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establish  initial  convergence, the primary control system  was  engaged 
and a series of inputs was applied to demonstrate the performance of the 
adaptation logic. The pilot was not given an indication of angle of bank 
during the r u n ,  This resulted in a rolling  supersonic  dive (M= 1.03). The 
altitude transition during the run was from 20 OOO to So00 ft. As in the 
longitudinal case,  the performance of the adaptive system can be ob- 
served during the time  intervals  when  the  system is engaged. The 
uniformity of the roll rate response during engagement can be  observed 
by comparing the steady-state roll rate at 20, 60, 80, and 1 0 0  s. Note the 
variability of the steady-state roll rate during time  intervals  where the 
primary control system  is not engaged (e.%. at 5, 40, and 120 s). Note 
also that the surface commands required to realize  the  uniform  roll rate 
responses  vary  considerably during the run. During the run, inputs were 
also  made  in rudder to examine  the dutch roll adaptation characteristics. 
The dutch roll  mode is observed to maintain a 0.7 damping ratio by 
examining  the  sideslip  angle  response to rudder inputs at times of 30,63, 
83, and 110 s. These can be compared with the  unaugmented  responses 
at 10 and 50 s. 

IV. CONCLUSIONS 

This paper  describes  the  moving  window adaptive control concept 
whch has  been  developed as a candidate for flight test on the  NASA 
FI-DFBW aircraft. Included are studies of the  effects of auxiliary dither 
inputs to aid identification, data base size, measurement  noise, and other 
design  considerations.  Results were presented indating the  perfor- 
mance of the  system  in a nonlinear six-degee-of-freedom simulation of 
an F-8C aircraft. This study has  shown that when  there  is  sufficient 

motion of the aircraft, the adaptive algorithm converges to a hear 
mathematical  model of the aircraft. Furthermore, it was  shown that once 
these parameters have  passed  specified  convergence criteria they  may  be 
used in an algebraic  calculation of feedback and feedforward  gains 
which  satisfy certain flying quality requirements.  Extensive  simulation 
studies must be  made  before the moving  window parameter adaptive 
control system can be recommended for flight test; however, results 
presented  here indicate that the system is promising and should be 
evaluated further. One  item  requiring further evaluation and possible 
modification is the suitability of the  mode of operation of the  process 
without dither. 
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F-8 DFBW Sensor  Failure Identification 
Using  Analytic  Redundancy 

Abshacf-h this paper, we outline the structure of a seasor failure 
detection and identification system d e s i i  for the NASA F-8 DFBW 
aircraft. The system is for use in a dual-redundant  environment,  and  it 
takes maximal advantage  of all fundional relatiorrships among the sensed 
variables. The identifkatbn logic uses the quality sequential probability 
ratio, f i c h  provides a useful on-line measure of confidence in the various 
forms of analytic redundancy. Preliminary simulation results indicate good 
behavior of the analytic decision &&tic, based on tbe sequential probabii- 
its ratio test. 

LIST OF Snmow 

A Vector of ideal  accelerometer outputs. 
A’ Vector of ideal  accelerometer outputs compensated for lever-arm 

B Instrument failure  bias  assumed  by an individual  SPRT. 
C,,, Measured unit vector  coefficient for gravity in aircraft axes. 
D Aerodynamic  drag. 

effects. 
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Vector of aerodynamic forces on aircraft. 
Translational kinematics SPRT gain factor at time r,. 
Acceleration of gravity. 
Altitude. 
Filter gain. 
Aerodynamic  lift. 
Mach  number. 
Aircraft mass. 
Hypothesized  mean  in yk due to sensor failure. 
Number of samples  in  residual  window. 
Number of passes  allowed  through identification logic. 
Roll rate, defined about aircraft longitudinal (x) axis. 
Pitch rate, defined about aircraft lateral ( y )  axis. 
Dynamic pressure. 
Yaw rate, defined about aircraft normal (I) axis. 
Aircraft wing area. 
Engine  thrust. 
Arbitrary instant of time. 
Output of SPRT at time r,. 
Velocity  of aircraft with  respect to the air mass. 
Velocity of sound. 
Aerodynamic  sideforce. 
Angle of attack. 
Sideslip  angle. 
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yk Input to SPRT at time tk. 
8, Aileron  position. 
6, Elevator  position. 
6, Rudder 'position. 
6 Euler  pitch  angle. 

u2 Variance of the observation of yk. 
@ Euler  roll  angle. 
4 Euler  yaw  angle. 
0 Skew-symmetric  cross-product matrix. 
Boldface Vector quantity. 

Inertial acceleration of air mass. 

Superscripts 

' Time  derivative. 
Estimated quantity. 

- Averaged quantity. 

Subscripts 

m Measured quantity. 
1,2 Relative to instrument 1 or 2 of a given type. 

I. INTRODUCTION 

The  goal of the research  reported in this paper  is a system  for  the 
detection and identification of sensor failures in the  NASA F-8 digital 
fly-by-wire (DFBW) aircraft. In particular, the research  is  aimed at 
devising  relatively  sophisticated detection mechanisms that are capable 
of operating in an environment  without  triple redundancy. Thus, a basic 
ground  rule for the work presented in this paper is the development of 
tests that can make  decisions  based on information from  dissimilar 
instruments. 
In recent  years, a number of techniques have been proposed for the 

detection of system  failures [ 1H16I.l Many of these  techniques deal with 
the utilization of analytic redundancy among dissimilar instruments, in 
which one uses knowledge of the functional relationships among the 
variables  being  measured by the various  sensors.  However, despite the 
sophistication of these  methods, it is fair to say that these analytic 
redundancy  techniques are all at a relatively  early  stage of development, 
and each of them can be  criticized  for computational complexity  greatly 
exceeding  the on-board computer constraints present in the  F-8  problem. 
Given  these constraints, we  have developed  the  following  philosophy  for 
the  development of our  failure detection and identification (FDI) sys- 
tem: 

1) We  work  with a dual-redundant system. This allows a direct 
comparison  between  pairs of like instruments to detect failures and leads 
to two important advantages: 

a) One can use this direct comparison to detect  failures and thus 
need rely on analytic redundancy  only for identifying which of the two 
instruments has failed. In such a mode, the analytic redundancy test can 
be made more  robust. 

b) One can use the direct test to trigger the somewhat  more  com- 
plex analytic redundancy tests. Such a dual-mode  procedure  greatly 
reduces  the  average computational load. Additionally, we may initiate 
the analytic redundancy tests in the  absence of a direct redundancy 
trigger to identify  changes that affect  like instruments in the same way 
(e.g., thermal  effects on sensors  mounted in the same part of the 
aircraft). 

