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Abstract—A promising feature of emerging wireless sensor
networks is the opportunity for each spatially-distributed node
to measure its local state and transmit only information relevant
to effective global decision-making. An equally important design
objective, as a result of each node’s finite power, is for measure-
ment processing to satisfy explicit constraints on, or perhaps
make selective use of, the distributed algorithmic resources.
We formulate this multi-objective design problem within the
Bayesian decentralized detection paradigm, modeling resource
constraints by a directed acyclic network with low-rate, unreliable
communication links. Existing team theory establishes when
necessary optimality conditions reduce to a convergent iterative
algorithm to be executed offline (i.e., before measurements are
processed). Even so, this offline algorithm has exponential com-
plexity in the number of nodes, and its distributed implementation
assumes a fully-connected communication network. We state
conditions under which the offline algorithm admits an efficient
message-passing interpretation, featuring linear complexity and a
natural distributed implementation. We experiment with a simu-
lated network of binary detectors, applying the message-passing
algorithm to optimize the achievable tradeoff between global
detection performance and network-wide online communication.
The empirical analysis also exposes a design tradeoff between
constraining in-network processing to preserve resources (per
online measurement) and then having to consume resources (per
offline reorganization) to maintain detection performance.

Index Terms—Bayes procedures, cooperative systems, directed
graphs, distributed detection, iterative methods, message passing,
multi-sensor systems, networks, signal processing, trees (graphs).

I. INTRODUCTION

T HE vision of collaborative self-organizing wireless
sensor networks, a confluence of emerging technology in

both miniaturized devices and wireless communications, is of
growing interest in a variety of scientific fields and engineering
applications e.g., geology, biology, surveillance, fault-moni-
toring [1], [2]. Their promising feature is the opportunity for
each spatially-distributed node to receive measurements from
its local environment and transmit information that is relevant
for effective global decision-making. The finite power available
to each node creates incentives for prolonging operational life-
time, motivating measurement processing strategies that satisfy
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Fig. 1. The �-sensor detection model (described in Section II) assuming (a) a
centralized strategy for processing a measurement vector � to generate a de-
cision vector �� about the (hidden, discrete-valued) state vector � and (b) a
decentralized strategy also subject to explicit network constraints defined on
an �-node directed acyclic graph, each edge representing a unidirectional fi-
nite-rate (and perhaps unreliable) communication link between two sensors.

explicit resource constraints (e.g., on communication, com-
putation, memory) in the network layer. One also anticipates
intermittent reorganization by the network to stay connected
(due, for example, to node dropouts or link failures), implying
that resource constraints can change accordingly and creating
an incentive for intermittent re-optimization in the application
layer. So, unless the offline optimization algorithm is itself
amenable to efficient distributed implementation, there is little
hope for maintaining application-layer decision objectives
without also rapidly diminishing the network-layer resources
that remain for actual online measurement processing.

We explore these design challenges assuming that the deci-
sion-making objective is optimal Bayesian detection and the
dominant measurement processing constraints arise from the
underlying communication medium. Our main model is illus-
trated in Fig. 1, extending the canonical team-theoretic decen-
tralized detection problem [3]–[5] in ways motivated by the vi-
sion of wireless sensor networks. Firstly, the network topology
can be defined on any -node directed acyclic graph , each
edge representing a feasible point-to-point, low-rate com-
munication link from node to node [6], [7]. Secondly, each
node can selectively transmit a (perhaps different) finite-al-
phabet symbol to each of its downstream neighbors, or children

, in [8], [9] and the multipoint-to-point channel into each
node from its upstream neighbors, or parents , in can be
unreliable (e.g., due to uncoded interference, packet loss) [10].
Thirdly, each node receives a noisy measurement related
only to its local (discrete-valued) hidden state process , the
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latter correlated with the hidden states local to all other nodes,
[7]. Finally, the global decision objec-

tive can itself be spatially-distributed e.g., when each node’s
state-related decision should indicate whether an object is
located in the subregion local to node .

Team decision problems are known to be NP-hard, in general
[5]. Also known is a relaxation of the problem that, under cer-
tain model assumptions, analytically reduces to a convergent it-
erative algorithm to be executed offline [5], [11]. The (generally
multiple and non-unique) fixed-points of this iterative algorithm
correspond to different so-called person-by-person optimal pro-
cessing strategies, each known to satisfy necessary (but not al-
ways sufficient) optimality conditions for the original problem.
This offline algorithm strives to couple all nodes’ local rules
such that there is minimal total performance loss from the on-
line processing constraints. However, the algorithm generally
requires all nodes to be initialized with common knowledge of
global statistics and iterative per-node computation scales expo-
nentially with the number of nodes.

We identify a class of models for which the convergent of-
fline algorithm admits an efficient message-passing interpreta-
tion, itself equivalent to a sequence of purely-local computa-
tions interleaved with only nearest-neighbor communications
[12], [13]. In each offline iteration, every node adjusts its local
rule (for subsequent online processing) based on incoming mes-
sages from its neighbors and, in turn, sends adjusted outgoing
messages to its neighbors. The message schedule consists of re-
peated forward-backward sweeps through the network: the for-
ward messages received by each node from its parents define,
in the context of its local objectives, a “likelihood function” for
the symbols it may receive online (e.g., “what does the infor-
mation from my neighbors mean to me”) while the backward
messages from its children define, in the context of all other
nodes’ objectives, a “cost-to-go function” for the symbols it may
transmit online (e.g., “what does the information from me mean
to my neighbors”). Each node need only be initialized with local
statistics and iterative per-node computation is invariant to the
number of nodes (but still scales exponentially with the number
of neighbors, so the algorithm is best-suited for sparsely-con-
nected networks).

The end result of this (offline) message-passing algorithm can
be thought of as a distributed fusion protocol, in which the nodes
have collectively determined their individual online rules for
interpreting information transmitted by their parents and then
transmitting information to their children. This protocol takes
into account explicitly the limits on available online communi-
cation resources and, in turn, produces highly-resourceful mea-
surement processing strategies. For instance, as we will show,
the absence of transmission is interpreted as an extra symbol on
each link, which remains of value even when active transmis-
sions are of negligible cost or unreliable.

The prospect of a computationally-efficient algorithm to
optimize large-scale decentralized detection networks is com-
plementary to other recent work, which focuses on asymptotic
analyses [14]–[19] typically under assumptions regarding net-
work regularity or sensor homogeneity. The message-passing
algorithm we propose here offers a tractable design alter-
native for applications in which such assumptions cannot
be made, especially if network connectivity is also sparse

and the detection objective is itself spatially-distributed. A
tractable linear programming approximation to the offline
design problem is developed in [20], but it lacks the natural
distributed implementation featured by our message-passing
solution. Finally, numerous other authors have advocated iter-
ative message-passing algorithms to solve decision problems
in wireless sensor networks (e.g., [21], [22]), but with the
key difference that they execute on a per-measurement basis
during online processing. These solutions perform poorly (or
become infeasible) given the severe online resource constraints
considered here. It is worth noting, however, that the resources
required by our offline message-passing solution (and much of
the problem structure under which it is derived) are comparable
to that required by these online message-passing solutions.

The next section reviews the theory of decentralized Bayesian
detection in the generality implied by Fig. 1, providing exam-
ples and notation in preparation for subsequent developments.
Section III defines the class of models for which the offline iter-
ative algorithm described in Section II admits its efficient mes-
sage-passing interpretation. In Section IV, we consider a sim-
ulated network of binary detectors and apply the offline mes-
sage-passing algorithm to quantify the tradeoff between online
communication and detection performance. The empirical anal-
ysis also exposes a design tradeoff between constraining in-net-
work processing to preserve resources (per online measurement)
and then having to consume resources (per offline reorganiza-
tion) to maintain effective detection performance. Conclusions
and future research are discussed in Section V.

