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Abstract—Sparse graphical models have proven to be a flexible
class of multivariate probability models for approximating high-di-
mensional distributions. In this paper, we propose techniques to ex-
ploit this modeling ability for binary classification by discrimina-
tively learning such models from labeled training data, i.e., using
both positive and negative samples to optimize for the structures
of the two models. We motivate why it is difficult to adapt existing
generative methods, and propose an alternative method consisting
of two parts. First, we develop a novel method to learn tree-struc-
tured graphical models which optimizes an approximation of the
log-likelihood ratio. We also formulate a joint objective to learn
a nested sequence of optimal forests-structured models. Second,
we construct a classifier by using ideas from boosting to learn a
set of discriminative trees. The final classifier can interpreted as a
likelihood ratio test between two models with a larger set of pair-
wise features. We use cross-validation to determine the optimal
number of edges in the final model. The algorithm presented in
this paper also provides a method to identify a subset of the edges
that are most salient for discrimination. Experiments show that the
proposed procedure outperforms generative methods such as Tree
Augmented Naïve Bayes and Chow-Liu as well as their boosted
counterparts.

Index Terms—Boosting, classification, graphical models, struc-
ture learning, tree distributions.

I. INTRODUCTION

T HE formalism of graphical models [3] (also called
Markov random fields) involves representing the condi-

tional independence relations of a set of random variables by a
graph. This enables the use of efficient graph-based algorithms
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to perform large-scale statistical inference and learning. Sparse,
but loopy, graphical models have proven to be a robust yet flex-
ible class of probabilistic models in signal and image processing
[4]. Learning such models from data is an important generic
task. However, this task is complicated by the classic tradeoff
between consistency and generalization. That is, graphs with
too few edges have limited modeling capacity, while those with
too many edges overfit the data.

A classic method developed by Chow and Liu [5] shows how
to efficiently learn the optimal tree approximation of a mul-
tivariate probabilistic model. It was shown that only pairwise
probabilistic relationships amongst the set of variables suffice
to learn the model. Such relationships may be deduced by using
standard estimation techniques given a set of samples. Consis-
tency and convergence rates have also been studied [6], [7].
Several promising techniques have been proposed for learning
thicker loopy models [8]–[11] (i.e., models containing more
edges) for the purpose of approximating a distribution given in-
dependent and identically distributed (iid) samples drawn from
that distribution. However, they are not straightforward to adapt
for the purpose of learning models for binary classification (or
binary hypothesis testing). As an example, for two distributions
that are “close” to each other, separately modeling each by a
sparse graphical model would likely “blur” the differences be-
tween the two. This is because the primary goal of modeling is
to faithfully capture the entire behavior of a single distribution,
and not to emphasize its most salient differences from another
probability distribution. Our motivation is to retain the general-
ization power of sparse graphical models, while also developing
a procedure that automatically identifies and emphasizes fea-
tures that help to best discriminate between two distributions.

In this paper, we leverage the modeling flexibility of sparse
graphical models for the task of classification: given labeled
training data from two unknown distributions, we first describe
how to build a pair of tree-structured graphical models to better
discriminate between the two distributions. In addition, we also
utilize boosting [12] to learn a richer (or larger) set of features1

using the previously mentioned tree-learning algorithm as the
weak classifier. This allows us to learn thicker graphical models,
which to the best of our knowledge, has not been done before.
Learning graphical models for classification has been previously
proposed for tree-structured models such as Tree Augmented
Naïve Bayes (TAN) [13], [14], and for more complex models
using greedy heuristics [15].

We outline the main contributions of this paper in Section I-A
and discuss related work in Section I-B. In Section II, we present

1We use the generic term features to denote the marginal and pairwise class
conditional distributions, i.e., � �� �� � �� � and � �� � � �� � �� � � �.
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some mathematical preliminaries. In Section III, we describe
discriminative tree learning algorithms specifically tailored for
the purpose of classification. This is followed by the presenta-
tion of a novel adaptation of boosting [16], [17] to learn a larger
set of features in Section IV. In Section V, we present numer-
ical experiments to validate the learning method presented in
the paper and also demonstrate how the method can be naturally
extended to multiclass classification problems. We conclude in
Section VI by discussing the merits of the techniques presented.

A. Summary of Main Contributions

There are three main contributions in this paper. Firstly, it is
known that decreasing functions of the -divergence [a sym-
metric form of the Kullback-Leibler (KL) divergence] provide
upper and lower bounds to the error probability [18]–[20]. Moti-
vated by these bounds, we develop efficient algorithms to maxi-
mize a tree-based approximation to the -divergence. We show
that it is straightforward to adapt the generative tree-learning
procedure of Chow and Liu [5] to a discriminative2 objective
related to the -divergence over tree models. Secondly, we pro-
pose a boosting procedure [12] to learn a richer set of features,
thus improving the modeling ability of the distributions and
. Finally, we demonstrate empirically that this family of algo-

rithms lead to accurate classification on a wide range of datasets.
It is generally difficult to adapt existing techniques for

learning loopy graphical models directly to the task of clas-
sification. This is because direct approaches typically involve
first estimating the structure before estimating the parameters.
The parameter estimation stage is usually intractable if the
estimated structure is loopy. Our main contribution is thus the
development of efficient learning algorithms for estimating
tree-structured graphical models and for classification. We
learn and which have distinct structures, with each chosen
to be simultaneously “close to” one distribution and “far from”
another, in a precise sense (Proposition 2). Furthermore, the
selection of and can be decoupled into two independent
max-weight spanning tree (MWST) problems; the cross-de-
pendence on both positively and negatively labeled examples
is captured by the edge weights of each MWST. We also
show an equivalence between the objective we maximize to
the empirical log-likelihood ratio for discrete-valued random
variables (Proposition 4). An alternative algorithm, which is
closely related to the above, casts the discriminative learning
problem as a single MWST optimization problem (Proposition
5). Similar to the above procedure, direct optimization over the
pair leads to two sequences of
forest-structured distributions of increasing number of edges
(pairwise features).