2) For each sensor, we determine several kinematic and dynamic 
relationships  between  the given instrument and other instruments. The 
object  here  is: 

a) To determine a number of independent tests that can be used to 
check  the  correctness of a given instrument, thus extracting the maximal 
amount of information concerning each instrument. 

b) To develop comparison tests that are relatively  simple to -le- 

3) We limit  ourselves to looking for bias  failures. The reasons for this 

a) Although  descriptions of actual failure modes  were not available, 

b)  Techniques  looking for bias  failures canloften find other types of 

c) The algorithms in this case are extremely  simple to implement. 

In the remainder of this paper we describe our design  methodology in 
detail, outlining how we have  met  the  various  design constraints and 
developing  several fundamental design concepts that we feel are of 
importance. In addition, we have  made an effort to indicate the assump 
tions  underlying our approach and the limitations on its performance, 
together  with  possible  modifications that can deal with  these. The 
organization of the paper is as follows. In Section 11, we outline the 
structure of the dual-mode FDI system (direct comparison trigger 
followed  by analytic redundancy identification), indcating the various 
types of analytic redundancy available and also introducing the analytic 
decision statistic which  is based on the sequential probability ratio test 
(SPRT, [17D. In Section 111, we describe, in detail, the various SPRT 
tests for all of the F-8 sensors, while in Section IV,  we present and 
discuss  some simulation results that indicate the characteristics of our 
design. In Section V,  we discuss the choice of system parameters and the 
quality  sequential probabiliv ratio (QSPR),  which is computed on-line 
and provides a measure of confidence in its associated analytic re- 
dundancy test. We also  briefly  discuss the outer loop  logic  which must 
interpret the  various  direct and analytic decision  statistics and make a 
decision.  One attribute of this logc is that it can make  provisional 
decisions and can seek further corroboratory information. T h s  approach 

decision  time  without  sacrificing  performance  in the form of 
high  false alarm rates.  Finally.  in  Section VI, we summarize  the paper 
and make  some  concluding  remarks. 

ment and robust in the presence of unmodeled  effects. 

are: 

it was  felt that biases  were a likely failure mode. 

fdures. 

. .  . 

11. FDI Smuaum 

The FDI for an instrument type  with dual redundancy  is  accom- 
plished in two steps. First, the failure of one instrument of the pair is 
detected by examining onIy the dual instrument  readings.  Subsequent to 
the detection of a failure, several SPRTs are initiated utilizing the direct 
redundancy and all possible analytic redundancy between  the  failed 
instrument type and the other instrument types.  The identification of 
which instrument of the  pair has faded, or the indication of a false 
alarm, is accomplished via  logical  processing of the  various SPRTs as 
discussed in Section V. 

A. Detection 

A direct redundancy detector, called a rea!unahy  triBer, operates on 
the moving window  average of the output of instrument 1 minus the 
output of instrument 2 for each instrument type. A bias failure magnitude 
(BFM) is defined for each instrument type  based on both the (I priori 
sensor  statistics and the  capabilities of the various analytic redundancy 
failure identification techniques in the  presence of allowable errors on 
unfailed  instruments. A threshold magnitude and window size are cho- 
sen for each instrument type to give reasonable false alarm and missed 
alarm probabilities,  where a false alarm is  the indication of a bias  when 
in fact a bias of  half the  BFM  magnitude  or larger is not present, and a 
missed alarm is the failure to detect the  presence of a bias of magnitude 
larger than the defined BFM. If the  redundancy  trigger detects a 
sigmficant  mean  in the moving  window average of the output of instru- 
ment 1 minus the output of instrument 2, it  follows that if the  sign of this 
mean is positive  (negative)  either  instrument 1 has a positive  (negative) 
bias or instrument 2 has a negative  (positive)  bias. l%s failure  sign 
information halves the number of SPRT's required for failure  identifica- 
tion in dual redundant instruments. 
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which of the  two instruments of the given type has failed. A brief 
introduction to  the SPRT will now be presented, and the reader is 
referred to [17], [18] for a full  theoretical  development. 

As implemented in ths study, the SPRT makes sequential observa- 
tions of the process y, which  represents a comparison  between the 
suspect instrument and other unfded instrument types? The sample 
from the  process y at time tk is  called yk. The SPRT gathers enough 
information to choose  between  the  two  hypotheses: 

H I :  at time rk, the  process y is Gaussian with  mean mk and covariance 

Hz:  at time tk, the process y is Gaussian with  mean 0 and covariance 
P 

P 

where H I  is the failure hypothesis and H2 is the nefailure hypothesis. 
The log  likelihood ratio zk for the kth sample  is  defined as 

(2.2-1) 

and after n samples  have  been  taken  (assuming the independence of the 
y's), the log  likelihood ratio of the n samples is given  by 

(2.2-2) 

For the  case of the two hypotheses  given above, the  form of is given 
bY 

(2.2-3) 

and the  log  likelihood ratio for n samples  given by  (2.2-2)  becomes 

(2.2-4) 

Assuming that either H ,  or Hz is true, the stipulation of incorrect 
classification probabilities directly yelds (see [ 18n  the  thresholds a < 0 
and b > 0 and the following  decision  rule: 

un < (I, accept H I  

a < u, < b, take another sample (2.2-5) 

b < u,,, accept Hz. 

If the log likelihood ratio is between  the  thresholds, a choice of hypothe- 
ses cannot yet  be  made  which  meets the speafied incorrect classification 
probabilities, and another sample  must  be  taken. 

One attractive property of the SPRT is that it minimizes the  average 
number of observations  necessary to meet  these  probabilities. In addi- 
tion,  the SPRT is independent of the (I priori probabilities of the two 
hypotheses.  It  is  because of these  properties of the SPRT and because of 
its inherent simplicity as shown  in (2.24) and (2.2-5) that the SPRT was 
chosen as the  basic identification tool for this study. A further simplifica- 
tion  follows since all of the observed  processes  in this work are chosen to 
be scalar or the sum of scalars. The scalar form of (2.2-4) is given  by 

(2.2-6) 

where u2 is  the variance of the scalar process y. Observe that if the  mean 
mk is  present  in ykr the  expected  value of u, is 

(2.2-7) 

Section 111. 
2The  details of this process for the various instruments on the F-8 are presented in 

In fact, any mean of yk with the sign of mk and greater in magnitude 
than lmk1/2 will drive u,, toward the negative  threshold,  which by our 
definition indicates an instrument failure. Thus an individual SPRT may 
make a false indication unless the mean mk is chosen such that biases in 
instruments operating within tolerance have magnitude less than lmk1/2. 

