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Abstract—In this paper, we investigate the use of message-
passing algorithms for the problem of finding the max-weight in-
dependent set (MWIS) in a graph. First, we study the performance
of the classical loopy max-product belief propagation. We show
that each fixed-point estimate of max product can be mapped in
a natural way to an extreme point of the linear programming
(LP) polytope associated with the MWIS problem. However, this
extreme point may not be the one that maximizes the value of node
weights; the particular extreme point at final convergence depends
on the initialization of max product. We then show that if max
product is started from the natural initialization of uninformative
messages, it always solves the correct LP, if it converges. This re-
sult is obtained via a direct analysis of the iterative algorithm, and
cannot be obtained by looking only at fixed points. The tightness
of the LP relaxation is thus necessary for max-product optimality,
but it is not sufficient. Motivated by this observation, we show that
a simple modification of max product becomes gradient descent
on (a smoothed version of) the dual of the LP, and converges to
the dual optimum. We also develop a message-passing algorithm
that recovers the primal MWIS solution from the output of the
descent algorithm. We show that the MWIS estimate obtained
using these two algorithms in conjunction is correct when the
graph is bipartite and the MWIS is unique. Finally, we show
that any problem of maximum a posteriori (MAP) estimation for
probability distributions over finite domains can be reduced to an
MWIS problem. We believe this reduction will yield new insights
and algorithms for MAP estimation.

Index Terms—Belief propagation, combinatorial optimization,
distributed algorithms, independent set, iterative algorithms,
linear programming (LP), optimization.

I. INTRODUCTION

T HE max-weight independent set (MWIS) problem is the
following: given a graph with positive weights on the

nodes, find the heaviest set of mutually nonadjacent nodes.
MWIS is a well-studied combinatorial optimization problem
that naturally arises in many applications. It is known to be
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NP-hard, and hard to approximate [6]. In this paper, we in-
vestigate the use of message-passing algorithms, like loopy
max-product belief propagation, as practical solutions for the
MWIS problem. We now summarize our motivations for doing
so, and then outline our contribution.

Our primary motivation comes from applications. The MWIS
problem arises naturally in many scenarios involving resource
allocation in the presence of interference. It is often the case that
large instances of the weighted independent set problem need
to be (at least approximately) solved in a distributed manner
using lightweight data structures. In Section II-A, we describe
one such application: scheduling channel access and transmis-
sions in wireless networks. Message-passing algorithms provide
a promising alternative to current scheduling algorithms.

Another, equally important, motivation is the potential
for obtaining new insights into the performance of existing
message-passing algorithms, especially on loopy graphs.
Tantalizing connections have been established between such
algorithms and more traditional approaches like linear pro-
gramming (LP; see [1], [2], [12], and references therein). We
consider MWIS problem to understand this connection as it
provides a rich (it is NP-hard), yet relatively (analytically)
tractable, framework to investigate such connections.

A. Related Work

The design of message-passing algorithms for LP relaxations
for combinatorial optimization problems have been of interest
for a while now. For example, the auction algorithm by Bert-
sekas [27] attempts to design message-passing algorithm for the
assignment problem by means of an approximate primal-dual
algorithm, which is in turn based on the dual coordinate descent
algorithm. More recently, Wainwright, Jaakkola, and Willsky
[8] proposed a tree reweighted (TRW) algorithm—a general-
ization of the max-product algorithm. They showed that fixed
points of their algorithm that satisfied a further property, strong
tree agreement (STA), will correspond to the optimum of a (cer-
tain) LP relaxation of the maximum a posteriori (MAP) estima-
tion problem. In subsequent work, Kolmogorov [4] provided a
counter example to show that the correspondence between fixed
points of TRW and the solution of LP relaxation may not hold
in general. However, Kolmogorov and Wainwright [20] estab-
lished that for binary problems, such as the problem of interest
in this paper, the correspondence will always hold; i.e., the fixed
points of the TRW algorithm always correspond to solution of
the LP relaxation. However, this still does not guarantee that
TRW will converge to the fixed point.

0018-9448/$26.00 © 2009 IEEE
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In work by Kolmogorov [4], a subsequential convergence
property of TRW was established under a modified (or sequen-
tial) “scheduling of message passing.” That is, the subsequen-
tial limit point of the algorithm will satisfy what is known as
the weak tree agreement (WTA) condition. For binary problems,
this will mean that such a subsequential limit point will corre-
spond to solution of LP relaxation.

Specialized to the case of MWIS, a combination of these two
results will imply the following: under the modified scheduling
of the TRW, there exists a limit point (which may or may not be
identifiable) of the algorithm that corresponds to solving the LP
relaxation of the problem. Therefore, when the LP relaxation is
tight and has unique integral solution, then this will yield the
MWIS.

The focus of this paper is somewhat different. Unlike many
of the above approaches where the algorithm is designed to
solve the corresponding LP relaxation, we investigate whether
there is any connection between the original max-product al-
gorithm—which at best can be viewed as tree-based approxi-
mation dynamic programming—and LP relaxation. Along these
lines, a series of recent works [1], [2], [13] lead to the conclu-
sion that for the problem of -matching, indeed the max product
is as powerful as (certain) LP relaxation. We refer an interested
reader to a recent monograph on a related topic by Wainwright
and Jordan [10].

