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Absb.acf--'Zbe purpose of this paper is to summarize some results 
obtained for the adaptive control of the F-SC airaaft using the so-called 
MMAC method. Tbe discussion indudes the selection of the performance 
criteria for both the lateral and the longitudinal dynamics, the design of 
the KaIman filters for different flight conditions, the "identifkation" 
aspects of the design using hypothesis testing ideas, and the performance 
of the dosed-loop adaptive system. 

I.  INTRODUCTION 

The purpose of this paper is to present  the  results of Phase I of a study 
which  deals  with the evaluation of an advanced adaptive control 
method, the so-called multiple-model-adaptive-control (MMAC) 
method, in the context of a realistic  problem,  namely,  the  design of a 
stochastic regulator for both the  longitudinal and lateral dynamics of the 
NASA  F-8C aircraft. The results of the  regulator study were necessary to 

a) evaluate the potential of the  method 
b) provide guidance for  Phase 11, namely, the design of a true  com- 

mand and stability augmentation system  which incorporates the effects 
of pilot  commands and handling  qualities. 

The results of Phase I1 wiU not be  reported in this paper, since  the 
study  is not as yet complete. It is important to stress,  however, that the 
techniques  described in this  paper  were  suitably  modified  for  the  event- 
ual design  using  the  same  overall approach. 

The paper by  Elliott  [I51  presents an overview of the  NASA-F8 
program. I t  is important to stress that the  results presented in this paper 
rqresent a research ewluation and feasibility  study, strongly  inji'uenced fy 
certain design guidelines whose  purpose was to make the adaptilje control 
problem difficult. As explained  in [ 151 the  open-loop  characteristics of the 
F-8C aircraft are such that complex  stability augmentation systems are 
not required. This is also explained in the  research of the  Honeywell 
group; see [16H18].  Thus,  the  applications-oriented reader should  keep 
in mind that the apparent complexity of the " A C  algorithm, as well 
as of some of the other approaches described in this issue, and notably 
that of Stein et al. [16], are purely due to  the  design  assumptions imposed 
and are directed  towards  the  development of an understanding of the 
utility of several  advanced  techniques  for  more  exotic future aircraft and 
in other applications in which sophisiticated adaptive control algorithms 
are necessary. We repeat that the F-8 does not need anythmg fancy. 
Hence,  the  "practicality" of an F-8 design  was judged in the  context of 
whether or not it could be implemented using about half  the  resources of 
the  IBM A P - I O 1  flight  computer (see [151). 

A. Sensors 

The major design  decision  which  governed  the  design  methodology 
and the  eventual  complexity of the adaptive control algorithm  revolved 
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TABLE I 

Flight  Dynamic Trim Angle Trim 
Condition Altitude Mach  Pressure of Attack Elevator 
Number (ft) Number (Ib/ft*)  (deg.)  (deg.) 

5 Sea level  0.3  133.2  7.991 - 3.960 
6 Sea  level  0.53 
7 

416.0 2.989  -2.495 
Sea  level  0.7  726.0 1.92 1 - 2.455 

8 Sea level  0.86 1098.0 1.536  -2.537 
9 Sea  level 1 .O 1480.0 
10 

1.069 - 1.673 
20  000  0.4  109.0  9.270  -5.549 

11  20  000  0.6  245.0  4.429  -3.663 
12  20 OOO 0.8 434.0  2.626  -2.615 
13  20 OOO 0.9 
14 

550.0  2.250  -2.650 
20000 1.2  978.0 

15 
1.490  -2.131 

40000 0.7  135.0  7.035  -4.791 
16 40OOO 0.8 176.0  5.371 - 3.891 
17 40 OOO 0.9  223.0  4.257  -3.521 
I8 4oooo 1.2 
19 

397.0  2.822 -4.463 
40 000  1.4 

20 40000 1.6 
537.0  2.736  -4.416 
703.0  2.063  -3.465 

about the  sensors that were to be used. In  the  MMAC algorithm we only 
used the  sensors  shown  in Table 111. AU accelerometers and gyros have 
triple redundancy on the F-8C while attitude gyros have dual re- 
dundancy. The  general  guidelines  agreed  upon by  NASA and MIT/ESL 
was to utilize only very  reliable  sensors. For this  reason,  sensors that 
utilized air data such as sideslip and angle-of-attack  vanes  were not 
permitted. If auspeed and altitude sensors  were used, then one could 
measure  relatively  accurately dynamic pressure. Prior studies by Honey- 
well  (171 had  shown that if dynamic pressure  was  known, then very 
simple  gain  scheduling  could  be carried out. For this reason, direct 
accurate measurements of airspeed, altitude, and dynamic pressure  were 
not considered in the  MMAC  design or the  Honeywell  design (161  (in 
fact  the  main focus of the  Honeywell  design was indeed to estimate 
dynamic  pressure  from the reliable  sensors). Attitude sensors  were 
deemed  undesirable by NASA (151, but they had to be used in order to 
resolve  the components of the  accelerometer  readings. 

3. Models 

From the  viewpoint of modeling, it is known that the dynamic state 
equations of an aircraft involve  nonlinear differential equations (see 
Etkin [ID.  However,  the information given  by  NASA  Langley Research 
Center (LRC) to the MIT/ESL team  consisted of the specification of the 
uncoqied, linear time-invariant open-loop longitudinal and lateral dy- 
namics of the  F-8C aircraft associated  with equilibrium flight. Table I 
gves a list of the 16 flight conditions that were  available for the design. 
Thus, the general structure of the equations were of the form i ( t ) =  
Ax(t )+Bu( t ) .  The numerical  values of the  elements of the A and B 
matrices can be found in a report by Gera [2], based upon wind tunnel 
tests, and a report by  Wooley and Evans [3], based upon linearization of 
the nonlinear  dynamics  employed by NASA/LRC for their nonlinear 
simulation of the F-8C aircraft [15].  We  remark at this point that the 
numerical  values  for  the A and B matrices gven in  [2] and [3] are not 
identical, reflecting  the fact that different sources  were  used to obtain 
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them. The design reported in this paper is  based  upon the linear models 
given  in [3]. 

c. Control P h i l m q ~  

As previously  explained, this paper  deals  with the adaptive design of a 
system  whose purpose is to maintain equilibrium  flight conditions for the 
aircraft. The judgement was made that the equilibrium  problem had to 
be understood first and the experience  gained  should be employed for 
the modifcations necessary to incorporate pilot command inputs for 
both the longitudinal and lateral dynamics.' 

However, all available evidence  indicated that the desired  response of 
the closed-loop aircraft varies  with  flight  condition. The guidelines  set 
forth called for a  complete linear-quadratic-Gaussian (LQG) design for 
each  flight condition which fully incorporated Kalman filters to handle 
sensor errors and 10 reconstruct the state variables (e.g., angle of attack, 
sideslip  angle  which could not be  measured). 

One of the f i i t  problems that had to be  resolved  was  a definition of a 
quadratic performance criterion which  changed in a natural way  with 
different operating conditions.  Such  issues are discussed in more detail 
in Sections I1 and 111 of this paper. At this point, it suffices to state that 
the control and Kalman filter gains obtained for each operating condi- 
tion  were different. In the absence of dynamic pressure estimates the 
means for implementing  gain  scheduling are not obvious. This motivated 
the use of the MMAC algorithm as the main candidate; the (meager) 
theoretical basis for the " A C  algorithm is presented  in  Section V. 
Since a  digital implementation was necessary the LQG designs had to 

be carried out in both continuous [9] and discrete time [lo] so that 
comparisons between  them as a function of the  sampling  time could be 
obtained. 