In addition, we develop a systematic approach to learn a
richer (or larger) set of features discriminatively using ideas
from boosting to learn progressively thicker graphical model
classifiers, i.e., models with more edges (Proposition 7). We
do this by: (i) Modifying the basic discriminative tree-learning
procedure to classify weighted training samples. (ii) Using the

2In this paper, we adopt the term “discriminative” to denote the use of both
the positively and negatively labeled training samples to learn the model �, the
approximate model for the positively labeled samples (and similarly for �). This
is different from “generative’’ learning in which only the positively labeled sam-
ples are used to estimate � (and similarly for �).

modification above as a weak classifier to learn multiple pairs
of trees. (iii) Combining the resulting trees to learn a larger set
of pairwise features.

The optimal number of boosting iterations and hence, the
number of trees in the final ensemble models is found by cross-
validation (CV) [21]. We note that even though the resulting
models are high-dimensional, CV is effective because due to the
lower-dimensional modeling requirements of classification as
compared to, for example, structure modeling. We show, via ex-
periments, that the method of boosted learning outperforms [5],
[13], [14]. In fact, any graphical model learning procedure for
classification, such as TAN, can be augmented by the boosting
procedure presented to learn more salient pairwise features and
thus to increase modeling capability and subsequent classifica-
tion accuracy.

B. Related Work

There has been much work on learning sparse, but loopy,
graphs purely for modeling purposes (e.g., in the papers [8]–[11]
and references therein). A simple form of learning of graphical
models for classification is the Naïve Bayes model, which cor-
responds to the graphs having no edges, a restrictive assump-
tion. A comprehensive study of discriminative versus generative
Naïve Bayes was done in Ng et al. [22]. Friedman et al. [14]
and Wang and Wong [13] suggested an improvement to Naïve
Bayes using a generative model known as TAN, a specific form
of a graphical model geared towards classification. However,
the models learned in these papers share the same structure and
hence are more restrictive than the proposed discriminative al-
gorithm, which learns trees with possibly distinct structures for
each hypothesis.

More recently, Grossman and Domingos [15] improved on
TAN by proposing an algorithm for choosing the structures by
greedily maximizing the conditional log-likelihood (CLL) with
a minimum description length (MDL) penalty while setting
parameters by maximum-likelihood and obtained good clas-
sification results on benchmark datasets. However, estimating
the model parameters via maximum-likelihood is complicated
because the learned structures are loopy. Su and Zhang [23]
suggested representing variable independencies by conditional
probability tables (CPT) instead of the structures of graphical
models. Boosting has been used in Rosset and Segal [24] for
density estimation and learning Bayesian networks, but the
objective was on modeling and not on classification. In Jing
et al. [25], the authors suggested boosting the parameters of
TANs. Our procedure uses boosting to optimize for both the
structures and the parameters of the pair of discriminative tree
models, thus enabling the learning of thicker structures.

II. PRELIMINARIES AND NOTATION

A. Binary Hypothesis Testing/Binary Classification

In this paper, we restrict ourselves to the binary hypothesis
testing or binary classification problem. In the sequel, we will
discuss extensions of the method to the more general -ary
classification problem. We are given a labeled training set

, where each training pair
. Here, may be a finite set (e.g.,

) or an infinite set (e.g., ). Each ,
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which can only take on one of two values, represents the class
label of that sample. Each training pair is drawn
independently from some unknown joint distribution .
In this paper, we adopt the following simplifying notation:

and
denote the class conditional distributions.3 Also, we as-
sume the prior probabilities for the label are uniform, i.e.,

. This is not a restrictive
assumption and we make it to lighten the notation in the sequel.

Given , we wish to train a model so as to classify, i.e., to
assign a label of 1 or 1 to a new sample . This sample is
drawn according to the unknown distribution , but its label is
unavailable. If we do have access to the true conditional distribu-
tions and , the optimal test (under both the Neyman-Pearson
and Bayesian settings [26, Ch. 11]) is known to be the log-like-
lihood ratio test given by

(1)

where the likelihood ratio is the ratio of the
class-conditional distributions and , i.e.

(2)

In (1), is the threshold of the test. In the absence of fully
specified and , we will instead develop efficient algorithms
for constructing approximations and from the set of samples

such that the following statistic [for approximating ] is
as discriminative as possible.

(3)

where is an approximation of the likelihood
ratio, defined as

(4)

In (4), and are multivariate distributions (or graphical
models) estimated jointly from both the positively and nega-
tively labeled samples in the training set . We use the empirical
distribution formed from samples in to estimate and .

B. Undirected Graphical Models

Undirected graphical models [3] can be viewed as gener-
alizations of Markov chains to arbitrary undirected graphs.
A graphical model over a random vector of variables

specifies the factorization properties
of the joint distribution of . We say that the distribution
is Markov with respect to an undirected graph with
a vertex (or node) set and an edge set
(where represents the set of all unordered pairs of nodes) if
the local Markov property holds, i.e.

(5)

3Therefore if � is finite, � and � are probability mass functions. If � � ,
then � and � are probability densities functions (wrt the Lebesgue measure).

where the set of neighbors of node is denoted as
and for any set . Eqn.

(5) states that the conditional distribution of variable
on all the other variables is only dependent on the values its
neighbors take on.

In this paper, we consider two important families of graphical
models: the sets of trees and the set of -edge forests, which we
denote as and respectively.4 A tree-structured proba-
bility distribution is one that is Markov on a (connected) tree-an
undirected, acyclic graph with exactly edges. A -edge
forest-structured distribution is one whose graph may not be
connected (i.e., it contains edges). Any tree- or
forest-structured distribution , Markov on , admits
the following factorization property [3]:

(6)

where is the marginal of the random variable and
is the pairwise marginal of the pair . Given

some (non-tree) distribution , and a tree or forest with fixed
edge set , the projection of onto this tree is given by

(7)

This implies that the marginals on and pairwise marginals on
of the projection are the same as those of . Finally, given

a distribution , we define the set of distributions that are the
projection of onto some tree as

(8)

To distinguish between forests and trees, we use the notation
to denote the edge set of a -edge forest distribution and

simply [instead of ] to denote a (connected) tree (with
edges).

