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Abstract—Compressed sensing allows perfect recovery of sparse
signals (or signals sparse in some basis) using only a small number
of random measurements. Existing results in compressed sensing
literature have focused on characterizing the achievable perfor-
mance by bounding the number of samples required for a given
level of signal sparsity. However, using these bounds to minimize
the number of samples requires a priori knowledge of the sparsity
of the unknown signal, or the decay structure for near-sparse sig-
nals. Furthermore, there are some popular recovery methods for
which no such bounds are known. In this paper, we investigate an
alternative scenario where observations are available in sequence.
For any recovery method, this means that there is now a sequence
of candidate reconstructions. We propose a method to estimate
the reconstruction error directly from the samples themselves, for
every candidate in this sequence. This estimate is universal in the
sense that it is based only on the measurement ensemble, and not
on the recovery method or any assumed level of sparsity of the un-
known signal. With these estimates, one can now stop observations
as soon as there is reasonable certainty of either exact or suffi-
ciently accurate reconstruction. They also provide a way to obtain
“run-time” guarantees for recovery methods that otherwise lack a
priori performance bounds. We investigate both continuous (e.g.,
Gaussian) and discrete (e.g., Bernoulli) random measurement en-
sembles, both for exactly sparse and general near-sparse signals,
and with both noisy and noiseless measurements.

Index Terms—Compressed sensing (CS), sequential measure-
ments, stopping rule.

I. INTRODUCTION

I N compressed sensing (CS) [1], [2], a few random linear
measurements of a signal are taken, and the signal is re-

covered using the additional knowledge that either the signal or
some linear transform of it is sparse. These ideas have generated
a lot of excitement in the signal processing and machine learning
communities, and have been applied to a range of applications
such as magnetic resonance imaging (MRI) [3], computational
photography [4], wireless networks [5], and structure discovery
in biological networks [6].
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The applications where compressed sensing is most benefi-
cial (e.g., MRI) have a high cost of acquiring each additional
sample. If this cost (in terms of time, power, etc.) is high as
compared to the cost of computation, then it is suitable to use
sophisticated recovery algorithms which include the -based
basis pursuit [7], greedy approaches [8], and even non-convex

or iterative formulations [9]–[11] to enable recovery from
fewer measurements.

While some of the recovery methods, especially those based
on -regularization, have analytically provable performance
guarantees [2], [12], others, such as non-convex , reweighted

[11], and sparse Bayesian learning (SBL) [13] do not, and
they have been shown empirically to often require even fewer
samples than -based methods. Furthermore, when guarantees
do exist, they have been empirically observed to sometimes be
highly pessimistic and may require large dimensions to hold
with high probability [1], [14]. Another drawback is that much
of the existing analysis characterizes how many measurements
are needed for a signal with a given sparsity level. However,
as the sparsity level is often not known a priori, it can be very
challenging to use these results in practical settings.

In this paper, we take an alternative approach and we de-
velop estimates and bounds for the reconstruction error using
only the observations, without any a priori assumptions on
signal sparsity, or on the reconstruction method. We consider
a scenario where one is able to get observations in sequence,
and perform computations in between observations to decide
whether enough samples have been obtained—thus allowing
to recover the signal either exactly or to a given tolerance
from the smallest possible number of random observations.
This, however, requires a computationally efficient approach
to detect exactly when enough samples have been received. To
get an intuition behind our approach—suppose that we first
attempt to reconstruct the signal while withholding some avail-
able observations, akin to cross-validation. The observations
correspond to a known linear function of the true signal, so if
the reconstructed signal is quite different from the true signal,
then the same linear function applied to our recovered signal
will result in a value that is far from the actual observation,
with high probability. Our results provide estimates of the
reconstruction error based on the statistics of the measurement
model. They can thus be used to provide “run-time” guarantees
even for decoders that are otherwise not amenable to analysis.