In closing these introductory remarks it is important to stress that the 
MMAC design  differs  in  several  key  aspects from the Honeywell  design 
(Stein et aL [ 161, also in this  issue)  although structurally they are similar. 
We shall attempt to point out the similarities and differences  whenever 
appropriate. However, it is important to realize that the guidelines for 
the Honeywell  design  did not include Kalman filters to process the noisy 
sensor  measurements; rather, simple  low-pass filtering was  deemed ade- 
quate. The basis " A C  design  included Kalman filtering and hence it 
is more complex,  requires  more computation time, tuning, etc. It can be 
easily  modified to remove the Kalman filter requirement for state 
reconstruction; however,  this has not been done as yet. 

A final philosophical  comment can be made. Until now, the " A C  
concept has been a theoretical development; MIT/ESL's efforts have 
tried to convert it into a  practical  design  technique. MIT/ESL's design 
represented  the  "brute  force" application of the " A C  concept; this 
approach is essential in understanding the limitations and implications 
of the theory, and in  isolating areas where additional technical  know- 
how  must be incorporated. This approach contrasts with  Honeywell's 
conservative approach, aimed at developing  a  complete, implementable 
design; the Honeywell  design adapted a sophisticated parameter estima- 
tion  method to a  problem  which already incorporated a great  degree of 
simplification due to engineering  knowhow. MIT/ESL's design effort 
has been very educational in  providing  valuable  insight into a  potentially 
useful  design  technique. 

11. LONGITUDINAL DYNAMICS 

A. Intrwhrcrion 

In this section we present an overview of the LQG philosophy adopted 
for designing the regulator for the longitudinal dynamics. Attention is 
given to the development of the quadratic performance index and the 
subsequent  model  simplification  using  a short period approximation. 
The main concept that we  wish to stress is that the quadratic perfor- 
mance criteria employed  changed in a natural way  with  each  flight 
condition. The surprising result was that the short period  poles of the 
resultant longitudinal closed-loop  system  were characterized for all flight 
conditions by two constant damping ratios, one associated  with alI 

'At this point we  remark  that pilot command designs have already k e n  developed as 
Phase I1 of the project The final evaluation of Phase I t  has not been completed as yes 
and the results will be reported in future publications. 

subsonic flight conditions and  one associated with all supersonic flight 
conditions. 

B. The Longirudinal State  Descretion 

Because of a rate constraint saturation on the elevator rate [15& the 
control variable selected was the time rate of change of the commanded 
elevator rate (&(t)). This was integrated to generate the actual com- 
manded  elevator  position (S,( t ) )  which  was introduced to a first order 
servo with  time constant of 1 / 12 s to generate the actual deviation of the 
elevator 8Jt) from its trimmed  value. The secondary actuator dynamics 
[I51 were  ignored.  The elevator was then related to the four "natural" 
longitudinal state variables,  namely,  pitch rate q(t)  (rad/s), velocity 
error u(t)  (ft/s), perturbed angle of attack from i t s  trimmed  value a(t) 
(rad), and pitch attitude deviation  from its trimmed  value e( t )  (rad) [2]. 
In addition, a  wind disturbance state w(t )  was included (see Appendix 
A). Thus the state vector x ( t )  for the longitudinal dynamics  was char- 
acterized  by seven components 

x'tt) 2 [q(t) .u(t) ,a(t) ,e(t) ,6,(t) ,8, ,(r) ,w(t)l  (2.1) 

and the control variable u(r) was the commanded elevator rate 

u(t)  2 i C  ( I ) .  (2.2) 

This led to a  linear-time invariant characterization for each  flight condi- 
tion of the  form 

i ( t )=A,x(r)+&(r)+L&r) (2-3) 

where at) was zero mean  white  noise, generating the wind disturbance 
and accounting for actuator model errors. The elements of Ai and L, 
changed  with each flight condition while 

B=[O 0 0 0 0 1 or. (2.4) 

C. The Longitudinal Cost Functional 

In order to apply the standard steady-state LQG procedure [9] a 
quadratic performance  index has to be selected The general structure of 
the index was 

J = ~ m x ' ( r ) e x ( r ) + u ' ( r ) ~ i u ( r ) d t .  (2.5) 

Note that the  weighting  matrices 8 ,  R, had to be different from  flight 
condition to flight condition reflecting in a natural way that the pilot 
wants different handling qualities as the speed (and dynamic pressure) 
changes. 

In the  initial  design it was decided that one should  relate  the maxi- 
mum deviations of 

pitch attitude 0- 
pitch rate qmax 
n o d  acceleration a, - 
maximum commanded elevator rate 8,- 

resulting in the  following structure of the performance criterion: 

The normal acceleration am(t), in g's, was not used as a state variable. 
However, it is linearly  related to some of the longitudinal state variables 
according to the formula 

V, being the equilibrium  speed.  The constants k , ,  k,, k, can be calcu- 
lated from the open-loop A, matrices and,  hence, change with  flight 
condition. Effectively, the structure of the criterion (2.6)  implies that if at 
t = O  the maximum values of acceleration,  pitch rate, or pitch attitude 
occurred, then one would  be willing to saturate the elevator rate to 
remove  them. For the preliminary  design  the  following  numerical  values 
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6,,,=0.435 rad/s (2.8) 

where a33 is the (3,3) element of the  open-loop longitudinal Ai matrix. 
Roughly  speakmg, this criterion means that one is  willing to saturate 

the elevator rate (0.435 radjs for the  F-8C) if a normal acceleration of 6 
g was  felt,  or a pitch rate equivalent to 10  g’s, or a pitch error which if 
translated to angle of attack would  also generate a 6 g normal  accelera- 
tion. 

The above  numerical  values  were translated into the appropriate a. 
matrix (nondiagonal, positive  semidefinite)  which  changed  from  flight 
condition to flight condition, while Ri= R = l/(O.435y for all flight 
conditions.  Hence, the resulting LQ problem  could be  solved  using 
available  computer subroutines [ 1 I]. 

D. Reduced Longitudinal  Design 

The  design  was  modified  for  two  reasons.  First, the gain  from the 
velocity state variable u(r) was extremely  small.  Second, it was desirable 
to avoid  using the pitch  sensor. The pitch 0 ( 1 )  is weakly observable  from 
the system  dynamics so that even if a Kalman filter  was  used in the 
absence of pitch  measurements,  large estimation errors would  be ob- 
tained which  would  adversely  affect the performance of the control 
system  since  there is sigmficant  feedback from the  estimated  pitch 
attitude. At any rate, since a pilot  would  fly  the aircraft he  would  be able 
to control the pitch himself. 

This led us to eliminating the velocity error u( t )  and the  pitch 0 ( t )  
from the state equations and obtaining the “short period” approximation 
(five state variables).  Since the pitch was not to be controlled the criteria 
(2.6)  was  modified to 

and the resultant LQ problem was resolved. 

E. Summay of Results 

From the viewpoint of transient responses to the variables of interest 
(normal acceleration,  pitch rate, and angle of attack) the transient 
responses to initial conditions were almost  identical for both designs. 
Thus, the short period  motion of the aircraft was dominated by  the 
relative  tradeoff  between  the  maximum normal acceleration am- and 
maximum  pitch rate q,,. This is consistent with the C* criterion [ 12). 

When  the short-period closed-loop  poles  were  evaluated for both 
designs using  the  numerical  values  given by  (2.8),  we found the unex- 
pected result that the h y i n g  ratio was constant (0.488) for all I 1  subsonic 
flight condrtions, and also constant (0.361) for all the supersonic flight 
conditions. The  closed-loop natural frequency-increased  with dynamic 
pressure. 

Since no pole-placement  techniques  were  employed (i.e., the mathe- 
matics  were not told to place the closed-loop  poles on a constant 
damping ratio line), we constructed a tradeoff by changing (&awing) 
the  maximum  pitch rate q,,. This would  increase  the  pitch rate penalty 
in the  cost functional, and one would  expect a higher damping ratio. The 
following  values of qmax were  employed: 

4max=lOg/V0,8g/Vo,6g/Vo,4g/V, .  (2.10) 

Once  more  the constant damping ratio phenomenon was  observed,  i.e., 
for each  value of qmax the short period  closed-loop  poles for all subsonic 
flight conditions fell on a constant damping ratio line, and similarly for 
all supersonic  flight conditions. This was further verified  by considering 
an additional 13 different  flight conditions. 