B. Our Contributions

To begin with, we formally describe the MWIS problem, for-
mulate it as an integer program, and present its natural LP relax-
ation. We also describe how the MWIS problem arises in wire-
less network scheduling (see Section II).

Next, we describe how max product can be used (as a
heuristic) for solving the MWIS problem. Specifically, we
construct a probability distribution whose MAP estimate is the
MWIS of the given graph. Max product, which is a heuristic
for finding MAP estimates, emerges naturally from this con-
struction (see Section III).

Now, max product is an iterative algorithm, and is typically
executed until it converges to a fixed point. In Section IV, we
show that fixed points always exist, and characterize their struc-
ture. Specifically, we show that there is a one-to-one map be-
tween estimates of fixed points, and extreme points of the in-
dependent set LP polytope. This polytope is defined only by
the graph, and each of its extrema corresponds to the LP op-
timum for a different node weight function. This implies that
max-product fixed points attempt to solve (the LP relaxation of)
an MWIS problem on the correct graph, but with different (pos-
sibly incorrect) node weights. This stands in contrast to its per-
formance for the weighted matching problem [1], [2], [13], for
which it is known to always solve the LP with correct weights.

Since max product is a deterministic algorithm, the particular
fixed point (if any) that is reached depends on the initialization.
In Section V, we pursue an alternative line of analysis, and di-
rectly investigate the performance of the iterative algorithm it-
self, started from the “natural” initialization of uninformative
messages. For this case, we show that max-product estimates
exactly correspond to the true LP, at all times, not just the fixed
point.

Max product bears a striking semantic similarity to dual coor-
dinate descent on the LP. With the intention of modifying max
product to make it as powerful as LP, in Section VI, we de-
velop two iterative message-passing algorithms. The first, ob-
tained by a minor modification of max product, approximately
calculates the optimal solution to the dual of the LP relaxation
of the MWIS problem. It does this via coordinate descent on a
convexified version of the dual. The second algorithm uses this
approximate optimal dual to produce an estimate of the MWIS.
This estimate is correct when the original graph is bipartite. We
believe that this algorithm should be of broader interest. We note
that, to the best of our knowledge, this is the first iterative/mes-
sage-passing algorithm for solving MWIS on weighted bipar-
tite graph with provable convergence and correctness guaran-
tees. This result stands in contrast with the fact that the modified
TRW of Kolmogorov [4] along with analysis of Kolmogorov
and Wainwright [20] only yields “subsequential convergence”
guarantee; it is not clear if such a convergence can be indeed
verified (at least not clear to the authors).

The above uses of max product for MWIS involved posing the
MWIS as a MAP estimation problem. In the final Section VII,
we do the reverse: we show how any MAP estimation problem
on finite domains can be converted into an MWIS problem on
a suitably constructed auxiliary graph. This implies that any al-
gorithm for solving the independent set problem immediately
yields an algorithm for MAP estimation. This reduction may
prove useful from both practical and analytical perspectives.

II. MAX-WEIGHT INDEPENDENT SET AND ITS LP RELAXATION

Consider a graph , with a set of nodes and
a set of edges. Let be the
neighbors of . Positive weights are associated
with each node. A subset of will be represented by vector

, where means is in the subset
and means is not in the subset. A subset is called an
independent set if no two nodes in the subset are connected by
an edge: for all . We are interested in
finding an MWIS . This can be naturally posed as an integer
program, denoted below by . The linear programing relax-
ation of is obtained by replacing the integrality constraints

with the constraints . We will denote the
corresponding linear program by . The dual of is denoted
below by

for all

for all

for all

for all
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It is well known that can be solved efficiently, and if it has an
integral optimal solution then this solution is an MWIS of . If
this is the case, we say that there is no integrality gap between

and , or equivalently, that the relaxation is tight.

A. Properties of the

We now briefly state some of the well-known properties of
the MWIS , as these will be used/referred to in the paper.
The polytope of the is the set of feasible points for the linear
program. An extreme point of the polytope is one that cannot
be expressed as a convex combination of other points in the
polytope.

Lemma 2.1 [16, Th. 64.7]: The polytope has the following
properties:

1) for any graph, the MWIS polytope is half-integral: any
extreme point will have each or ;

2) for bipartite graphs, the polytope is integral: each ex-
treme point will have or .

Half-integrality is an intriguing property that holds for LP re-
laxations of a few combinatorial problems (e.g., vertex cover,
matchings, etc.). Half-integrality implies that any extremum op-
timum of will have some nodes set to , and all their neigh-
bors set to . The nodes set to will appear in clusters: each
such node will have at least one other neighbor also set to .
We will see later that a similar structure arises in max-product
fixed points.

Lemma 2.2 [22, Corollary 64.9a]: optima are partially
correct: for any graph, any optimum and any node , if
the mass is integral then there exists an MWIS for which that
node’s membership is given by .

The next lemma states the standard complimentary slackness
conditions of LP, specialized for the MWIS , and for the case
when there is no integrality gap.

Lemma 2.3: When there is no integrality gap between
and , there exists a pair of optimal solutions ,

of and , respectively, such that: a)
, b) for all , and

c) , for all .