We first consider the case when noiseless measurements are
taken using the random Gaussian (or generic continuous) en-
semble, and we show that simply checking for one-step agree-
ment provides a way to check exactly when enough samples
have been received. Suppose that after receiving samples

, , we apply a sparse reconstruction
method of our choice, and obtain a solution satisfying all
the measurements. We can use any sparse decoder, including
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greedy matching pursuit, SBL, formulations, and even the
brute-force decoder, but we require that the solution at each step

satisfies , for . For example, in the
case of basis pursuit, we would solve

s.t. (1)

Next, we receive one more measurement, and check for one
step agreement: i.e., if , then the decoder declares

to be the reconstruction and stops requesting new measure-
ments. In Section III, we show in Propositions 1 and 2 that this
decoder gives exact reconstruction with probability one.

For some other measurement ensembles, such as random
Bernoulli and the ensemble of random rows from a Fourier
basis, the one-step agreement stopping rule no longer has zero
probability of error. We modify the rule to wait until sub-
sequent solutions all agree. In Section IV, we
show in Proposition 3 that in the Bernoulli case the probability
of making an error using this stopping rule decays exponentially
with , allowing trade-off of error probability and delay.

In Sections V and VI, we show how the error in reconstruction
can be estimated from the sequence of recovered solutions. We
first present analysis for the Gaussian measurement ensemble
in Proposition 4, and then generalize to any sensing matrices
with independent and identically distributed (i.i.d.) entries. This
enables the decoder to stop once the error is below a required
tolerance—even for signals that are not exactly sparse, but in
which the energy is largely concentrated in a few components,
or for measurements which are corrupted by noise.

Finally, in Section VII we motivate the need for efficient
solvers in the sequential setting. We consider the basis pursuit
sparse solver and show that rather than resolving the problem
from scratch after an additional measurement is received, we
could use an augmented linear program that uses the solution at
step to guide its search for the new solution. We show em-
pirically that this approach significantly reduces computational
complexity.

During the review process, we learned about a very recent
analysis in [15] for the cross-validation setting, using the
Johnson–Lindenstrauss lemma. We describe similarities and
differences from our work in the discussion in Section V. Our
current paper extends our earlier results presented in [16].

II. BRIEF OVERVIEW OF COMPRESSED SENSING

As there is no dearth of excellent tutorials on compressed
sensing [1], [2], [17], in this section we give only a brief out-
line mainly to set the stage for the rest of the paper. At the
heart of compressed sensing lies the sparse recovery problem,1

which tries to reconstruct an unknown sparse signal from a
limited number of measurements , where ,

. Much of excitement in the field stems from the fact
that the hard combinatorial problem of searching for sparse so-
lutions in the affine space under certain suitable
conditions can be solved exactly via various tractable methods.

1The ground-breaking results [18] predating compressed sensing were in con-
text of sparse signal representation where one seeks to represent a vector � in
an overcomplete dictionary � � , � � � , with coefficients �, i.e.,
� � ��.

The most widely known methods include greedy matching pur-
suit and its variants [8], and approaches based on convex opti-
mization, using norms as a proxy for sparsity [7]

subject to (2)

An early sufficient condition for sparse recovery [18]
states that the formulation in (2) recovers the unique sparse
solution if is well-posed and is sparse enough, i.e., if

, where ,
and has columns normalized to 1. However, this simple
condition is very pessimistic. Much tighter conditions are ob-
tained by considering larger subsets of columns of , e.g., the
restricted isometry property (RIP) depends on the maximum
and minimum singular values over all submatrices of
[12]. Namely, a matrix satisfies the -RIP with constant
if for every which
has at most nonzero entries. While enabling much tighter
sufficient conditions for recovery of sparse signals [12], the RIP
is very costly (exponential in ) to check for a given matrix.

Results in compressed sensing take advantage of RIP by
bringing in the theory of random matrices into the picture.
In compressed sensing, we receive random measurements

, where the unknown signal of interest is itself sparse
in some basis, i.e., , with sparse. Hence, the problem
reduces to finding sparse solutions satisfying ,
where is a random matrix.

A collection of results have been established that RIP holds
for random matrices of certain size from given ensembles:
Gaussian, Bernoulli, random Fourier rows [2], [12], [14]. The
general conclusion of these results is that the convex formu-
lation can recover (with high probability) a signal with

nonzeros from only measurements, where is
a constant depending on the random measurement ensemble.
This is indeed remarkable—as it only requires a logarithmic
dependence of the number of measurements on .