The numerical  results are presented in Table 11. The reason  for this 
regularity of the solution of the LQ problem in terms of constant 
damping ratio  properties  remains  unresolved. 

TABLE I1 
DAMFING RATIO FOR CLOSEDLOOP SHORT PERIOD 
POLES AS A FUNCTION OF MAXIMUM PITCH RATE 

PENALTY qmax IN (2.6) OR (2.9) 

Damping Ratio Damping Ratio 
for all Subsonic for all Supersonic 

qmax Conditions Conditions 
log/ vo 0.488 0.36 1 
8g/ vo 0.530  0.402 
6g/ vo 0.552  0.449 
4g/ vo 0.587  0.498 

111. LATERAL DYNAMICS 

A .  Introduction 

In this Section  we present  the  parallel  philosophy for the  development 
of  the  regulator control system for the lateral dynamics. In this case the 
development  of a performance criterion  was.not as straightforward as in 
the case  of  the  longitudinal  dynamics. For an extensive  discussion see 
the S.M. thesis  by Greene [13]. 

B. The Lateral  Dynamics  State  Model 

The control variables  selected for lateral control were 

q ( t )  = i, ( I )  =commanded aileron rate (rad/s) (3.1) 

~2(t)=6,(t)=commanded rudder rate (rad/s) (3.2) 

U(t)=[ul ( t )  k ( t ) l ‘ .  (3.3) 

so that the control vector is defined  to  be 

The commanded deron and rudder rates  were integrated to generate the 
commanded aileron (6,c(t)) and rudder (6,(r))  positions,  respectively. 
For the F-8C aircraft the  commanded  aileron rate 6,c(t) drives a first- 
order lag  servo, with a time constant of 1/30 s, to generate the actual 
aileron  position 6,(t) (rad). The  commanded rudder rate 6,c(t) (rad) 
dnves a first-order  lag  servo,  with a time constant of 1/25 s, to generate 
the actual rudder position &(t) (rad). The actual ruleron and rudder 
position 6,(r) and 6,(r) then  excite  the four “natural” lateral dynamics 
state variables,  namely,  roll rate p ( t )  (rad/+ yaw-rate r(r) (rad/s), 
sideslip  angle B ( r )  (rad), and bank  angle Q(t) (rad). In addition, a wind 
disturbance state variable w ( t )  (see  Appendix A) drives  the equations in 
the  same way as the sideslip  variable.  Again,  secondary actuator dy- 
~ m i c s  [ 151 were ignored. 

Thus,  the state equations for  the lateral dynamics are characterized by 
a nine-dimensional state vector x ( t )  with components 

and the  overall lateral dynamics  take  the  form 

x ( t ) = A , x ( f ) + B u ( t ) + L ; ~ ( t )  (3.5) 

where the zero-mean whte noise  vector at) generates the wind dis- 
turbance and compensates  for  modeling errors. Once  more the matrices 
Ai,  Li change  with  flight conditions [2], [3] whde 

B , = [ o  0 0 0 0 0 0 I 01. 
0 0 0 0 0 0 1 0 0  (3.6) 

C. The Lateral Cost Functional 

The lateral performance  index used (after several iterations) weighted 
the following  variables: 

lateral acceleration 4 ( t )  (g’s) 
roll rate p ( r )  (rad/s) 
sideslip  angle B ( t )  (rad) 
bank angle $0) (rad) 
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versus 
commanded aileron rate &(t) (rad/s) 
commanded rudder rate S,(t) (rad/s). 

77 I 

TABLE 111 
SENSOR CHARACTERISTICS 

Standard deviation 
The lateral acceleration %(t)  is not a state variable.  However, for small of additive white 
perturbations from equilibrium  flight, it can be  expressed as a linear Variable  Symbol  noise 
combination of the lateral state variables and the trim angle of attack a, pitch rate 4 0.489 deg/s 
by the following  relation:  Normal acceleration a",= 0.06 g's 

Roll rate D 1.956 d e d s  
Yaw rate r 0.489 dei/s 
Bank  angle Q 1 .o 
Lateral acceleration 

deg 
0.04 E'S 

where the constants k,; . . ,kg can be found from the lateral open-loop B. The sav'ing Intern' 
Ai matrix and change with  the  flight  condition. A sampling rate of 8 measurements/s was established. Such a slow 

The structure Of the quadratic Pfolmance criterion was sampling rate was selected so as to be able to carry out in real time the 
established: multitude of real-time operations  required by the MMAC method. 

dr . 

(3.8) 

The following  maximum  values  were  used: 

1) Maximum lateral acceleration 4-=0.25 g's. 
2) M-W roll rate pa = 4 v,/ a (a3]  - ao). 
3)  Maximum  sideslip  angle  B-=4 V o / a  a33 
4)  Maximum  bank  angle +,=0.233 rad (= 15'). 
5)  Maximum  commanded  aileron rate = 1.63 rad/s. 
6) Maximum  commanded rudder rate = 1.22 rad/s. 

See 1131 for an extensive  discussion of how  this  performance  criterion 
was derived; a3, and a33 are obtained from  the  open-loop Ai matrices. 

There is  no natural way of arriving at a simplified  model for the lateral 
dynamics, as was the case  with  the longitudinal dynamics. Hence the 
bank  angle cannot be  eliminated.  Although a bank  angle  sensor  was 
deemed  undesirable,  the weak observability of the  bank  angle  caused 
large state estimation errors in bank and sideslip  angles if a bank angle 
sensor was not included. For these  reasons, it was decided to employ a 
bank  angle  sensor and to penalize  bank  angle deviation to maintain the 
airplane near equilibrium fight. 

Once  more, the LQ problem can be  solved. Notice that the use of the 
performance  criterion (3.8) results  in a state-weighting matrix a. (nondi- 
agonal)  which  changes  with  flight condition. 

D. Summary of R d t s  

C. Semors and Noise  Characteristics 

As explained in the Introduction, the  guidelines for design  excluded 
the use  of air data sensors. Thus, measurements of altitude, speed, angle 
of attack, and sideslip  angle were not  available. After some  preliminary 
investigations it was decided that sensors that depend on trim variables 
(elevator  angle and pitch attitude) should not be  used so as to avoid 
estimating  trim parameters. (At  this  point we  wish to remark that this 
was  not the case with the  Honeywell  design  which  used  elevator angle 
and generated trim estimates.) Table 111 lists  the  sensors and their 
accuracy  characteristics that were  used in this study. We stress that the 
sensors  measure  the true variables  every 1/8 s in the  presence of 
discrete,  zero-mean  white  noise with the standard deviations  given in 
Table 111, which  represent  conservative  estimates of sensor performance 
(see 115, Table 111). 

Finally, we remark that in this study we assumed that all  sensors  were 
located at the CG of the aircraft. 

D. The Design of Kalman Filters 

For each  flight  condition  the steady-state discrete-time  Kalman  filter 
with c o n s t a n t  gains was calculated  for  both  the longtudinal and lateral 
dynamic  models. The level of the plant white  noise  associated  with  the 
wind disturbance generation was selected so that we assumed that the 
aircraft was flying in  cumulus  clouds.  (See  Appendix A.) 

The decision to use steady-state constant gain Kalman filters was 
made in order to minimize the computer memory  requirements. 

Finally, we remark that in  view  of the  slow  sampling rate, the 
continuous time  filtering  problem was carefully translated into the 
equivalent  discrete  problem 1141. 

Once more we observed a constant damping ratio for the dutch roll E. The Design of Discrete LQG co~emarors  
mode (0.515) for all  supersonic  conditions, and (0.625) for all subsonic 
flight  conditions. 