Following the detection of a failure by the redundancy trigger,  several 
SPRT's are begun.  One  direct redundancy SPRT observes  the  difference 
between instrument 1 and instrument 2 of the detected failure type, the 
same  process  observed  by  the redundancy trigger. The mean  which 
constitutes the failure hypothesis mk has magnitude equal to the prede 
fined  sensor BFM and has the  sign of the  moving  window  average 
computed by the trigger. This SPRT serves to corroborate the  trigger 
concerning the presence of a difference  between the two instruments. 

Additionally, one SPRT for each instrument of the  failed  type  is 
begun for every kind of analytic redundancy avadable. Detailed  descrip- 
tions of these tests are given in the next  section. The underlying basis for 
the analytic redundancy SPRTs is the  comparison of the  measurement 
of a variable obtained using the suspect instrument and another 
measurement of the same variable obtained using other instrument 
types.  The  difference in these  measurements  forms  the  residual yk which 
is the input to the SPRT.  The mean for each SPRT, m,, is calculated to 
be consistent  with  the  predefined  sensor BFM and the failure sign 
information from  the redundancy trigger. 

Finally, one QSPR calculation is started for  every  kind of analytic 
redundancy  available. The QSPR is a measure of the signal-to-noise 
ratio of its associated analytic redundancy  tests, and is  used in the failure 
identification logic  discussed  in  Section V. 

111. AN.u.rnc REDUNDANCY SPRTs 

The dual redundant instrument types which are available on the F-8 
DFBW aircraft are the  following: longitudinal accelerometer, lateral 
accelerometer, normal accelerometer,  roll rate gyro,  pitch rate gyro, yaw 
rate gyro, vertical gyro, directional gyro, altimeter, Mach  meter, and 
alpha vane. In addition, a nonredundant beta vane is  available. Each 
vertical gyro gives an indication of pitch  angle B and roll  angle $. In this 
paper, only the failures of the dual redundant instrument types are 
addressed, and failures of the indication of B and $ for each  vertical  gyro 
are considered to be independent. The consideration of simultaneous 
failures of both of  these measurements will  be investigated in the future. 

Three types of analytic redundancy are utilized in  this study: transla- 
tional kinematics redundancy exists  between  the integrated output of the 
accelerometers,  vertical  gyros, and rate gyros and the outputs of the air 
data sensors, i.e., the Mach meter, altimeter, and alpha and beta vanes. 
Translational dynamics redundancy relates the aerodynamic forces on 
the aircraft measured by the accelerometers and the calculated 
aerodynamic forces based on the air data sensors through stored 
aerodynamic coefficients. Rotational kinematics redundancy relates the 
integrated outputs of the rate gyros and the outputs of the  vertical and 
directional gyros. In  the  following  subsections,  these  three  types of 
analytic redundancy and the SPRTs exploiting  them will be discussed in 
detail. 

A .  Tramlalional Kinemutics 

The translational kinematics SPRTs utdm the redundant information 
concerning  the translational motion of the aircraft. The body-mounted 
linear  accelerometers  measure  the  body axis components of the non- 
gravitational contribution to the  acceleration of the aircraft with respect 
to inertial  space. The measured  velocity V, is the noisy  measurement of 
the  velocity Y of the aircraft with  respect to the air mass expressed  in 
body axes. This air-relative  velocity  vector is a function of Mach  number 
M ,  angle of attack a, sideslip angle B, and the speed of sound V,, which 
is  itself a function of the altitude h: 

cosgcosa 

cospsina 

The differential equation for the air-relative  velocity is  given  by 

(3.1-1) 
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v= - F + g - Q  v-6 - 1  
m 

IEE 

(3.1-2) 

where m is the aircraft mass, F is the aerodynamic force on the aircrafs 
and g is the gravity  vector. The matrix Q is the skew-symmetric  cross- 
product matrix 

0 - r  q 

Q = [  -4' ," -:I (3.1-3) 

wherep, q, and r are the roll  rate, pitch rate, and yaw  rate,  respectively. 
The vector 6 is the acceleration of the air mass with  respect to inertial 
space.  Assuming that the accelerometers are located at the  same  position 
R away  from the center of mass, the vector A composed of the outputs 
of ideal x , y ,  and z accelerometers is related to the aerodynamic force  via 

A =  mF+[B2+i]R. 1 (3.1-4) 

The compensated  ideal  accelerometer output vector A' is defined as 

A ' = A - [ @ + b ] R .  (3.1-5) 

Equations (3.1-2),  (3.1-4), and (3.1-5)  yield 

V = A ' + g - Q V - [ .  (3.1-6) 

The translational kinematics SPRTs utilize the  following  discrete 
approximation to (3.1-6) to propagate the air-relative  velocity  estimate V 
ahead one time step: 

The  measured  air-relative  velocity  is incorporated into the  estimate via 

e (1,) = + k Y ( t n )  (3.1-8) 

where 

(3.1-9) 

The  inputs to the translational kinematics SPRTs are the components of 
the  measurement  residual  vector y(r,). In (3.1-7) a bar over a variable 
indicates that it is  averaged  over  the  interval ( r n -  ,, rJ, an m subscript 
indicates a measured quantity. and the  prime on k(1,) indicates that it is 
the  propagated  estimate not including  the  present  measurement.  The 
vector Ah indicates the  average of the  compensated  accelerometer out- 
puts at t, and f n F l .  The  compensation equation given  by  (3.1-5)  is 
uthzed, with the 51 terms obtained as the  differences of the respective 
rate gyro outputs at times f,, and r n - ,  divided  by  the  time step, and the P 
terms  being the averages of those rate gyro outputs. The  vector E, is 
obtained using the average of the  vertical gyro measurements of + and 8 
over  the  interval 

The matrix a,,, uses the  averages of the rate gyro outputs. It-is also  used 
in the accelerometer compensation equations. The vector V, in (3.1-7) 
likewise denotes the  measured  air-relative  velocity  based on the  average 
of the air data sensor outputs at time r, and 1,- ,. 