B. Sample Application: Scheduling in Wireless Networks

We now briefly describe an important application that re-
quires an efficient, distributed solution to the MWIS problem:
transmission scheduling in wireless networks that lack a cen-
tralized infrastructure, and where nodes can only communicate
with local neighbors (e.g., see [19]). Such networks are ubiqui-
tous in the modern world: examples range from sensor networks
that lack wired connections to the fusion center, and ad hoc net-
works that can be quickly deployed in areas without coverage,
to the 802.11 wi-fi networks that currently represent the most
widely used method for wireless data access.

Fundamentally, any two wireless nodes that transmit at the
same time and over the same frequencies will interfere with each
other, if they are located close by. Interference means that the
intended receivers will not be able to decode the transmissions.
Typically in a network only certain pairs of nodes interfere. The

scheduling problem is to decide which nodes should transmit
at a given time over a given frequency, so that 1) there is no
interference, and 2) nodes which have a large amount of data
to send are given priority. In particular, it is well known that if
each node is given a weight equal to the data it has to transmit,
optimal network operation demands scheduling the set of nodes
with highest total weight. If a “ conflict graph” is made, with
an edge between every pair of interfering nodes, the scheduling
problem is exactly the problem of finding the MWIS of the con-
flict graph. The lack of an infrastructure, the fact that nodes
often have limited capabilities, and the local nature of commu-
nication, all necessitate a lightweight distributed algorithm for
solving the MWIS problem.

III. MAX-PRODUCT FOR MWIS

The classical max-product algorithm is a heuristic that can
be used to find the MAP assignment of a probability distribu-
tion. Now, given an MWIS problem on , associate
a binary random variable with each and consider the
following joint distribution: for

(1)

where is the normalization constant. In the above, is the
standard indicator function: and . It is
easy to see that if is an indepen-
dent set, and otherwise. Thus, any MAP estimate

corresponds to an MWIS of .
The update equations for max product can be derived in a

standard and straightforward fashion from the probability dis-
tribution. We now describe the max-product algorithm as de-
rived from . At every iteration , each node sends a mes-
sage to each neighbor . Each
node also maintains a belief vector. The message
and belief updates, as well as the final output, are computed as
follows.

Max-Product for MWIS

(o) Initially, for all .

(i) The messages are updated as follows:

(ii) Nodes , compute their beliefs as follows:
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(iii) Estimate MWIS as follows:

if

(iv) Update ; repeat from (i) until converges and
output the converged estimate.

For the purpose of analysis, we find it convenient to transform
the messages and their dynamics as follows. First, define

Here, since the algorithm starts with all messages being strictly
positive, the messages will remain strictly positive over any fi-
nite number of iterations. Therefore, taking logarithm is a valid
operation. With this new definition, step (i) of the max-product
becomes

(2)

where we use the notation . The final esti-
mation step (iii) of max product takes the following form:

if (3)

(4)

(5)

This modification of max product is often known as the “min-
sum” algorithm, and is just a reformulation of the max product.
In the rest of this paper, we refer to this as simply the max-
product algorithm.

IV. FIXED POINTS OF MAX PRODUCT

When applied to general graphs, max product may either 1)
not converge, 2) converge, and yield the correct answer, or 3)
converge but yield an incorrect answer. Characterizing when
each of the three situations can occur is a challenging and im-
portant task. One approach to this task has been to look directly
at the fixed points, if any, of the iterative procedure (see, e.g.,
[11]). In this section, we investigate properties of fixed points,
by formally establishing a connection to the polytope.

Note that a set of messages is a fixed point of max product
if, for all

(6)

The following lemma establishes that fixed points always exist.
We note that such arguments have been used in literature in the
context of establishing existence of fixed points (e.g., see [7]).

Lemma 4.1: There exists at least one fixed point such that
for each

Proof: Let , and suppose at time each
. From (2), it is clear that this will result in

the messages at the next time also having each
. Thus, the max-product update rule (2) maps a message

vector into another vector in . Also,
it is easy to see that (2) is a continuous function. Therefore,
by Brouwer’s fixed-point theorem, there exists a fixed point

.

We now study properties of the fixed points in order to un-
derstand the correctness of the estimate output by max product.
The following theorem characterizes the structure of estimates
at fixed points. Recall that the estimate for node can be

, or .

Theorem 4.1: Let be a fixed point, and let
be the corresponding estimate. Then:

1) if , then every neighbor has
;

2) if , then at least one neighbor has
;

3) if , then at least one neighbor has
.

Before proving Theorem 4.1, we discuss its implications. Re-
call from Lemma 2.1 that every extreme point of the poly-
tope consists of each node having a value of , or . If all
weights are positive, the optimum of will have the following
characteristics: every node with value will be surrounded by
nodes with value , every node with value will have at least one
neighbor with value , and every node with value will have
one neighbor with value . These properties bear a remarkable
similarity to those in Theorem 4.1. Indeed, given a fixed point

and its estimates , make a vector by setting

if estimate for is

Then, Theorem 4.1 implies that will be an extreme point of
the polytope, and also one that maximizes some weight func-
tion consisting of positive node weights. Note, however, that
this may not be the true weights . In other words, given any
MWIS problem with graph and weights , each max-product
fixed point represents the optimum of the LP relaxation of some
MWIS problem on the same graph , but possibly with different
weights .

The fact that max-product estimates optimize a different
weight function means that both eventualities are possible:
giving the correct answer but max product failing, and vice
versa. We now provide simple examples for each one of these
situations.

