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Abstract—This paper presents recursive cavity modeling—a
principled, tractable approach to approximate, near-optimal
inference for large Gauss–Markov random fields. The main idea is
to subdivide the random field into smaller subfields, constructing
cavity models which approximate these subfields. Each cavity
model is a concise, yet faithful, model for the surface of one
subfield sufficient for near-optimal inference in adjacent subfields.
This basic idea leads to a tree-structured algorithm which re-
cursively builds a hierarchy of cavity models during an “upward
pass” and then builds a complementary set of blanket models
during a reverse “downward pass.” The marginal statistics of
individual variables can then be approximated using their blanket
models. Model thinning plays an important role, allowing us to
develop thinned cavity and blanket models thereby providing
tractable approximate inference. We develop a maximum-entropy
approach that exploits certain tractable representations of Fisher
information on thin chordal graphs. Given the resulting set of
thinned cavity models, we also develop a fast preconditioner, which
provides a simple iterative method to compute optimal estimates.
Thus, our overall approach combines recursive inference, vari-
ational learning and iterative estimation. We demonstrate the
accuracy and scalability of this approach in several challenging,
large-scale remote sensing problems.

Index Terms—Approximate inference, Gaussian Markov
random fields, graphical models, information projection, model
reduction, maximum entropy.

I. INTRODUCTION

MARKOV random fields (MRFs) play an important role
for modeling and estimation in a wide variety of con-

texts including physics [1], [2], communication and coding [3],
signal and image processing [4]–[9], pattern recognition [10],
remote sensing [11]–[13], sensor networks [14], and localiza-
tion and mapping [15]. Their importance can be traced in some
cases to underlying physics of the phenomenon being modeled,
in others to the spatially distributed nature of the sensors and
computational resources, and in essentially all cases to the ex-
pressiveness of this model class. MRFs are graphical models
[16], [17], that is, collections of random variables, indexed by
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nodes of graphs, which satisfy certain graph-structured condi-
tional independence relations: Conditioned on the values of the
variables on any set of nodes that separate the graph into two or
more disconnected components, the sets of values on those dis-
connected components are mutually independent. By the Ham-
mersley–Clifford theorem [1], [18], this Markov property im-
plies that the joint distribution of all variables can be compactly
described in terms of “local” interactions among variables at
small, completely connected subsets of nodes (the cliques of the
graph).

MRFs have another well-recognized characteristic, namely
that performing optimal inference on such models can be pro-
hibitively complex because of the implicit coding of the global
distribution in terms of many local interactions. For this reason,
most applications of MRFs involve the use of suboptimal or
approximate inference methods, and many such methods have
been developed [19]–[22]. In this paper, we describe a new, sys-
tematic approach to approximately optimal inference for MRFs
that focuses explicitly on propagating local approximate models
for subfields of the overall graphical model that are close (in a
sense to be made precise) to the exact models for these subfields
but are far simpler and, in fact, allow computationally tractable
exact inference with respect to these approximate models.

The building blocks for our approach—variable elimination,
information projections, and inference on cycle-free graphs
(that is, graphs that are trees) are well known in the graphical
model community. What is new here is their synthesis into a
systematic procedure for computationally tractable inference
that focuses on recursive reduced-order modeling (based on
information-theoretic principles) and exact inference on the
resulting set of approximate models. The resulting algorithms
also have attractive structure that is of potential value for dis-
tributed implementations such as in sensor networks. To be sure
our approach has connections with work of others—perhaps
most significantly with [12] and [23]–[27], and we discuss
these relationships as we proceed.

While the principles for our approach apply to general
MRFs, we focus our development on the important class of
Gaussian MRFs (GMRFs). In the next section, we introduce
this class, discuss the challenges in solving estimation prob-
lems for such models, briefly review methods and literature
relevant to these challenges and to our approach, and provide
a conceptual overview of our approach that also explains its
name: recursive cavity modeling (RCM). In Section III, we
develop the model-reduction techniques required by RCM. In
particular, we develop a tractable maximum-entropy method
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to compute information projections using convex optimization
methods and tractable representations of Fisher information for
models defined on chordal graphs. In Section IV, we provide
the details of the RCM methodology, which consists of a
two-pass procedure for building cavity and blanket models
and a corresponding hierarchical preconditioner for iterative
estimation. Section V demonstrates the effectiveness of RCM
with its application to several remote sensing problems. We
conclude in Section VI with a discussion of RCM and further
directions that it suggests.

II. PRELIMINARIES

A. Gaussian Markov Random Fields

Let denote a graph with node (or vertex) set
and edge set . Let denote a random variable
associated with node , and let denote the vector of all of
the . If is Gaussian with mean and invertible covariance

, its probability density can be written as

(1)

(2)

The representation (1) is often referred to as the information
form of the statistics of a Gaussian process where is the infor-
mation matrix. The fill pattern of provides the Markov struc-
ture [28]: is Markov with respect to if and only if
for all .

In applications, and typically specify posterior statistics
of x after conditioning on some set of observations. The most
common example is one in which we have an original GMRF
with respect to , together with measurements, corrupted by in-
dependent Gaussian noise, at some or all of the nodes of the
graph. Since an independent measurement at node simply
modifies the values of and , the resulting field condi-
tioned on all such measurements is also Markov with respect
to .

B. Estimation Problem

Given and , we wish to compute and (at least) the diag-
onal elements of —thus providing the marginal distributions
for each of the . However, solving the linear equations in (2)
and inverting can run into scalability problems. For example,
methods that take no advantage of graphical structure require

computations for graphs with nodes. If the graph has
particularly nice structure, however, very efficient algorithms
do exist. In particular, if is a tree there are a variety of algo-
rithms which compute and the diagonal of with total com-
plexity that is linear in and that also allow distributed compu-
tation corresponding to “messages” being passed along edges
of the graph. For example, if is tri-diagonal, the variables

form a Markov chain, and an efficient solution of (2) can
be obtained by Gaussian elimination of variables from one end

of the chain to the other followed by back-substitution—cor-
responding to a forward Kalman filtering sweep followed by a
backward Rauch–Tung–Striebel smoothing sweep [14].