However, when each additional measurement is very costly
there are several problems with these bounds—first, since they
are high-probability results independent of , they tend to be
conservative, and also the constants are typically generous
upper-bounds. Second, the number of measurements depends
on the number of nonzero components of which may not be
known a priori. Finally, there are successful approaches which
we mentioned in Section I for which no such results are avail-
able.

In Fig. 1, we illustrate the drawbacks of using upper bounds
on the number of measurements. We find the minimum number

of random samples which were needed to recover a sparse
signal with , and from random Gaussian and
Bernoulli measurements using the -formulation in (2), over
500 random trials. We plot a histogram of these numbers, and
we see that they exhibit high variance, and so relying on condi-
tions that guarantee recovery with high probability often means
taking many unnecessary samples. This motivates the need for
sequential compressed sensing scenario that can adaptively min-
imize the number of samples for each observed , which we de-
scribe next.
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Fig. 1. Histogram of the stopping times distribution for Gaussian and Bernoulli
measurement ensembles: � � ���, and � � ��, and � decoding.

III. STOPPING RULE IN THE NOISELESS CONTINUOUS CASE

We now analyze the sequential CS approach for the case when
the measurements vectors come from a continuous ensemble
(e.g., the i.i.d. Gaussian ensemble), having the property that with
probability 1 a new vector will not be in any lower-di-
mensional subspace determined by previous vectors .
Suppose that the underlying sparse signal has
nonzero components (we denote the number of nonzero entries
in by ). We sequentially receive random measurements

, where for concreteness is a -vector
of i.i.d. Gaussian samples, but the analysis also holds if entries
of are i.i.d. samples of an arbitrary continuous random vari-
able. At step , we use a sparse solver of our choice to obtain
a feasible2 solution using all the received data. Results in
compressed sensing [1], [14] indicate that if we use basis pur-
suit or matching pursuit methods, then after receiving around

measurements we can recover the signal
with high probability. This requires the knowledge of , which
may not be available, and only rough bounds on the scaling con-
stants are known. Our approach is different—we compare the
solutions at step and , and if they agree, we declare
correct recovery.

Proposition 1: If in the Gaussian (generic continuous) mea-
surement ensemble it holds that , then ,
with probability 1.

Proof: Let , and
. Suppose that . We have that

and : both and
belong to the -dimensional affine space

. The next measurement passes a random
hyperplane through and reduces the
dimension of the affine subspace of feasible solutions by 1. In
order for to remain feasible at step , it must hold that

. Since we also have ,
then remains feasible only if ,

2This requirement is essential for the noiseless case (it is relaxed in later sec-
tions). For greedy methods such as matching pursuit this means that we allow
enough iterations until all the measurements received so far are satisfied per-
fectly. Noiseless basis pursuit formulations satisfy it by construction.

Fig. 2. A new constraint is added: � � � � . Probability that this
hyperplane passing through � also passes through �� is zero.

i.e., if falls in the dimensional subspace of
corresponding to . As is random and
independent of and of the previous samples ,
the probability that this happens is 0 (event with measure zero).
See Fig. 2 for illustration.

Note that the proof implies that we can simplify the decoder
to checking whether , avoiding the need
to solve for at the last step.3 Moreover, if using any
sparse solver in the continuous ensemble case the solution

has fewer than nonzero entries, then with
probability 1.

Proposition 2: For a Gaussian (continuous) measurement en-
semble, if , then with probability 1.4

Proof: Denote the support of our unknown sparse vector
by , i.e., . We next generate a random

measurement matrix . Let to simplify notation.
We receive the corresponding measurements . Now
is , with . The key fact about random matrices
with i.i.d. entries from a continuous distribution is that any

submatrix of is nonsingular with probability 1.5 We now
argue that with probability 1 after receiving there will not exist
another sparse feasible solution , i.e., with fewer than

nonzero entries satisfying . We consider all possible
sparse supports , with , and show
that a feasible solution can have this support only with
probability 0. There are two cases: and .

First suppose , , and suppose there exists
some feasible supported on . Then , and
support of is a subset of ; hence, it is smaller than ,
but that means that there is a subset of fewer than columns
of that are linearly dependent, which can only happen with
probability zero.