There are three important aspects of the  form of (3.1-7): 
1) The  term in braces indicates an estimate of the  air-relative  accelera- 

tion of the aircraft at the  midpoint of the propagation interval, and the 
resulting integration rule is good to approximately  second  order. This 
second-order integration rule  is  used  to  ensure accurate filter  perfor- 
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this system [ 191 would  employ the estimate fi, we have  chosen to use the 
average  measur+  velocity  derived  from air data to decouple the three 
components of V. This dewupling allows  the use of scalar SPRTs which 
will be discussed  presently. 

3) There is no term in (3.1-7) corresponding to the acceleration of the 
air mass 6. Since  the  effect of a constant value of .$, i.e.,  wind shear, is 
indistinguishable  from the effect of an accelerometer  bias on the residual 
process y. our interpretation of a nonzero component of y must account 
for  the  possibility of wind shear. This idea will be expanded upon 
shortly. 

Assuming that we are interested in identifying  bias errors in the 
sensors, it i s  clear  from (3.1-7) that at least three types of sensor tjases 
will appear as acceleration errors in the propagation equation for Y:' 

I )  accelerometer  biases through&, 
2) vertical gyro biases  through cm 
3) rate gyro biases through 9, V,. 

Thus, translational kinematics SPRTs are started when the failure of an 
accelerometer,  vertical gyro, or rate gyro is detected by the trigger. In 
order to  avoid  the transient effects of air data sensor  noise, one set of 
equations (3.1-7H3.1-9) is always running to provide the initial  velocity 
estimates  for the SPRTs. The structures of the SPRTs for  all of these 
instrument types are analogous.  Two  versions of the filter given  by 
(3.1-7X3.l-9) are implemented, one version  using the output of the 
number I instrument of the detected failure type,  plus all the necessary 
measurements  from  the other instrument types, and the other version 
using the same information with the exception that it uses the output of 
the  number 2 instrument of the  detected failure type. The residual 
process y from  the  filter  using instrument number 1 (2)  is the input 
process  sampled by the SPRT looking for the  effect of a bias in 
instrument number 1 (2). The expected error in acceleration used in the 
SPRT varies at each  sample and is obtained from (3.1-7)  using the 
predefined  sensor BFM and the sign of  the difference between instru- 
ments 1 and 2 as given  by the redundancy trigger. 
In order to decrease identification times and minimize computational 

complexity,  the translational kinematics SPRTs use a zero value For the 
gain k in  (3.1-8). Thus, the  time-varying mean m, for each SPRT is 
simply  incremented at each  sample by the expected  velocity error using 
the  assumed  sensor  bias failure via (3.1-7). For the case of a c o n s t a n t  
vehicle state and a sensor  bias error, the  means for the two SPRTs are 
of opposite  sign and grow  in magnitude Linearly  with  time.  We note that 
for an accelerometer  bias, the resulting  velocity error shows  up  only in 
the  corresponding  residual component, allowing the implementation of 
scalar SPRTs. For rate gyro failures,  the corresponding acceleration 
bias,  arising  from  the B V term, leads to a velocity error essentially in one 
component. This is exact  when a and fi  are zero, and the unidirectional 
assumption is justified for reasonable  angles of attack and sideslip. 
Hence we can also  implement scalar SPRTs in  this  case. 

Examination of (3.1-7)  is instructive  for  determining  the sizes of biases 
in the  various instruments which can be identdied with this technique. 
Recall that it  is  highly  unlikely that a mean will be  indicated  by the 
SPRT if the actual mean  present in the  process  is less than half the mean 
of the  test. Thus, the sum of the acceleration errors due to the acceptable 
biases  in all other instruments used in (3.1-7) must be less than half the 
SPRT mean for the instrument type being  checked, or a false  identifica- 
tion may be  made. By carefully  setting the BFMs for the various 
instruments in all SPRTs in a consistent manner, the problem of false 
identification from undetected sensor biases can be minimized. 

The  remaining factor which can contribute to false identification in 
the translational kinematics SPRTs is wind shear. Simulations at Mach 
0.6 at 2OOOO-ft altitude with a modified Dryden wind model [20] using a 
99-percent  sigma  value of  18 ft/s and a correlation length of 1750 ft  
have  produced  wind  shears of IO ft/G which  persist for as long as 6 s. 
We have found an effective way to minimize erroneous failure identifica- 
tion due to wind shears is to slow  down  the translational kinematics 

mance during high rate or acceleration maneuvers. 

(3.1-7). Although the standard form of the  extended Kalman filter  for ia. 
2, The average m&XSLUed is used in the right-hand side Of gous to that discussed in Secuon 111-A for the attitude m o r s  using rotational kinemat- 

'Mach  meter f a i l u r e s  may be  detected by  translational kinematics in a m e r  malo- 



DECKERT et  al. : SENSOR FAILURE IDEN~FICATION 799 

SPRTs. This is done by replacing the gain in the SPRT in (2 .24,  
formerly mk/(u2), by G k / ( u 3  where Gk and u2 reflect the turbulence 
level, and the gain Gk is held constant beyond a certain time after the 
start of the SPRT. 

To summarize, the translational kinematics SPRTs may  be  used to 
identify failures in the  accelerometers,  the rate gyros, and the  vertical 
gyros. Failures of these instruments manifest  themselves as acceleration 
errors in the equation for the air-relative velocity of the aircraft. Transla- 
tional kinematics SPRTs for each instrument type look for time-varying 
means in a component of the velocity filter residual. The levels of 
detectable sensor biases are functions of the errors arising from allow- 
able biases on unfailed instruments and unmodeled  effects. 