II. DECENTRALIZED DETECTION NETWORKS

This section summarizes the theory of decentralized Bayesian
detection [4], [5] in the generality treated by subsequent sec-
tions of the paper. It starts with a brief review of well-known
concepts in classical detection theory, using notation that may
at first seem unnecessarily cumbersome: we do this in prepara-
tion for the developments in subsequent sections of the paper.
Throughout, for a random variable that takes its values in a
discrete (or Euclidean) set , we let de-
note its probability mass (or density) function; similarly, let

denote a cost function associated to the
random variable . The subscript notation is suppressed when
the random variable involved is implied by the functional argu-
ment; that is, we let and for every

in . Also note that and are themselves well-de-
fined random variables, each taking values in according
to a distribution derived from and the functions and ,
respectively. The expectation of is denoted by .

A. Classical Bayesian Formulation

Let us first focus on Fig. 1(a), supposing the hidden state
and observable measurement take their values in, respec-

tively, a discrete product space and Eu-
clidean product space . Subject to design
is the function by which the network generates its
state-related decision based on any particular measure-
ment vector . The classical Bayesian problem formulation
[23] (i) describes the (hidden) state process and (observed)
measurement process by a given joint distribution and
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(ii) assigns a numerical cost to every possible state-deci-
sion outcome. The performance of any induced decision process

is then measured by

(1)

Note that the penalty specializes to (i) the error prob-
ability by choosing to be the indicator function on

and (ii) the sum-error prob-
ability (i.e., the expected number of nodes in error) by
choosing where, for every , the
local costs correspond to the indicator function on

. The special case of an -ary
hypothesis test corresponds to for every and prior
probabilities such that .

Before formalizing the network-constrained processing
model depicted in Fig. 1(b), we highlight two special types
of processing strategies that rely on only the classical theory.
The first we call the optimal centralized strategy , which
minimizes the detection penalty in (1) but pays no regard to
the possibility of online communication constraints; the second
we call the myopic decentralized strategy , which strictly
enforces zero online communication overhead (and, of course,
generally yields a greater penalty). The set of feasible decen-
tralized strategies we define thereafter will explicitly exclude
the former yet always include the latter, so their respective
penalties can be viewed as lower and upper baselines to that of
any sensible decentralized solution. Moreover, the manner with
which these baseline strategies are presented (in (2) and (5),
respectively) puts our problem into a form suitable and natural
for the message-passing algorithm we develop in Section III.

1) Optimal Centralized Strategy: Because is propor-
tional to for every such that
is nonzero, it follows that minimizes (1) if and only if

(2)

with probability one. Note that (i) the likelihood function
, taking its values in the product

set , provides a sufficient statistic of the on-
line measurement process and (ii) the parameter matrix

, where the optimal values are given by
, can be determined offline (i.e., before

receiving actual measurements). One views the optimal de-
tector in (2) as a particular partition of the set into the regions

, always choosing such that . This
equivalence stems from the fact that (2) implies

if
otherwise

and, because , the identity

(3)

from which the achieved penalty is determined according to

(4)

Of course, the sums and integrals over product spaces and
in (2)–(4) become difficult to compute as grows large, espe-
cially in the absence of additional problem structure.

The following elementary examples will help the reader re-
late the general notation employed above to the more familiar
presentation of classical detection theory. They are also relevant
to our experimental setup in Section IV.

Example 1 (Binary Detection): Suppose the hidden state
process takes just two values, which we will label as 1
and 1. Making the natural assumption that an error event

is more costly than an error-free event for
either possible value of , the function in (2) is equivalent to
the so-called likelihood-ratio threshold rule

The distribution in (3) is then defined by the false-
alarm and detection probabilities, or
with and , respectively.

Example 2 (Linear Binary Detectors): The special case of a
linear-Gaussian measurement model allows the decision regions
in measurement space to retain the polyhedral form of their
counterparts in likelihood space , simplifying the multi-di-
mensional integrals that must be solved in (3). Starting with
the binary problem in Example 1, denote by and the
real-valued signal vectors associated to the two possible states
and assume the measurement process is , where
the additive noise process is a zero-mean Gaussian random
vector with (known) covariance matrix . The likelihood-ratio
threshold rule then specializes to

which is linear in the measurement vector . If is also scalar
(in which case so is the signal and noise variance ), then
the threshold rule with parameter (in likelihood space) sim-
plifies to a threshold rule in measurement space, comparing to
parameter . Ac-
cordingly, the false-alarm and detection probabilities simplify
to with denoting
the cumulative distribution function of a zero-mean, unit-vari-
ance Gaussian random variable.

Example 3 (Binary Detection With Non-Binary Decisions):
Consider the binary problem in Example 1 but where the de-
cision space, call it , can have cardinality . Any given
rule parameters define a particular partition of
the likelihood-ratio space into (at most) subintervals,
characterized by threshold values satisfying

This monotone threshold rule alongside the natural assumption
that the elements of are labeled such that
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for every simplifies to making the decision
such that , taking and

. In the special case of a scalar linear binary detector (see
Example 2), we retain the analogous partition in measurement
space with respective thresholds

determined by .
The rule simplifies to deciding such that , so

.
2) Myopic Decentralized Strategy: Assume each sensor is

initialized knowing only its local model for Bayesian detection
i.e., the distribution and a cost function , and,
using only this local model, determines its component estimate

as if in isolation i.e., the rule at each node is

(5)

That is, the myopic strategy is a particular collection of single-
sensor rules specified offline by parameters

, where no one node transmits nor receives
information and total online computation scales linearly in . It
is easy to see that the myopic strategy is sub-optimal, meaning

. Equality is achieved only in certain degenerate
(and arguably uninteresting) cases, including the zero cost func-
tion i.e., for all , or the case of
unrelated single-sensor problems i.e.,
and . More generally, the extent to
which the myopic strategy falls short from optimal perfor-
mance, or the loss , remains a complicated func-
tion of the global detection model i.e., the distribution
and cost function .

While the optimal centralized strategy and the myopic de-
centralized strategy are both functions that map to , the
different processing assumptions amount to different size-
partitions of the likelihood space . In particular, assuming my-
opic processing, the strategy-dependent conditional distribution
in the integrand of (3) inherits the factored structure

, where each th term involves variables only
at the individual node . This structure has desirable compu-
tational ramifications: suppose only the decision at node is
costly, captured by choosing for all

. Then, the strategy defined by selecting
the th component of is the global minimizer of (1),
achieving penalty

In contrast, the myopic rule minimizes (1) over only the
subset of rules of the form , achieving penalty

(6)

regardless of the non-local conditional distribution
and the collective strategy

of all other nodes. Thus, assuming myopic processing
constraints and focusing on a cost function local to node
, the global penalty involves sums and integrals over

only local random variables . This simplification
foreshadows the key problem structure to be exploited in our
later developments, seeking to retain a similarly tractable
decomposition of the general -sensor sums and integrals, yet
also relaxing the constraint of zero online communication and
considering costs that can depend on all sensors’ decisions.

B. Network-Constrained Online Processing Model

We now turn to the formal description of Fig. 1(b), which in
contrast to the preceding subsection assumes that the decision
vector is generated component-wise in the forward
partial order of a given -node directed acyclic graph .
Each edge in indicates a (perhaps unreliable) low-rate
communication link from node to node . In particular, each
node , observing only the component measurement and
the symbol(s) received on incoming links with all parents

(if any), is to decide upon both
its component estimate and the symbol(s) transmitted on
outgoing links with all children
(if any). The collections of received symbols and trans-
mitted symbols take their values in discrete product spaces

and , respectively.
However, the exact cardinality of the symbol spaces and
local to each node will depend upon its in-degree and
out-degree in , respectively, as well as the specifics of
the channel models and transmission schemes.