Now consider the case . For a fixed , we consider
all such possible sets , with . First fix one such set

. We use the notation . Note that we
have . Let .
Now since we require to be feasible, we also need

3We thank the anonymous reviewer for this simplification.
4Note that a random measurement model is essential: for a fixed matrix � if

�� � � then there exist � and � such that �� � �� and �� � � � .
However, for a fixed � with �� � � � the probability that it will have
ambiguous sparse solutions for a random choice of � is zero.

5This is easy to see: fix 	 � ��
 � � � 
 �� with �	 � � � . Then probability
that � � ��
��� 
 � � � 
 � � is zero, as � is a random vector in

and the remaining columns span a lower dimensional subspace.
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Fig. 3. Gaussian ensemble example: � � ���, and� � ��. (Top): ��� � .
(Middle): ��� � . (Bottom): �� � �� � .

which would imply that . This means
that the vector would also have to be in the span of . How-
ever, is a random vector in (determined by and ),
and span of is an independent random subspace of dimen-
sion strictly less than . Hence, the event that also falls in
the span of has measure zero. This means that for a fixed

a distinct sparse solution can only exist with probability 0.
Now the number of possible subsets is finite (albeit large), so
even when we take all such supports , a distinct sparse solu-
tion supported on can only exist with probability 0. Hence,
with probability 1 there is only one solution with ,
namely .

This proposition allows to stop making measurements when
a feasible solution has less than nonzero entries—avoiding
the need to make the last st measurement.

Consider an example in Fig. 3 with , and
. We keep receiving additional measurements and solving

(1) until we reach one-step agreement, . The top
plot shows that increases linearly with until one step
agreement occurs at , at which point it drops to
and a and we recover the correct sparse solution, .
The middle plot shows the monotonic increase in (as
the feasible set is shrinking with ). The bottom plot shows the
error-norm of the solution, . On average it tends to
go down with more observations, but non-monotonically. After

, the error becomes zero. We see that in the ideal
conditions of no measurement noise, sparse unknown signals
and Gaussian measurement ensembles, the number of measure-
ments can be indeed minimized by a simple stopping rule.

IV. STOPPING RULE IN THE BERNOULLI CASE

In this section, we study a simple but popular measurement
ensemble that is not one of the generic continuous ensembles de-
scribed in the previous section. Suppose that the measurement
vectors have equiprobable i.i.d. Bernoulli entries 1. A dif-
ference emerges from the Gaussian case: the probability that all

submatrices of are nonsingular is no longer 0. This
makes it possible (with nonzero probability) for to agree

with even though , and for erroneous solutions
to have cardinality less than . We modify the stopping

rule to require agreement for several steps—success is declared
only when last solutions all agree. We show in proposition
3 that the probability of error decays exponentially with . We
use the following Lemma from [19]:

Lemma 1 (Tao and Vu): Let be an i.i.d. equiprobable
Bernoulli vector with . Let be a determin-
istic -dimensional subspace of , . Then

.
We are now ready to establish the following claim.
Proposition 3: Consider the Bernoulli measurement case. If

, then with probability
greater than or equal to .

Proof: Suppose that . Denote the support of
by and the support of by . At step we have

. Let , i.e., the nullspace of
. Then is an -dimensional subspace of

.
Given a new random Bernoulli sample , the vector

can remain feasible at step only if ,
i.e., if falls into . By Lemma 1, the probability that

is a most 1/2. The same argument applies to all
subsequent samples of for , so the proba-
bility of having -step agreement with an incorrect solution is
bounded above by .

Note that as in the discussion for the continuous case, we can
simply check that for , avoiding
the need to solve for .

We now pursue an alternative heuristic analysis, more akin
to Proposition 2. For the Bernoulli case, does
not imply . However, we believe that once we obtain
enough samples so that then will
imply that with high probability. Since the elements
of belong to finite set { 1, 1}, an submatrix of
can be singular with nonzero probability. Surprisingly, charac-
terizing this probability is a very hard question. It is conjectured
[19] that the dominant source of singularity is the event that two
columns or two rows are equal or opposite in sign. This leads to
the following estimate (here is ):6

(3)

However, the very recent best provable bound on this probability
is still rather far: [19]. If
we assume that the simple estimate based on pairs of columns
is accurate, similar analysis shows that the probability that a
random matrix with having all
submatrices nonsingular is .