B. Translational @ M ~ ~ C S  

The translational dynamics SPRTs utilize the redundant information 
related to the aerodynamic forces on the aircraft. The accelerometers 
measure  these aerodynamic forces  together  with the lever arm forces 
arising  from  the fact that the instruments are not located at the vehicle 
center of  mass. In particular, A', the vector of ideal x, y, and z 
accelerometer outputs corrected for lever arm effects, is related to the 
vector of aerodynamic forces on the  vehicle F via 

A'= - F. 1 
m 

Vector F may be written as 

F= \ T -  Dcosa+ Y Lsina 1 

(3.2-1) 

and  drag on the vehicle.  Each of the two SPRT's uses a different 
member of the pair of instruments for which a failure has been detected 
to make  these  calculations. The expected  compensated x and z accel- 
erometer outputs using  these two sets of air data sensors are then 
computed using (3.2-1H3.2-3). These  two sets of expected compensated 
x and z accelerometer outputs are then used to calculate the x and z 
acceleration gradients with  respect to the detected failure type. Then the 
x and z means for the two SPRT's are calculated using the computed 
gradients, the predefined alpha or Mach  BFM, and the sign information 
from  the redundancy trigger. The input to each SPRT consists of a 
two-dimensional  vector of the expected  minus  the actual x and z 
accelerometer output. The noises in the two components of this vector 
are assumed to be uncorrelated yith equal variance t? to facilitate 
computation. To be  specific,  assume that an alpha vane failure has been 
detected by the redundancy trigger.  Using alpha vane 1 and the other air 
data sensor  types,  expected  compensated x and z accelerometer outputs 
ux, I and uz, are calculated via (3.2-1H3.2-3), with  expected outputs ax,z 
and calculated using alpha vane 2 and the same  set of other air data. 
Assuming that the predefined alpha vane  BFM is b, and the sign of 
(al - aJ  is s, from the redundancy trigger, the  means for the SPRT 
using,alpha vane 1 are 

(3.2-2) while the means for the SPRT using alpha vane 2 are 

1 -Dsina-Lcosa 1 mx,z= - mx3 I 

with L the lift, D the drag, Y the sideforce, and T the engine thrust. mz,2= - m z , p  

lift, drag, and sideforce are given  by 

(32-5) 

If the aircraft has no leading edge, Or 'peed extensions, the With  the actwl compensated  accelerometer outputs given  by A: and A;, 
the SPRT variable u for alpha vane 1 is incremented by 

where  the  sideforce equation neglects  small  terms due to roll and yaw 
rates. In (3.2-3), S is the wing area, 4 the dynamic pressure, 6, the rudder 
position, and Sa the aileron position. The aerodynamic coefficients in 
(32-3) have  been  determined  experimentally and tabulated as functions 
of  Mach,  angle of attack, and elevator  position. In addition, thrust has 
been tabulated as a function of air-relative  velocity, altitude, and throttle 
position. By utilizing  these  tables, or functional approximations to these 
tables,  expected  accelerometer outputs can be calculated based on the air 
data sensors, providing analytic redundancy. 

The translational dynamics SPRTs are used to identify  failures in the 
accelerometers, alpha vanes, and Mach meters! In the  case of an 
accelerometer failure, after detection by the redundancy trigger the 
calculation of two SPRTs is  begun,  one  for each of the  accelerometers 
of the detected failure type. The input to each SPRT is  the  respective 
compensated accelerometer output minus the expected  accelerometer 
output based on the air data measurements. As in the  case of the 
translational kinematics SPRT's, these calculations are made for the 
midpoint of the sample interval using  average sensor outputs. Each 
SPRT mean is calculated using  the  predefined  accelerometer  BFM and 
the sign information from the redundancy tpgger. These  mean  calcula- 
tions are performed  only  when  the SPRTs are started and are held 
constant thereafter. 

(3.2-3) & = [ ( ~ - g , l + A :  

while  the  increment for the SPRT using alpha vane 2 is 

The means  given  by (3.2-4H3.2-5) are calculated at each  sample  using 
sensor outputs averaged  over the interval. 

The two major sources of error in the translational dynamics SPRTs 
involve  the aerodynamic coefficients in (3.2-3). One error is the dif- 
ference  between the polynomial approximations to  the  coefficients,  used 
in the flight computer, and the tabulated values of the  coefficients. The 
impact of this error source can be  minimized  by the proper choice of 
fitting functions and by forcing  the  best fits in  the  most common flight 
regions. When the aircraft is flying outside the region of good fit, 
appropriate increases in the  assumed  test error must be made to avoid 
erroneous failure identification. The second error source is  the  difference 
between  the tabulated aerodynamic coefficients,  which  reflect our u 
priori knowledge, and the  true  coefficients for the aircraft. It is felt that 
the tabulated coefficients  have  the  correct  shape but are biased. The 
evaluation of the effects of the polynomial approximation errors and 
table bias errors awaits  the  analysis of actual flight data to  be carried out 
in the future. 

C. Rotational Kinematics 

For the m e  of an alpha vane or Mach  meter detected failure, the In this section, we consider failure identification for the angular 
procedure is analagous to that outlined  above  though  somewhat  more sensors,  the rate gyros, and attitude gyros, using the kinematic relation- 
complicated. Two  SPRT's are calculated, each  using identical air data ship between the angular rate and the attitude of the aircraft. 
output, except for the  detected failure type, to compute the  expected lift The body  mounted gyros provide  noisy  measurements pm, qm, rm of 

the rigid body rates p ,  q, r about the longitudinal, lateral, and normal 

4 R d ,  since we have  only  a  single /3 vane, we have not considered FDI for this 
body axes, respectively.  The attitude sensors, directional and vertical 

k m m m t  However, straightforward modification of the analytic redundancy SPRT gyros, provide the measurements fc;n. em> 9, Of the angles 4, @, $5 
calculations, described in [9J, allows failure identification  for  single  sensors. which define the orientation of the  body axes with  respect to the 
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navigation  frame. The order of the three rotations involved in going 
from the navigation frame to the body frame is yaw (4), pitch (e), and 

The rigid  body rates p ,  q, and r are related to the Euler  angles and 
roll (+I- 

their rates via the relationships [21] 
. .  p=+-+sine 

q = e w s + + 4 w s e h +  (3.3-1) 

r =  -esincp++cosecos+. 
The inverse  relationships  expressing the Euler angle rates in terms of the 
rigid  body rates can be obtained from the above equations to yield 

, i ,=p+qsin+tane+rcoswne 

@=qws+-rsin+ (3.3-2) 

+=qsin+sece+rcos+sece. 

Equations (3.3-2) are not convenient to use to obtain the  Euler  angle 
rates from the rigid  body  rates  because of the singularities at e= 2 n/2. 
atemate approaches which  avoid this singularity  involve  the differential 
relationships  between  elements of the direction cosine  matrix or attitude 
quaternion and the rigid  body rotation rates.  However, the attendant 
computational complexity of these approaches may be  avoided for the 
purpose of failure identification by the  following  set of quatiom [easily 
derived from (3.3-1) and (3.3-2)) which also avoids the singdarity 

i=p+$s ine  
e=qcos+-rs in+ (3.3-3) 

$=(,i ,-p)sine+(qsincp+rcos+)wse. 