IV. SENSORS, KALMAN FILTERS, AND DISCRETE LQG 
COMPENSATORS 

A. Introduction 

The digital  implementation of the control system  requires  the 
discrete-time  solution of the  LQG  problem [lo]. As we shall see in the 
next  section, the MMAC approach requires the construction of a bank 
of LQG controllers, each of which contains a discrete Kalman filter 
(whose  residuals are used in probability calculations and whose state 
estimates are used to generate the adaptive control signals).  Hence, in 
this  section we present an overview of the issues  involved in the design of 
the LQG controllers  based  upon the noisy  sensor  measurements. 

Through the  use of the separation theorem one can design  the discrete 
LQG  compensators. This implied that the  LQ  problem  defined in 
continuous time in Sections I1 and I11 had to be  correctly transformed 
into the equivalent  discrete-time  problem in view of the slow  measure- 
ment  rate.  Effectively, we have  used the transformations given in [ 111 
and [ 141. 

E Recapitulation 

For each  flight condition, indexed by i, a complete  &rete-time, 
steady-state, LQG compensator was designed for both the longitudinal 
and lateral dynamics. At 1/8th s intervals,  each  compensator generated 
the optimal control, namely,  the optimal commanded  elevator rate s,(t) 
for the longitudinal d y n e s ,  and the optimal commanded aileron rate 
6&) and rudder rate 6,(r) for the lateral dynamics,  based  upon  the 
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noisy  measurements of the appropriate sensors (see Table 111) every 1/8 

Since we did not control the longitudinal phugoid  mode, multirate 
sampling was not employed At any rate, a sampling rate of 1/8 s is  low 
for aircraft applications (the Honeywell  design  [I61  used  50  measure- 
ments/s). 

Because of the appropriate transformations of the continuous-time 
LQG problem to the  discrete one, we noted no sigmficant degradation in 
performance at this low sampling rate. No undesirable  intersample 
behavior  was  noted. 

The need for adaptive control is obvious  because, if we assume that 
the aircraft is in flight condition i, but we use  the LQG compensator 
obtained for flight condition j for feedback control, this mismatching 
may  generate either an unstable  system or, often, at least a system  with 
degraded performance. We also  remark that such a mismatch  instability 
is not only due to the control gains, but also due to the Kalman filter 
gains.  Severe Kalman filter  mismatching can lead to erroneous state 
estimates  which in the  MMAC  design  concept can generate bad control 
signals. It is important to stress that the problem of erroneous state 
estimates of the actually  sensed  variables by  severely mismatched  Kal- 
man filters does not arise if one simply  low  passes the noisy  sensor 
measurements, as in the  Honeywell  design. 

S. 

V. THE “ A C  M E M O D  

A,  Introduction 

In this section we present the basic idea behind the “ A C  method, 
and discuss  how it was  used in the  F-8C  context. In particular, we 
demonstrate how the information generated by the lateral and longitudi- 
nal sensors could  be  blended  together.  Finally, we make  some  remarks 
associated with the “ A C  method and its general  applicability to the 
design of adaptive control systems. 

B. The Basic Idea 

Suppose one has N linear,  discrete-time stochastic time-invariant  dy- 
namic  systems,  indexed  by i =  1,2; . . , N, generating  discrete-time 
measurements corrupted by white  noise.  Suppose that at t = O  “nature” 
selects one of these  systems and places it inside a “black  box.” The true 
system  generates a discrete  set of measurements z ( t ) .  The objective is to 
apply a control signal u(t) to  the true model. 

The version of the “ A C  method  employed  is as follows: one 
constructs a discrete-time  steady-state LQG controller for each  model; 
thus, one has a bank of N LQG compensators. As shown  in  Fig. I ,  each 
LQG compensator is driven by the actual control applied to the  system 
u(t)  and driven by the actual noisy  measurement  vector z(t). There are 
two  signals of interest that each LQG compensator generates at time t :  

1) the control vector ui(t), which would be the optimal control if 
indeed the system in the black box (viz. aircraft) was identical to the ith 
model 

2) the  residual or innovations  vector ri(t) generated by each Kalman 
filter  (which is inside the ith LQG compensator). 

It turns out that from the  residuals of the  Kalman  filters one can 
recursively generate N discrete-time  sequences denoted by Pi(t), i =  
1,2; . . , N ,  t =0,1,2, .  . . , which,  under suitable assumptions, are the 
conditional probabilities at time t ,  given the past measurements z ( ~ ) ,  
T < f and controls u(o), o < t - 1, that the ith model  is  the true one. 

Assuming  then that these  probabilities are generated  on-line  (the 
formula will be given later) and given that each LQG compensator 
generates  the control vector y(t),  then as shown in Fig. 1, the ” A C  
method  computes the adaptive control vector u(t), whch drives  the  true 
system (viz. aircraft) and each of the  Kalman  filters  inside  the LQG 
compensators, by  weighting  the controls y( t )  by the  associated  probabil- 
ities,  i.e., 

N 
a(O= c P i ( t N i ( 0 .  (5.1) 

i= I 

Fig. 1. Structure of MMAC system. 

C. Calculation of the  Probabilities Pi(t)  

Many adaptive control algorithms  have strong identification compo- 
nents as well as control components. In the  MMAC  algorithm, the 
“identification”  subsystem corresponds to the generation of the condi- 
tional  posterior  probabilities Pi(t) that, based upon real-time sensor 
measurements,  tell us which  model appears to be  the correct one. 

We assume that at t=O,  i.e., before  any  measurements are obtained, 
one has a set of prior probabilities 

v 
P~(O),P~(O),...,P~(O),P,(O)>O , 2 p , ( O ) = l  (5.2) 

I =  I 

that represent our “best guess” of which  model  is  indeed  the true one. 
In our version of the “ A C  method we have avdable the steady- 

state (constant) covariance matrix S, of the residuals  associated  with the 
ith Kalman  filter.  These N residual  covariance  matrices are precomput- 
able given the open-loop dynamics,  the  sensors, and the statistical 
characterization of the  noises.  Let r denote the  number of sensors; then 
we can precompute  the N scalars: 

(5.3) 

From the residual  vector q(t) ,  Le.,  the difference  between  the actual 
measurement and the predicted  measurement at time t generated by 
each  Kalman filter, we generate on-line the N scalars 

mi(t )  2 < ( t ) q - ’ r , ( t ) .  (5.4) 

Then the probabilities at time t, Pi(t) ,  i= 1 .2 ; . . ,N  are computed 
recursively  from  the  probabilities at time t - I ,  Pi(t -  I), using  the for- 
mula 

with the  initial  probabilities Pi(0) given.  The probabilities P,(t)  are then 
substituted into (5.1) to generate  the adaptive control. 

D. Brief  Historical Perspectiw 

As explained in [4] there are several algorithms that employ a parallel 
structure of compensators  to generate adaptive estimation and control 
algorithms. To the  best of our  knowledge  the  first  effort along these  lines 
was that of Magdl  whose Ph.D. dissertation culminated in [SI.  Along 
similar veins Lainiotis and his students examined  more  general condi- 
tions for adaptive estimation  (see  [20]  for a very recent  survey and 
discussion); Lainiotis calls  these partitioned  algorithms. Such  ideas are 
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also implicit in Aoki’s book [25] -and  were also considered  by Haddad 
and Cruz [24]. 

Multiple  model  type adaptive algorithms  were  considered  by  Stein [26] 
in his Ph.D. dissertation, by Saridis and Dao [27J, and by  Lainiotis [22], 
[23] whose  original  claims about true “nonlinear separation” properties 
were  false.  The  properties of all these  multiple  model  algorithms  were 
examined by  Willner [8] in his  Ph.D. dissertation. The structure of the 
specific “ A C  algorithm used in this paper is akin to that by De 
shpande et al. [6] and Athans and WiUner [7] in which  they  examined a 
hypothetical STOL example. AU these multiple  model adaptive estima- 
tion and control algorithms  represent  blends of stochastic estimation and 
dynamic  hypothesis  testing  ideas.  From an adaptive control point of 
view they are not dual control approaches (see [4] and [21D. The F-8 
specific  design  by  Stein et a[. [I61 can be also classified as a multiple 
model  design. 