V. NEAR-SPARSE SIGNALS

In practical settings, e.g., when taking Fourier and wavelet
transforms of smooth signals, we may only have approximate
sparseness: a few values are large, and most are very small. In
this section, we extend our approach to this case; again, and in
contrast to existing work, we do not need to assume a specific

6Probability that two columns are equal or opposite in sign is � , and
there are ��� � pairs of columns.
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near-sparse structure, like power-law decay, but instead provide
bounds that hold for any signal.

The exact one-step agreement stopping rule from Section III
is vacuous for near-sparse signals, as , and all sam-
ples are needed for perfect recovery. We start by considering
Gaussian measurements, and show that we can gather informa-
tion about the current reconstruction error by obtaining a small
number of additional measurements, and computing the dis-
tance between the current reconstruction and the affine space de-
termined by these new measurements. The reconstruction error
is then equal to an unknown constant times this distance

(4)

where is the
affine space determined by all measurements, is
a random variable that we will bound, and de-
notes the distance from to . We characterize
and —this gives us a confidence interval on the re-
construction error using the observed distance .
We can now stop taking new measurements once the error falls
below a desired tolerance. Note that our analysis does not as-
sume a model of decay, and bounds the reconstruction error by
obtaining a small number of additional measurements, and com-
puting the prediction error. In contrast, some related results in
CS literature assume a power-law decay of entries of (upon
sorting) and show that with roughly samples,
in (1) will have similar error to that of keeping the largest
entries in [1].

We now outline the analysis leading to a bound based on (4).
Consider Fig. 4. Let be the sub-
space of feasible solutions after measurements. Both and

lie in . The affine space is contained in . Let
, and be the angle between the vector

and the affine space . Both are contained in the -di-
mensional space . Centering around , we see that is
the angle between a fixed vector in and a random di-
mensional subspace of , and the constant in (4) is equal
to

(5)

We next analyze the distribution of and hence of . In dis-
tribution, is equivalent to the angle between a fixed di-
mensional subspace, say the one spanned by the last coor-
dinates, and an i.i.d. Gaussian vector (whose direction falls uni-
formly on a unit sphere in ). This holds because the distribu-
tion of an i.i.d. Gaussian sample does not get changed after ap-
plying an arbitrary orthogonal transformation. Let be the span
of the last coordinate vectors, and be i.i.d. Gaussian.
Then

(6)

Using the properties of , , and inverse- distributions
[20] and Jensen’s inequality, we have an estimate of the mean

Fig. 4. Geometry of the analysis for near-sparse signals. The unknown recon-
struction error is related to ���� � � � and the angle � between the line
from � to �� and the affine space � defined by the new measurements.

Fig. 5. (Top) sample mean, estimate of the mean, and a bound on the mean of
� . (Bottom) sample standard deviation, and a bound on the standard deviation
of � . Sample mean is based on 1000 samples. � � ���.

and an upper bound on both the mean and the
variance

(7)

(8)

We describe the analysis in Appendix A. Using these bounds
in conjunction with the Chebyshev inequality,7

, we have the following result.
Proposition 4: In the Gaussian measurement en-

semble we have:
with probability at least , where

, for
any .

In Fig. 5 (top), we plot the mean estimate, and our bound in (7)
for and (bottom) the standard deviation bound for
and a range of . We compare them to sample mean and stan-
dard deviation of based on 5000 samples. The figure shows
that both bounds provide very good approximation for most of
the range of , and also that the standard deviation quickly

7To improve upon Chebyshev bounds we could directly characterize the cu-
mulative density function of� —either analytically, or by simple Monte Carlo
estimates.
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Fig. 6. (Top) Error confidence bounds and actual errors for a sparse signal,
� � ���, � � �, � � ��. (Bottom): Error confidence bound and actual
errors for a signal with power-law decay, � � ����, � � ��.

falls off with , giving tight confidence intervals. In Fig. 6,
we perform numerical experiments with two example signals, a
sparse signal, , , (top) and a near-sparse
signal with power-law decay, , (bottom). We
use basis pursuit to recover the signals as we obtain progres-
sively more measurements, and we compare our error bounds
(via Chebyshev inequality) to the actual errors. We see that the
bounds reliably indicate the reconstruction error—after a small
delay of additional measurements. We have used basis pursuit
in the experiments, but we could substitute any sparse solver in-
stead, for example we could have also computed error estimates
for matching pursuit.