Suppose each edge in is assigned an integer
denoting the size of the symbol set supported by this link (i.e.,
the link rate is bits per measurement). The symbol(s)

transmitted by node can thus take at most
distinct values. For example, a scheme in which node may
transmit a different symbol to each child is modeled by a finite
set with cardinality equal to , while a scheme
in which node transmits the same symbol to every child corre-
sponds to . In any case, the convention
here is that each node must somehow compress its local data
into a relatively small number of logical outgoing symbols (e.g.,
one symbol per outgoing link). In turn, the cardinality of each
node’s set of incoming symbols will reflect the joint cardi-
nality of its parents’ transmissions, but
the exact relation is determined by the given multipoint-to-point
channel into each node . In any case, each such channel is mod-
eled by a conditional distribution , describing
the information received by node based on its parents’ trans-
mitted symbols .1

The following examples demonstrate how different classes of
transmission schemes and channel models manifest themselves
in different discrete symbol sets and . They are described

1Here, we have also allowed the channel model to depend on the processes
���� � of the environment external to the network. Whether such generality
is warranted will, of course, depend on the application (e.g., the sensor seeks
to detect the presence of a malicious jammer), and later sections will indeed
sacrifice some of this generality in the interest of scalability.
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assuming independence of the processes external to the
network i.e., .

Example 4 (Peer-to-Peer Binary Comms With Erasures):
Associate each edge in directed graph with a unit-rate
communication link, meaning . If
denotes the actual symbol transmitted by node to its child

, then the collective communication decision
takes its values in . On the receiving
end, let denote the actual symbol re-
ceived by node from its parent , where the value
“0” indicates an erasure and otherwise . It
follows that the aggregate symbol received by node
takes values in . Let us denote the
collection of all symbols transmitted to a particular node
by . If we assume all in-
coming links from parents experience independent
and identically-distributed erasures, each such link erased
with probability , then the local channel model is

with

.

Example 5 (Broadcast Binary Comms With Interference): As
in Example 4, let for each edge in . How-
ever, now assume each node always transmits the same binary-
valued symbol to all of its children, meaning .
On the receiving end, suppose there are two possibilities: ei-
ther or, when there are two or more parents, none
of the incoming symbols are received due to inter-symbol in-
terference. Denoting the latter event by , it follows that

. If we assume all incoming links
from parents collectively interfere with one another, each
such link blocking the others with probability , then
the local channel model is

.

C. Decentralized Formulation With Costly Communication

As in the classical Bayesian formulation, let distribution
jointly describe the hidden state process and the

noisy measurement process . Recall that in Fig. 1(a), the
only other random vector is the decision process ,
derived from by a function of the form . In
Fig. 1(b), however, there also exist the communication-related
random vectors and , collectively derived from by the
successive application of local channels and
local rules in the forward partial order

of network topology . Denote by the set of all functions of
the form , which includes all centralized
strategies that remain agnostic about and , and denote by

only the admissible subset in , which is equivalent to
with each denoting the set of all feasible

rules local to node .
The Bayesian performance criterion is essentially the same

as in the centralized detection problem, accounting also for
the communication-related decision process . Specifically,
let every possible realization of the joint process be
assigned a cost of the form ,
where non-negative constant specifies the unit conversion
between detection costs and communication costs

. In turn, the global penalty function is given by

(7)

and the decentralized design problem is to find the strategy
such that

(8)

where functions and quantify
the detection penalty and communication penalty, respectively.
Viewing (8) as a multi-objective criterion parameterized by ,
the achievable design tradeoff is then captured by the Pareto-op-
timal planar curve .

The formulation in (8) specializes to the centralized design
problem when online communication is both unconstrained and
unpenalized i.e., is the set of all functions and

. Given any (finite-rate) directed network, however, the
function space excludes the optimal centralized strategy in
(2), but still includes the myopic decentralized strategy in (5).
The non-ideal communication model also manifests itself as a
factored representation within the distribution underlying (7).
By construction, fixing a rule is equivalent to specifying

if
otherwise.

It follows that fixing a strategy specifies

(9)
reflecting the sequential processing implied by the directed net-
work topology . In turn, the distribution that determines the
global penalty function in (7) becomes

(10)

where the summation over is taken inside the product
i.e., for each node , we have

. Note that the integra-
tion over cannot be decomposed in the absence of additional
model assumptions, a possibility we explore subsequently.

Example 6 (Selective Binary Comms): As in Examples 4 &
5, let for each edge in . A selective communi-
cation scheme refers to each node having the option to suppress
transmission, or remain silent, on one or more of its outgoing
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links. We denote this option by the symbol “0,” and we assume it
is always both cost-free and reliably received. In Example 4, this
implies any communicating node selects from an augmented
decision space of . Meanwhile, upon re-
ceiving , any child is then uncertain as to
whether node selected silence or link experienced an era-
sure; on the other hand, if , then child knows neither
selective silence nor an erasure has occurred. In Example 5, we
let for node and capture interference effects
only among the subset of actively transmitting parents.

D. Team-Theoretic Solution

In general, it is not known whether the strategy in (8) lies
in a finitely-parameterized subspace of . The team-theoretic
approximation used here is to satisfy a set of person-by-person
optimality conditions, each based on a simple observation: if
a decentralized strategy is optimal over ,
then for each and assuming rules are
fixed, the rule is optimal over i.e., for each

(11)

Simultaneously satisfying (11) for all is (by definition) a neces-
sary optimality condition, but it is not sufficient because, in gen-
eral, it does not preclude a decrease in via joint minimization
over multiple nodes. Under certain model assumptions, how-
ever, finding a solution to the coupled optimization problems
in (11) reduces analytically to finding a fixed-point of a partic-
ular system of nonlinear equations.

In this and subsequent sections we introduce a sequence
of model assumptions, each of which introduces additional
problem structure that we exploit to construct our efficient
offline algorithm. We do this in steps to help elucidate the value
and impact of each successive assumption.

Assumption 1 (Conditional Independence): Conditioned on
the state process , the measurement and received symbol
local to node are mutually independent as well as independent
of all other information observed in the network, namely the
measurements and symbols received by all other nodes
i.e., for every

(12)

Assumption 1 is satisfied if e.g., each measurement is a
function of corrupted by noise, each received symbol is
a function of (and transmitted symbols ) corrupted by
noise, and all such noise processes are mutually independent.

Lemma 1 (Factored Representation): Let Assumption 1 hold.
For every strategy , (10) specializes to

where for every

(13)

Proof: Substituting (12) into (9) and (10) results in

Because only the th factor in the integrand involves variables
, global marginalization over simplifies to local

marginalizations, each over .
Proposition 1 (Person-by-Person Optimality): Let Assump-

tion 1 hold. The th component optimization in (11) reduces to

(14)
where, for each such that , the pa-
rameter values are given by

(15)

Proof: The proof follows the same key steps by which (2)
is derived in the centralized case, but accounting for a composite
measurement and a cost function that also depends on
non-local decision variables . Assumption 1 is es-
sential for the parameter values to be independent of the local
measurement . See [24].

It is instructive to note the similarity between a local rule
in Proposition 1 and the centralized strategy in (2). Both process
an -dimensional sufficient statistic of the available measure-
ment with optimal parameter values to be computed offline. In
rule , however, the computation is more than simple multi-
plication of probabilities and costs : parameter
values in (15) now involve conditional
expectations, taken over distributions that depend on the fixed
rules of all other nodes . Each such fixed rule
is similarly of the form in Proposition 1, where fixing param-
eter values specifies local to node
through (13) and (14). Each th minimization in (11) is thereby
equivalent to minimizing

over the parameterized space of distributions defined by



KREIDL AND WILLSKY: EFFICIENT MESSAGE-PASSING ALGORITHM 569

It follows that the simultaneous satisfaction of (11) at all nodes
corresponds to solving for in a system of non-
linear equations expressed by (13)–(15). Specifically, if we let

denote the right-hand-side of (15), then offline compu-
tation of a person-by-person optimal strategy reduces to solving
the fixed-point equations

(16)

Corollary 1 (Offline Iterative Algorithm): Initialize parame-
ters and generate the sequence by iter-
ating (16) in any component-by-component order e.g.,

in iteration If Assumption 1 holds, then the asso-
ciated sequence is non-increasing and converges.