Because of the abundance of applications involving MRFs
on graphs with cycles, there is considerable interest and a
growing body of literature on computationally tractable in-
ference algorithms. For example, the generalization of the
Rauch–Tung–Striebel smoother to trees can, in principle, be
applied to graphs with cycles by aggregating nodes of the
original graph—using so-called junction tree algorithms [17] to
form an equivalent model on a tree. However, the dimensions of
variables at nodes in such a tree model depend on the so-called
tree width of the original graph [29], with overall complexity in
GMRFs that grows as the cube of this tree width. Thus, these
algorithms are tractable only for graphs with small tree width,
precluding the use for many graphs of practical importance
such as a 2-D lattice (with nodes) for which
the tree width is (so that the cube of the tree width is ,
resulting in complexity that grows faster than linearly with
graph size) or a 3-D lattice for which the tree width
is (so that the cube of the tree width is ).

Since exact inference is only feasible for very particular
graphs, there is great interest in algorithms that yield approx-
imations to the correct means and covariances and that have
tractable complexity. One well-known algorithm is loopy
belief propagation (LBP) [20], [30] which take the local mes-
sage-passing rules which yield the exact solution on trees, and
apply them unchanged and iteratively to graphs with cycles.
There has been recent progress [20], [31] in understanding how
such algorithms behave, and for GMRFs it is now known [22],
[31] that if LBP converges, it yields the correct value for but
not the correct values for the . Although some sufficient
conditions for convergence are known [31], [32], LBP does not
always converge and may converge slowly in large GMRFs.

There are several other classes of approximate algorithms
that are more closely related to our approach, and we discuss
these connections in the next section. As we now describe, RCM
can be viewed as a direct, recursive approximation of an exact
(and, hence, intractable) inference algorithm created by aggre-
gating nodes of the original graph into a tree. In particular, by
employing an information-theoretic approach to reduced-order
modeling, together with a particular strategy for aggregating
nodes, we obtain tractable, near-optimal algorithms that can be
applied successfully to very large graphs.

C. Basic Elements of RCM

As with exact methods based on junction trees, RCM makes
use of separators—that is, sets of nodes which, if removed from
the graph, result in two or more disconnected components. By
Markovianity, the sets of variables in each of these disconnected
components are mutually independent conditioned on the set of
values on the separator. This suggests a “divide and conquer”
approach to describing the overall statistics of the MRF on a hi-
erarchically organized tree. Each node in this tree corresponds
to a separator at a different “scale” in the field. For example, the
root node of this tree might correspond to a separator that sepa-
rates the entire graph into, say , disconnected subgraphs. The
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root node then has children—one corresponding to each of
these disconnected subgraphs—and the node for each of these
children would then correspond to a separator that further dis-
sects that subgraph. This continues to some finest level at which
exact inference computations on the subgraphs at that level are
manageable. The problem with this approach, as suggested in
Section II-B, is that the dimensionality associated with the larger
separators in our hierarchical tree can be quite high—for in-
stance, in square grids. This problem has led several re-
searchers [7], [14], [24], [33], [34] to develop approaches for
GMRFs based on dimensionality reduction—that is, replacing
the high-dimensional vector of values along an entire separator
by a lower dimensional vector. While approaches such as [33]
and [34] use statistically motivated criteria for choosing these
approximations, there are significant limitations of this idea.
The first is that the use of low-dimensional approximations can
lead to artifacts (that is, modeling errors which expose the un-
derlying approximation), both across and along these separa-
tors. The second is that performing such a dimensionality re-
duction requires that we have available the exact mean and co-
variance for the vector of variables whose dimension we wish to
reduce, which is precisely the intractable computation we wish
to approximate! The third limitation is that these approaches are
strictly top-down approaches—that is, they require establishing
the hierarchical decomposition from the root node on down to
the leaf nodes a priori, an approach often referred to as nested
dissection. We also employ nested dissection in our examples,
but the RCM approach also offers the possibility of bottom-up
organization of computations, beginning at nodes located close
to each other and working outward—a capability that is partic-
ularly appealing for distributed sensor networks.

The key to RCM is the use of the implicit, information
form, corresponding to models for the variables along sep-
arators, allowing us to consider model-order—rather than
dimensionality—reduction. In this way, we still retain full di-
mensionality of the variables along each separator, overcoming
the problem of artifacts. Of course, we still have to deal with the
computational complexity of obtaining the information form
of the statistics along each separator. Doing that in a computa-
tionally and statistically principled fashion is one of the major
components of RCM. Consider a GMRF on the graph depicted
in Fig. 4(a) so that the information matrix for this field has a
sparsity pattern defined by this graph. Suppose now that we
consider solving for and the diagonal of from (2) by variable
elimination. In particular, suppose that we eliminate all of the
variables within the dashed region in Fig. 4(a) except for those
right at the boundary. Doing this, in general, will lead to fill in the
information matrix for the set of variables that remain after vari-
able elimination. As depicted in Fig. 4(b), this fill is completely
concentrated within the dashed region—that is, within this
cavity. That is, if we ignore the connections outside the cavity,
we have a model for the variables along the boundary that is
generally very densely connected. This suggests approximating
this high-order exact model for the boundary by a reduced or
thinned model as in Fig. 4(c) with the sparsity suggested by this
figure. Indeed, if we thin the model sufficiently, we can then
continue the process of alternating variable elimination and
model thinning in a computationally tractable manner.

Suppose next that there are a number of disjoint cavities as
in Fig. 5 in each of which we have performed alternating steps
of variable elimination to enlarge the cavity followed by model
thinning to maintain tractability. Eventually, two or more of
these cavities will reach a point at which they are adjacent
to each other, as in Fig. 5(a). At this point, the next step is
one of merging these cavities into a larger one [Fig. 5(b)],
eliminating the nodes that are interior to the new, larger cavity
[Fig. 5(c)], and then thinning this new model [Fig. 5(d)]. If each
step does sufficient thinning, computational tractability can be
maintained. Eventually, this “outwards” elimination ends, and
a reverse “inwards” elimination procedure commences, again
done in information form. This inwards procedure eliminates all
of the variables outside of each subfield, except for the variables
adjacent to the subfield, producing what is known as a blanket
model. Eliminating these variables involves computations that
recursively produce blanket models for smaller and smaller
subfields, as illustrated in Fig. 6, which shows that, once again,
model thinning [going from Fig. 6(c) to (d)] plays a central role.
Finally, once this inward sweep has been completed, we have
information forms for the marginal statistics for each of the
subfields that were used to initialize the outwards elimination
procedure. Inverting these many smaller, now-localized models
to obtain means and variances is then computationally tractable.