E. Important Remark 

1) It has been  shown by Willner [8] that the MMAC  method, i.e., 
generating  the control via (5.1), is not optimal (it  is optimal under 
suitable assumptions only  for the last  stage of the dynamic programming 

2) The MMAC  algorithm is appealing  in an ad hoc way because of its 
fixed structure and because its real-time and memory  requirements are 
readily computable. 

3) In the version  used  in this study, because we use steady-state 
Kalman  filters rather than time-varying Kalman filters,  the P,( t )  are not 
exactly conditional probabilities. 

4) We  have been unable to find in the  cited literature a rigorous  proof 
of convergence of the  claim that indeed the probability associated  with 
the true model will asymptotically  converge to unity? 

5) From a heuristic  point of view, the  recursive  probability formula 
(5.5) makes sense  with  respect to identification. If the system  is subject to 
some sort of persistent  excitation,  then one would  expect that the 
residuals  behave  “regularly,” i.e., the residuals of the  Kalman filter 
associated with the correct  model,  say the ith one, will be “small,”  while 
the  residuals of the mismatched Kalman filters (j# i, j = 1,2,. . . , A’) will 
be ‘‘large.’’ Thus, if i indexes the correct  model we would  expect 

algorithm). 

q ( t ) < m , ( t )  aUj#i. (5.6) 

If such a condition persists  over  several  measurements,  the  analysis of 
(5.5) shows that the “correct” probability Pi( t )  will increase,  while  the 
“mismatched  model” probabilities will decrease. To see ths, one can 
rewrite the formula (5.5) as follows: 

P ; ( ~ ) - P , ( ~ - I ) =  2 Pj(t-l)&exp{ -m,(t)/2} I N  J= 1 I-’ 
( 1 - f ‘ , ( t - 1 ) ) / 3 ; e x p { - m i ( t ) / 2 )  

- q ( t -  1 ) F e x p  { - 9 ( t ) / 2 }  1. (5.7) 
j # i  

Under our assumptions (5.6) 

exp{ -mi(t)/2)=1 (5.8) 

exp { - mj(1)/2} x o .  (5.9) 

Hence, the correct model probability will grow according to 

which demonstrates that as Pi(t )+l ,  the rate of growth slows  down. 

assumptions  yield 
On  the other hand, for the  incorrect  models,  indexed  by j # i, the  same 

open-loop case. 
*Moore and Hawkes [ZS] developed  some  convergence results for convergence  in  the 

so that the probabilities decrease. 
The same  conclusions  hold if  we rewrite (5.7) in  the  form 

(5.12) 

The above  discussion  points out that this “identification” scheme is 
crucially dependent upon  the  regularity of the  residual  behavior  between 
the “matched” and “mismatched”  Kalman  filters. 

6) The “identification”  scheme,  in  terms of the dynamic evolution of 
the residuals, will not work  very  well if for  whatever  reason  (such as 
errors in the selection of the  noise  statistics)  the  residuals of the Kalman 
filters do not have the above regularity  assumptions.  To be specific, 
suppose that for a prolonged  sequence of measurements  the K h a n  

(5.13) 

(5.14) 

(5.15) 

Suppose that it turns out that one of the fi:’s, say /3k+, is dominant, i.e., 

/3; > /3: all iz k .  (5.16) 

In this case,  the  right-hand-side (RHS) of (5.15) will  be negative for all 
ip k ,  which  means that aU the Pi(t )  wiU decrease, while the probability 
Pk (associated with the dominant @) will increase. This behavior  is  very 
important, especially  when  the  mathematical  models  used are substan- 
tially  different from the  real  system. This point  has not been  discussed 
previously in the literature to the best  of our knowledge, and deserves 
further attention independent of any  results  on  convergence when the 
real  system is one of the  hypothesized  models. 

F: AppIicarion lo the F-8C 

The MMAC  method can be  used in a straightforward manner using 
either longitudinal or lateral  dynamics of the  F-8C aircraft since we have 
designed both longitudinal and lateral LQG compensators for  the  availa- 
ble  flight conditions, as we remarked in Section IV. 

Under the assumptions of equilibrium  flight the lateral and longitudi- 
nal dynamics of the aircraft become  decoupled.  Hence,  from  the  inmvid- 
uaI banks of Kalman filters operating from  the longmdinal and lateral 
sensors,  respectively, one can obtain two  sets of probabilities P,LoN(r) 
and PiUT(r) which  theoretically  could  be  combined into a single proba- 
bility;  the  technical details can be found in [ 191. Although this procedure 
is correct  from the theoretical  point of  view,  when evaluated via digital 
computer  simulations,  it was found to be  deficient. The basic  reason is 
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as- 
-9 - 

that under  given operating conditions, the amount of information availa- 
ble  for identification can be  drastically different for the longitudinal and 
lateral systems. This is  in  agreement  with the Honeywell  [16]  findings 
that demonstrate that it is very  difficult to identify certain key lateral 
aerodynamic coefficients. Thus, in practice,  the blending of the  individ- 
ual longitudinal and lateral probabilities into a single  probability  was 
abandoned. The causes for these errors in the  overall  probability  calcula- 
tion are due to P*-dominance effects and inaccuracies in the tuning of 
the Kalman filters. 

With  these considerations, we designed two separate " A C  schemes 
for the longitudinal and lateral systems. 

Other practical considerations were made in the design of the MMAC 
controllers. In theory, the probabilities of the individual  models  have 
zero as a lower bound. Under the  hypothesis of the " A C  algorithm, 
where  the true airplane condition is constant, it is desirable to have 
probabilities approach zero. In actual flight, the aircraft will change 
flight conditions; in order to keep  the identification scheme  sensitive to 
such  changes, and to eliminate part of the influence of past information, 
the probabilities PjmN(r) and PiUT(t) for the lateral and longitudinal 
systems are not allowed to be  less than This restriction  makes  the 
identification more  rapid  when  changes  occur. 

After initial testing, we found that, under  heavy turbulence (15 ft/s 
rms winds), the identification scheme  was hectly affected by the 
randomness of the turbulence, creating rapid changes in identification. 
Fig. 2 shows the identification changes and some of the  relevant  vari- 
ables  under  heavy  turbulence.  With  the aircraft at level  flight,  the  main 
sources of excitation are the turbulence disturbances, so the  identifica- 
tion reflects  the random nature of these disturbances. 

The oscillating identification was  deemed undesirable as part of a 
control scheme. To eliminate it, the probabilities were  low-pass filtered 
with a time constant of 2 by the formula 

~ ( t + I ) = k ~ ( r ) + ( l - k ) P , ( r + l )  (5.17) 

where 

-90 - 
W- 

-0- 
20- 

PRommupT 

rrow II 
0- 

I -  

54 RECORDER 2 

Fig. 3. Aircraft responses at FC 1 1 ;  probabilities low-pass filtered 15 ft/s rms turbu- 
lence. 

>e  probabilities Pi(r) are computed according to (5.5). The probabilities 
Pi(t )  are the low-pass  filtered  values  used  in  the " A C  scheme. Thus, 
the actual control action  applied to the aircraft is computed  from  the 
formula 

Note that the identification sequence P , ( t )  is the  same as it was 
previously. Thus, the identificaton scheme is not slowed_down by the 
introduction of these  low-pass  filters. The probabilities P,(t) are used 
strictly  for the purposes of obtaining a smoother control action. The 
effect of the low-pass filter is to smooth out the  fast transitions in 
identification to produce a smoother control action, thereby  improving 
the handling  qualities of the aircraft; see  Fig. 3. 