C. The Chow-Liu Algorithm for Learning Tree Distributions

The Chow-Liu algorithm [5] provides a generative method
to approximate a full joint distribution with one that is
tree-structured. Recall that the KL-divergence [27] is given as

and is a natural measure of the
separation between two probability distributions and .
Given any multivariate distribution , the Chow-Liu algorithm
considers the following optimization problem:

(9)

4We will frequently abuse notation and say that � (and � ) are sets of
tree (and forest) graphs as well as sets of tree-structured (and forest-structured)
graphical models, which are probability distributions. The usage will be clear
from the context.
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Fig. 1. Illustration of Proposition 2. As defined in (8), � is the subset of tree
distributions that are marginally consistent with �, the empirical distribution of
the positively labeled samples. � and � are not trees, thus �� � �� � . The gener-
atively learned distribution (via Chow-Liu) � , is the projection of � onto �
as given by the optimization problem in (9). The discriminatively learned dis-
tribution � , is the solution of (20a) which is “further” (in the KL-divergence
sense) from � (because of the ������� term).

where recall that , understood to be over the same alphabet as
, is the set of tree-structured distributions. Thus, we seek to find

a tree approximation for an arbitrary joint distribution which
is closest to in the KL-divergence sense. See Fig. 1. Exploiting
the fact that decomposes into its marginal and pairwise factors
as in (6), Chow and Liu showed that the above optimization
reduces to a MWST problem where the edge weights are given
by the mutual information between pairs of variables. That is,
the optimization problem in (9) reduces to

(10)

where is the mutual information
between random variables and [26, Ch. 1] under the
model. It is useful to note that partial knowledge of , specifi-
cally only the marginal and pairwise statistics [i.e., and

], is all that is required to implement Chow-Liu fit-
ting. In the absence of exact statistics, these are estimated from
the training data.

It is worth emphasizing that for Chow-Liu fitting (and also for
discriminative trees in Section III), without loss of generality,
we only consider learning undirected tree-structured graphical
models (in contrast to directed ones in as [14]). This is because
in the case of trees, a distribution that is Markov on an undi-
rected graph can be converted to an equivalent distribution that
is Markov on a directed graph (or Bayesian network) [3] by se-
lecting an arbitrary node and directing all edges away from it.
Similarly, directed trees can also be easily converted to undi-
rected ones. Note also that there is no assumption on the true
distributions and . They can be either characterized by either
directed or undirected models.

D. The -Divergence

The -divergence between two probability distributions
and is defined as [27]

(11)

and is a fundamental measure of the separability of (or distance
between) distributions. It has the property that if and
only if almost everywhere. In contrast to KL-divergence,

is symmetric in its arguments. However, it is still not a metric
as it does not satisfy the triangle inequality. Nevertheless, the
following useful upper and lower bounds on the probability of
error [18]–[20] can be obtained from the -divergence between
two distributions:

(12)

Thus, maximizing minimizes both upper and lower bounds
on the Pr(err). Motivated by the fact that increasing the -di-
vergence decreases the upper and lower bounds in (12), we find

in (4) by choosing graphical models and which maxi-
mize an approximation to the -divergence.

III. DISCRIMINATIVE LEARNING OF TREES AND FORESTS

In this section, we propose efficient discriminative algorithms
for learning two tree models by optimizing a surrogate statistic
for -divergence. We show that this is equivalent to optimizing
the empirical log-likelihood ratio. We then discuss how to op-
timize the objective by using MWST-based algorithms. Before
doing so, we define the following constraint on the parameters
of the learned models.

Definition 1: The approximating distributions and are said
to be marginally consistent with respect to the distributions
and if their pairwise marginals on their respective edge sets

and are equal, i.e., for the model , we have

(13)

It follows from (13) that for all nodes .
We will subsequently see that if and are marginally con-

sistent, the optimization for the optimal structures of and
is tractable. Now, one naïve choice of and to approximate
the log-likelihood ratio is to construct generative tree or forest
models of and from the samples, i.e., learn (or

) from the positively labeled samples and from the
negatively labeled samples using the Chow-Liu method detailed
in Section II-C. The set of generative models under considera-
tion can be from the set of trees or the set of -edge forests

. Kruskal’s MWST algorithm [28] can be employed in ei-
ther case. If we do have access to the true distributions, then this
process is simply fitting lower-order tree (or forest) approxima-
tions to and . However, the true distributions and are usu-
ally not available. Motivated by Hoeffding and Wolfowitz [18]
(who provide guarantees when optimizing the likelihood ratio
test), and keeping in mind the final objective which is classifi-
cation, we design and in a discriminative fashion to obtain

, defined in (4).

A. The Tree-Approximate -Divergence Objective

We now formally define the approximation to the -diver-
gence, defined in (11).
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Definition 2: The tree-approximate -divergence of two tree-
structured distributions and with respect to two arbitrary
distributions and is defined as

(14)

for distributions that are mutually absolutely continuous5 and

(15)

for discrete distributions.
Observe that the difference between and is the replace-

ment of the true distributions and by the approximate dis-
tributions and in the logarithm. As we see in Proposition
4, maximizing the tree-approximate -divergence over and
is equivalent to maximizing the empirical log-likelihood ratio
if the random variables are discrete. Note however, that the ob-
jective in (14) does not necessarily share the properties of the
true -divergence in (12). The relationship between (14) and
the -divergence requires further theoretical analysis but this is
beyond the scope of the paper. We demonstrate empirically that
the maximization of the tree-approximate -divergence results
in good discriminative performance in Section V.

There are several other reasons for maximizing the tree-ap-
proximate -divergence. First, trees have proven to be a rich
class of distributions for modeling high-dimensional data [29].
Second, as we demonstrate in the sequel, we are able to develop
efficient algorithms for learning marginally consistent and .
We now state a useful property of the tree-approximate -diver-
gence assuming and are trees.

Proposition 1: (Decomposition of the Tree-Approximate
-Divergence): Assume that: (i) the pairwise marginals

and in (14) are mutually absolutely continuous; and (ii)
and are tree distributions with edge sets and respec-
tively and are also marginally consistent with and . Then the
tree-approximate -divergence can be expressed as a sum of
marginal divergences and weights

(16)

The multivalued edge weights are given by

(17)
where and denote the mutual information
quantities between random variables and under the and

probability models, respectively.