Proof: By Proposition 1, each operator is the solution
to the minimization of over the th coordinate function space

. Thus, a component-wise iteration of is equivalent to a co-
ordinate-descent iteration of , implying for
every [25]. Because the real-valued, non-increasing sequence

is bounded below, it has a limit point.
In the absence of additional technical conditions (e.g., is

convex, is contracting [25]), it is not known whether the se-
quence converges to the optimal performance ,
whether the achieved performance is invariant to the choice
of initial parameters , nor whether the associated sequence

converges. Indeed, the possibility of a poorly performing
person-by-person-optimal strategy is known to exist (see [26]
for such crafted examples). These theoretical limitations are in-
herent to nonlinear minimization problems, in general, where
second-order optimality conditions can be “locally” satisfied at
many points, but only one of them may achieve the “global”
minimum [25]. Nonetheless, the iterative algorithm is often re-
ported to yield reasonable decision strategies, which has also
been our experience (in experiments to be described in Sec-
tion IV) providing the initialization is done with some care.

Corollary 1 also assumes that every node can exactly
compute the local marginalization of (13). Some measurement
models of practical interest lead to numerical or Monte-Carlo
approximation of these marginalizations at each iteration ,
and the extent to which the resulting errors may affect conver-
gence is also not known. This issue is beyond the scope of this
paper and, as such, all of our experiments will involve sensor
models in which such complications do not arise (e.g., local
instantiations of the models in Examples 1 to 3).

III. MESSAGE-PASSING ALGORITHM

Online measurement processing implied by Proposition
1 is, by design, well-suited for distributed implementation
in network topology . However, two practical difficulties
remain: firstly, convergent offline optimization requires global
knowledge of probabilities , costs and statistics

in every iteration ; and secondly,
total (offline and online) memory/computation requirements
scale exponentially with the number of nodes . In this section,
we establish conditions so that convergent offline optimization

can be executed in a recursive fashion: each node starts with
local probabilities and local costs ,
then in each iteration computes and exchanges rule-dependent
statistics, or messages, with only its neighbors
in . We will interpret this message-passing algorithm as an
instance of Corollary 1 under additional model assumptions.
Thus, when these additional assumptions hold, it inherits the
same convergence properties. Moreover, total memory/compu-
tation requirements scale only linearly with .

Our message-passing algorithm is primarily built upon the
computational theory discussed in [5]–[7], [9]–[11], albeit each
of these considers only certain special cases of Fig. 1 and so
one contribution in this paper is the generality with which the
results apply. For example, in contrast to [6], our derivation need
not assume from the start that all nodes must employ local like-
lihood-ratio tests, nor that the penalty function is differen-
tiable with respect to the threshold parameters. (Local likeli-
hood-ratio tests in the general form discussed in Section II are
appropriate, however, so we have not negated the algorithm in
[6] but rather broadened its applicability.) Our main contribu-
tion, however, stems from our emphasis not just on preserving
algorithm correctness as we make these generalizations, but also
on preserving algorithm efficiency. As will be discussed, a new
insight from our analysis is the extent to which the graphical
structure underlying the hidden state process may deviate from
the network topology without sacrificing either algorithm cor-
rectness or efficiency. Moreover, the local recursive structure of
the message-passing equations can be applied to topologies be-
yond those for which it is originally derived, providing a new
approximation paradigm for large irregular networks of hetero-
geneous sensors in which the general algorithm of Corollary
1 is intractable and conclusions based on asymptotic analyses
[14]–[19] are not necessarily valid.

A. Efficient Online Processing

We first introduce an assumption that removes the exponen-
tial dependence on the number of nodes of the online com-
putation i.e., the actual operation of the optimized strategy as
measurements are received and communication and decision-
making takes place. This exponential dependence is due to the
appearance of the global state vector in (14), specifically the
summation over the full product space . The following as-
sumption reduces this online processing to a dependence only
on the local state component of each node. The supporting of-
fline computation, however, continues to scale exponentially (in

): additional assumptions to reduce this offline complexity are
provided in the subsequent subsection.

Assumption 2 (Measurement/Channel Locality): In addition
to the conditions of Assumption 1, the measurement and channel
models local to node do not directly depend on any of the
non-local state processes i.e., for every

(17)

Corollary 2 (Online Efficiency): If Assumption 2 holds, then
(14) and (15) in Proposition 1 specialize to

(18)
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and

(19)

respectively.
Proof: Recognizing (17) to be the special case of (12) with

and for
every , (13) in Lemma 1 similarly specializes to

(20)

for every . We then apply Proposition 1 with
.

It is instructive to note the similarity between in Corol-
lary 2 and the myopic rule in (5). Online computation is nearly
identical, but with using parameters that reflect the composite
decision space and depend explicitly on the received in-
formation . This similarity is also apparent in the offline
computation implied by (20) for fixed parameters in (18),
which per value involves the same local marginaliza-
tion over highlighted in (6) for the myopic rule.

Assumption 2 is a special case of Assumption 1, which was
discussed to be applicable when the measurement and channel
noise processes local to all nodes are mutually independent. As-
sumption 2 applies when also, for example, the sensing and
communication ranges of each node are on the order of their
spatial distances to their neighbors. Then, for every node , the
peripheral state processes will, in comparison to the local
state process , have negligible bearing on the local measure-
ment and channel models. Note that the channel models defined
in Examples 4 & 5 satisfy Assumption 2, as do the measurement
models defined in the following example.

Example 7 (Linear Binary Detectors in Noise): Let each th
such sensor be a scalar linear binary detector (see Example 2)
with local likelihood function given by

Here, we have chosen a state-related signal and
a unit-variance noise process so that the single parameter

captures the effective signal strength e.g., measure-
ments by sensor are less noisy, or equivalently more informa-
tive on the average, than measurements by sensor if .
If the Gaussian noise processes are mutually un-
correlated (i.e., the case of a diagonal covariance matrix in
Example 2), then the observable processes are also
mutually independent conditioned on the global hidden process

i.e., we have .

B. Efficient Offline Optimization

Efficiency in the offline iterative algorithm—i.e., in the al-
gorithm for optimizing at all nodes the decision rules for sub-
sequent online processing—requires not only the statistical lo-
cality of Assumption 2 but a bit more, namely that the overall

cost function decomposes into a sum of per-node local costs and
that the network topology is a polytree.

Assumption 3 (Cost Locality): The Bayesian cost function is
additive across the nodes of the network i.e.,

(21)

Assumption 4 (Polytree Topology): Graph is a polytree i.e.,
has at most one (directed) path between any pair of nodes.

Proposition 2 (Offline Efficiency): If Assumptions 2 to 4
hold, then (18) applies with (19) specialized to

(22)
where (i) the likelihood function for received informa-
tion is determined by the forward recursion

empty

otherwise

(23)

with forward message from each parent given by

(24)

and (ii) the cost-to-go function for transmitted infor-
mation is determined by the backward recursion

empty
otherwise (25)

with backward message from each child given by

(26)

and statistic given by

(27)

Proof: We provide only a sketch here; see [24] for de-
tails. Assumption 2 implies the global likelihood function for
received information is independent of the rules and states
local to nodes other than and its ancestors (i.e., the parents

, each such parent’s parents, and so on). Assumption
3 implies the global penalty function takes an additive form
over all nodes, where terms local to nodes other than and
its descendants (i.e., the children , each such child’s
children, and so on) cannot be influenced by local decision
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and, hence, have no bearing on the optimization of
rule . Assumption 4 implies the information observed and
generated by all ancestors is independent (conditioned on

) of the information to be observed and generated by all
descendants. This conditional independence between the “up-
stream” likelihood statistics and the “downstream” penalty
terms specializes the parameter values of Corollary 2 to
the proportionality of (22). Assumption 4 also guarantees no
two parents have a common ancestor, implying that upstream
likelihoods decompose multiplicatively across parent nodes,
and no two children have a common descendant, implying that
downstream penalties decompose additively across child nodes.
Altogether, it is the structural implications of Assumptions 2 to
4 that yield the recursive formulas (23)–(27).