A. Analysis for More General Ensembles

To get the bound in (4) we characterized the distribution of
and used the properties of the Gaussian measurement

ensemble. Analysis of for general ensembles is challenging.
We now consider a simpler analysis which provides useful es-
timates when , i.e., the case of main interest for com-
pressed sensing, and when the measurement coefficients are
from an i.i.d. zero-mean ensemble. The previous bound for the
Gaussian case depended on both , the number of samples used
for the current reconstruction, and , the number of extra sam-
ples. Now, in the following we give estimates and bounds that
depend only on , and in that sense could be weaker for the
Gaussian case when is large; they are however more gener-
ally applicable—in particular we no longer require to satisfy
the measurements exactly.

Suppose we have a current reconstruction , and suppose
is the (unknown) true signal. We now take new samples

, for . For each of these samples we compute
to be the same vector applied to the current

reconstruction. Denote the current error vector by
, and compute , the deviations from the actual

measurements. Then

(9)

The new measurements are independent of and of , hence
of . The ’s are i.i.d. from some (unknown) distribution, which
has zero mean and variance . We can estimate

by estimating the variance of the ’s from the samples.
The quality of the estimate will depend on the exact distribution
of .

Consider the case where are i.i.d. Gaussian. Then is
Gaussian as well. For simplicity suppose that ,
then the distribution of is i.i.d. Gaussian with zero-mean and
variance . Let . Then

, i.e., random variable with degrees of freedom. Now to
obtain a confidence interval for we use the cumulative
distribution. We pick a confidence level (for some small

), and we use the cumulative distribution to find the
largest such that .8

During the review process, a related analysis in [15] was
brought to our attention: the paper considers compressed
sensing in a cross-validation scenario, and it proposes to es-
timate the errors in the reconstruction from a few additional
(cross-validation) measurements. The paper cleverly uses the
Johnson–Lindenstrauss (JL) lemma to find out how many
random measurements are needed for predicting the error to
a desired accuracy. For Gaussian measurements ensembles
our -based analysis can be seen as a special case (where all
the constants are computed explicitly since we use the exact
sampling distribution of ), but JL lemma also generalizes to
other ensembles satisfying certain requirements on the decay
of the tails [15], [21].

To compare our analysis in (5), based on , to the one in
(9) we note that the latter simply estimates the error as

, where are the new measurements.9 Now un-
like the analysis in (9), in (5) we require that the solution at step

is feasible (matches all the measurements) and instead we
compute the error of projecting onto the null-space of and
adjust it by the expected value of , i.e., we estimate

as , where includes all
measurements. To compare the quality of the two estimates we
conducted a simulation with and , and com-
puted the estimates for random unit-norm vectors . We plot the
histograms for and over 5000 trials in Fig. 7.
In the first case with , we see that both estimates have
about the same accuracy (similar error distributions); however,
as becomes appreciable the approach in (5) becomes more
accurate.

8We have that � � � �� gives the smallest value of � such that proba-
bility of observing � is at least �. That is to say, the bound �			� 
 � ��
will hold for at least �� � fraction of realizations of � .

9This is essentially the same estimate as the one based on JL lemma in [15],
as the expected value of � is � , hence ��� � � ��			� .
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Fig. 7. Comparison of � and ������ analysis. Given a unit-norm vector ���, we
obtain � additional measurements, and compute our two estimates of �����. We
plot the histogram of the estimates over 5000 trials with � � ��	, � � ��,
and (a) � � 	, (b) � � �		.