5Two distributions � and � (for � �� �) are mutually absolutely continuous if
the corresponding measures � and � are absolutely continuous with respect
to each other. The integral in (14) is understood to be over the domain in which
the measures are equivalent � � � .

Proof: Since is a tree-structured distribution, it admits
the factorization as in (6) with the node and pairwise marginals
given by (by marginal consistency). The distribution has
a similar factorization. These factorizations can be substituted
into (14) or (15) and the KL-divergences can then be expanded.
Finally, by using the identities

(18a)

(18b)

and marginal consistency of and , we can group terms to-
gether and obtain the result.

Denote the empirical distributions of the positive and nega-
tively labeled samples as and respectively. Given the defini-
tion of in (14), the optimization problem for finding approxi-
mate distributions and is formally formulated as

(19)

where is the set of tree-structured distributions which are
marginally consistent with . We will see that this optimization
reduces to two tractable MWST problems. Furthermore, as in
the Chow-Liu solution to the generative problem, only marginal
and pairwise statistics need to be computed from the training
set in order to estimate the information quantities in (17). In the
sequel, we describe how to estimate these statistics and also how
to devise efficient MWST algorithms to optimize (19) over the
set of trees.

B. Learning Spanning Trees

In this section, we describe an efficient algorithm for learning
two trees that optimize the tree-approximate -divergence de-
fined in (14). We assume that we have no access to the true dis-
tributions and . However, if the distributions are discrete, we
can compute the empirical distributions and from the posi-
tively labeled and negatively labeled samples respectively. If the
distributions are continuous and belong to a parametric family
such as Gaussians, we can estimate the statistics such as means
and covariances from the samples using maximum-likelihood
fitting. For the purpose of optimizing (19), we only require the
marginal and pairwise empirical statistics, i.e., the quantities

, , , and . Estimating these
pairwise quantities from the samples is substantially cheaper
than computing the full empirical distribution or all the joint
statistics. To optimize (19), we note that this objective can be
rewritten as two independent optimization problems.

Proposition 2 (Decoupling of Objective Into Two MWSTs):
The optimization in (19) decouples into

(20a)

(20b)
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Proof: The equivalence of (19) and (20) can be shown by
using the definition of the tree-approximate -divergence and
noting that .

We have the following intuitive interpretation: the problem
in (20a) is, in a precise sense, finding the distribution that is
simultaneously “close to” the empirical distribution and “far
from” , while the reverse is true for . See Fig. 1 for an illus-
tration of the proposition. Note that all distances are measured
using the KL-divergence. Each one of these problems can be
solved by a MWST procedure with the appropriate edge weights
given in the following proposition.

Proposition 3 (Edge Weights for Discriminative Trees): As-
sume that and are marginally consistent with and respec-
tively as defined in (13). Then, for the selection of the edge set
of in (20a), we can apply a MWST procedure with the weights
on each pair of nodes are given by

(21)

Proof: The proof can be found in Appendix A.
From (21), we observe that only the marginal and pairwise

statistics are needed in order to compute the edge weights. Sub-
sequently, the MWST is used to obtain . Then, given this op-
timal tree structure, the model is the projection of onto . A

similar procedure yields , with edge weights given by an
expression similar to (21), but with and interchanged. The
algorithm is summarized in Algorithm 1.

Algorithm 1 Discriminative Trees (DT)

Given: Training set .

1: Using the samples in , estimate the pairwise statistics
and for all edges using, for

example, maximum-likelihood estimation.

2: Compute edge weights and , using (21),
for all edges .

3: Given the edge weights, find the optimal tree structures
using a MWST algorithm such as Kruskal’s [28], i.e.,

, and .

4: Set to be the projection of onto and to be the
projection of onto .

5: return Approximate distributions and to be
used in a likelihood ratio test to
assign a binary label to a test sample .

This discriminative tree (DT) learning procedure produces at
most edges (pairwise features) in each tree model and
(some of the edge weights in (21) may turn out to be neg-
ative so the algorithm may terminate early). The tree models

and will then be used to construct , which is used in the
likelihood ratio test (3). Section V-B compares the classifica-
tion performance of this method with other tree-based methods
such as Chow-Liu as well as TAN [13], [14]. Finally, we remark

that the proposed procedure has exactly the same complexity as
learning a TAN network.

C. Connection to the Log-Likelihood Ratio

We now state a simple and intuitively-appealing result that
relates the optimization of the tree-approximate -divergence
to the likelihood ratio test in (1).

Proposition 4 (Empirical Log-Likelihood Ratio): For discrete
distributions, optimizing the tree-approximate -divergence in
(19) is equivalent to maximizing the empirical log-likelihood
ratio of the training samples, i.e.

(22)

Proof: Partition the training set into positively labeled
samples and negatively labeled sam-
ples and split the sum in (22) cor-
responding to these two parts accordingly. Then the sums (over
the sets and ) are equal to (20a) and (20b), respectively.
Finally use Proposition 2 to conclude that the optimizer of the
empirical log-likelihood ratio is the same as the optimizer of the
tree-approximate -divergence.

This equivalent objective function has a very intuitive
meaning. Once and have been learned, we would like

to be positive (and as large
as possible) for all samples with label , and negative
(with large magnitude) for those with label . The
objective function in (22) precisely achieves this purpose.

It is important to note that (19) involves maximizing the tree-
approximate -divergence. This does not mean that we are di-
rectly minimizing the probability of error. In fact, we would not
expect convergence to the true distributions and when the
number of samples tends to infinity if we optimize the discrim-
inative criterion (20).6 However, since we are explicitly opti-
mizing the log-likelihood ratio in (22), we would expect that
if one has a limited number of training samples, we will learn
distributions and that are better at discrimination than gen-
erative models in the likelihood ratio test (3). This can be seen
in the objective function in (20a) which is a blend of two terms.
In the first term , we favor a model that minimizes
the KL-divergence to its empirical distribution . In the second
term , we favor the maximization of the empirical type-II
error exponent for testing against the alternative dis-
tribution (the Chernoff-Stein Lemma [26, Ch. 12]).