Figs. 1 and 2 present graphs and the corresponding fixed
points of max product. In each graph, numbers represent node
weights, and an arrow from to represents a message value

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 15:11 from IEEE Xplore.  Restrictions apply. 



4826 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 11, NOVEMBER 2009

Fig. 1. This example shows that max-product fixed point may result in an in-
correct answer even though LP is tight.

Fig. 2. This example shows that max-product fixed point can find right MWIS
even though LP relaxation is not tight.

of . All other messages, which do not have arrows,
have value zero. The boxed nodes indicate the ones for which
the estimate . It is easy to verify that both examples
represent max-product fixed points.

For the graph in Fig. 1, the max-product fixed point results in
an incorrect estimate. However, the graph is bipartite, and hence

will provide the correct answer. For the graph in Fig. 2, there
is an integrality gap between and : setting each
yields an optimal value of for , while the optimal solu-
tion to has value . Note that the estimate at the fixed point
of max product is the correct MWIS. It is also worth noticing
that for both of these examples, the fixed points lie in the strict
interiors of a nontrivial region of attraction: starting the iterative
procedure from within these regions will result in convergence
to the corresponding fixed point. These examples indicate that it
may not be possible to resolve the question of relative strength
of the two procedures based solely on an analysis of the fixed
points of max product.

The particular fixed point, if any, that max product converges
to depends on the initialization of the messages; each fixed point
will have its own region of convergence. In Section V, we di-
rectly analyze the iterative algorithm when started from the “nat-
ural” initialization of unbiased messages. As a byproduct of
this analysis, we prove that if max product from this initial-
ization converges, then the resulting fixed-point estimate is the
optimum of ; thus, in this case, the max-product fixed point
solves the “correct” .

Proof of Theorem 4.1: The proof of Theorem 4.1 follows
from manipulations of the fixed point (6). For ease of notation,
we replace by . We first prove the following statements on
how the estimates determine the relative ordering of the two
messages (one in each direction) on any given edge:

(7)

(8)

The above equations cover every case except for edges between
two nodes with estimates. This is covered by the following:

and (9)

Suppose first that is such that . By definition (6)
of the fixed point

However, by (3), the fact that implies that

Putting the above two equations together proves (7). The proof
of (8) is along similar lines. Suppose now is such that
. By (5), this implies that , and so from

(6), we have that

Also, the fact that means that

Putting the above two equations together proves (8). We now
prove the three parts of Theorem 4.1.

Proof of Part 1): Let have estimate , and sup-
pose there exists a neighbor such that or .
Then, from (7), it follows that , and from (8), it
further follows that . However, this is a contra-
diction, and thus every neighbor of has to have estimate .

Proof of Part 2): Let have estimate . Since
, (4) implies that there exists at least one neighbor

such that the message . From (9), this means that the
estimate cannot be . Suppose now that . From
(7), it follows that , and so

However, since , this means that

which violates (4), and thus the assumption that .
Thus, it has to be that .

Proof of Part 3): Let have estimate . Since
, (5) implies that there exists at least one neighbor

such that the message . From (8), it follows that
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Thus, , which by (5) means that .
Thus, has at least one neighbor with estimate .

We end this section with a brief discussion about the half-
interality property of the MWIS problem, as summarized by
Lemma 2.1. For us, this property enabled a natural interpretation
of the “?” estimates at a max-product fixed point: we simply
set those nodes to . It would be interesting to see if such an
interpretation also holds for other problems with known half-
integrality properties. That is, given a max-product fixed point
for one of these problems, does interpreting “?” estimates as an

mass of yield an extreme point of the polytope? A
general answer to this question would be interesting.

V. DIRECT ANALYSIS OF THE ITERATIVE ALGORITHM

In the last section, we saw that fixed points of max product
may correspond to optima “wrong” linear programs: ones that
operate on the same feasible set as , but optimize a different
linear function. However, there will also be fixed points that cor-
respond to optimizing the correct function. Max product is a
deterministic algorithm, and so which of these fixed points (if
any) are reached is determined by the initialization. In this sec-
tion, we directly analyze the iterative algorithm itself, as started
from the “natural” initialization , which corresponds to
uninformative messages

We show that the resulting estimates are characterized by op-
tima of the true , at every instant (not just at fixed points).
This implies that, if a fixed point is reached, it will exactly re-
flect an optimum of LP. Our main theorem in this section is
stated below.

Theorem 5.1: Given any MWIS problem on weighted graph
, suppose max product is started from the initial condition

. Then, for any node :
1) if there exists any optimum of for which the ,

then the max-product estimate is or for all even
times ;

2) if there exists any optimum of for which the ,
then the max-product estimate is or for all odd
times .

We make note of two important implications of the Theorem
5.1.

1) If LP has a nonintegral solution, then the max-product es-
timates will not converge to the correct answer. This is be-
cause, if , then by above theorem, the estimate
of will either keep varying every alternate time slot, or
will converge to . Either way, max product will fail to pro-
vide a useful estimate for node .

2) A stopping condition: stop when estimate is the same (and
) for two consecutive time slots. This is because, by

statement of theorem it follows that if the estimates under
max product at two consecutive times are (or ), then
the solution of all the LP optima must be such that
(or ).