RCM has some relationships to other work as well as some
substantive differences. The general conceptual form we have
outlined is closely related to the nested dissection approach [12],
[23] to solving large linear systems. The approach to model thin-
ning in [12] and [23], however, is simply zeroing a set of ele-
ments (retaining just those elements which couple nearby nodes
along the boundary). The statistical interpretation of this ap-
proach and its extensibility to less regular lattices and fields,
however, are problematic. In particular, zeroing elements can
lead to indefinite (and, hence, meaningless) information ma-
trices, and even if this is not the case, such an operation in gen-
eral will modify all of the elements of the covariance matrix
(including the variances of individual variables). In contrast,
we adopt a principled, statistical approach to model thinning,
using so-called information projections, which guarantee that
the means, variances and edgewise correlations in the thinned
model are unchanged by the thinning process.

Information-theoretic approaches to approximating graphical
models have a significant literature [25], [29], [35], [36], most
of which focuses on doing this for a single, overall graphical
model and not in the context of a recursive procedure such as
we develop. One effort that has considered a recursive approach
is [26] which examines time-recursive inference for dynamic
Bayes’ nets (DBNs)—that is, for graphical models that evolve in
time, so that we can view the overall graphical model as a set of
coupled temporal “stages.” Causal recursive filtering then cor-
responds to propagating “frontiers”—that is, a particular choice
of what we would call cavity boundaries corresponding to the
values at all nodes at a single point in time. The method in [26]
projects each frontier model into a family of factored models so
that the projection is given by a product of marginals on disjoint
subsets of nodes. Such an operation can be viewed as a special
case of the “outward” propagation of cavity models where nodes
in the boundary are required to be mutually independent. In our
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Fig. 1. Illustration of information projection and the Pythagorean relation.

approach,we insteadadaptively thin thegraphicalmodel by iden-
tifying and removing edges that correspond to weak conditional
dependencies so that the thinned models typically do not become
disconnected. Also, the other two elements of our approach—
specifically, the hierarchical structure which requires merging
operationsas inFig.5andthe inwardrecursionforblanketmodels
as in Fig. 6—do not arise in the consideration of DBNs [26]. This
distinction is important for large-scale computation because the
hierarchical, tree structureofRCMishighly favorable forparallel
computing,1 whereas frontier propagation methods require serial
computations. There are also parallels to the group renormal-
ization method using decimation [13], [37], which constructs
a multiscale cascade of coarse-scale MRFs by a combination
of node-elimination and edge-thinning, and estimates the most
probable configuration at each scale using iterative methods.

III. MODEL REDUCTION

In this section, we focus on the problem of model reduction,
the solution of which RCM employs in the recursive thinning of
cavity and blanket models. In Section III-A, we pose model re-
duction as information projection to a family of GMRFs. An ef-
ficient maximum-entropy method to compute information pro-
jections is developed in Section III-B. A greedy algorithm using
conditional mutual information to select which edges to remove
is presented in Section III-C. In our development, we assume that
the model being thinned is tractable. This is consistent with RCM
in which we thin models, propagate them to larger ones that are
still tractable, and then thin them again to maintain tractability.

A. Information Projection and Maximum Entropy

Suppose that we wish to approximate a probability distribu-
tion by a GMRF defined on a graph . Over the
family of GMRFs on , we select to minimize the infor-
mation divergence (relative entropy [38]) relative to

(3)

As depicted in Fig. 1, minimizing (3) can be viewed as a “pro-
jection” of onto . Many researchers have adopted (3) as a
natural measure of modeling error [25], [29], [36].

The problem of minimizing information divergence takes on
an especially simple characterization when the approximating

1In exact inference methods using junction trees, the benefits of parallel com-
puting are limited by the predominant computations on the largest separators, a
limitation that RCM avoids through the use of thinned boundary models.

family is an exponential family [35], [39], [40], that is, a
family of the form where are
the exponential parameters and is a vector of lin-
early independent sufficient statistics. The family is defined by
the set for which . The vector
of moments plays a central role in mini-
mizing (3). In particular, it can be shown that minimizes

if and only if we have moment matching relative to ;
that is if and only if the expected values of the sufficient statis-
tics that define are the same under and the original density

. This optimizing element, which we refer to as the information
projection of to and denote by , is the unique member of
the family for which the following Pythagorean relation holds:

for any (see [35] and
Fig. 1). Information projections also have a maximum entropy
interpretation [35], [41] in that among all densities
that match the moments of relative to is the one which
maximizes the entropy . Moreover,
the increase in entropy from to is precisely the value of the
information loss .

The family of GMRFs on a graph is represented by an expo-
nential family with sufficient statistics , exponential parame-
ters , and moment parameters given by

(4)

Note that specifies and the nonzero elements of while
specifies and the corresponding subset of elements in .

These parameters are related by a one-to-one map ,
defined by and , which is bijective on the
image of realizable moments .

Given a distribution , the projection to is given as
follows. Using the distribution , we compute the moments rel-
ative to , or equivalently, the means , variances and
edge-wise cross covariances on . The information matrix

of the projection is then uniquely determined by the following
complementary sets of constraints [28], [42]

(5)

(6)

where . Equation (5) imposes co-
variance-matching conditions over while (6) imposes Marko-
vianity with respect to . Also, by the maximum-entropy prin-
ciple, an equivalent characterization of J is that is
the maximum entropy completion [43] of the partial covariance
specification . Given , the remaining
moment constraints are satisfied by setting . Then,
is the information form of the projection to . Hence, projec-
tion to general GMRFs may be solved by a “shifted” projection
to the zero-mean GMRFs and we may focus on this zero-mean
case without any loss of generality. The family of zero-mean
GMRFs is described as in (5) but without the linear-statistics x
and corresponding parameters h and moments .
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B. Maximum-Entropy Relative to a Chordal Super-Graph

We now develop a method to compute the projection to a
graph by embedding this graph within a chordal super-graph and
maximizing entropy of the chordal GMRF subject to moment
constraints over the embedded subgraph. This approach allows
us to exploit certain tractable calculations on chordal graphs to
efficiently compute the projection to a nonchordal graph.