The  form of kinematic relations (3.3-1) and (3.3-3) is well suited to 
failure identification of the rate and attitude gyros in that the  derivative 
of a  variable is not written as a function of the variable itself. 

I )  Affifude Sensor Failure: Utilization of the rotational kmematics for 
failure identification of the attitude sensors is illustrated here by a 
detailed  consideration of the roll attitude sensor. The other sensors can 
be considered in a similar fashion. 

The  predicted  change  in the roll angle over  a  time  interval ( tn-  Irt,) 
can be obtained using  a  discrete approximation of (3.3-3): 

+ ' ( t n ) = + ( ~ n - l ) + ~ m [ t - ~ n - ~ ~ + [ + ~ ( ~ n ) - ~ ~ ( ~ n - ~ ) ] ~ i n ~ m  (3-34) 

where  average  measurements are used as before to minimize filter errors. 
The comparison of the measured  roll  angle and the predicted roll  angle 
+' yields the residual 

Y ~ ( f " ) = + m ( t n ) - + ' ( ? ~ ) .  (3.3-5) 

The  residual ye is used to update the estimate 4 using 

i(t")=;p'(tn)+kv&tI) (3.34) 

where k represents  a  suitably  chosen  filter gain. 
Equations (3.3-4H3.3-6) represent  the roll filter. The pitch and yaw 

filter equations may be similarly obtained using (3.3-3). As in the 
translational kinematics  filters,  these rotational filters have been sim- 
plified in form to minimize computational complexity and to limit  each 
failure signature to a  single  channel. This decoupling of the roll,  pitch, 
and yaw channels is accomplished by  using  measurements, rather than 
estimates, of the Eder angles and body rates  in  the propagation equa- 
tions [e.g., (3.3-4)]. 

As in the translational kinematics  case,  a conflict exists  between the 
desire for noise  suppression in normal operation and the desire for large 
observable failure signatures. The conflict was  resolved in that case by 
using a  single filter with appropriate nonzero gain k to initialize, after 
failure detection by the trigger, the two k = O  filters used by the SPRTs 
for failure iden~ication. A similar  implementation of (3.3-4H3.36) for 
failure identification of the attitude sensors will now be presented. 

A nonzero  value of k is  chosen  in (3.3-6) to give  good  filter  perfor- 

mance in the absence of failures by minhizhg the effects of allowable 
noise on unfailed instruments. Two versions of the equations are imple 
mented, each using  a different roll attitude sensor to give +m. Each fitter 
stores the last N residuals y+ from (33-5). It is assumed that there are 
less thao N samples  between the onset of an attitude sensor bias and its 
detection by the redundancy trigger. The signature of such  a sensor bias 
in the residual  decays  exponentially at a rate proportional to the gain k,  
making it difficult to identify in the presence of noise.  However if the 
gain is zero, the sensor bias failure signature is a step in the residual. 
This step persists in time, enhancing its identification.  Therefore, at the 
time  a  roll attitude gyro failure is detected, calculations are made which 
effectively  set k =O for the two filters  commencing N samplesprior to the 
detection time. This is accomplished by using the stored k#O residuals 
via the relation 

(3.3-7) 

where td denotes the failure detection time. The k = 0 residuals for each 
fiiter are the input to an SPRT looking for a bias in the filter's  roll 
attitude gyro, where each SPRT mean has the predefined roll BFM and 
sign  consistent  with the output of the redundancy trigger. 

Pairs of uncoupled filters similar to (3.3-4)-(3.3-6) are implemented for 
the pitch and yaw attitude sensors, and failure detection and identifica- 
tion for  these  sensors are accomplished in a manner identical to that 
described  above for the  roll attitude sensors. 

The primary error sources in the k = 0 residuals  given  by 
(334x33-6)  are the acceptable biases on unfailed rate gyros which are 
integrated by the k=O filters. In addition, another error source is the 
uncertainty in the orientation of the axes about which the body rates and 
Euler  angle rates are measured. This axis uncertainty can arise from such 
factors as mounting errors, structural bending and attitude sensor  errors. 
The magnitude of errors possible from this source should  be  considered 
when doing failure identification for the rotational sensors during high 
maneuver rates. 

2) Attirude Rate Sensor FaiIwes: As was done for attitude sensor 
failures, failure identification for the attitude rate sensors will be 
illustrated by considering  only one instrument, the roll rate gyro. Analo- 
gous procedures are followed for the  pitch and yaw rate gyros. 

The predxted roll rate p'(t,) at the midpoint of the interval (r ,  - 1,) is 
related to the attitude sensor  measurements by the discrete approxima- 
tion to the first  equation of (33-1): 

and the residual  between the measured  motion and the predicted motion 
is given  by 

(3.3-9) 

where again the overbar indicates a quantity averaged  over the time 
interval. In order to minimize the effects of attitude measurement noise 
in the  effective differentiation in (33-8), the residual y, is defined as 

where id is  the  time of roll rate gyro failure detection by the redundancy 
trigger.  Since the summation operation in (3.3-10) follows the differeno 
ing in (3.3-8), the use of y, for failure identification removes the 
undesirable  noise correlation in successive  samples of 9,. Two  residual 
processes y, are formed after roll rate gyro failure detection, each one 
using a different roll rate gyro  measurement.  Each  process y, constitutes 
the input to an SPRT looking for the effect of a bias failure in the 
corresponding roll rate gyro. The mean of each SPRT starts at zero and 
is  incremented at each sample by a quantity whose  magnitude is the 
predefined  roll rate gyro BFM multiplied  by the time step and whose 
sign is consistent with  the output of the redundancy trigger. 
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The primary error source in failure identification for the attitude rate 
gyros via (3.3-8H3.3-10) and their analogs for the pitch and yaw rate 
gyros is Euler  angle  bias. This bias can arise from the acceptable biases 
on unfailed instruments or from axis misalignment, and its effect is 
proportional to vehicle  maneuver  rate. 

D.  summa^^ 

In this section we outline  three  forms of analytic redundancy available 
on the F-8 DFBW aircraft and the use of SPRT's observing  comparisons 
based on this analytic redundancy to identify bias  failures for various 
sensor types. These SPRTs are quite simple in form, being  either scalar 
or the sum of two scalars; and because of the information on the  sign of 
the failure available from the redundancy trigger, ody  two SPRTs per 
instrument type are required for each form of analytic redundancy. 