The proof of this theorem relies on the computation tree in-
terpretation of max-product estimates. We now specify this in-
terpretation for our problem, and then prove Theorem 5.1.

A. Computation Tree for MWIS

The proof of Theorem 5.1 relies on the computation tree in-
terpretation [23], [26] of the loopy max-product estimates. In
this section, we briefly outline this interpretation. For any node
, the computation tree at time , denoted by , is defined

recursively as follows: is just the node . This is the root
of the tree, and in this case, it is also its only leaf. The tree
at time is generated from by adding to each leaf of

a copy of each of its neighbors in , except for the
one neighbor that is already present in . Each node in

is a copy of a node in , and the weights of the nodes in
are the same as the corresponding nodes in . The computation
tree interpretation is stated in the following lemma.

Lemma 5.1: For any node at time :
• if and only if the root of is a member of

every MWIS on ;
• if and only if the root of is not a member

of any MWIS on ;
• else.

Thus, the max-product estimates correspond to MWISs on
the computation trees , as opposed to on the original graph

.
Example: Consider the following figure:

On the left is the original loopy graph . On the right is ,
the computation tree for node at time .

Proof of Theorem 5.1: We now prove Theorem 5.1. For
brevity, in this proof, we will use the notation for
the estimates. Suppose now that part 1 of the theorem is not true,
i.e., there exists node , an optimum of with , and
an odd time at which the estimate is . Let be the
corresponding computation tree. Using Lemma 5.1, this means
that the root is not a member of any MWIS of . Let be
some MWIS on . We now define the following set of nodes:

and copy of in has

In other words, is the set of nodes in , which are not in
, and whose copies in are assigned strictly positive mass by

the LP optimum .
Note that by assumption the root and . Now,

from the root, recursively build a maximal alternating subtree
as follows: first add root , which is in . Then, add all

neighbors of that are in . Then, add all their neighbors
in , and so on. The building of stops either when it
hits the bottom level of the tree, or when no more nodes can be
added while still maintaining the alternating structure. Note the
following properties of .

• is the disjoint union of and .
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• For every , all its neighbors in are included in
. Similarly, for every , all its neighbors in

are included in .
• Any edge in has at most one endpoint in ,

and at most one in .
We now state a lemma, which we will prove later. The proof
uses the fact that is odd.

Lemma 5.2: The weights satisfy .

We now use this lemma to prove the theorem. Consider the
set , which changes by flipping

We first show that is also an independent set on . This
means that we need to show that every edge in
touches at most one node in . There are thus three possible
scenarios for edge .

• . In this case, membership of in is the same
as in , which is an independent set. So has at most
one node touching .

• One node . In this case, , and hence again
at most one of belongs to .

• One node but other node . This
means that , because every neighbor of in should
be included in . This means that , and hence
only node for edge .

Thus, is an independent set on . Also, by Lemma 5.2,
we have that

However, is an MWIS, and hence it follows that is also an
MWIS of . However, by construction, root , which
violates the fact that . The contradiction is thus estab-
lished, and part 1 of the theorem is proved. Part 2 is proved in a
similar fashion.

Proof of Lemma 5.2: The proof of this lemma involves a
perturbation argument on the LP. For each node , let
denote the number of times appears in and the number
of times it appears in . Define

(10)

We now show state a lemma that is proved immediately fol-
lowing this one.

Lemma 5.3: is a feasible point for LP, for small enough .
We now use this lemma to finish the proof of Lemma 5.2.

Since is an optimum of LP, it follows that , and
so . However, by definition, and

. This finishes the proof.

Proof of Lemma 5.3: We now show that this as defined
in (10) is a feasible point for , for small enough . To do so
we have to check node constraints and edge constraints

for every edge . Consider first the node
constraints. Clearly, we only need to check them for any which
has a copy . If this is so, then by the definition (V) of

, . Thus, for any and , making small enough
can ensure that .

Before we proceed to checking the edge constraints, we make
two observations. Note that for any node in the tree, ,
then we have the following.

• , i.e., the mass put on by the optimum
is strictly less than . This is because of the alternating

way in which the tree is constructed: a node in the tree
is included in only if the parent of is in
(note that the root by assumption). However,
from the definition of , this means that , i.e., the
parent has positive mass at the optimum . This means
that , as having would mean that the edge
constraint is violated.

• is not a leaf of the tree. This is because alternates be-
tween and , and starts with at the root in level
(which is odd). Hence, will occupy even levels of the
tree, but the tree has odd depth (by assumption is odd).

Now consider the edge constraints. For any edge , if the
optimum is such that the constraint is loose, i.e., if

, then making small enough will ensure that .
So we only need to check the edge constraints which are tight
at .

For edges with , every time any copy of one of the
nodes or is included in , the other node is included in

. This is because of the following: if is included in ,
and is its parent, we are done since this means . So
suppose is not the parent of . From the above it follows that

is not a leaf of the tree, and hence will be one of its children.
Also, from above, the mass on satisfies . However, by
assumption, , and hence, the mass on is .
This means that the child has to be included in .

It is now easy to see that the edge constraints are satisfied: for
every edge constraint which is tight at , every time the mass
on one of the endpoints is increased by (because of that node
appearing in ), the mass on the other endpoint is decreased
by (because it appears ).