1) Chordal GMRFs: A graph is chordal if, for every cycle
of four or more nodes, there exists an edge (a chord) connecting
two nonconsecutive nodes of the cycle. Let denote the set
of cliques of : the maximal subsets for which the in-
duced subgraph is complete, that is, every pair of nodes in

is an edge of the graph. A useful result of graph theory states
that a graph is chordal if and only if there exists a junction tree: a
tree whose nodes are identified with cliques

and where for every pair of nodes , we have
for all along the path from to . Then, each

edge determines a minimal separator
of the graph. Moreover, any junction tree of a chordal graph
yields the same collection of edge-wise separators, which we
denote by . The importance of chordal graphs is shown
by the following well-known result: Any strictly-positive prob-
ability distribution that is Markov on a chordal graph
can be represented in terms of its marginal distributions on the
cliques and separators of the graph as

(7)

In chordal GMRFs, this leads to the following formula for the
sparse information matrix in terms of marginal covariances:

(8)

Here, denotes zero-padding to a matrix in-
dexed by . In the exponential family, this provides an efficient
method to compute . Also, given the marginal
covariances of an arbitrary distribution , not necessarily
Markov on , (8) describes the projection of to . The
complexity of this calculation is where is the size of
the largest clique.2

2) Entropy and Fisher Information in Chordal GMRFs:
Based on (7), it follows that the entropy of a chordal MRF like-
wise decomposes in terms of marginal entropy on the cliques
and separators of . In the moment parameters of the GMRF,
we have

(9)

where and denote marginal entropy of cliques and sepa-
rators, computed using

(10)

For exponential families, it is well known that
so that, for GMRFs, differentiating (9) reduces to

2This complexity bound follows from the fact that, in chordal graphs, the
number of maximal cliques is at most n� 1 and, in GMRFs, the computations
we perform on each clique are cubic in the size of the clique.

performing the conversion (8). Thus, both and
can be computed with complexity.

Next, we recall that the Fisher information with respect to
parameters is defined

where denotes gradient with respect to and the expectation
is with respect to the unique element with moments

. Then, is a symmetric, positive-definite matrix and
also describes the negative Hessian of entropy in exponential
families. By twice differentiating (9), it follows that, in chordal
GMRFs, the Fisher information matrix has a sparse represen-
tation in terms of marginal Fisher information defined on the
cliques and separators of the graph

(11)

where is the marginal Fisher in-
formation on and denotes zero-padding to a matrix
indexed by nodes and edges of . From (11), we observe that
the fill pattern of defines another chordal graph with the
same junction tree as , but where each clique maps
to a larger clique with nodes (corresponding to a full
submatrix of indexed by nodes and edges of ). For
this reason, direct use of , viewed simply as a sparse ma-
trix, is undesirable if contains larger cliques. However, we can
specify implicit methods that exploit the special structure of G
to implement multiplication by either G or with
complexity. Observing that represents the
Jacobian of the mapping from to , we can compute ma-
trix-vector products for an arbitrary input
(viewed as a change in moment coordinates). Differentiating (8)
using , we obtain

(12)

Similarly, we can compute by differenti-
ating . In Appendix A, we summarize a recur-
sive inference algorithm, defined relative to a junction tree of

, that computes given and derive a corresponding dif-
ferential form of the algorithm that computes given .
These methods are used to efficiently implement the variational
method described next.

3) Maximum-Entropy Optimization: Given a GMRF on ,
we develop a maximum-entropy method to compute the pro-
jection to an arbitrary (nonchordal) subgraph . Let be a
chordal super-graph of and let such that

. We may compute using recursive in-
ference on a junction tree of (see Appendix A). To compute
the projection to , we maximize entropy in the chordal GMRF
subject to moment constraints over the subgraph . This may
be formulated as a convex optimization problem

(13)
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Here, are the realizable moments of the GMRF
defined on .3 Starting from , we compute a

sequence using Newton’s method. For each
, this requires solving the linear system

(14)

where is the principle submatrix of

corresponding to and is the corresponding sub-
vector of computed using (8). We then set

, where is determined by
back-tracking line search to stay within and to insure
that entropy is increased. This procedure converges to the op-
timal , for which the corresponding exponential
parameters satisfy . Then, is the information projec-
tion to .

Finally, we discuss an efficient method to compute the
Newton step: If the width of the chordal graph is very small,
say , we could explicitly form the sparse matrix
and efficiently solve (14) using direct methods. However,
this approach has complexity, which is undesirable
for larger values of . Instead, we use an inexact Newton’s
step, obtained by approximate solution of (14) using stan-
dard iterative methods, for instance, preconditioned conjugate
gradients (PCG). Such methods generally require an efficient
method to compute matrix-vector products , which
we can provide using the implicit method, based on (12), for
multiplication by . Also, to obtain rapid convergence, it is
important to provide an efficient preconditioner, which ap-
proximates . For our preconditioner, we use ,4

implemented using an implicit method for multiplication by
described in Appendix A. In this way, we obtain iterative

methods that have complexity per iteration. Using
the PCG method, we find that a small number of iterations
(typically, 3–12) is sufficient to obtain a good approximation to
each Newton step, leading to rapid convergence in Newton’s
method, but with significantly less overall computation for
larger values of than is required using direct methods.

C. Greedy Model Thinning

In this section, we propose a simple greedy strategy for thin-
ning a GMRF model. This entails selecting edges of the graph
which correspond to weak statistical interactions between vari-
ables and pruning these edges from the GMRF by information
projection. The quantity we use to measure the strength of in-
teraction between and is the conditional mutual informa-
tion [38]

(15)

3In chordal graphs G , the condition � 2 (G ) is equivalent toP (�) � 0
for all maximal cliques C of G , which is easily checked.

4We note that (G ) = H �H H H whereH G . Hence,
our preconditioner H = (G ) arises by neglecting the intractable term
H H H .

which is the average mutual information between and
after conditioning on the other variables . In GMRFs,
we can omit edge from , without any modeling error,
if and only if and are conditionally independent given

, that is, if and only if . This suggests using
the value of , which is tractable to compute, to select
edges to remove. To motivate this idea further, we
note that is closely related to the information loss re-
sulting from removing edge from by information pro-
jection. Let denote the subgraph
of with edge removed and let denote the complete
graph on . Then, observing that is a subgraph of

, we have, by the Pythagorean relation with respect to

where we have used and
. Thus, is a lower

bound on the information loss . Moreover,
for having a small value of , we find that

tends to be small relative to so
that then provides a good estimate of .
In other words, removing edges with small conditional mutual
information is roughly equivalent to picking those edges to
remove that result in the least modeling error.