VI. NOISY CASE

Next we consider the sequential version of the noisy measure-
ment setting, where the observations are corrupted by additive
uncorrelated i.i.d. Gaussian noise with variance

(10)

To solve this problem, one can adapt a variety of sparse solvers
which allow inexact solutions in the sequential setting—for
example matching pursuit methods with a fixed number of steps,
or the noisy versions of basis pursuit. All of these methods have
a tradeoff between sparsity of the desired solution and the ac-
curacy in representing the measurements. In the case of basis
pursuit denoising, a regularization parameter balances these
two costs

(11)

For greedy sparse solvers such as matching pursuit and its vari-
ants the tradeoff is controlled directly by deciding how many
columns of to use to represent . We are interested in a stop-
ping rule which tells us that is reasonably close to for any
sparse solver and for any user defined choice of the tradeoff be-
tween sparsity and measurement likelihood. We do not discuss
the question of selecting a choice for the tradeoff—we refer the
readers to [22], [23], and also to [15] for a discussion of how
this can be done in a cross-validation setting. Now, due to the
presence of noise, exact agreement will not occur no matter how
many samples are taken. We consider a stopping rule similar to
the one in Section V. In principle, the analysis in (4) can be ex-
tended to the noisy case, but we instead follow the simplified
analysis in Section V-A.

We establish that the reconstruction error can be bounded
with high probability by obtaining a small number of additional
samples, and seeing how far the measurements deviate from

. With such a bound one can stop receiving addi-
tional measurements once the change in the solution reaches
levels that can be explained due to noise. The deviations now
include contribution due to noise

(12)

Fig. 8. Error estimate in the noisy case: true error and a 90% confidence bound
(dB scale): � � 
			, � � 
	, � � 
		.

Let . Consider the Gaussian measurement en-

semble. Then , and .
The distribution of is Gaussian with mean zero and variance

. Now following a similar analysis as in previous
section we can obtain an estimate of from a sample
of , and subtracting we get an estimate of .

We show an example in Fig. 8 where the true error appears
along with a 90% confidence bound. We have ,

, and . We use basis pursuit de-
noising (12) as our choice for sparse solver, and we set

motivated by the universal rule for wavelet de-
noising [22] to account for noise added with additional mea-
surements. The bound clearly shows where the sparse signal has
been recovered up to the noise floor (the signal is sparse with

nonzero elements).

VII. EFFICIENT SEQUENTIAL SOLUTION

The main motivation for the sequential approach is to reduce
the number of measurements to as few as possible. Yet, we
would also like to keep the computational complexity of the se-
quential approach low. We focus on the -based formulations
here, and show that there is some potential of using “memory”
in the sequential setting for reducing the computational com-
plexity. For the static setting there exists a great variety of
approaches to solve both noiseless and noisy basis pursuit
(i.e., basis pursuit denoising) in various forms, e.g., [23]–[25].
However, instead of resolving the linear program (1) after each
new sample, we would like to use the solution to the previous
problem to guide the current problem. It is known that interior
point methods are not well-suited to take advantage of such
“warm-starts” [23]. Some methods are able to use warm-starts
in the context of following the solution path in (11) as a function
of [23], [26], [27]. In that context the solution path is
continuous (nearby values of give nearby solutions) enabling
warm-starts. However, once a new measurement is received,
this in general makes the previous solution infeasible, and can
dramatically change the optimal solution, making warm-starts
more challenging.10

We now investigate a linear programming approach for
warm-starts using the simplex method to accomplish this in

10In related work, [28] proposed to use Row-action methods for compressed
sensing, which rely on a quadratic programming formulation equivalent to (1)
and can take advantage of sequential measurements.
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Fig. 9. Comparison of the number of simplex iterations when solving (1) from
scratch (LP1) and using the solution at step� � � (LP2). We plot the average
number of iterations vs.� , over 100 trials.

the noiseless case (a similar strategy can be used with the
Dantzig decoder [1] for the noisy case). We cannot use the
solution directly as a starting point for the new problem
at step , because in general it will not be feasible. In
the Gaussian measurement case, unless , the new
constraint will be violated. One way to
handle this is through a dual formulation,11 but we instead use
an augmented primal formulation [29].