Proposition 2 has a number of important implications.
The first is that parameters at node are now completely
determined by the incoming messages from its neighbors

. Specifically, we see in (22) that the global
meaning of received information manifests itself as a
Bayesian correction to the myopic prior , while the global
meaning of transmitted information manifests itself as an
additive correction to the myopic cost . The former
correction requires the likelihood function expressed by
(23), uniquely determined from the incoming forward messages

from all parents, while the
latter involves the cost-to-go function expressed by (25),
uniquely determined from the incoming backward messages

from all children. Thus, after
substitution of (23) and (25), we see that the right-hand-side
of (22) can be viewed as an operator .
Similarly, person-by-person optimality at every node other
than requires the outgoing messages from node to its
neighbors . The outgoing forward messages

are collectively determined
by the right-hand-side of (24), which after substitution of (23)
and (20) we denote by the operator . The out-
going backward messages are
collectively determined by the right-hand-side of (26), which
after substitution of (25) and (20) we denote by the operator

. Altogether, we see that Proposition
2 specializes the nonlinear fixed-point equations in (16) to the
block-structured form

(28)

Corollary 3 (Offline Message-Passing Algorithm): Initialize
all rule parameters and generate the se-
quence by iterating (28) in a repeated forward-backward
pass over e.g., iteration is

from and

Fig. 2. Distributed message-passing interpretation of the �th iteration in the of-
fline algorithm of Corollary 3, each node � interleaving its purely-local compu-
tations with only nearest-neighbor communications. (a) Forward pass at node �:
“receive & transmit”; (b) backward pass at node �: “receive, update & transmit.”

from (see Fig. 2). If Assumptions 2 to 4
hold, then the associated sequence converges.

Proof: By virtue of Proposition 2, a sequence is the
special case of a sequence considered in Corollary 1. Each
forward-backward pass in the partial-order implied by ensures
each iterate is generated in the node-by-node coordinate de-
scent fashion required for convergence.

Proposition 2 also implies that, to carry out the iterations de-
fined in Corollary 3, each node no longer needs a complete de-
scription of the global state distribution . This is arguably
surprising, since we have not yet made a restrictive assumption
about the state process . As seen from (22)–(27), it is sufficient
for each node to know the joint distribution of
only the states local to itself and its parents. In our work here, we
assume that these local probabilities are available at initializa-
tion. However, computing such local probabilities for a general
random vector has exponential complexity and must often
be approximated. Of course, if process is itself defined on a
graphical model with structure commensurate with the polytree
network topology , then the distributed computation to first
obtain the local priors at each node is straightfor-
ward and tractable e.g., via belief propagation [12].

A final implication of Proposition 2 is the simplicity with
which the sequence can be computed. Specifically, the
global penalty associated to iterate is given by

(29)
with
for every . That is, given that the likelihood function is
known local to each node (which occurs upon completion of
the forward pass in iteration ), each th term in (29) can
be locally computed by node and, in turn, computation of the
total penalty scales linearly in .

As was the case for Corollary 1, the choice of initial param-
eter vector in Corollary 3 can be important. Consider, for
example, initializing to the myopic strategy ,
where every node employs the rule in (5) that both ignores its
received information and transmits no information (or, equiva-
lently, always transmits the same zero-cost symbol so that
is zero): given Assumption 2 and Assumption 3 both hold and
also assuming for every ,
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it turns out that this myopic strategy is person-by-person op-
timal! That is, the parameter vector is it-
self a fixed-point of (28), and as such the algorithm will make
no progress from the associated myopic (and typically sub-op-
timal) performance . While most details will vary
for different classes of models, one general guideline is to ini-
tialize with a strategy such that every possible transmission/state
pair at every node has a nonzero probability of occur-
rence. This will ensure that the algorithm explores, at least to
some degree, the cost/benefit tradeoff of the online communica-
tion, making convergence to the myopic fixed-point likely only
when is so large in (8) that communication penalty
should be zero, as will be demonstrated in Section IV.

Assumption 4 is arguably the most restrictive in Proposition
2, in the sense that satisfying it in practice must contend with
non-local network connectivity constraints. For example, while
any node may have more than one parent node, none of those
parents may have a common ancestor. In principle, as illus-
trated in Fig. 3, this restriction can be removed by merging such
parent nodes together into single “super-nodes,” but doing this
recognizes the associated need for direct “offline” communica-
tion among these merged parent nodes while designing the de-
cision rules (even though these decision rules continue to re-
spect the online network topology ). Combining such parent
nodes also leads to increasing complexity in the offline com-
putation local to that super-node (as we must consider the joint
states/decisions at the nodes being merged); however, for sparse
network structures, such merged state/decision spaces will still
be of relatively small cardinality. Alternatively, there is nothing
that prevents one from applying the message-passing algorithm
as an approximation within a general directed acyclic network,
an idea we illustrate for a simple model in Section IV.

IV. EXAMPLES AND EXPERIMENTS

This section summarizes experiments with the offline mes-
sage-passing algorithm presented in Section III. Throughout,
we take the global measurement model to be the spatially-dis-
tributed linear binary detectors defined in Example 7 and the net-
work communication model to be the unit-rate selective peer-to-
peer transmission scheme with erasure channels defined in Ex-
ample 6. The overarching decision objective is simultaneously
to avoid state-related decision errors at a specified subset of all
nodes, which we call the “gateway” nodes (and nodes not in
the gateway we call “communication-only” nodes), and to avoid
active symbol transmissions on all links of the network. Specif-
ically, we choose the global costs and so that
detection penalty and communication penalty in (8) mea-
sure precisely the gateway “node-error-rate” and network-wide
“link-use-rate,” respectively. Our purpose is to characterize the
value and overhead of our message-passing solutions to the de-
centralized problem formulation of Section II-C, quantifying the
tradeoffs relative to the benchmark centralized and myopic so-
lutions discussed in Section II-A. Our procedure is, for a given
network, to sample the range of parameter in (8), or the weight
on communication penalty relative to detection penalty

, in each case applying the message-passing algorithm and
recording (i) the achieved online performance and (ii)
the number of offline iterations to convergence.

Fig. 3. Example of (a) a non-polytree topology� and (b) its equivalent polytree
topology for which Proposition 2 is applicable. Specifically, the parents of node
5, namely nodes 3 and 4, have node 1 as a common ancestor so we “merge”
nodes 3 and 4. This is done at the (strictly offline) expense of requiring both
direct communication between nodes 3 and 4 and increased local computation
by nodes 3 and 4, so the message-passing algorithm in Corollary 3 can jointly
consider the random variables � , � , � and � .

Sections IV-B to IV-D present our results across different net-
work topologies, different levels of measurement/channel noise
and different prior probability models. These results demon-
strate how the decentralized strategy produced by the message-
passing algorithm consistently balances between the two dif-
ferent decision penalties. Firstly, in all examples, the optimized
strategy degenerates gracefully to the myopic strategy as gets
large i.e., . Secondly, in every
example that satisfies all conditions of Proposition 2, the opti-
mized strategy achieves a monotonic tradeoff between the two
penalties i.e., if , then and .
The experimental results also illustrate more subtle benefits of
the optimized strategy: for example, even when actual symbols
can be transmitted without penalty (i.e., when ), each
node will continue to employ selective silence to resourcefully
convey additional information to its children, which remains of
value even if erasure probabilities are nonzero.