We use the following greedy approach to thin a GMRF de-
fined on . Let specify the tolerance on conditional mu-
tual information for removal of an edge. We compute
for all edges and select a subset of edges
with to remove. The information projection to the
subgraph is then computed using the method
described in Section III-B (relative to a chordal super-graph of

). Because the values of in this information projection will
generally differ from their prior values, we may continue to thin
the GMRF until all the remaining edges have . Also,
by limiting the number of edges removed at each step, it is pos-
sible to take into account the effect of removing the weakest
edges before selecting which other edges to remove, which can
help reduce the overall information loss.

IV. RECURSIVE CAVITY MODELING

We now flesh out the details of RCM. In Section IV-A, we
specify the hierarchical tree representation of the GMRF that
we use, and in Section IV-B, we define information forms and
the three basic operations we use: composition, elimination and
model reduction. These forms and operators are the components
we use to build our two-pass, recursive, message-passing infer-
ence algorithm on the hierarchical tree. First, as described in
Section IV-C, we perform an upward pass on the tree which con-
structs cavity models. Next, as described in Section IV-D, we
perform a downward pass on the tree which constructs blanket
models and also estimates marginal variances and edge-wise co-
variances in the GMRF. Last, in Section IV-E, we describe a hi-
erarchical preconditioner, using the cavity models computed by
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Fig. 2. (a) Dissection tree T = (�; E ) based on (b) the hierarchical set U of
nested subsets of vertices in the original GMRF.

RCM, and an iterative estimation algorithm that computes the
means for all vertices of the GMRF.

Before we proceed, we define some basic notation with re-
spect to the graph describing the Markov structure
of x. Given , let denote the set comple-
ment of in and let denote the
blanket of in . Also, is the surface of and

is its interior.

A. Hierarchical Tree Structure

We begin by requiring that the graphical model is recursively
dissected into a hierarchy of nested subfields as indicated in
Fig. 2. First, we describe a “bottom-up” construction. Let the set

be partitioned into a collection of many small, disjoint sub-
sets chosen so as to induce low-diameter, connected subgraphs
in over which exact inference is tractable. These small sets
of vertices are recursively merged into larger and larger sub-
fields until only the entire set remains. Only adjacent subfields
are merged so as to induce connected subgraphs. Also, merging
should (ideally) keep the diameter of these connected subgraphs
as small as possible. To simplify presentation only, we assume
that subfields are merged two at a time. This generates a collec-
tion containing the smallest sets in as well as each
of the merged sets up to and including . Alternatively, such a
dissection can be constructed in a “top-down” fashion by recur-
sively splitting the graph, and resulting subgraphs, into roughly
equal parts chosen so as to minimize the number of cut edges at
each step. For instance, in 2-D lattices, this is simply achieved
by performing an alternating series of vertical and horizontal
cuts.

In any case, this recursive dissection of the graph defines a
tree , in which each node corresponds to
a subset and with directed edges linking each dis-
section cell to it immediate subcells. We let denote the
parent of node in this tree. Also, the children of are denoted

, or, more simply , where has

Fig. 3. Illustrations of the graph G of a GMRF and of our notation used to
indicate subfields: (a) the subfield U and its complement U ; (b) the blanket
B = @U ; (c) the interior U and surface R = @U ; (d) partitioning of U
into subcells U and U ; (e) separator S = R [ R ; (f) separator S =
R [ B .

been explicitly specified. The following vertex sets are defined
for each relative to the graph :

(16)

As seen in Fig. 3(a)–(c), the blanket is the “outer” boundary
of while the surface is its “inner” boundary, and either
serves as a separator between and . Also, the following
separators are used in RCM:

(17)

The separator , used in the RCM upward pass, is the union of
the surfaces of the two children of a subfield [see Fig. 3(d) and
(e)]. The separators and , used in the RCM downward
pass, are each the union of its parent’s blanket and its sibling’s
surface [see Fig. 3(d) and (f)].

These separators define a Markov tree representation, with
respect to , of the original GMRF defined on [24]: For each
leaf of , define the state vector . For each non-
leaf let . By construction, each is a separator
of the graph, that is, the subfields and are mutu-
ally separated by . Hence, all conditional independence re-
lations required by the Markov tree are satisfied by the under-
lying GMRF. However, we are interested in the large class of
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models for which exact inference on such a Markov tree rep-
resentation is not feasible because of the large size of some of
the separators. As discussed in Section II-C, we instead perform
reduced-order modeling of these variables, corresponding to a
thinned, tractable graphical model on each separator.

B. Information Kernels

In the sequel, we let , where
and is symmetric positive definite, represent the
information kernel defined by

(18)

The subscript indicates the support of the information kernel,
and of the matrices and . Generally, corresponds (after
normalization) to a density over the variables parameterized
by and . In RCM, the set is typically a separator of
the graph, and and are approximations to the exact dis-
tribution in question so that is sparse. We also use matrices

, where , to represent the function

(19)

which describes the interaction between subfields . We
adopt the following notations: Let denote the subvector
of indexed by . Likewise, denotes the
submatrix of indexed by and we write

to indicate a principle submatrix.
Given two disjoint subfield models and

and the interaction we let
denote the joint model on

defined by

(20)

which corresponds to multiplication of information kernels or
addition of their information forms.

Given an information form and to be elim-
inated, we let de-
note5 the operation of Gaussian elimination (GE) defined by

and

(21)

The matrix is the Schur complement of the submatrix
in . Straightforward manipulations lead to the following well-
known result:

(22)

Thus, the information form corresponds to the mar-
ginal on with respect to the model . Also, GE may
be implemented recursively as follows: given an elimination
order of the elements in , compute (21) as

, that is, by eliminating one variable
at a time. Note also that only those entries of and indexed
by are modified by GE. Hence, GE is a localized operation
within the graphical representation of the GMRF as suggested

5Two notations are introduced; as in some cases, S = U nD is given explic-
itly, while in others, it is only implicitly specified in terms of U and D.