The fmal modification was implemented to alleviate the P*-domiuant 
behavior. We found that the cases where the m,(r)  were all approxi- 
mately equal were cases when  all m,(r) were  small  (usually during calm, 
equilibrium flight). The magnitude of m,(r) represents  the information 
available in the  system for identification. Recognizing this pattern, we 
did not update the probabilities Pj(r) when all of the residual products 
q ( t )  were smaller than a given threshold; the threshold was set at 
different levels  for  the lateral and longitudinal systems. That is, 

P , ( r t l )=P, ( t )  i f T ( r ) <  Tforal l j=I , - . . ,N.  (5.20) 

The value of T was  determined in a trial and error fashion. Typical 
values used were  10 for  the longitudinal system and 50 for the lateral 
system. 

G. Dkcussion 

It should be immediately obvious that if the " A C  method  is 
applied  for  the control of the F-8C aircraft (or any other physical  system 
for that matter), one violates a multitude of theoretical  assumptions. The 
effect of these  upon  the  performance of an overall  system  is  difficult to 
establish on an analytical basis  because the " A C  system, in spite of 
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its simple structure, represents an extremely nonlinear system.  Hence, 
one has to rely on extensive  simulation  results in order to be able to 
make a judgment of the performances of the  overall  algorithm. 
Since the aircraft n w r  coincides  with  the mathematical models  (recall 

the discussion on the  differences in the data given in [2] and [3]),the Pi(t )  
are not truly posterior  probabilities. Rather, they  should  be interpreted 
as time  sequences that have a reasonable physical interpretation. Hence, 
in our opinion,  the evaluation of the MMAC method solely  by the 
detailed dynamic evolution of the Pi(t) is wrong. Rather it should be 
judged by  the  overall performance of the control system. In the case of 
the regulator, this is easy since one can always compare the  response of 
the MMAC system with that which  was  designed  explicitly for that flight 
conditions and compare the results. 

One of the  biggest  sources of coupling  between the identification and 
the generation of the adaptive control that has to be  considered in detail 
pertains to the use of Kalman filters to process  the  raw  sensor data. The 
calculation of the adaptive control given  by  (5.1) can be  rewritten as 

N 
s(r)= c Pi(t)Gi.i i( t lf)  (5.21) 

i =  1 

where the probabilities Pi( [ )  are the same as in Section V-B, the matrices 
Gi are the optimal control gains obtained from the solution of the 
linear-quadratic problem  for the ith model, and i i ( t l t )  are the state 
estimates  generated  by  the ith Kalman filter. In the case of any identifi- 
cation errors, not only  is one using the wrong control gains, but also the 
wrong state estimates. A "wrong" Kalman filter can generate erroneous 
state estimates and hence  the control (5.21) can be  severely  in error, so 
that it may  temporarily  destabilize the aircraft. Under the  design ground 
rules for the MIT/ESL team, Kalman filters had to be  used to process 
the data, and very little could be done to avoid the effects of erroneous 
state estimates in the calculation of the adaptive control. The Honeywell 
design [I61 was different. A bank of Kalman filters  was  used in the 
identification scheme, but not in state estimation. The Honeywell control 
system  design used only  low-pass  filtered  sensor  signals and, hence, the 
generation of the Honeywell adaptive control was  sensitive to the identi- 
fication accuracy, but not to Kalman filter state estimation errors. 

There are several  unresolved  problems as yet  which pertain to the total 
number of models to be used at each instant of time,  how  these  models 
are to be selected, how  they should be scheduled in the absence of any 
air data, and how one can arrive at a final  design that meets the 
speed-memory  limitations of the IBM AP-101 computer which  is  used  in 
the NASA  F-8C  DFBW  program.  Preliminary  investigations indicate 
that an " A C  controller with four models in each  system is feasible, 
with a sampling rate of 8 samples/s. 

We hope that some of the simulation results and discussion  presented 
in the sequel can contribute some understanding concerning the MMAC 
method as a design  concept. 

m. SIMULATION RESULTS 

A. Introduction 

A variety of simulations  have been performed  using a nonlinear  model 
of the F-8C aircraft developed at NASA/LRC. These simulations  have 
been conducted at several altitudes, airspeeds, and levels of turbulence. 
The simulation  results  shown here are typical. They have  been  selected 
to illustrate 

1) the speed of identification of the " A C  algorithm 
2) the overall performance of the MMAC  system. 

Some  remarks about the " A C  method are given in the  Conclusions. 

B. The Simulation Results 

The simulations reported in this paper were conducted at an altitude 
of 20 OOO ft, at subsonic speed (Mach 0.6) corresponding to flight 
condition 11 in Table I.  The turbulence model  described in Appendix A 
was  used in some  experiments at cumulus  level turbulence. AU models 
used in the MMAC  controllers are given equal a priori probabilities of 
being the true model.  Additionally, all measurements  used in the 
" A C  system  were  noise-cormpted at the  levels  typical of actual F-8C 
sensors  (Table 111). 

Experiment I :  This is a set of nonlinear simulations where the aircraft 
is subjected  initially to a combined 6" angle of attack (alpha-gust) and 
2" sideslip  angle  @eta-gust) perturbation. The Kalman filter states are 
initially set to zero, so that the initial perturbations are not readily 
estimated In this  experiment, the aircraft is not subjected to any 
turbulence. 

Four simulations are illustrated in  Figs. 4 6 .  The first simulation, 
indexed A ,  describes the open-Ioop response of the aircraft to the com- 
bined perturbations. The second  simulation,  indexed B, describes the 
closed-loop  response of the aircraft with perfect identification of the 
flight  condition. The third simulation,  indexed C, describes  the  responses 
of the aircraft controlled with an " A C  controller which  includes the 
true flight condition as one of its hypotheses. The fourth simulation, 
indexed D, describes responses of the aircraft controlled by an " A C  
controller which does not include  the true flight condition as a hypothe- 
sis. 

Fig. 4 shows  the  pitch rate responses,  Fig. 5 shows the normal 
acceleration responses, and Fig. 6 contains the lateral acceleration re- 
sponses. Note the close  correspondence of the " A C  responses to the 
perfect identification response. The initial perturbations are eliminated 
quickly, so that, with no noise  driving the system, the aircraft is brought 
to equilibrium. The presence of sensor  noise and small  inaccuracies in 
the  linear  models of the  nonlinear aircraft account for the  small  oscilla- 
tion. 

Fig. 7 contains the  trajectories of the longitudinal identification proba- 
bilities for simulation C. Notice the quick identification of the true 
model  within a very short period of time (less than 1 s), even  though the 
Kalman filters are not correctly  initialized and all  measurements are 
noisecormpted. The gradual increase in the probability of model 10 
after 4.5 s is the /3* dominant behavior of Section V; this occurs  because, 
for this simulation  only,  the  lower  limit  test of mformation  was  bypassed, 
so updating continued when  all  residuals  were  small. 

Similar results were obtained with other initial conditions at other 
flight conditions. The most important point to note is the performance of 
the aircraft when  controlled  with an MMAC controller, compared with 
the perfect identification performance. 

Experiment 2: Experiment 2 is  essentially a repetition of experiment I 
when the aircraft is subjected to cumulus  level  turbulence.  Figs. 8-10 
contain the pitch rate, normal acceleration, and lateral acceleration 
responses of the aircraft. Again note that the responses of the MMAC 
controllers are very  close  to the responses of the perfect identification 
controller.  Figs. 11 and 12 show the longitudinal and lateral $liered 
probabilities used for control when the MMAC controller contains flight 
condition 11 as a hypothesis. Note the gradual transitions in  the identifi- 
cation compared with the sudden jumps of Fig. 7. The lateral system 
erroneously  identifies  flight condition 10 as the true flight condition; 
since  flight condltion 10 is "close"  to flight condition 11, this error in 
identification is understandable. The performance is hardly affected by 
this misidentification, as evidenced by the  closeness of traces B and C in 
Figs.  8-10. 