While these desirable performance tradeoffs are not sur-
prising given the developments in Section III, the experiments
in Section IV-C also demonstrate that they are difficult to
ensure when the decentralized strategy is selected heuristically
(i.e., based on reasonable intuition instead of the proscribed
offline iterative procedure). On the other hand, recognizing that
per offline iteration each link must reliably compute and
communicate messages and , each a collection of
up to real numbers, these performance benefits must
also be weighed against the number of offline iterations
to convergence. Our consideration of this offline overhead
makes, we believe, an important point in understanding the
value and feasibility of self-organizing sensor networks, as it
allows us to assess the price of adaptive organization, or re-or-
ganization. In particular, our analysis emphasizes that for such
offline organization to be warranted, it must be that the price
of performing it can be amortized over a substantial number
of online usages, or equivalently that the network resources
consumed for organization represent only a modest fraction of
the resources available over the total operational lifetime.

A. Basic Experimental Setup

To apply the offline message-passing algorithm developed
in Section III, each node in the given network requires
the following local models: likelihoods , channels

, costs , priors and
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an initial rule . This subsection describes the para-
metric forms of the local models that are in common with all
experiments to be described in the following subsections. In
particular, only the local priors will be different across these
experiments, so we now describe all other such local models
and leave the description of priors for later subsections.

As mentioned above, the likelihoods are those of the
linear Gaussian binary detectors defined in Example 7 and the
channels are those of the unit-
rate selective peer-to-peer transmission scheme with erasures
defined in Example 6. In all experiments to follow, however,
we will assume homogeneity, meaning that the signal strength

and erasure probability are the
same for every node in .

As also mentioned above, the costs local
to node are defined such that the detection penalty
and communication penalty in (8) equal the gateway
“node-error-rate” and network-wide “link-use-rate,” respec-
tively. Specifically, letting denote that node is
in the gateway and denote otherwise, we choose

. Here, the
detection-related costs indicate node errors and the communi-
cation-related costs indicate link uses i.e.,

.

As discussed in Example 6, the event indicates that
node suppresses the transmission on the outgoing link to child
, so it is associated to zero communication cost. Also note

that the myopic threshold for each gateway node reduces to
in likelihood-ratio space, and to

in measurement space (see Example 2).
A final consideration is the initial rule local to node .

As remarked after Corollary 3 in Section III, initializing to the
myopic rule in (5) would prohibit the offline algorithm from
making progress. Fig. 4 illustrates our typical choice of ini-
tial rule , We partition the real -axis by a central threshold
of to decide , followed by

thresholds evenly spaced within an interval
about to decide . In essence, each
node is initialized to (i) ignore all information received on the
incoming links, (ii) myopically make a maximum-a-posteriori
estimate of its local state and (iii) make a binary-valued decision
per outgoing link , remaining silent (with ) when
the measurement is near its least-informative values or trans-
mitting its local state estimate (with ) otherwise.
This initial strategy is clearly sub-optimal, achieving the my-
opic detection penalty but with nonzero communication penalty,
yet the message-passing algorithm is observed to make reliable
progress from this initialization as long as the induced statis-
tics at every node satisfy for all

.
The initial rule of Fig. 4 belongs to the class of monotone

threshold rules for linear-Gaussian binary detectors described in
Example 3. This class applies directly to a node without parents
and readily extends to a node with parents, in which there can
be such partitions of the likelihood-ratio space , or
in our experiments one set of such thresholds per symbol value

. The initialization in Fig. 4 makes no use
of this received information, but the optimized strategy certainly

Fig. 4. Initial rule � typically used in our experiments with scalar linear binary
detectors of signal strength � and the central threshold (in measurement space)
of � � ����� ��� with � � � ������ ����. (a) Given node � has one
child; (b) given node � has two children.

should. This motivates consideration of a more elaborate initial
strategy, taking information into account. One such initial-
ization, which we experiment with in Section IV-C, is to utilize
the neighborhood prior and interpret each received
symbol as the correct value of state process

i.e., node assumes that , marginalizing over
each state corresponding to a parent for which ,
and accordingly adjusts the central threshold in Fig. 4 to

B. A Small Illustrative Network

This subsection assumes the local models discussed in the
preceding subsection and considers the prior probability model

and the network topology depicted in Fig. 5. Specifically,
let state process be defined by a probability mass function

(30)

where denotes the edge set of the undirected graph illustrated
in Fig. 5(a) and the non-negative function

captures the correlation (i.e., negative, zero, or positive when
is less than, equal to, or greater than 0.5, respectively)

between neighboring binary-valued states and . Note that,
with just nodes, both the normalization implied by (30)
and the marginalizations of to obtain for each
node can be performed directly. Also observe that, in this ex-
ample, the links in the network topology are a proper subset of
the edges in the (loopy) undirected graph upon which random
vector is defined.

Fig. 6 displays the tradeoff curves between node-error-rate
, where every node is in the gateway (so that the maximal

node error rate is twelve), and link-use-rate achieved by the
message-passing algorithm across different model parameters.
We take the nominal case to be and the
low-correlation case to be , considering for
each such case three different erasure probabilities, namely

, and . In each of these six parameter
settings, we obtain the associated tradeoff curve by sampling

in increments of , starting with , and declaring
convergence in iteration when .
Per instance of parameters , we see that the three curves
always start from a common point, corresponding to being
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Fig. 5. Small �� � ��� decentralized detection network used in the experi-
ments of Section IV-B: (a) the (undirected) graph upon which the spatially-dis-
tributed state process � is defined via (30) and (b) a tree-structured (directed)
network topology that spans the vertices in (a).

Fig. 6. Optimized tradeoff curves for the network in Fig. 5 given (a) a nominal
environment and (b) low state correlation, each such environment with three
different link erasure probabilities � � � (solid line), � � ��� (dashed line)
and � � ��� (dash-dotted line). The second row of figures uses the same data as
the first, normalizing the penalties to better compare across the different model
instances. The tables contain the quantities� and 	� we record while computing
each curve. See Section IV-B for more discussion.

large enough so that zero link-use-rate (and thus myopic
node-error-rate ) is optimal. The smallest value of
achieving this myopic point, call it , can be interpreted (for
that model instance) as the maximal price (in units of detection
penalty) that the optimized network is willing to pay per unit
of communication penalty. For less than , we see that
the message-passing algorithm smoothly trades off increasing
link-use-rate with decreasing node-error-rate. Not surprisingly,
this tradeoff is most pronounced when the erasure probability

is zero, and approaches the myopic detection penalty as
approaches unity. Also shown per instance of parameters
is a Monte-Carlo estimate of the optimal centralized perfor-
mance , computed using 1000 samples from and
simulating the strategy in (2).

The second row of curves displays the same data as in the
first row, but after (i) normalizing the achieved link-use-rate by

its capacity (namely eleven unit-rate links) and (ii) expressing
the achieved node-error-rate on a unit-scale relative to the
benchmark centralized detection penalty and the myopic de-
tection penalty (i.e., representing the fraction of the myopic
loss recovered via offline coordination). The
curves show that, subject to less than eleven bits (per global
estimate) of online communication, up to 40% of the central-
ized performance lost by the purely myopic strategy can be
recovered. These rescalings also emphasize that the maximum
link-use-rates on each optimized curve are well below network
capacity and that the message-passing algorithm consistently
converges to a strategy that exploits the selective silence:
intuitively, each node in the cooperative strategy is able to
interpret “no news as providing news.” For further comparison,
consider the model with selective communication disabled,
meaning each node must always transmit either a 1 or 1
to each of its children and, in turn, link-use-rate is at 100%
capacity. Applying the message-passing algorithm to these
models yields the points indicated by “ ” marks: indeed, we
see that selective communication affords up to an additional
10% recovery of detection performance while using only 70%
of the online communication capacity.