Fig. 4. Initialization of a cavity model for a small subfield U 2 L, corre-
sponding to a leaf of T : (a) the initial subfield model J [U ], a submatrix of J ;
(b) the cavity model Ĵ = �̂J [U ] after Gaussian elimination of the interior
variables U = U n R ; (c) the final thinned cavity model ~J = ~� Ĵ

defined on the surface R of subfield U .

by Fig. 4(a) and (b). However, eliminating typically has the
effect of causing to become full as shown in Fig. 4(b).
This creation of fill can spoil the graphical model so that recur-
sive GE becomes intractable with worst-case cubic complexity
in dense graphs.

Given an information matrix we denote the result of
model-order reduction by . The model reduction
algorithm in Section III requires specifying a parameter
which controls the tolerance on conditional mutual information
for the removal of an edge. The procedure then determines
which edges in the graph corresponding to to remove and
determines the projection to this thinned graph. This projection
preserves variances and edge-wise cross covariances on the
thinned graph, which is equivalent to for each
clique of the thinned graph.

In the following sections, we first develop our two-pass ap-
proximate inference procedure, focusing on calculation of just
the information matrices, which are all independent of . Then,
we provide additional calculations involving h and , presented
as a separate two-pass procedure which then serves as a precon-
ditioner in an iterative method.

C. Upward Pass: Cavity Model Propagation

In this first step, messages are passed from the leaves of the
tree up towards the root node . These upward messages
take the form of cavity models, encoding conditional statistics of
variables lying in the surfaces of given subfields. To be precise,
each cavity model, represented by an information matrix ,
approximates a conditional density so that
is a tractable, thin matrix.

1) Leaf-Node Initialization: For each , we initialize
a cavity model as follows: We begin with the local information
matrix as depicted in Fig. 4(a). This specifies the condi-
tional density . We then
eliminate all variables within the interior of by Gaussian
elimination: . This has the effect of deleting
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Fig. 5. Recursive construction of a cavity model: (a) cavity models ~J ; ~J

of subcells U ;U ; (b) joined cavity model ~J = ~J �J[R ;R ]� ~J

defined on separator S = R [R ; (c) the cavity model Ĵ = �̂ ~J after
Gaussian elimination of variables S n R ; (d) the final thinned cavity model
~J = ~� Ĵ defined on the surface R of subfield U .

all nodes in the interior of and updating the matrix parame-
ters on the surface. As indicated in Fig. 4(b), this also induces fill
within the information matrix. To ensure tractable computations
in later stages, we thin this model: , yielding a re-
duced-order cavity model, as shown in Fig. 4(c), for each sub-
field . Then we are ready to proceed up the tree growing
larger cavity models from smaller ones.

2) Growing Cavity Models: Let be a node of where
we have already constructed two cavity models for and
as depicted in Fig. 5(a). Then, we construct the cavity model for

as follows.
a) Join Cavity Models: First, we form the composition

of the two subcavity models as indicated in Fig. 5(b):
. Note that is a superset

of .
b) Variable Elimination: Next, we must eliminate the extra

variables , to obtain the marginal information
matrix . To ensure scalability, rather than elim-
inating all variables at once, we eliminate variables recursively
beginning with those farthest from the surface and working our
way towards the surface. This is an efficient computation thanks
to model reductions performed previously in and .

c) Model Thinning: This preceding elimination step in-
duces fill “across” the cavity [Fig. 5(c)]. Hence, to maintain
tractability as we continue, we perform model-order reduction
yielding which is the desired reduced-order
cavity model represented in Fig. 5(d). This projection step re-
quires that we compute moments of the graphical model speci-
fied by . Thanks to model thinning in the subtree of rooted
at , these moments can be computed efficiently.

D. Downward Pass: Blanket Model Propagation

The next, downward pass on the tree involves messages
in the form of blanket models, that is, graphical models en-
coding the conditional statistics of variables lying in the blanket
of some subfield. Each subfield’s blanket model is a concise
summary of the complement of that subfield sufficient for near-

Fig. 6. Recursive construction of a blanket model: (a) the cavity model ~J

of the sibling subfield U and the blanket model ~J of the parent; (b) joined
cavity/blanket model ~J = ~J �J [R ;B ]� ~J defined on the separator

S = R [B ; (c) the blanket model Ĵ = �̂ ~J after Gaussian elimina-
tion of variables S nB ; (d) the final thinned blanket model ~J = ~� Ĵ

defined on the blanket B of subfield U .

optimal inference within the subfield. Specifically, the blanket
model is a tractable approximation of the conditional model

.
1) Root-Node Initialization: Note that the blanket of is

the empty set so that a blanket model is not required for the root
of . As we move down to the children and of the root

, we note that and, hence, a blanket model for
is given by the cavity model for , which was computed

in the upward pass. Hence, we already have blanket models for
and and are ready to build blanket models for their

descendents.
2) Shrinking Blanket Models: Suppose that we already have

the blanket model for as represented in Fig. 6(a). Then, we
can construct the blanket model for the child as follows.

a) Joining Blanket and Subcavity Model: First, we form
the composition of the blanket model defined on with the
cavity model defined on (from the sibling of ) as shown
in Fig. 6(b): . Note that

is a superset of .
b) Variable Elimination: Next, we eliminate all variables

in , yielding as seen in Fig. 6(c).
To ensure scalable computations, we again perform variable
elimination recursively, starting with vertices farthest from the
blanket and working our way towards .

c) Model Thinning: Last, we thin this resulting blanket
model: , yielding our reduced-order blanket
model for subfield [Fig. 6(d)].

The blanket model for is computed in an identical manner
with the roles of and reversed.

3) Leaf-Node Marginalization: Once we have constructed a
blanket model for each of the smallest subfields , we can
join this model with the conditional model for the enclosed sub-
field (that is, the model used to seed the upwards pass), to obtain
a graphical model approximation of the (zero-mean) marginal
density on , given in information form
by . Inverting each of these
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localized models, that is, computing , yields
variances of all variables and covariances for each edge of .