Figs. 13 and 14 describe the filtered probabilities used  in the " A C  
controller when the true flight condition 11 is not included in the set of 
available  models.  The continuous transitions in the probabilities  reflect 
the amount of excitation in the system  caused  by  the  cumulus  dis- 
turbances. No clear identification is obtained in the transient period. 
However,  the aircraft performance displayed  in  Figs. 8-10  is  still satis- 
factory. 

Experiment 3: This is a set  of nonlinear simulations identical to the 
simulations obtained in experiment 2, except that the " A C  controllers 
use  the identification probabilities in  forming  the control action without 
filtering.  Fig. 2 contains a lengthy  Simulation of the " A C  controller 
performance  with  the true model  included. Note the rapid oscillations  in 
identification which occur after the initial transients die out, when  the 
system  is  driven  essentially by the turbulence. The faster oscillations in 
the lateral identification reflect  the  larger  effect of turbulence on the 
lateral states. Fig. 3 describes  the  same  simulation obtained from  experi- 
ment 2, when filtered probabilities were used. The performance of the 
control systems .is similar, and the control of Fig. 3 is  smoother. as 
expected. 
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Fig. 12. Low-pass filtered  lateral system probabilities at FC 11; I5 ft/s m turbulence. 
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Fig. 13. Low-pass filtered longitudinal system probabilities at  FC 11; 15 ft/s rms 
turbulence. Fig. 14. Lowpass filtered  lateral system probabilities at  FC 11; 15 ft/s m turbulenec 
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Fig. 15. Longjtudinal system identification probabilities at  FC 1 I ;  15 ft/s rms turbu- Fig. 16. Lateral system identification probabilities at FC 11; 15 ft/s rms turbulence. 
lence. 

TIME (see) 

Fig. 17. Longitudinal system identification probabilities at FC 11; 15 ft/s nus turbu- 
lence. 

Figs.  15 and 16  show the initial  transients of the probabilities  in Fig. 2. 
The filtered probabilities for this experiment are shown in Figs. 11 and 
12.  Similarly,  Figs. 17 and IS  show  the  unfiltered identification probabil- 
ities when  flight condition 11  is not a hypothesis.  The  filtered  versions of 
these probabhties in  experiment 2 are shown  in  Figs. 13 and 14. 

Figs.  19-22 contain the angle-of-attack and sideslip  angle  responses of 
experiments 2 and 3. The closeness of these  responses indicate that 
performance is not significantly  affected by  using  low-pass  filtered 
control actions. The open-loop and perfect identification responses are 
included to illustrate overall  performance of the " A C  controllers. 

VII. CONCLUSIONS 

The results of this feasibility study indicate that the " A C  approach 
is a reasonable candidate for aircraft adaptive control. The study, 
however, has pinpointed certain theoretical  weaknesses  in the " A C  
algorithm as well as the  need for using  common  sense  pragmatic  tech- 
niques to m d f y  the design  based  upon  "pure"  theory. 

The overall robustness and sensitivity of the  MMAC  algorithm a p  
pears to  hinge upon careful tuning of the Kalman filters so that erro- 
neous state estimates are not generated; in the MMAC approach they 
effect  adversely both the identification accuracy and the actual values of 
the controls. 

It appears that some sort of persistent  excitation  (test input signals) 
should be used in conjunction with the " A C  scheme, so that 
sufficient information for identification is always obtained. Unfor- 
tunately, no theoretical  results are available as yet on a scientific  basis 

Fig 18. Lateral system identification probabilities at PC 1 I ;  I5 ft/s rms turbulence. 

for selecting the test input signals for the " A C  algorithm. Such 
questions cannot be answered until more fundamental research on the 
convergence of the " A C  algorithm is carried out. 

The F-8 aircraft was chosen by  NASA to be  the  test  vehicle for 
evaluating the performance of adaptive control systems. However,  the 
F-8 is not an aircraft which  needs  complex adaptive control systems. It is 
only  when an accurate estimate of dynamic pressure is not available that 
the design of the control  system  becomes nontrivial, since ordinary gain 
scheduling cannot be used. 

APPENDIX A 
Wind Disiurbance Model 

As remarked in Sections I1 and 111, a continuous-time wind dis- 
turbance was included for both the lateral and longitudinal  dynamics, 
corresponding to a state variable w(t) .  In this Appendix we  give the 
mathematical details of this model,  which  were  kindly  provided  by J. 
Elliott of NASA/LRC, as a reasonable approximation to the  von 
Karman model and the Haines approximation. It is important to realize 
that the wind disturbance model  changes  from  flight condition to flight 
condition. The  power spectral density of the  wind disturbance is  given 
bY 

r 'I 
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Fig. 19. Angle-of-attack responses at  FC 11; 15 fc/s n u s  turbulence. Fig. 20. Angle-of-attack responses at  PC I I ;  15 ft/s rms turbulence. 
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Fig. 21. Sideslip angle responses at FC 11; 15 ft/s rms turbulence. 

where L, the scale  length, is 

i 
u= { 15 ft/s in cumulus clouds (A-3) 

200 ft at sea  level 

‘= 2500 ft when altitude > 2500 ft (‘4.2) 
linearly interpolated in  between. 

V, is the speed of aircraft in ft/s, w in rad/s, and 

6 ft/s normal 

30 ft/s in thunderstorms. 

To obtain a state variable  model,  a  normalized state variable w ( t )  (in 
rad) is used as the wind state for both lateral and longitudinal dynamics. 
The state variable w ( t )  is the output of a  first-order  system  driven  by 
continuous white  noise [ ( t )  with zero mean. Thus the  dynamics of the 
wind disturbance model are given  by 

-‘““I 
-.3L I I I I I I I I 1 I 

0 5 1  2 3 4 5 
TIME ( s e d  

Fig. 22. Sideslip angle responses at FC I I ;  15 ft/s rms turbulence 

dynamics in the  same manner as the angle of attack. Thus, in the 
longitudinal state equations the wind state w ( t )  enters the equations as 
follows: 

where aI3 ,  a,. a,) can be found from the open-loop longitudinal A 
matrix [3]. 
In the lateral dynamics  the  wind state w ( t )  influences the dynamics in 

the same manner as the sideslip  angle. Thus, in the lateral state equa- 
tions the wind state w ( t )  enters the equations as follows: 

I d ( t ) = .  . . + q 3 w ( r )  
; ( t ) = .  . . + a23w(t) (A.7) 
P ( t ) = . . .  +a33w(t )  

where a] , ,  a,, a,, can be found from the open-loop lateral A matrix [3]. 

ACKNOWLEDGMENT 

The  design  was obtained for the intermediate case u= 15 (cumulus This study was canid out under the overall  supervision  of Prof. M. 

For the longitudinal dynamics the wind state w ( t )  influences the Castaiion. C. S. Greene and Prof. A. S. Willsky were  primarily  responsi- 
clouds).  Athans. The Program Managers were Dr. K.-P. Dunn and Dr. D. 



780 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-22, NO. 5,  OCTOBER 1977 

ble for the lateral system  design. hof. N.  R.  Sandell and W. H. Lee 
helped  with the reduced-order  longitudinal  design. I. Segall and D. 1121 
Orhlac  did much of the programming. 

We are indebted to J. R. Elliott of NASA/LRC who, as Grant 1131 
Monitor, provided countless hours of technical  discussions and direction 
and helped us formulate the  performance criteria. In addition, we are [141 
indebted to the  following staff of NASA/LRC for their  help,  criticism, 
and support: J. Gera, R.  Montgomery, C .  Wooley, A. Schy, and K. Hall. [15] 

REFERENCES 

B. EIkin, &namics of Arrnospheric  Flighr. New York: Wdey. 1972. 
J. Gera. “Linear  equations of motion for F-8.DFBW  airplane  at selected flight 
conditions,” NASA/Langley Res. Cent.,  Hampton. VA. F-8  DFBW  Internal Docu- 
ment, Rep. 010-74. 
C. R. Wooley and A.  B. Evans, “Algorithms and aerodynarmc data for the 
simulation of the F8-C DFBW  alrcraff”  NASA/Langley Res. Cent., Hampton, 
V A  unpubhshed rep. dated Feb. 5,  1975. 
M. Athans  and P. P. Varaiya, “A survey of  adaptive  stochasbc  control methods,” UL 

Aug. 1975; also  submitted to I E E E  Tram. Aulomar. Conrr. 
Pror. Eng. Faundarron Con/ on Syrr. Eng., New England College, Hemuker. NH. 