For each type of analytic redundancy SPRT, error sources  have been 
enumerated and appropriate solutions to minimize  their  effects  have 
been suggested. These solutions range  from the active technique of 
clipping the gain on the translational kinematics SPRTs to suppress 
wind shear signatures to the passive technique of raising the assumed  test 
error during violent aircraft maneuvers to account for the effects of 
alignment uncertainties on the rotational kinematics SPRTs. 

At this time we will also mention a fourth type of analytic redundancy 
which has undergone only  preliminary  analysis to date. This is the 
redundancy which  exists  between  the  vertical  position  given  by the 
altimeter output and the vertical  position computed as the double 
integral of the  compensated  accelerometer and vertical gyro outputs. 
Although prelirmnary results indicate reliable identification of altimeter 
and normal accelerometer  failures,  detailed statements concerning the 
performance and limitations of these altitude kinematics SPRTs require 
further analysis. 

1v. NUMERICAL RESULTS 

In this section we present some  representative results of the response 
of the redundancy trigger and the  various direct and analytic re- 
dundancy SPRTs to sensor bias failures  in the presence of measurement 
noise during a violent aircraft maneuver. 

The simulated aircraft state time  history is shown  in  Fig. 1. The 
aircraft is initially  trimmed to horizontal flight at Mach 0.6 and 2 0 W f t  
altitude. After 1 s, step changes are made in the aileron, rudder, and 
elevator of +6, +6, and -8", respectively. These new control surface 
positions are held for the remainder of the simulation. The violence of 
this maneuver  is  reflected  by the 4-g peak in normal acceleration, 1-g 
peak  in lateral acceleration and 2-rad/s peak in roll rate shown in the 
figure. 

Table I indicates the 1-0 white  noise  levels and quantization sizes for 
the various sensor types. In addition, the RSS bias  magnitudes for 
unfailed sensors are given  where known. The simulation  used  the  white 
noise and quantization values  shown  in  the  table, but no biases in the 
unfailed  sensors  were included. 

Fig. 2 indicates the  response of the relevant translational lunematics 
and dynamics SPRTs to a bias in  the  number 1 normal accelerometer of 
-6.4 ft/s2 occurring at I s. The normal  accelerometer  BFM  was  defined 
to be the failure magnitude, 6.4 ft/?. The filter  used for translational 
kinematics SPRT initialization had a time constant of 0.5 s. The  sample 
periods for the  filters and all SPRTs was  0.0625 s. The thresholds for the 
redundancy triger and all SPRTs were  chosen to give equal missed 
alarm and false alarm probabilities of w 4 .  The translational dynamics 
SPRT used  the same aerodynamic coefficient tables as used to compute 
the aircraft motion. Thus the only errors in the determination of the 
aerodynamic forces computed by the translational dynamics SPRTs 
were due to air data sensor  noise. The variance of the translational 
kinematics SPRT was  defined as 100 ft2/s2 while the variance for the 
translational dynamics SPRT was  defined as 100 ft2/s4. AU of the SPRT 
outputs shown in Fig. 2 have  been  normalized  by the threshold magni- 
tude and truncated at unit magnitude; thus the failure threshold on these 
SPRTs is - I and the  no-failure  threshold  is + 1. 

At  1.3125 s, the redundancy trigger for the normal accelerometers 
detected the failure in its moving  window  average and indicated the sign 
of instrument 1 minus instrument 2 to be negative.  At this time, five 
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Fig. 1. Simulated aircraft state. 
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SPRTs were started: The direct redundancy SPRT, two k =O transla- 
tional kinematics SPRTs, and two translational dynamics SPRTs. The 
direct redundancy SPRT was looking  for a mean of -6.4 f t / s  in the 
output of instrument I minus the output of instrument 2. One dynamics 
and one kinematics SPRT were looking for the  effects of a -6.4 ft/s2 
bias in instrument 1, while the other dynamics and kinematics SPRTs 
were  looking for the  effects of a +6.4 ft/s2 bias in instrument 2. 

The first  plot  shows  the direct redundancy SPRT crossing  the failure 
threshold after one sample and remaining  over  the threshold for the  rest 
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Fig 2 Normal accelerometer number 1 bias failure at 1 s. 

of the  simulation. The second  set of plots shows the translational 
kinematics SPRTs while the third set of plots shows the k =O filter 
residuals which are inputs to these SPRTs. As mentioned  in  Section 
111-A, the mean used in the k =O translational kinematics SPRT is a 
rimp for an accelerometer  bias failure. This ramp is clearly  evident  in 
the residual  history for the filter using instrument 1 and absent from the 
residual  history for the filter  using instrument 2. The translational 
lunematics SPRTs reflect this residual  behavior,  with  the SPRT lookmg 
for the  effect of a negative  bias in instrument 1 crossing the failure 
threshold at 3.1875 s and the SPRT looking for the  effect of a positive 
bias in instrument 2 crossing the no-failure  threshold at the same  time. 
The fourth set of plots  show the translational dynamics SPRTs looking 
for the effects of a negative  bias in instrument 1 and a positive bias in 
instrument 2. These SPRT's cross the proper thresholds at about 4.75 s. 

It is important to note that the plots of Fig. 2 indicate that the 
translational kinematics and dynamics SPRTs perform  well in the 
presence of a rapidly changing aircraft state, implying that the second- 
order integration schemes  described in Section 111 are sufficiently ac- 
curate. 

Fig. 3 indicates the  performance of the direct redundancy and rota- 
tional kinematics SPRTs to a bias in roll attitude gyro number 1 of 0.02 
rad occurring at 1 s. The simulation  includes  the same measurement 
noises and maneuver  mentioned  above,  with the addition of the 99-per- 
cent wind  model  mentioned in Section 111-A.  Again, there are no biases 
on unfailed sensors. The BFM for the  roll attitude gyro was defyed to 
be 0.02 rad. The variance used in the rotational kinematics SPRTs was 
O.ooo4 rad2. The size of the  moving  window of residuals  for the rota- 
tional  kinematics  filter was 1 s with a gain of 0.125 used before failure 
detection. 