D. Learning Optimal Forests

In this subsection, we mention how the objective in (19), can
be jointly maximized over pairs of forest distributions and

. Both and are Markov on forests with at most
edges. This formulation is important since if we

are given a fixed budget of only edges per distribution, we
would like to maximize the joint objective over both pairs of

6However, if the true distributions are tree-structured, minimizing the KL-di-
vergence over the set of trees as in (9) is a maximum-likelihood procedure. It
consistently recovers the structure of the true distribution � exponentially fast
in � [6], [7].
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distributions instead of decomposing the objective into two in-
dependent problems as in (20). This formulation also provides
us with a natural way to incorporate costs for the selection of
edges.

We use that notation to denote the set of probability
distributions that are Markov on forests with at most edges
and have the same node and edge marginals as , i.e., marginally
consistent with the empirical distribution . We now reformulate
(19) as a joint optimization over the class of forests with at most

edges given empiricals and

(23)

For each , the resulting distributions and are optimal
with respect to the tree-approximate -divergence and the final
pair of distributions and corresponds exactly to
and , the outputs of the DT algorithm as detailed in Algorithm
1. However, we emphasize that (for ) will,
in general, be different from the outputs of the DT algorithm
(with at most edges chosen for each model) because (23) is
a joint objective over forests. Furthermore, each forest has at
most edges but could have fewer depending on the sign of the
weights in (17). The number of edges in each forest may also
be different. We now show that the objective in (23) can be op-
timized easily with a slight modification of the basic Kruskal’s
MWST algorithm [28].

We note the close similarity between the discriminative ob-
jective in (16) and the Chow-Liu optimization for a single span-
ning tree in (10). In the former, the edge weights are given by

in (17) and in the latter, the edge weights are the mutual
information quantities . Note that the two objective
functions are additive. With this observation, it is clear that we
can equivalently choose to maximize the second term in (16),
i.e., , over the set of trees, where each

is a function of the empirical pairwise statistics
and (and corresponding information-theoretic mea-
sures) that can be estimated from the training data. To maxi-
mize the sum , we use the same MWST algorithm with edge
weights given by . In this case, we must consider the max-
imum of the three possible values for . Whichever is the max-
imum (or if all three are negative) indicates one of four possible
actions:

1) Place an edge between and for and not (corre-
sponding to ).

2) Place an edge between and for and not (corre-
sponding to ).

3) Place an edge between and for both and (corre-
sponding to ).

4) Do not place an edge between and for or if all three
values of in (17) are negative.

Proposition 5 (Optimality of Kruskal’s Algorithm for
Learning Forests): For the optimization problem in (23), the

-step Kruskal’s MWST algorithm, considering the maximum
over the three possible values of in (17) and the four actions
above, results in optimal forest-structured distributions
and with edge sets and .

Proof: This follows from the additivity of the objective in
(16) and the optimality of Kruskal’s MWST algorithm [28] for
each step . See [30, Sec. 23.1] for the details.

The -step Kruskal’s MWST algorithm is the usual Kruskal’s
algorithm terminated after at most edges have been
added. The edge sets are nested and we state this formally as a
corollary of Proposition 5.

Corollary 6 (Nesting of Estimated Edge Sets): The edge sets
obtained from the maximization in (23) are nested, i.e.,

for all and similarly for . This
appealing property ensures that one single run of Kruskal’s
MWST algorithm recovers all pairs of substructures

. Thus, this procedure is computationally
efficient.

E. Assigning Costs to the Selection of Edges

In many applications, it is common to associate the selection
of more features with higher costs. We now demonstrate that it
is easy to incorporate this consideration into our optimization
program in (23).

Suppose we have a set of costs
, where each element is the cost of selecting edge .

For example, in the absence of any prior information, we may
regard each of these costs as being equal to a constant .
We would like to maximize optimize , given in (23), over the
two models and taking the costs of selection of edges into
consideration. From Proposition 1, the new objective function
can now be expressed as

(24)

where the cost-modified edge weights are defined as
. Thus, the costs appear only in the new edge weights

. We can perform the same greedy selection procedure with
the new edge weights to obtain the “cost-adjusted” edge sets

and . Interestingly, this also gives a natural stopping
criterion. Indeed, whenever all the remaining are negative
the algorithm should terminate as the overall cost will not im-
prove.

IV. LEARNING A LARGER SET OF FEATURES VIA BOOSTING

We have described efficient algorithms to learn tree distribu-
tions discriminatively by maximizing the empirical log-likeli-
hood ratio in (22) (or the tree-approximate -divergence). How-
ever, learning a larger set of features (more than edges per
model) would enable better classification in general if we are
also able to prevent overfitting. In light of the previous section,
the first natural idea for learning thicker graphical models (i.e.,
graphical models with more edges) is to attempt to optimize an
expression like (19), but over a set of thicker graphical models,
e.g., the set of graphical models with bounded treewidth. How-
ever, this approach is complicated because the graph selection
problem was simplified for trees as it was possible to determine
a-priori, using (8), the projection of the empirical distribution
onto the learned structure. Such a projection also holds for the
construction of junction trees, but maximum-likelihood struc-
ture learning is known to be NP-hard [31]. For graphs that are
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not junction trees, computing the projection parameters a priori
is, in general, intractable. Furthermore, the techniques proposed
in [8]–[11] used to learn such graphs are tightly coupled to the
generative task of approximating , and even for these it is not
straightforward to learn parameters given the loopy structure.

A. Discrete-Adaboost and Real-Adaboost: A Review

In this paper, we get around the aforementioned problem by
using a novel method based on boosting [12] to acquire a larger
set of features. Boosting is a sequential learning technique de-
signed for classification. Given a set of “weak” classifiers (or
“base learners”), boosting provides a way to iteratively select
and combine these into a “strong” (or “ensemble”) classifier,
one which has a much lower probability of error on the training
samples. The set of weak classifiers is chosen as follows: at it-
eration 0, each training sample is given uniform weights

. In each iteration , a weak classifier ,
a map from the feature space to one of two labels, is chosen to
minimize the weighted training error (i.e., the total weight of all
misclassified training samples). Then, the sample weights are
updated, with weight shifted to misclassified samples. After
iterations, the boosting procedure outputs , a
weighted average of the weak classifiers, as its strong classi-
fier and the sign function if and 1 other-
wise. The coefficients ’s are chosen to minimize the weighted
training error [12]. This procedure is known in the literature as
Discrete-AdaBoost.