D. 7. Magill. “Optimal adaptive estjmabon of sampled processes.” IEEE Tram. 
Automat. Conrr.. vol. AC-IO, pp. 434439, Oct. 1965. 
J. D. Desphande er al.. “Adaptive control of h e a r  stochasnc systems.” Auromarica. 
vol. 9. pp. 107-115,  1973. 
M. Athans  and D. Willner, “A practical scheme for adaptive arcraft fllght control 
systems.” LO Prm. Synp. on  Pararnerer Estimarron Technique1 and Appl. in  Atrcrafr 
Flight Testing. NASA Flight Res. Cen., Edu,ards, CA, TN-07647. Apr. 1973. pp. 
315-336. 
D. Willner. “Observation and  control of panially unknown systems,” M.I.T. Elec- 
tron. Syst. Lab., Cambridge. M A  Rep. ESL-R-496, June 1973. 

design,” I E E E  Trans. Auromar. Conrr., vol. AC-16. pp. 529-552 Dec. 1971. 
M. Athans, ‘The role and use of the stochastic LQG problem in control system 

vol. 2.. pp. 449491. 1972. 
--“The discrete time LQG problem.” Ann& Economic and Social Mennrremenr, 

N. R. Sandell, Jr.  and M. Athans, Modern  Conrrol Theory: Compurer  Manual for r h e  

LPG Problem (can be ordered  through  the M.I.T. Center for  Advanced Engineering 
Study, Cambridge, MA). 

qualibes criterion,- presented at the 18th A n n .  Nat. Aerospace Electron. Conf., 
H. N. Tobie, E M.  Elliott, and L. G. Malcom, “A new longitudinal handling 

May 16-18, 1966. 
C. S. Greene, “Application of the multiple model adaptive  control  metbod to the 
control of the lateral dynamics of an aircraff- MS. thesis, Dep. Uec. Eng. and 
Comput. Sci..  M.I.T.. Cambridge, MA, May 1975. 
A. H. Levis, M. Athans,  and R. Schlueter, -On the  behavior of optimal  sampled 
data regulators,” Inr. 1. Conrr.. vol. 13. pp. 343-361,  1971. 
J.  R. Elliott, “NASA’s advanced contrnl law program for the F-8 digital fly-by-wire 
aircraft.” this issue, pp. 753-757. 
G. Stein, G. L. Hartmann, and R. C. Hendrick, “Adaptive control laws for  F-8 
flight test- this issue, pp. 758-767. 
G. L. Hartmann er d.. “F8-C digital CCV flight control laws.“ NASA Contractor 
Rep. NASA CR-2629. Feb. 1976. 
G. L. Hartmann et aL, “F-8C adaptive flight control laws” Honeywell Fin. Rep- 
Contract NASI-13383. 
M. Athans et a/.,  “The  stochastic  control of the F L C  aircraft using the multiple 

and Contr., Houston. TX, Dec. 1975, pp. 217-228. 
model adaptive  control  (MMAC) Method.” in PTOE. 1975 IEEE Con,! on Decision 

and 11,” F’ror. IEEE. vol. 6 4 ,  Pan I, pp. 1 1 2 ~ 1 1 4 2  Part 11, pp. 1182-1197, A u g  
D. G. Lainiotis, “Partitioning: A unifying framework for  adaptive systems, Pans I 

1976. 

systems,’’ Pror. IEEE, vol. 64. pp. 1172-1181, Aug. 1976. 
E Tse and Y. Bar-Shalom “Actively adaptive  control for nonlinear stochastic 

D. G. Lainious et al., “Wphal adaptive  control:  A  nonlinear  separation  theorem- 
Inr. 3. Conrr.. vol. 15. pp. 877488. 1972. 
D. G. Lainiotis et aL. “Optimal adaptive estimatlon: Structure  and  parameter 
adaptation,” IEEE Tram Auromar. Conrr.. vol. AC-16, p p .  16&170. Apr. 1971. 
A H. Haddad  and J. B. Crul Jr., “Nonlinear filtering for systems ai& unknown 
paramete-” in Prm. 2nd S y w .  on  Nonlinear Estimation 7heory and 11s Applications. 
San Diego. CA, 1971, pp. 147-150. 
M. Aoki, Oprimizarion of Srocharric Syslems. N e w  York: Academic, 1976, pp. 
237-241. 
G.  Stein, “An approach  to the parameter  adaptlve  control  problem” Ph.D. disserta- 
tion. Purdue Univ., Mayette, IN. 
G. N. Saridis and T. K.  Dao.  “A  learning  approach to the  parameter self organizing 
control problem,’’ Auromatrca, vol. 8. pp. 589-597, 1972. 
J.  B. Moore and R. M. Hawk- "Decision methods in dynarmc system identifica- 
tion,” presented at the  IEEE Conf. on Decision and Contr.,  Houston, TX, Des. 
1975. 

An lmplementable Digital Adaptive  Flight 
Controller  Designed  Using  Stabilized 

Single-Stage Algorithms 

GURBUX ALAG AND HOWARD  KAUFMAN, SENIOR MEMBER, IEEE 

Abmcr-Adaptive flight control  systems  are  of  interest because of 
thei potential  for  providing uniform stab* and  handling qualities over a 
wide flight  envelope  despite uncertainties in the open-loop  Characteristics 
of the aircraft. Because of  the potential for  actual  implementation of 
adaptive  control algorithms using contemporary small  digital computer 
equipment, a study bas been  made  to d e f i i  an  implementable digital 
adaptive  control  system  which can be used for a typical f@ta aircraft. 
Towards such an implementation,  an  explicit  adaptive  controller, which 
makes direct use of on-line parameter identifation, bas been developed 
and  applied to both the linearized and nonlinear equations of motion for 
the F-8 aircraft. ”s controller is composed of  an on-line  weighted least 
squares parameter  identifier, a Kalman state  filter, and a real model 
following control law designed using  single-stage performance indices. The 
corresponding control gains  are  readily  adjustable in accordance with 
parameter changes to emme asymptotic  stability if the conditions  of 
perfect model following are saW~ed, and stabiity in the sense of bounded- 
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ness otherwise. Sidation experiments with realistic  measurement noise 
indicate that the controller was effective in compensating  for  parameter 
variations  and  capable of rapid recovery from a set of erronems initial 
parsmeter estimates which d e f i i  a set of d e s t a b i i  gains- 

I. I~TRODUCTTON 

Fly-by-wire  flight control systems  have  been of considerable interest 
to designers  because of their advantages over  mechanical  linkages  in 
coping with the complex control problems  associated  with  high  perfor- 
mance aircraft and space  vehicles [I], [2]. Furthermore, with the present 
capabilities for incorporating integrated circuits into lightweight low cost 
minicomputers and microcomputers,  digital implementation of fly-by- 
wire control becomes especially  attractive. Digtal logic  is  itself  very 
reliable and with adequate redundancy incorporated into the design, 
such a system can be designed to insure adequate Flight safety [3]. 

Another feature of digital  implementation  which  makes it extremely 
advantageous is the potentia for the  implementation of complex control 
systems  which incorporate high-order nonlinearities and which utilize 
time sharing for multiple-loop control. One such  complex control struc- 
ture is an adaptive system  which is capable of on-line adjustment of the 
control parameters in response to changing  flight  characteristics. The 
desirability for such adaptive control systems has been  established for 