VI. A CONVERGENT MESSAGE-PASSING ALGORITHM

In Section V, we saw that max product started from the nat-
ural initial condition solves the correct at the fixed point, if
it converges. However, convergence is not guaranteed, indeed it
is quite easy to construct examples where it will not converge.
For example, consider a three-node complete graph (a triangle
graph) with each node having exactly the same node weight

. Let all initial messages be along all edges. Then, mes-
sages will oscillate between and at even and odd times.

In this section, we present a convergent message-passing al-
gorithm for finding the MWIS of a graph. It is based on modi-
fying max product by drawing upon a dual coordinate descent
and the barrier method. The algorithm retains the iterative and
distributed nature of max product. The algorithm leads to an op-
timal solution of for any weighted graph . Now when

is bipartite, the LP relaxation is tight. Therefore, in principle,
one can hope to obtain solution of MWIS by solving . Now,
the solutions of and (primal) do satisfy complimen-
tary slackness conditions. But this, in general, does not guar-
antee recovery of primal or solution from . Here, we
develop a novel primal recovery algorithm based on the optimal
solution of when the MWIS and have unique solution
for bipartite graph. The algorithm is simple, iterative, and stops
with iterations. In our opinion, this should be of interest
in its own right.
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Now, we provide an overview of our algorithm. The algorithm
operates in two steps, as described below.

(o) Given an MWIS problem, and (small enough) positive
parameters , run subroutine to obtain an
output that is an approximate dual
of the MWIS problem.

(i) Next, using (small enough) , use ,
to produce an estimate for the MWIS as an output of the
algorithm.

Next, we describe and , state their properties,
and then combine them to produce the following result about the
convergence, correctness and bound on convergence time for the
overall algorithm.

A. : Algorithm

Here, we describe the algorithm. It is influenced
by the max product and dual coordinate descent algorithm for

. First, consider the standard coordinate descent algo-
rithm for . It operates with variables
(with notation ). It is an iterative procedure; in each
iteration one edge is picked1 and updated

(11)

The on all the other edges remain unchanged from to .
Notice the similarity (at least syntactic) between standard dual
coordinate descent (11) and max product (2). In essence, the
dual coordinate descent can be thought of as a sequential bidi-
rectional version of the max-product algorithm.

Since the dual coordinate descent algorithm is designed so
that at each iteration, the cost of the is nonincreasing,
it always converges in terms of the cost. However, the con-
verged solution may not be optimum because contains
the “nonbox” constraints . Therefore, a di-
rect usage of dual coordinate descent is not sufficient. In order to
make the algorithm convergent with minimal modification while
retaining its iterative message-passing nature, we use barrier
(penalty) function-based approach. With an appropriate choice
of barrier and using result of Luo and Tseng [3], we will find
the new algorithm to be convergent.

To this end, consider the following convex optimization
problem obtained from by adding a logarithmic barrier
for constraint violations with controlling penalty due to
violation. Define

1Edges can be picked either in round-robin fashion, or uniformly at random.

Then, the modified optimization problem becomes

for all

The algorithm is coordinate descent on ,
to within tolerance , implemented via passing messages be-
tween nodes. We describe it in detail as follows.

(o) The parameters are variables , one for each edge
. We will use notation that . The vector is

iteratively updated, with denoting the iteration number.
• Initially, set and for all

.

(i) In iteration , update parameters are as follows.
• Pick an edge . The edge selection is done in a

round-robin manner over all edges.
• For all do nothing, i.e.,

• For edge , nodes and exchange messages as
follows:

• Update as follows: with and

(12)

(ii) Update and repeat until algorithm converges
within for each component.

(iii) Output the vector , denoted by , when the algorithm
stops.

Remark: The updates in above are obtained by
small, but important, perturbation of standard dual coordinate
descent (11). To see this, consider the iterative step in (12). First,
note that
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Similarly

Therefore, we conclude that (12) can be rewritten as

where for some with its precise value dependent on
. This small perturbation takes close to the true

dual optimum. In practice, we believe that instead of calculating
exact value of , use of some arbitrary should be
sufficient.

B. : Properties

The algorithm finds a good approximation to
an optimum of , for small enough . Furthermore,
it always converges, and does so quickly. The following
lemma specifies the convergence and correctness guarantees of

.

Lemma 6.1: For given , let be the parameter value
at the end of iteration under . Then, there
exists a unique limit point such that

(13)

for some positive constant (which may depend on problem
parameters and ). Let be the solution of . Then

Further, by taking , goes to , an optimal solution to
the .

We first discuss the proofs of two facts in Lemma 6.1: (a)
is a direct consequence of the fact that if we

ran algorithm with , it converges; (b) the fact
that as , goes to a dual optimal solution follows from
[17, Prop. 4.1.1]. Now, it remains to establish the convergence of
the algorithm. This will follow as a corollary
of result by Luo and Tseng [3]. In order to state the result in [3],
some notation needs to be introduced as follows.

Consider a real valued function defined as

where is an matrix with no zero column (i.e.,
all coordinates of are useful), is a given fixed

vector, and is a strongly convex function on its
domain

We have being open and let denote its boundary. We
also have that, along any sequence such that
(i.e., approaches boundary of ), . The goal is to
solve the optimization problem

minimize over (14)

In the above, we assume that is box type, i.e.,

Let be the set of all optimal solutions of the problem (14).
The “round-robin” or “cyclic” coordinate descent algorithm (the
one used in ) for this problem has the following con-
vergence property, as proved in Theorem 6.2 [3].