The tables in Fig. 6 list two key quantities recorded during
the generation of each of the six tradeoff curves, namely and

denoting the lowest value of for which the myopic point is
the solution and the average number of offline iterations to con-
vergence, respectively. As discussed above, the former can be
interpreted as the “fair” per-unit price of online communication:
indeed, from the tables, we see that is inversely related to era-
sure probability , quantifying the diminishing value of active
transmission as link reliability degrades. Moreover, comparing

in (a) and (b), we see that lower state correlation similarly di-
minishes the value of active transmission. The empirical value
of is related to the price of offline self-organization: we see
that over all uses of the algorithm in the network of Fig. 5(b), it
measures between three and four iterations, implying that main-
taining the optimized online tradeoff depends (per offline reor-
ganization) upon the exact computation and reliable communi-
cation of 684 to 912 real numbers in total, or roughly 57 to 76
numbers per node.

C. Large Randomly-Generated Networks

This subsection performs a similar analysis as in Sec-
tion IV-B, but for a collection of randomly-generated model
instances of more realistic size and character. Fig. 7 illustrates a
typical output of our model generation procedure: it starts with

nodes, each randomly positioned within a unit-area
square and connected to a randomly selected subset of its
spatial neighbors. The vector state process is described by a
directed graphical model, constructed such that the correlation
between neighboring states reflects the spatial proximity of the
neighbors. Specifically, let denote the parents of node
(in the directed acyclic graph underlying process , which we
call ) and let denote the spatial distance between node

and node . The global prior probabilities are equal to

(31)
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Fig. 7. Typical 100-node detection network generated randomly for the exper-
iments in Section IV-C: (a) the spatial configuration of all nodes in the unit-area
square, (b) an arbitrary directed acyclic graph upon which the spatially-dis-
tributed state process� is defined via (31) and (c) the polytree network topology
with ten randomly-selected gateway nodes (filled markers).

where, for each parentless node , we choose to be uniform
and, otherwise, choose

,

.

In words, each th factor biases the (conditional)
distribution of local state process to take the same value as
the (given) states of its spatially-nearest parent nodes (in ).

The next step of the model generation procedure is to con-
struct a polytree network topology and derive the associated
priors for every node required by the offline
message-passing algorithm. First, we select ten gateway nodes
at random and construct such that (i) these gateway nodes
are childless and (ii) its undirected counterpart is an embedded
spanning tree of the undirected counterpart to the probability
graph . This is accomplished using Kruskal’s max-weight
spanning tree algorithm, where we choose edge weights pro-
portional to the pairwise correlation between the states sharing
each edge in (and any node pair not sharing an edge in
is assigned the weight ). These pairwise correlations can
be computed from the so-called clique marginals
associated with the factorization in (31), which we obtain via
Murphy’s Bayesian Network Toolbox in MATLAB [27]. We
further exploit the Markov properties implied by (31) to find
the neighborhood marginals (still in ) via

(32)

Finally, because network topology is embedded in the undi-
rected counterpart of , we have that for every
and, in turn, each distribution can be found by ap-
propriate marginalization of (32).

Fig. 8 depicts the average-case performance achieved by the
message-passing algorithm over 50 randomly-generated model
instances. Each plot consists of four clusters of points, three
corresponding to the optimized point assuming three different
values of and one corresponding to the point achieved by
the heuristic strategy, essentially interpreting each incoming

Fig. 8. Performance of different strategies for 50 randomly generated networks
of the type shown in Fig. 7 given (a) a nominal environment and (b) zero channel
noise. See Section IV-C for more discussion.

symbol as indicating the true value of the parents’ local states
as described in Section IV-A. In fact, in these experiments, we
initialized our algorithm with this heuristic strategy, though
it’s seen to fail catastrophically in the sense that communica-
tion penalty is nonzero and yet the detection penalty is larger
than even that of the myopic strategy! This unsatisfactory
heuristic performance underscores the value of our offline
message-passing algorithm, which via parameter consistently
decreases global detection penalty (from that of the myopic
strategy) as global communication penalty increases despite
the poorly performing initializations.

Each table in Fig. 8 lists the average number of message-
passing iterations to convergence, which underscores the price
of our offline coordination in the same sense discussed in Sec-
tion IV-B. We see that roughly eight iterations can be required
in the 100-node models, in comparison to roughly three iter-
ations in the twelve-node models of the previous subsection,
suggesting the price of offline coordination scales sublinearly
with the number of nodes. It is worth noting that the commu-
nication overhead associated with each offline iteration also de-
pends on the connectivity of the network topology, each node
exchanging a number of messages that scales linearly with its
degree (whereas the local computation of these messages scales
exponentially with its degree).

D. A Small Non-Tree-Structured Network

The preceding experiments focused on models that satisfy all
assumptions under which the offline message-passing algorithm
is derived. We now discuss experiments for a model in which
the network topology is not a polytree. In such cases the local
fixed-point equations in Corollary 3 are no longer guaranteed
to be equivalent to the general fixed-point equations in Corol-
lary 1. In turn, the message-passing algorithm no longer neces-
sarily inherits the general convergence and correctness guaran-
tees discussed for Corollary 1. As remarked in Section III, the
team-optimal solution can be computed by aggregating nodes in
the original topology so as to form a polytree to which our mes-
sage-passing algorithm can be applied. Of course, this approach
implicitly requires communication among nodes that have been
aggregated but are not neighbors in the original topology; more-
over, it is computationally tractable only if a small number of
nodes need to be aggregated.
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Fig. 9. Small �� � �� detection network discussed in Section IV-D: (a) the
(undirected) graph upon which the spatially-distributed state process � is de-
fined via (30); (b) the (directed) network topology that spans the vertices in
(a); and (c) the performance comparison between the team-optimal solution
and the message-passing approximation. In (c), three tradeoff curves are shown,
dashed being that achieved by the message-passing approximation, solid being
that achieved by the team-optimal solution, and dash-dotted being that predicted
by the message-passing approximation (but based on incorrect assumptions).

For the above reasons, in non-polytree networks it is useful
to understand what the truly team-optimal solution can achieve
in comparison to what is achieved if one rather applies the
local message-passing algorithm. In this section, we present
and discuss experiments on a small example in order to explore
these questions. Even in such small models, the team-optimal
solution produces rather sophisticated signaling strategies,
exploiting the non-tree network structure in ways that are not
available in the message-passing approximation. Nonetheless,
at least in this small example, the local message-passing algo-
rithm still achieves competitive decision performance.

Let us consider a model of the same type as in Section IV-B,
except involving only four nodes in the non-tree configuration
depicted in Fig. 9. For illustration. we fix , , and

, so that all measurements have the same noise, all channels
have zero erasure probability and the states are positively-corre-
lated. Assume node 4 is the lone gateway node, while nodes 1, 2
and 3 are communication-only nodes. The team objective boils
down to having the communication-only nodes collectively gen-
erate the “most-informative-yet-resourceful” signal to support
the gateway node’s final decision. Indeed, we anticipate node 1
to play the dominant role in any such signaling strategy, given
its direct link to every other node in the communication network
topology of Fig. 9(b). Note, in particular, that this communica-
tion topology includes a direct path from node 1 to node 4 which
is not present in the probability graph of Fig. 9(a). Thus, this
example also allows us to illustrate the value of longer-distance
messaging than would be found, for example, if loopy belief
propagation [12], [13] were applied to this problem.

Fig. 9 also displays the tradeoff between node-error-rate
and link-use-rate achieved by both the team-optimal solu-

tion and the message-passing approximation. There are in fact
two performance curves associated with the message-passing
approximation, namely that which it actually achieves and
that which it predicts to achieve. Specifically, this prediction
corresponds to the performance computed via (29) as a
function of the forward messages , which can be
incorrect because each such message is no longer necessarily
equivalent to the distribution . To compute the ac-
tual performance here, we rather determine the full distribution

via (10) and evaluate the expected cost directly.
As in earlier experiments, each curve is obtained by sampling

in increments of , starting with , and declaring
convergence in iteration when
(but using the sequence of predicted performances in the
message-passing approximation). Also shown is the empirical
estimate (plus or minus one standard deviation based on 10000
samples) of the centralized performance.