Real-AdaBoost [16], [17] is a variant of the above algorithm
for the case when it is possible to obtain real-valued confidences
from the weak classifiers, i.e., if [with more posi-
tive signifying higher bias for positively labeled samples].
7 It has been observed empirically that Real-AdaBoost often per-
forms better than its discrete counterpart [16], [17]. We found
this behavior in our experiments also as will be reported in
Section V-D. The strong classifier resulting from the Real-Ad-
aBoost procedure is

(25)

where the set of coefficients are given by .

B. Learning a Larger Set of Pairwise Features by Combining
Discriminative Trees and Boosting

In the language of Real-AdaBoost, the tree-based classifiers
or the forests-based classifiers presented in Section III may be
regarded as weak classifiers to be combined to form a stronger
classifier. More specifically, each weak classifier
is given by the log-likelihood ratio

, where and are the tree-structured graph-
ical model classifiers learned at the th boosting iteration. Run-
ning boosting iterations, now allows us to learn a larger set of
features and to obtain a better approximation of the likelihood

7For instance, if the weak classifier is chosen to be the logistic regression
classifier, then the confidences are the probabilistic outputs ������.

ratio in (4). This is because the strong ensemble classifier
can be written as

(26a)

(26b)

(26c)

In (26c), , an unnormalized distribution, is of the form

(27)

Define to be the
normalizing constant for in (27). Hence the distribution (or
graphical model) sums/integrates to unity.

Proposition 7 (Markovianity of Normalized Distributions):
The normalized distribution is Markov on a graph

with edge set

(28)

The same relation in (28) holds for .
Proof: (sketch): This follows by writing each as a

member of an exponential family, combining ’s to give as
in (27) and finally applying the Hammersley-Clifford Theorem
[32]. See Appendix B for the details.

Because we are entirely concerned with accurate classifica-
tion, and the value of the ratio in (26c),
we do not need to normalize our models and . By leaving
the models unnormalized, we retain the many appealing theo-
retical guarantees [12] afforded by the boosting procedure, such
as the exponential decay in the training error. Furthermore, we
are able to interpret the resulting normalized models8 as being
Markov on particular loopy graphs (whose edge sets are given
in Proposition 7), which contain a larger set of features as com-
pared to simple tree models.

Note that after boosting iterations, we have a maximum
of pairwise features in each model as each boosting
iteration produces at most pairwise features. To learn
these features, we now need to learn tree models to minimize
the weighted training error, as opposed to unweighted error as
in Section III. This can be achieved by replacing the empirical
distributions , with the weighted empirical distributions ,

and the weights are updated based on whether each sample
is classified correctly. The resulting tree models will thus

be projections of the weighted empirical distributions onto the
corresponding learned tree structures. The method for learning
a larger set of features from component tree models is sum-
marized in Algorithm 2. Note that Algorithm 2 is essentially

8We emphasize that the unnormalized models � and � are not probability
distributions and thus cannot be interpreted as graphical models. However, the
discriminative tree models learned in Section III are indeed normalized and
hence are graphical models.
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Fig. 2. The class covariance matrices � and � as described in Section V-A. The only discriminative information arises from the lower-right block.

a restatement of Real-Adaboost but with the weak classifiers
learned using Discriminative Trees (Algorithm 1).

Algorithm 2 Boosted Graphical Model Classifiers (BGMC)

Given: Training data . Number of boosting iterations .

1: Initialize the weights to be uniform, i.e., set
for all .

2: for do

3: Find discriminative trees , using Algorithm 1, but
with the weighted empirical distributions , .

4: The weak classifier is given by
.

5: Perform a convex line search to find the optimal value
of the coefficients

6: Update and normalize the weights:

where is the
normalization constant to ensure that the weights sum to unity
after the update.

7: end for

8: return Coefficients and models . The
final classifier is given in (26).

V. NUMERICAL EXPERIMENTS

This section is devoted to an extensive set of numerical ex-
periments that illustrate the classification accuracy of discrimi-
native trees and forests, as well as thicker graphical models. It
is subdivided into the following subsections.

1) First, in Section V-A, we present an illustrate example to
show that our discriminative tree/forest learning procedure
as detailed in Sections III-B and D results in effective tree-
based classifiers.

2) Second, in Section V-B we compare our discriminative
trees procedure to other tree-based classifiers using real
datasets. We also extend our ideas naturally to multiclass
classification problems.

3) Finally, in Section V-D, we demonstrate empirically on a
range of datasets that our method to learn thicker models
outperforms standard classification techniques.

A. Discriminative Trees (DT): An Illustrative Example

We now construct two Gaussian graphical models and
such that the real statistics are not trees and the maximum-like-
lihood trees (learned from Chow-Liu) are exactly the same, but
the discriminative trees procedure gives distributions that are
different. Let and be the probability density functions of
two zero-mean -variate ( even) Gaussian random vectors with
class-conditional covariance matrices and , respectively,
i.e., , where

(29)

and the noise matrix is given as

(30)

In (29), , and are carefully selected pos-
itive definite matrices.

Note, from the construction, that the only discriminative in-
formation comes from the lower block terms in the class condi-
tional covariance matrices as these are the only terms that differ
between the two models. We set to be the highest correlation
coefficient of any off-diagonal element in or . This en-
sures that those edges are the first chosen in any Chow-Liu
tree. These edges connect discriminative variables to non-dis-
criminative variables. Next we design , , such
that all of the correlation coefficient terms in the (common)
upper block are higher than any in or . This results in
generative trees learned under Chow-Liu which provide no dis-
criminative information. The additive noise term will not affect
off-diagonal terms in either or . The two matrices and

are shown in Fig. 2.
We now apply two structure learning methods (Chow-Liu [5]

and the discriminative forest-learning method in Section III-D)
to learn models and sequentially. For this toy example,
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Fig. 3. Structures of � at iteration � � ���. The figures show the adjacency matrices of the graphs, where the edges selected at iteration ��� are highlighted
in red. In the left plot, we show the discriminative model, which extracts the edges corresponding to the discriminative block (lower-right corner) of the class
conditional covariance matrix. In the right plot, we show the generative model, which does not extract the discriminative edges.