Lemma 6.2: There exist constants and which may de-
pend on the problem parameters in terms of such that
starting from the initial value , we have in iteration of the
algorithm

Here, denotes distance to the optimal set .
Proof of Lemma 6.1: It suffices to check that the conditions

assumed in the statement of Lemma 6.2 apply in our set up of
Lemma 6.1 in order to complete the proof.

Note first that the constraints in are of “box
type,” as required by Lemma 6.2. Now, we need to show that

satisfies the conditions that satisfied in (14). By obser-
vation, we see that the linear part in is corresponds
to the linear part in . Now, the other part in , which corre-
sponds to where define

By definition, the is strictly convex on its domain which is
an open set as for any , if

then . Note that for towards boundary cor-
responding to can be adjusted by redefining to
include some parts of the linear term in . Finally, the con-
dition corresponding to not having any zero column in (14)
follows for any connected graph, which is of our interest here.
Thus, we have verified conditions of Lemma 6.2, and hence es-
tablished the proof of (13). This completes the proof of Lemma
6.1.

C. : Algorithm

The algorithm yields a good approximation of the
optimal solution to , for small values of and . However,
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our interest is in the (integral) optimum of , when it exists.
There is no general procedure to recover an optimum of a linear
program from an optimum of its dual. However, we show that
such a recovery is possible through our algorithm, called
and presented below, for the MWIS problem when is bipar-
tite with a unique MWIS. This procedure is likely to extend for
general when relaxation is tight and has a unique solu-
tion. In the following, is chosen to be an appropriately small
number, and is expected to be (close to) a dual optimum.

(o) The algorithm iteratively estimates given
(expected to be a dual optimum).

(i) Initially, color a node gray and set if
. Color all other nodes with green and

leave their values unspecified.

(ii) Repeat the following steps (in any order) until no more
changes can happen:

• if is green and there exists a gray node with
, then set and color it orange;

• if is green and some orange node , then set
and color it gray.

(iii) If any node is green, say , set and color it red.

(iv) Produce the output as an estimation.

D. : Properties

Lemma 6.3: Let be an optimal solution of . If is
a bipartite graph with unique MWIS, then the output produced
by is the maximum weight independent set of .

Proof: Let be output of , and the unique
optimal MWIS. To establish , it is sufficient to establish
that and together satisfy the complimentary slackness con-
ditions stated in Lemma 2.3, namely:

(x1) for all ;
(x2) for all ;
(x3) is a feasible solution for the .

From the way the color gray is assigned initially, it follows
that either or for all nodes . Thus,
(x1) is satisfied.

Before proceeding we note that all nodes initially colored
gray are correct, i.e., ; this is because the op-
timal satisfies (x1). Now consider any node that is colored
orange due to there being a neighbor that is one of the initial
grays, and . For this node, we have that ,
because satisfies (x2). Proceeding in this fashion, it is easy
to establish that all nodes colored gray or orange are assigned
values consistent with the actual MWIS .

Now to prove (x2), consider a particular edge . For this,
if , then (x2) is satisfied. Suppose , but

. This will happen if both , or both are equal to

. Now, both are equal to only if they are both colored gray,
in which case we know that the actual optima as
well. But this means that (x2) is violated by the true optimum

, which is a contradiction. Thus, it has to be that
for violation to occur. However, this is also a violation of (x3),

namely, the feasibility of for the IP. Thus, all that remains to
be done is to establish (x3).

Assume now that (x3) is violated, i.e., there exists a subset
of the edges whose both endpoints are set to . Let

be these endpoints. Note that, by assumption,
. We now use and to construct two distinct

optima of , which will be a violation of our assumption of
uniqueness of the MWIS. The two optima, denoted and , are
obtained as follows: in , modify for all to obtain

; in , modify for all to obtain . We now show
that both and satisfy all three conditions (x1), (x2), and (x3).

Recall that the nodes in and must have been colored
red by the algorithm . Now, we establish optimality of
and . By construction, both and satisfy (x1) since we have
only changed assignment of red nodes which were not binding
for constraint (x1).

Now, we turn our attention towards (x2) and (x3) for and .
Again, both solutions satisfy (x2) and (x3) along edges

such that or else they would not have been
colored red. By construction, they satisfy (x3) along all other
edges as well. Now we show that satisfy (x2) along edges

, such that or . For
this, we claim that all such edges must have : if not, that
is , then either or must have been colored orange
and an orange node cannot be part of or . Thus, we have
established that both and along with satisfy (x1), (x2),
and (x3). The contradiction is thus established.

Thus, we have established that along with satisfies (x1),
(x2), and (x3). Therefore, is the optimal solution of , and
hence of the . This completes the proof.

Now, consider a version of where we check for updating
nodes in a round-robin manner. That is, in an iteration, we per-
form operations. Now, we state a simple bound on running
time of .

Lemma 6.4: The algorithm stops after at most
iterations.

Proof: The algorithm stops after the iteration in which no
more node’s status is updated. Since each node can be updated
at most once, with the above stopping condition, an algorithm
can run for at most iterations. This completes the proof of
Lemma 6.4.