E. RCM-Preconditioner for Iterative Estimation

In the preceding sections, we developed a recursive algorithm
for constructing a hierarchical collection of cavity and blanket
models, represented by thin information matrices. In this sec-
tion, we extend these computations to compute the estimates

solving . We begin by presenting a two-pass algo-
rithm, based on the cavity models computed previously, which
computes an approximation of , and then describe an iterative
refinement procedure using the two-pass algorithm as a precon-
ditioner.

1) Upward-Pass: We specify a recursive algorithm that
works its way up the tree, computing a potential vector
at each node of the dissection tree. Let denote the
cavity models computed previously by the RCM upward pass.
For each leaf-node, we solve for and
then compute . At each nonleaf node, we
compute as follows.

a) Join: Form the composite model
, where ,

by joining the two cavity models from the children.
b) Sparse Solve: Given this joint model, we solve

using direct methods, which is tractable because
is a thin, sparse matrix.6

c) Sparse Multiply: Finally, we compute the potential
vector , which is a tractable computation
because is sparse.

2) Downward-Pass (Back-Substitution): Once the
root node is reached, we have the information form

at the top-level separator of the dissection tree, which is an
approximate model for the marginal distribution .
Hence, we can compute an approximation for the means
by solving . Conditioning on this estimate,
we can then recurse back down the tree filling in the missing
values of along each separator, thereby propagating estimates
down the tree. In this downward pass, each node below the root
of the tree receives an estimate of the variables in the sur-
face of the corresponding subfield. Again using the model

, formed by the upward computations, we interpolate
into the subfield, computing where , by
solution of the linear system of equations

(23)

The estimate is computed with respect to the approxima-
tion of (after normalization),
which is approximate because of the model thinning steps in
RCM. Once the leaves of the tree are reached, the interior of

6We use a sparse Cholesky factorization of ~J and back-substitution based
on h . Also, some computation can be saved in the back-substitution because
we only need to compute x [R ].

each subfield is interpolated similarly, thus yielding a complete
estimate .

3) Richardson Iteration: The preceding two-pass algorithm
may be used to compute an approximate solution of for
an arbitrary right-hand side . The resulting estimate is linear in

and we denote this linear operator by . Using as a precon-
ditioner7, we compute a sequence of estimates defined by

and

(24)

Let denote the spectral radius of . If , then
converges to with . For small ,
this condition is met, and we achieve rapid convergence to the
correct means.

V. APPLICATIONS IN REMOTE SENSING

In this section, we develop two applications of RCM in re-
mote sensing: 1) interpolation of satellite altimetry measure-
ments of sea-surface height, and 2) estimation of the surface of
a large salt-deposit beneath the Gulf of Mexico. The purpose of
these examples is to demonstrate that RCM scales well to very
large problems while yielding estimates and error covariances
that are close to those that would have resulted if exact optimal
estimation had been performed instead. Although the specific
statistical models used in these examples are, perhaps, over-
simplified, the results that follow (which include space-varying
measurement densities and, hence, space-variant estimation er-
rors) do serve to demonstrate the applicability of RCM to very
large spatial estimation problems.

A. Model Specifications

Throughout this section, we consider GMRFs of the form

(25)

where represents the vector of field values at the ver-
tices of a regular 2-D lattice and is a vector of local,
noisy measurements of the underlying field at an irregular set of
points scattered throughout the field. Here, represent our
prior for x, which serves to regularize the field, and the data-fi-
delity term represents our measurement model. We
consider two prior models commonly used in image-processing.
The thin-membrane (TM) model is defined such that each row

corresponds to an edge , and has two nonzero
components: and . This gives a regular-
ization term

(26)

that penalizes gradients, favoring level surfaces. The thin-plate
(TP) model is defined such that each row corresponds to
a vertex and has nonzero components and

7To implement M � b efficiently, we precompute calculations that do not de-
pend on b. For instance, we compute a sparse Cholesky factorization for each
~J so that only back-substitution is required each time we apply M.
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Fig. 7. (a) Estimated sea-surface height anomaly and (b) space-variant standard deviation of estimation error computing using RCM.

for adjacent vertices . This gives
a regularization term

(27)

that penalizes curvature, favoring smooth surfaces. In general,
the locations of the measurements defines an irregular pattern
with respect to the grid defined for . Moreover, the location
of individual measurements may fall between these grid points.
For this reason, each measurement is modeled as the bilinear
interpolation of the four nearest grid points to the actual
measurement location corrupted by zero-mean, white Gaussian
noise: where . The posterior
density has the information form

Thus, the fill pattern of (and, hence, the posterior Markov
structure of ) is determined both by and . In the
TM model, has nonzero off-diagonal entries only at those
locations corresponding to nearest neighbors in the lattice. In
the TP model, there are also additional connections between
pairs of vertices that are two steps away in the square lattice,
including diagonal edges. Finally, for each measurement ,
there is a contribution of to , which creates edges be-
tween those four grid points closest to the location of mea-
surement . This results in a sparse matrix where all edges

are between nearby points in the lattice. Hence, we can apply
RCM to the information model to calculate approxima-
tions of the estimates and error variances

for all vertices and error co-
variances for all edges

. In Appendix B, we also describe an iterative method to esti-
mate the parameters and .

B. Sea-Surface Height Estimation

First, we consider the problem of performing near-optimal in-
terpolation of satellite altimetry of sea-surface height anomaly
(SSHA), measured relative to seasonal, space-variant mean-sea
level.8 We model SSHA by the thin-membrane model, which
seems an appropriate choice as it favors a level sea-surface. We
estimate SSHA at the vertices of an 800 2400 lattice covering
latitudes between and a full 360 of longitude, which
yields a resolution of in both latitude and longitude. The
final world-wide estimates and associated error variances, ob-
tained using RCM with and model parameters

cm and cm, are displayed in Fig. 7. In this ex-
ample, RCM requires about three minutes to execute, including
run-time of both the cavity and blanket modeling procedures, as
well as the total run-time of the iterative procedure to compute
the means. About 30 iterations are required to obtain a residual
error less than , where each iteration takes
2–3 s.

8This data was collected by the Jason-1 satellite over a ten day period be-
ginning 12/1/2004 and is available from the Jet Propulsion Laboratory (http://
poodaac.jpl.nasa.gov).
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Fig. 8. Estimated salt-top computing using RCM.