Fig. 4. Tree-approximate �-divergence and Pr(err). Note the monotonic in-
crease of the tree-approximate �-divergence for the discriminative model. The
generative model provides no discrimination as evidenced by the zero diver-
gence and ������� � ���.

we assume that we have the true distributions. The learned struc-
tures are shown in Fig. 3. Note that, by construction, the dis-
criminative algorithm terminates after steps since no more
discriminative information can be gleaned without the addition
of an edge that results in a loop. The generative structure is very
different from the discriminative one. In fact, both the and

structures are exactly the same for each . This is further

validated from Fig. 4, where we plot the tree-approximate -di-
vergence between and (relative to and ) and the
probability of error Pr(err) as a function of . The Pr(err) is ap-
proximated using 10 000 test samples generated from the orig-
inal distributions and . We see that the generative method
provides no discrimination in this case, evidenced by the fact
that the -divergence is identically 0 and the Pr(err) is exactly
1/2. As expected, the -divergence of the discriminative models
increases monotonically and the Pr(err) decreases monotoni-
cally. Thus, this example clearly illustrates the differences be-
tween the generative [5] and discriminative learning algorithms.
Clearly, it is advantageous to optimize the discriminative objec-
tive (23) if the purpose, namely binary classification, is known
a-priori.

B. Comparison of DT to Other Tree-Based Classifiers

We now compare various tree-based graphical model classi-
fiers, namely our proposed DT learning algorithm, Chow-Liu
and finally TAN [14]. We perform the experiment on a quan-
tized version of the MNIST handwritten digits dataset.9 The
results are averaged over 50 randomly partitioned training (80%
of available data) and test sets (20%). The probability of error
Pr(err) as a function of the number of training examples is
plotted in Fig. 5. We observe that in general our DT algorithm
performs the best, especially in the absence of a large number
of training examples. This makes good intuitive sense: With a
limited number of training samples, a discriminative learning
method, which captures the salient differences between the
classes, should generalize better than a generative learning
method, which models the distributions of the individual
classes. Also, the computational complexities of DT and TAN
are exactly the same.

C. Extension to Multiclass Problems

Next, we consider extending the sequential forest learning al-
gorithm described in Section III-D to handle multiclass prob-
lems.10 In multiclass problems, there are classes, i.e.,
the class label described in Section II-A can take on more
than 2 values. For example, we would like to determine which

9Each pixel with a non-zero value is quantized to 1.
10The DT algorithm can also be extended to multiclass problems in the same

way.
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Fig. 5. Pr(err) between DT, Chow-Liu and TAN using a pair of trees. Error
bars denote 1 standard deviation from the mean. If the total number of training
samples� is small, then typically DT performs much better than Chow-Liu and
TAN.

digit in the set a particular noisy image con-
tains. For this experiment, we again use images from the MNIST
database, which consists of classes corresponding to
the digits in the set . Since each of the images in
the database is of size 28 by 28, the dimensionality of the data
is . There is a separate test set containing
10 000 images, which we use to estimate the error probability.
We preprocessed each image by concatenating the columns. We
modeled each of the classes by a multivariate Gaussian with
length- mean vector and positive definite covariance matrix

. To handle this multiclass classification problem, we used
the well-known one-versus-all strategy described in Rifkin and
Klautau [33] to classify the test images. We define and

to be the learned forest distributions with at most
edges for the binary classification problem for digits (positive
class) and (negative class), respectively. For each , we also
define the family of functions as

(31)

Fig. 6. Pr(err)’s for the MNIST Digits dataset for the multiclass problem with
� � �� classes (hypotheses). The horizontal axis is �, the number of edges
added to each model � and � . Note that the discriminative method outper-
forms the generative (Chow-Liu) method and TAN.

Thus, is the classifier or decision
function (for which both forests have no more than edges)
that discriminates between digits and . Note that

. These distributions correspond to the and
for the binary classification problem. The decision for the mul-
ticlass problem is then given by the composite decision function
[33] , defined as

(32)

The results of the experiment are shown in Fig. 6. We see that the
discriminative method to learn the sequence of forests results in
a lower Pr(err) (estimated using the test set) than the generative
method for this dataset and TAN. This experiment again high-
lights the advantages of our proposed discriminative learning
method detailed in Section III as compared to Chow-Liu trees
[5] or TAN [14].

D. Comparison of Boosted Graphical Model Classifiers to
Other Classifiers

In this section, we show empirically that our boosting pro-
cedure results in models that are better at classifying various
datasets as compared to boosted versions of tree-based classi-
fiers. Henceforth, we term our method, described in Section IV
(and in detail in Algorithm 2) as Boosted Graphical Model Clas-
sifiers (BGMC).

In Fig. 7, we show the evolution of the training and test er-
rors for discriminating between the digits 7 and 9 in the MNIST
dataset as a function of , the number of boosting iterations. We
set the number of training samples . We compare the
performance of four different methods: Chow-Liu learning with
either Discrete-AdaBoost or Real-AdaBoost and Discrimina-
tive Trees with either Discrete-AdaBoost or Real-AdaBoost. We
observe that the test error for Discriminative Trees Real-Ad-
aBoost, which was the method (BGMC) proposed in Section IV,
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Fig. 7. Discrimination between the digits 7 and 9 in the MNIST dataset. � is
the number of boosting iterations. Yellow : (Chow-Liu�Discrete-AdaBoost),
Green�: (Chow-Liu� Real-AdaBoost), Red�: Discriminative Trees� Dis-
crete-AdaBoost, Blue �: Discriminative Trees� Real-AdaBoost (the proposed
algorithm, BGMC). BGMC demonstrates lower training and test errors on this
dataset. The training error decreases monotonically as expected. CV can be used
to find the optimal number of boosting iterations to avoid overfitting. Observe
from (b) that boosting (and in particular BGMC) is fairly robust to overfitting
because even if � increases, the test error (also called generalization error) does
not increase drastically.

is the minimum. Also, after a small number of boosting iter-
ations, the test error does not decrease any further. Cross-val-
idation (CV) [21] may thus be used to determine the optimal
number of boosting iterations. We now compare BGMC to a
variety of other classifiers:

1) BCL: A boosted version of the Chow-Liu algorithm [5]
where a pair of trees is learned generatively, one for each
class using the basic Chow-Liu algorithm. Note that only
the positively (resp., negatively) labeled samples are used
to estimate (resp. ). Subsequently, the trees are com-
bined using the method detailed in Section IV.