First, to model (1) as a linear program we use the standard
trick: define , , and

. This gives a linear program in standard form:

(13)

Next we need to add an extra constraint
. Suppose that . We add an extra

slack variable to the linear program, and a high positive cost
on . This gives the following linear program:

(14)

Now using and
yields a basic feasible solution to this augmented

problem. By selecting large enough,12 will be removed
from the optimal basis (i.e., is set to 0), and the solutions to
this problem and the th sequential problem are the
same.

We test the approach on an example with , ,
and 100 trials. In Fig. 9, we plot the number of iterations of
the simplex method required to solve the problem (1) at step

from scratch (LP1) and using the formulation in (14) (LP2).
To solve (13), we first have to find a basic feasible solution,
BFS, (phase 1) and then move from it to the optimal BFS. An
important advantage of (14) is that we start right away with a
BFS, so phase 1 is not required. The figure illustrates that for
large the approach LP2 is significantly faster.

We note that recently a very appealing approach for sequen-
tial solution in the noisy setting has been proposed based on the

11If at step� the optimal dual solution is �, then a feasible solution at step
� � � is ��� ��. However, it may not be a basic feasible solution.

12E.g. the big-� approach [29] suggests treating� as an undetermined value,
and assumes that � dominates when compared to any other value.

homotopy continuation idea [30], [31], where a homotopy (a
continuous transition) is constructed from the problem at step
to the problem at step and the piecewise-smooth path is
followed. The efficiency of the approach depends on the number
of break-points in this piecewise-smooth path, but the simula-
tions results in the papers are very promising. We also note that
[30] proposes an approach to select the trade-off in the noisy
case, using cross-validation ideas.

VIII. CONCLUSION AND DISCUSSION

This paper presents a formulation for compressed sensing in
which the decoder receives samples sequentially, and can per-
form computations in between samples. We showed how the de-
coder can estimate the error in the current reconstruction; this
enables stopping once the error is within a required tolerance.
Our results hold for any decoding algorithm, since they only
depend on the distribution of the measurement vectors. This en-
ables “run-time” performance guarantees in situations where a
priori guarantees may not be available, e.g., if the sparsity level
of the signal is not known, or for recovery methods for which
such guarantees have not been established.

We have studied a number of scenarios including noiseless,
noisy, sparse and near sparse, and involving Gaussian and
Bernoulli measurements, and demonstrated that the sequential
approach is practical, flexible and has wide applicability. A very
interesting problem is to both extend the results to other mea-
surement ensembles, e.g., for sparse ensembles, and moreover,
to go beyond results for particular ensembles and develop a
general theory of sequential compressed sensing. Furthermore,
in many important applications the sparse signal of interest may
also be evolving with time during the measurement process.
Sequential CS with a notion of “time of a measurement” is a
natural candidate setting in which to explore this important
extension to the CS literature.

We also remark that there is a closely related problem of re-
covering low-rank matrices from a small number of random
measurements [32], [33], where instead of searching for sparse
signals one looks for matrices with low-rank. This problem ad-
mits a convex “nuclear-norm” relaxation (much akin to relax-
ation of sparsity). Some of our results can be directly extended to
this setting—for example if in the Gaussian measurement case
with no noise there is one-step agreement, then the recovered
low-rank matrix is the true low-rank solution with probability
one.

Finally, we comment on an important question [6], [34] of
whether it is possible to do better than simply using random
measurements—using, e.g., experiment design or active
learning techniques. In [6], the authors propose to find a multi-
variate Gaussian approximation to the posterior where

, and .
Note that MAP estimation in this model
is equivalent to the formulation in (11), but does not provide
uncertainties. Using the Bayesian formalism it is possible to
do experiment design, i.e., to select the next measurement
to maximally reduce the expected uncertainty. This is a very
exciting development, and although much more complex than
the sequential approach presented here, may reduce the number
of required samples even further.
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APPENDIX A
DERIVATION OF THE DISTRIBUTION FOR

Consider . Since
, and each is i.i.d., we have

. In fact, follows a Dirichlet
distribution. Therefore, .

Using Jensen’s inequality with the convex function ,
, we have .

Now, (for ). This
is true because

.
The second term is a product of a random variable with

degrees of freedom and an independent inverse- dis-
tribution with degrees of freedom: ,
and , see [20]. Now

.
Finally, using Jensen’s inequality with the concave function
, .
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