E. Overall Algorithm: Convergence and Correctness

Before stating convergence, correctness, and bound on con-
vergence time of the algorithm, a few remarks
are in order. We first note that both and are iter-
ative message-passing procedures. Second, when the MWIS is
unique, need not produce an exact dual optimum for

to obtain the correct answer. Finally, it is important to note
that the above algorithm always converges quickly, but may not
produce good estimate when relaxation is not tight. Next, we
state the precise statement of this result.

Theorem 6.1: (Convergence and Correctness): The algo-
rithm converges for any choice of and
for any . The solution obtained by it is correct if is bipartite,

has unique solution, and are small enough.
Proof: The claim that algorithm converges

for all values of and for any follows immediately from
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Lemmas 6.1, 6.3, and 6.4. Next, we worry about the correctness
property.

Lemma 6.1 implies that for , the output of
, , where is the solution of

. Again, as noted in Lemma 6.1, as ,
where is an optimal solution2 of the . Therefore, given

, for small enough , we have

for all

We will suppose that the is chosen such. As noted earlier, the
algorithm converges for all choices of . Therefore, by Lemma
6.1, there exists large enough such that for , we have

for all

Thus, for , we have

for all (15)

Now, recall Lemma 6.3. It established that the
produces the correct MWIS as its output under hypothesis of
Theorem 6.1. Also recall that the algorithm checks
two conditions: 1) whether for ; and 2)
whether . Given that the number of nodes and
edges are finite, there exists a such that 1) and 2) are robust to
noise of . Therefore, by selection of small for such choice
of , we find that the output of algorithm will be the
same as that of . This completes the proof.

VII. MAP ESTIMATION AS AN MWIS PROBLEM

In this section, we show that any MAP estimation problem is
equivalent to an MWIS problem on a suitably constructed graph
with node weights. This construction is related to the “overcom-
plete basis” representation [9]. Consider the following canonical
MAP estimation problem: suppose we are given a distribution

over vectors of variables , each of
which can take a finite value. Suppose also that factors into a
product of strictly positive functions, which we find convenient
to denote in exponential form

Here specifies the domain of the function , and is the
vector of those variables that are in the domain of . The ’s
also serve as an index for the functions. is the set of functions.
The MAP estimation problem is to find a maximizing assign-
ment .

We now build an auxiliary graph , and assign weights to its
nodes, such that the MAP estimation problem above is equiva-
lent to finding the MWIS of . There is one node in for each

2There may be multiple dual optima, and in this case, � may not have a
unique limit. However, every limit point will be a dual optimum. In that case,
the same proof still holds; we skip it here to keep arguments simple.

pair , where is an assignment (i.e., a set of values for
the variables) of domain . We will denote this node of by

. Note that such a graph can have much larger size
than with increase in size governed by the size of each .

There is an edge in between any two nodes and
if and only if there exists a variable index such

that:
1) is in both domains, i.e., and ;
2) the corresponding variable assignments are different, i.e.,

.
In other words, we put an edge between all pairs of nodes that
correspond to inconsistent assignments. Given this graph , we
now assign weights to the nodes. Let be any number such
that for all and . The existence of such a

follows from the fact that the set of assignments and domains
is finite. Assign to each node a weight of .

Lemma 7.1: Suppose and are as above. a) If is a MAP
estimate of , let be the set of nodes
in that correspond to each domain being consistent with .
Then, is an MWIS of . b) Conversely, suppose is an
MWIS of . Then, for every domain , there is exactly one node

included in . Further, the corresponding domain as-
signments are consistent, and the resulting overall
vector is a MAP estimate of .

Proof: A maximal independent set is one in which every
node is either in the set, or is adjacent to another node that is in
the set. Since weights are positive, any MWIS has to be max-
imal. For and as constructed, the following is clear.

1) If is an assignment of variables, consider the corre-
sponding set of nodes . Each domain

has exactly one node in this set. Also, this set is an
independent set in , because the partial assignments
for all the nodes are consistent with , and hence with
each other. This means that there will not be an edge in
between any two nodes in the set.

2) Conversely, if is a maximal independent set in , then all
the sets of partial assignments corresponding to each node
in are all consistent with each other, and with a global
assignment .

There is thus a one-to-one correspondence between maximal
independent sets in and assignments . The lemma follows
from this observation.

Example 7.1: Let and be binary variables with joint
distribution

where the are any real numbers. The corresponding is shown
in Fig. 3. Let be any number such that , , and
are all greater than . The weights on the nodes in are:
on node “1” on the left, for node “1” on the right,
for the node “11,” and for all the other nodes.

VIII. DISCUSSION

We believe this paper opens several interesting directions for
investigation. In general, the exact relationship between max
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Fig. 3. Example of reduction from MAP problem to MWIS problem.

product and LP is not well understood. Their close similarity for
the MWIS problem, along with the reduction of MAP estimation
to an MWIS problem, suggests that the MWIS problem may
provide a good first step in an investigation of this relationship.
Indeed, obtaining such an understanding in the context of LP
decoding and max product would be an interesting pursuit (e.g.,
see work by Vontobel and Koetter [14]).

Our novel message-passing algorithm and the reduction of
MAP estimation to an MWIS problem immediately yields a
new message-passing algorithm for general MAP estimation
problem. It would be interesting to investigate the power of this
algorithm on more general discrete estimation problems.
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