C. Salt-Top Estimation

Next, we consider the problem of estimating the “salt-top,”
that is, the top surface of a large salt deposit located sev-
eral kilometers beneath the sea floor somewhere in the Gulf
of Mexico. The data for this estimation problem, provided
courtesy of Shell International Exploration, Inc., consists of
a large set of “picks” chosen by analysts while viewing cross
sections of seismic sounding data. Hence, these picks fall along
straight line segments in latitude and longitude, and it is our
goal to interpolate between these points. For this problem, we
use the thin-plate model for the surface of the salt-deposit,
which allows for undulations typically seen in the salt-top,
with a 800 800 lattice at a resolution of 60 ft and with model
parameters ft and ft. The final estimates are
shown in Fig. 8. These results were obtained using RCM with
a tolerance of , which required about 5 min to run,
including the total time required for iterative computation of the
means. The run times for the TP model are somewhat slower
than for the TM model because the Markov blankets arising in
the TP model are twice as wide in the TM model, so the cavity
and blanket models are defined on larger sets of variables.

VI. CONCLUSION

We have presented a new, principled approach to approx-
imate inference in very large GMRFs employing a recursive
model reduction strategy based on information theoretic prin-
ciples and have applied this method to perform near-optimal
interpolation in several remote sensing applications. These re-
sults show the practical utility of the method for near-optimal,
large-scale estimation. Several possible directions for further re-
search are suggested by this work. First, the accuracy of RCM
in applications such as that illustrated here provides consid-
erable motivation for the development of a better theoretical
understanding of its accuracy and stability. For instance, if it
were possible to compute and propagate upper bounds on the
information divergence in RCM this would be very useful and
may lead to a robust formulation. While our focus has been on
Gaussian models, we expect RCM will also prove useful in non-
linear edge-preserving methods, such as [44]. Although these

methods use a non-Gaussian prior, their solution generally in-
volves solving a sequence of Gaussian problems with an adap-
tive, space-variant process noise. Hence, RCM could be used as
a fast computational engine in these methods. We also are in-
terested to apply RCM to higher dimensional GMRFs, such as
arise in seismic and tomographic 3-D estimation problems or
for filtering of dynamic GMRFs. We anticipate that it will be
important to take advantage of the inherently parallel nature of
RCM to address these computationally intensive applications.
Another direction to explore is based on the rich class of mul-
tiscale models, such as models having multigrid or pyramidal
structure. For example, the work in [11] demonstrates the utility
and drawbacks of using multiresolution models defined on trees
to estimation of ocean height from satellite data. Such models
allow one to capture long-distance correlations much more ef-
ficiently than a single-resolution nearest-neighbor model, but
the tree structure used in [11] leads to artifacts at tree bound-
aries, something that RCM is able to avoid. This suggests the
idea of enhancing models as in [11] by including new edges that
eliminate these artifacts but that introduce cycles into these mul-
tiresolution graphical models. However, if such models can be
developed, RCM offers a principled, scalable approximate in-
ference algorithm well suited for solution of such hierarchical,
multiresolution models. Finally, while the specifics of this paper
concern Gaussian models, the general framework we have out-
lined should apply more generally. This is especially pertinent
for inference in discrete MRFs where computation of either the
marginal distributions or the mode grows exponentially in the
width of the graph [6], [10], which suggests developing coun-
terparts to RCM for these problems.

APPENDIX

A. Recursive Inference Algorithm

In this Appendix, we summarize a recursive algorithm for
computing the moments of a zero-mean, chordal
GMRF. Also, by differentiating each step of this procedure, we
obtain an algorithm to compute the first-order change in moment
parameters due to a perturbation . The complexity of
both algorithms is , where is the number of variables
and is the size of the largest clique. These algorithms are used
as subroutines in the model-reduction procedure described in
Section III. In RCM, these methods are only used for thin cavity
and blanket models and are tractable in that context.

Let be a junction tree of . We obtain a directed
version of by selecting an arbitrary clique to be the root node
and orienting the edges away from the root. For each nonroot
node , let denote its parent. We split each clique into
a separator and the residual set

. At the root, these are defined and . Now,
we specify our recursive inference procedure. The input to this
procedure is the sparse matrix , which is defined over a chordal
graph and parameterized by . The output is a sparse matrix

, defined on the same chordal graph, with elements specified
by . In the differential form of the algorithm, we also have
a sparse input and sparse output , corresponding to
and .
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1) Upward Pass: For each node of the junction tree,
starting from the leaves of the tree and working upwards, we
perform the following computations in the order shown:

In the differential form of the algorithm, we also compute

The upward pass performs Gaussian elimination in J. At each
step, the principle submatrices of J and dJ indexed by are
overwritten, which propagates information to the ancestor’s of
node in the junction tree. Also, and specify an equiv-
alent downward model: where

. This downward model is re-used in the downward
pass.

2) Downward Pass: For each node of the junction
tree, starting from the root node and working down the tree, we
perform the following calculations:

In the differential form of the algorithm, we also compute

B. Parameter Estimation

We derive the expectation-maximization (EM) algorithm [45]
for the models described in Section V. These are exponential
family models of the form

(28)

where is the regularization term9 and is the data-fi-
delity term. We wish to select the parameters

to maximize for a given
set of observations y. The EM algorithm is an iterative procedure
that converges to a local maxima of starting from an initial

9To simplify analysis, we add a regularization term �kxk where � > 0 can
be made arbitrarily small, which insures that (D D + �I ) is invertible.

guess . For , we alternate between (E-step)
computing the conditional moments
given y and , and (M-step) selecting the next parameter
estimate to solve the equations . In our
model, the conditional moments are

(29)

where and are computed
given y and . Due to sparsity of , it is tractable to
compute . Furthermore, only certain submatrices of
are needed to compute . For instance, in the TM
model we have

which only requires computation of variances and edge-wise
covariances. Similarly, because each measurement only de-
pends on a few components of , the matrix is sparse and it
is tractable to compute and . To solve the
M-step, we note that

where is the dimension of x. By similar analysis,
where is the number of measurements. Thus, the M-step

reduces to

and

(30)

which, together with (29), specifies the EM algorithm. In ad-
dition to the estimate , the EM algorithm also requires com-
putation of conditional variances and certain covariances. RCM
can be used to estimate these quantities and is, therefore, well
suited for implementing an approximate EM algorithm for ap-
plications such as considered in Section V.
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