Notice first in Fig. 9(c) that the message-passing and team-op-
timal curves coincide at very low link-use-rates, a regime in
which enough links remain unused so that the network topology
is effectively tree-structured. For higher link-use-rates, we see
that the message-passing prediction is consistently over-opti-
mistic, eventually even suggesting that the achieved node-error-
rate surpasses the optimal centralized performance in the actual
network; meanwhile, the actual performance achieved by the
message-passing approximation is consistently inferior to that
of the team-optimal solution, yet for this simple model still a
reliable improvement relative to myopic detection performance.
Also notice how the message-passing approximation does not
produce a monotonic tradeoff curve, in the sense that it permits
link-use-rates to increase beyond the range over which the node-
error-rate remains non-increasing. The team-optimal solution is,
of course, monotonic in this sense, with peak link-use-rate well
below that determined by the message-passing approximation.
Finally, the table in Fig. 9(c) shows that the team-optimal so-
lution is (i) more resourceful with its link usage, as quantified
by , and (ii) takes on-average more iterations to converge, as
quantified by . The latter is arguably surprising, considering it
is the message-passing approximation that comes without any
theoretical guarantee of convergence. Indeed, these particular
experiments did not encounter a problem instance in which the
message-passing algorithm failed to converge.

We conjecture that algorithm convergence failures will be
experienced when the message-passing approximation is ap-
plied to more elaborate non-tree-structured models. To help jus-
tify this point, Fig. 10 depicts the key discrepancy between the
team-optimal solution and the message-passing approximation.
As each node performs each of its local message-passing it-
erations, it neglects the possibility that any two parents could
have a common ancestor (or, equivalently, that any two children
could have a common descendant), implicitly introducing ficti-
tious replications of any such neighbors and essentially “double-
counting” their influence. This replication is reminiscent of the
replications seen in the so-called computation tree interpretation
of loopy belief propagation [28]. However, there are important
differences in our case, as this replication is both in upstream
nodes that provide information to a specific node and in down-
stream nodes whose decision costs must be propagated back to
the node in question. Moreover, the nature of these replications
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Fig. 10. Tree-based message-passing approximation from the perspective of
each node in the non-tree network of Fig. 9. Nodes and links drawn with dashed
lines represent the fictitious nodes introduced by the approximation, which ne-
glects the possibility that any two parents could have a common ancestor (or,
equivalently, any two children could have a common descendent). (a) At node
1; (b) at node 2; (c) at node 3; (d) at node 4.

is itself node-dependent, meaning each offline iteration may be
cycling over different assumptions about the global network
structure. The potential for these different perspectives to give
rise to erroneous message iterates lies at the heart of the possi-
bility for convergence difficulties in more elaborate models.

Though we observed no convergence difficulty, the nature
of the approximation illustrated in Fig. 10 still manifests itself
in a performance difference between the solutions compared
in Fig. 9(c), most apparent for small values of . We have
more carefully inspected the different strategies and, while
both yield signaling in which node 1 takes a leadership role,
the team-optimal strategy consistently uses nodes 2 and 3 in
a more resourceful way, ultimately allowing gateway node 4
to receive better side information for its final decision. For
instance, in the team-optimal solution, node 1 typically signals
exclusively to node 4 or exclusively to node 3, and only for
the most discriminative local measurement will it signal to
both nodes 2 and node 4; that is, node 1 never signals all three
other nodes and, in turn, the signaling rules used by nodes 2
and 3 are asymmetric. In the message-passing approximation,
however, node 1 typically uses either none or all of its links, in
the latter case transmitting the same symbol to all other nodes;
in turn, nodes 2 and 3 employ identical signaling rules to node
4 in which, given node 1 has communicated, the presence
or absence of signal indicates agreement or disagreement,
respectively, with the symbol broadcasted by node 1. The
message-passing approximation cannot recognize the value
of introducing asymmetry and, consequently, determines that
a larger networkwide link-use-rate is necessary to achieve a
comparable gateway node-error-rate.

V. CONCLUSION

A key challenge in modern sensor networks concerns the in-
herent design tradeoffs between application-layer decision per-
formance and network-layer resource efficiency. In this paper
we explored such tradeoffs for the decision-making objective
of optimal Bayesian detection, assuming in-network processing
constraints are dominated by a low-rate unreliable communica-
tion medium. Mitigating performance loss in the presence of
such constraints demands an offline “self-organization” algo-
rithm by which the processing rules local to all nodes are itera-
tively coupled in a manner driven by global problem statistics.
We showed that, assuming (i) online measurement processing is
constrained to a single forward sweep in a finite-rate, sparsely-
connected polytree network, (ii) the measurement/channel noise
processes are spatially-independent and (iii) the global decision

criterion decomposes additively across the nodes, this offline
computation admits interpretation as an efficient forward-back-
ward message-passing algorithm. Each forward sweep propa-
gates likelihood messages, encoding what online communica-
tion along each link means from the transmitter’s perspective,
while each backward sweep propagates cost-to-go messages,
encoding what online communication along each link means
from the receiver’s perspective. In each iteration, both types of
incoming messages influence how each node updates its local
rule parameters before it engages in the next iteration.

The key steps by which we obtain these results can be traced
to a collection of earlier works in the abundant decentralized
(team) detection literature. As was discussed, however, each of
these earlier works considered only a special case of the model
considered here, typically employing a proof technique not im-
mediately applicable to our more general case. For example,
our results hold for noisy channel models that include a de-
pendence on the local hidden state (e.g., for detecting the pres-
ence or absence of a jamming signal) or the composite transmis-
sions of all parent nodes (e.g., for modeling the effects of mul-
tipoint-to-point interference). Our results also shed new light
on the extent to which the graphical structure underlying the
spatially-distributed hidden state process may deviate from the
communication network topology without sacrificing either al-
gorithm correctness or efficiency.

Experiments with the efficient message-passing algorithm
underscored how: (i) the algorithm can produce very re-
sourceful cooperative processing strategies in which each node
becomes capable of using the absence of communication as an
additional informative signal; (ii) design decisions to reduce
online resource overhead by imposing explicit in-network
processing constraints must be balanced with the offline re-
source expenditure to optimize performance subject to such
constraints; and (iii) the message-passing algorithm can be
applied to models that do not necessarily satisfy all of the
assumptions under which it is originally derived. Our empir-
ical success with the latter idea motivates a number of new
research questions, including (i) whether the additional model
assumptions introduced in going from the general algorithm in
Corollary 1 to the message-passing algorithm in Corollary 3
allow for stronger convergence guarantees than those presented
here; and (ii) whether there exist bounds on the performance
loss resulting from applying the message-passing algorithm to
more general topologies.

There are other open questions related to application of the
message-passing algorithm beyond the scope of its derivation.
One such question is the degree to which quantization errors
in the offline messages can be tolerated. Another line of ques-
tioning concerns the adverse effects of mismatches between
the local models assumed at any particular node from the true
ones. Related questions are how much is lost when not all noise
processes are spatially independent or when the cost func-
tion does not decompose additively across the nodes. Better
understanding of such robustness properties is the first step
towards addressing the difficult problem of when a detection
network should reorganize i.e., when the network topology or
the local models have changed enough to merit re-optimization.
Other avenues for research are whether offline message-passing
solutions exist for decentralized decision problems involving
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(i) more elaborate online communication architectures (e.g.,
[29], [30]) than just the single forward sweep analyzed here or
(ii) continuous-valued state processes.
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