for other datasets such as Wisconsin diagnostic breast
cancer and arrhythmia. All three network topologies produce
similar classification errors, but the serial network uses more
power.

Some overall observations for wireless sensor networks are
the following. There exist some optimal parameters of the net-
work with a finite number of sensors and some dimensionality
reduction. One may be tempted to think that deploying more
sensors always helps classification performance since the total
number of measured dimensions increases, but we find that this
is not generally true. For a fixed number of samples n, once
there are enough sensors to fit the data, adding more sensors
leads to overfitting and a degradation of test performance. That
a small number of sensors, which perform dimensionality reduc-
tion, yield optimal classification performance is good from the
perspective of resource usage. Among different possible choices
of network architectures, we have compared three particular
choices. Others are certainly possible, including the investigated
topologies but with different d; proportions. For the chosen d;
proportions, all three network topologies have essentially the
same classification performance, but this is not true for other
choices.

In this empirical investigation of classification performance
versus resource usage, the main observation is that the two are
not at odds. The decrease of resource usage is coincident with
the prevention of overfitting, which leads to improved classifi-
cation performance. Oftentimes there is a tradeoff between re-
source usage and performance, but that is not the case in the
overfitting regime. Additionally, among the network architec-
tures compared, the parallel and binary tree architectures use
less power in communication than the serial architecture for
equivalent classification performance. The plotted transmission
power values, however, are based on choosing the parent-child
links to exactly minimize (18); in practice, this minimization
will only be approximate for the binary tree architecture and will
require a certain amount of communication overhead. There-
fore, the parallel architecture, which requires no optimization, is
recommended for this application. This new distributed dimen-
sionality reduction formulation and empirical study suggests a
direction for future research, namely the problem of finding the
number of sensors, the network structure and the set of d; that
optimize generalization error in classification for a given trans-
mission power budget and given number of training samples 7.

14The binary tree is the same as the parallel network for m = 1,2 and the
serial network for m = 1.
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Fig. 10. Tenfold cross-validation training error (blue triangle markers) and test
error (red circle markers) on sonar dataset for (a) parallel, (b) serial, and (c)
binary tree network architectures.

D. Spatially Distributed Sensor Node Data

As a confirmation of the results given for emulated sensor
network data in Section IV-C, here we present results on two
datasets arising from spatially-distributed sensor nodes. The
first dataset is based on sensor measurements collected at
the Intel Berkeley Research Laboratory in 2004. The second
dataset is based on sensor measurements collected at the Army
Research Laboratory in 2007 [75].

The Intel Berkeley dataset as available contains temperature,
relative humidity and light measurements for 54 sensors over
more than a month. A classification task is required for the
methodology developed in this paper and thus we define two
classes based on the light measurements, dark and bright. The
dark class corresponds to the average light being less than 125 1x
and the bright class to greater than 125 1x. Our formulation re-
quires a correspondence among measurements from different
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Fig. 11. Training error (blue triangle markers) and test error (red circle

markers) on arcene dataset for (a) parallel, (b) serial, and (c) binary tree
network architectures.

sensors in order to define a single sample j; the sensor measure-
ments are time-stamped with an epoch number such that mea-
surements from different sensors with the same epoch number
correspond to the same time. However, each epoch number cor-
responds to much fewer than 54 sensors. Thus, we take length 60
blocks of epoch numbers and consider all measurements within
a block to correspond to the same time. We take the first reading
if a block contains more than one reading from the same sensor.
Even with this blocking, if we insist that a sample needs data
from all 54 sensors, we obtain very few samples. Thus, we only
consider 12 sensors, numbered 1, 2, 3, 4, 6, 31, 32, 33, 34, 35, 36
and 37 in the dataset. With such processing, we obtain n = 2346
samples.

Spatial locations of the sensors are given. For the network
structure, we consider a fusion center located in the center of
the sensors and links between nodes according to the Euclidean
minimum spanning tree with the fusion center at the root. We
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Fig. 12. Training error (blue triangle markers) and test error (red circle

markers) on (a) Intel Berkeley dataset and (b) Army Research Laboratory
dataset.

train on the first quarter of the samples containing temperature
and relative humidity measurements and test on the latter three
quarters of the samples, varying the number of sensors and the
d; scaling. The training and test errors as a function of total
transmission power in the network is given in Fig. 12(a). As
in previous results, we see the effects of overfitting. An inter-
mediate transmission power level is optimal for classification
performance even with spatially-distributed sensor node data.

The Army Research Laboratory data consists of sensor nodes
that take four acoustic, three seismic, one electric field and four
passive infrared measurements. Measurements are taken during
the dropping of a 14 pound steel cylinder from nine inches
above the ground and during no significant human activity. The
cylinder dropping happens at various spatial locations in re-
lation to the sensors. In this dataset, we have 200 samples of
cylinder dropping and 200 samples of no activity. We train on
the first half of the samples and test on the remaining samples.
The fusion center is again placed in the center of the sensors
and a minimum spanning tree network is used. Training error
and test error are plotted in Fig. 12(b) for different numbers of
sensors and different d; scalings. Again, we see that an interme-
diate level of transmission power is optimal for classification
test error, with overfitting for large transmission powers.

V. CONCLUSION

In this paper, we have formulated linear dimensionality re-
duction driven by the objective of margin-based classification.
We have developed an optimization approach that involves
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alternation between two minimizations: one to update a clas-
sifier decision function and the other to update a matrix on
the Stiefel manifold. We have both analytically and empir-
ically looked at the phenomenon of overfitting: analytically
through the Rademacher complexity and empirically through
experiments on several real datasets, illustrating that dimen-
sionality reduction is an important component in improving
classification accuracy. We have also analytically characterized
the consistency of the dimensionality-reduced classifier. We
have described how our proposed optimization scheme can be
distributed in a network containing a single sensor through a
message-passing approach, with the classifier decision function
updated at the fusion center and the dimensionality reduction
matrix updated at the sensor. Additionally, we have extended
the formulation to tree-structured fusion networks.

Papers such as [32] and [34] have advocated nonparametric
learning, of which margin-based classification is a subset, for
inference in distributed settings such as wireless sensor net-
works. Reducing the amount of communication is an impor-
tant consideration is these settings, which we have addressed
in this paper through a joint linear dimensionality reduction and
margin-based classification method applicable to networks in
which sensors measure more than one variable. Reducing com-
munication is often associated with a degradation in perfor-
mance, but in this application it is not the case in the regime
when dimensionality reduction prevents overfitting. Thus, di-
mensionality reduction is important for two distinct reasons: re-
ducing the amount of resources consumed and obtaining good
generalization.
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