2) BTAN: A boosted version of TAN [14]. Recall that TAN
is such that two trees with the same structure are learned.

3) SVM: Support Vector Machines [34] using the quadratic
kernel , with the slack
parameter found by CV.11 We obtained the SVM
code from [35].

For boosting, the optimal number of boosting iterations , was
also found by CV. For the set of experiments we performed,

11We used 20% of the training samples to determine the best value of � .

we found that is typically small ( 3–4); hence the resulting
models remain sparse (Proposition 7).

1) Synthetic Dataset: We generated a dataset by assuming
that and are Markov on binary grid models with
different randomly chosen parameters. We generated
samples to learn boosted discriminative trees. The purpose of
this experiment was to compare the number of edges added to
the models and the (known) number of edges in the original
grid models. The original grid models each have
edges and the learned models have at most

edges since the CV procedure results in an optimal
boosting iteration count of . However, some of the edges
in , , (respectively, , , ) coincide and this results
in (respectively, ). Thus,
there are 180 and 187 distinct edges in the and models
respectively. From the top left plot in Fig. 8, we see that CV
is effective for the purpose of finding a good balance between
optimizing modeling ability and preventing overfitting.

2) Real-World Datasets: We also obtained five different
datasets from the UCI Machine Learning Repository [36] as
well as the previously mentioned MNIST database. For datasets
with continuous variables, the data values were quantized so
that each variable only takes on a finite number of values. For
datasets without separate training and test sets, we estimated
the test error by averaging over 100 randomly partitioned
training-test sets from the available data. The Pr(err) as a
function of the number of training examples is plotted in
Fig. 8 for a variety of datasets. We observe that, apart from
the Pendigits dataset, BGMC performs better than the other
two (boosted) graphical model classifiers. Also, it compares
well with SVM. In particular, for the synthetic, three MNIST,
Optdigits and Chess datasets, the advantage of BGMC over the
other tree-based methods is evident.

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed a discriminative objective for
the specific purpose of learning two tree-structured graphical
models for classification. We observe that Discriminative Trees
outperforms existing tree-based graphical model classifiers
like TANs, especially in the absence of a large number of
training examples. This is true for several reasons. First, our
discriminative tree learning procedure is designed to optimize
an approximation to the expectation of the log-likelihood ratio
(22), while TAN is a generative procedure. Thus, if the intended
purpose is known (e.g., in [37] the task was prediction), we can
learn graphical models differently and often, more effectively
for the task at hand. Second, we allowed the learned structures
of the two models to be distinct, and each model is dependent
on data with both labels. It is worth noting that the proposed
discriminative tree learning procedure does not incur any com-
putational overhead compared to existing tree-based methods.

We showed that the discriminative tree learning procedure
can be adapted to the weighted case, and is thus amenable to
use the models resulting from this procedure as weak classifiers
for boosting to learn thicker models, which have better mod-
eling ability. This is what allows us to circumvent the intractable
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Fig. 8. Pr(err) against �, the number of training samples, for various datasets using Boosted Graphical Model Classifiers (BGMC, blue �), Boosted Chow-Liu
(BCL, red �), Boosted TAN (BTAN, magenta�) and SVM with quadratic kernel (green �). In all cases, the performance of BGMC is superior to Boosted TAN.

problem of having to find the maximum-likelihood parameters
of loopy graphical models.

In addition to learning two graphical models specifically for
the purpose of discrimination, the proposed method also pro-
vides a principled approach to learn which pairwise features (or
edges) are the most salient for classification (akin to the methods
described in [38]). Our method for sequentially learning optimal
forests serves precisely this purpose and also provides a natural
way to incorporate costs of adding edges. Furthermore, to learn
more edges than in a tree, we used boosting in a novel way to
learn more complex models for the purpose of classification.
Indeed, at the end of boosting iterations, we can precisely
characterize the set of edges for the normalized versions of the
boosted models (Proposition 7). We can use these pairwise fea-
tures, together with the marginal features, as inputs to any stan-
dard classification algorithm. Finally, our empirical results on
a variety of synthetic and real datasets adequately demonstrate
that the forests, trees and thicker models learned serve as good
classifiers.

APPENDIX A
PROOF OF PROPOSITION 3

Proof: We use to denote equality up to a constant. Also,
to shorten notation, let . Now, we can sim-
plify the objective in the optimization problem in (20a), namely

(33)

(34)

(35)

where (33) follows from the fact that is a tree [and hence fac-
torizes as (6)] and (34) follows from marginal consistency and
the fact that we are optimizing only over the edge set of and



5494 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 11, NOVEMBER 2010

thus the marginals can be dropped from the optimization. The
final equality in (35), derived using (18a) and (18b), shows that
we need to optimize over all tree structures with edge weights
given by the expression in (21).

APPENDIX B
PROOF OF PROPOSITION 7

Proof: This result holds even when the are not trees, and
the proof is straightforward. In general, a (everywhere nonzero)
distribution is Markov [3] with respect to some edge set if
and only if

(36)

for some constants and
sufficient statistics . This
means that each tree model can be written as

(37)

Let be the union of edge sets after boosting
iterations. Then is equal (up to constants) to

(38)

where in we interpret the right hand side of the last equality as
if and only if . This is seen to be of the same

form as (36)—to see this, define the functions
, and , so that

. By the Ham-
mersley-Clifford Theorem [32], we have proven the desired
Markov property.
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