At 1.875 s, the roll attitude gyro redundancy trigger detects the failure 
and indicates that the  sign of instrument 1 minus instrumat 2 is 
positive.  At this time  the direct redundancy roll attitude gyro SPRT is 
initiated along with two rotational kinematics SPRTs, one looking for 
the effect of a positive  bias in instrument 1 and the other looking for the 
effect of a negative  bias in instrument 2. The outputs of these SPRTs are 
shown in plots one, two, and three, respectively. Plots four and five  show 
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Fig. 3. Roll attirude gyro number I bias F a l u r e  at I s. 

the k = O  filter  residuals which form the inputs to the SPRTs shown in 
plots two and three, respectively.  Plot four shows  the characteristic bias 
occurring at 1 s in the  residual for the k = O  filter using instrument 1, 
while plot five shows the  absence of any bias in the residual for the filter 
using instrument 2. Consistent behavior is  shown  by the rotational 
kinematics SPRTs, with  the SPRT looking for the effect of a positive 
bias  in the instrument 1 crossing  the failure threshold at 3.1875 s and the 
SPRT looking €or the effect of a negative  bias in instrument 2 crossing 
the  no-failure threshold at the same  time.  The direct redundancy SPRT 
crosses the failure  threshold at 2.25 s, corroborating the  presence of a 
roll attitude gyro failure. 

V. BFM SELECTION, THE QSPR, AND THE OUTER LOOP 

The direct redundancy trigger and analytic redundancy SPRTs dis- 
cussed in Section IV were  chosen for illustrative purposes to be con- 
sistent  only  with the unfailed  noise characteristics of the  various  sensors. 
However, the effects of allowable  biases on unfailed instruments and the 
effects of maneuvers  were  ignored.  In [22] we outline a technique for 
consistent BFM selection  which accounts for the  effects of biases  in 
unfailed  instruments. For each instrument type, we define a bias ma@- 
tude B for each  type of analytic redundancy test.  These B's are chosen 
to avoid  false alarms due to all effects,  with maneuver-dependent terms 
evaluated at trim at Mach 0.6 at 20000-ft altitude. The elupsed time limit 
(ETL) for each instrument type-analytic redundancy combination is 
defined  to  be 1.5 times the  required  time  for the SPRT of the  failed 
sensor to cross the failure threshold using worst  case errors at trim. The 
BFM for each instrument type is defined as the minimum value of B for 
all of the analytic redundancy tests avadable for that instrument type. 
The tests are designed,  wherever  possible, to detect  bias  failures of 
~ / f i  . n u s  8 we average the two instruments of a given  type 
whenever  they are needed  in SPRTs for other instruments, we then  have 
that the  worst case RSS bias  in this average  is BFM/2, and this figure is 
used in the calculation of test errors for other instruments. 

In [22] we also introduce the QSPR. In essence, the QSPR is the 
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output of an SPRT which  assumes  a  bias failure of magnitude equal to 
the magnitude of the difference between the two suspect sensors, plus 
worst case RSS test errors in the sense  opposite to the failure. In the 
Q S P R ,  maneuverdependent error sources are evaluated using actual 
averaged  sensor  output, not assuming trim as before. Thus the QSPR is a 
measure at every  time  sample of the signal-t+noise ratio of its associated 
analytic redundancy test. The way the QSPR is defied in [22], its 
negativity  implies that the SPRT using the failed m c o r  musf be  lower 
than the SPRT using the unfailed sensor. With this in mind we have 
designed  the  following preluninary outer loop identification logic. 

Following  a direct redundancy trigger, for some instrument type, Np 
passes are allowed  through the logic, each pass equal in time to the 
longest ETL of all applicable analytic redundancy tests.  If the trigger is 
not reconciled after Np passes, an unidentifiable failure is  announced, at 
which point the  pilot  may  maneuver (or stop maneuvering) the aircraft 
to enhance failure identifiability. The trigger may be  reconciled by a 
false alarm indication, in which the direct redundancy SPRT becomes 
positive, or by  a failure identification. Failure identification checks are 
made at each  time step using every applicable analytic redundancy 
QSPR and the  associated instrument SPRT outputs. For each form of 
analytic redundancy, only  the instrument with the smallest SPRT output, 
call it instrument j ,  is used.  Now,  assume the QSPR and SPRT outputs 
are normalized by  the threshold magnitude. Then if the time in is before 
ETL of the test, instrumentj is identified as failed if 

QSPRn< -1 and &< -1. 

If the time In is at or beyond ETL of the  test, instrumentj is identified as 
failed if 

QSPRn< -1 and g<O 
or 

QSPRn<O and d <  -1. 

Additionally,  using appropriate redundancy tests, an instrument is prmi- 
sional& f d e d  if 4 and QSPR are negative  but above the failure 
threshold.  The  provisionally  failed instrument is removed from all con- 
trol calculations,  but the failure tests continue until the redundancy 
trigger is reconciled. This capability of the dual-redundant system to 
make  provisional failures tends to mhhize the time  required to remove 
a  failed  sensor from the system  without  a corresponding increase  in false 
identifikations. 

We point out that by incorporating the QSPR with its worst  case 
possibilities into the identification logic, we are essentially  building 
caution into the system.  However, if there is a large  failure,  the QSPR 
will indicate the presence of a  high  signal-to-noise ratio, and a  quick 
decision can be made. It is only in the case of small failures (or large 
noise) that the QSPR will correctly tell us to be more  circumspect. 

VI. CONCLUSIONS 

In this paper, we have discussed  a currently envolving technique for 
dual redundant sensor F D I  for the NASA  F-8 DFBW aircraft The 
technique  involves a dual mode  procedure in which failure detection is 
accomplished  by  observing the difference  between  like instrument out- 
puts, and failure identification is accomplished  using  the analytic re- 
dundancy available as functional relationships among the outputs of 
dissimilar instruments. 

Various types of analytic redundancy present on the aircraft have 
been discussed, and the use of this analytic redundancy in designing 
SPRTs for failure identification for the various sensors has been de- 
tailed. It is emphasid that these SPRTs were  designed to involve 
minimal computational complexity.. SPRT error sources  such as axis 
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misalignment,  wind shear, and biases on unfailed sensors have been 
enumerated along with corresponding suggestions for minimi7ing their 
effects.  Preliminary  simulation  results  were  presented  which  showed 
good SPRT performance during a  violent maneuver in the absence of 
these error sources, indicating sufficient accuracy of the digital filter 
equations. However, determination of the performance of the algorithm 
in the presence of all error sources awaits  extensive  simulations planned 
for the future. We have  discussed the QSPR and its utilization by a 
preliminary form of the outer loop identification logic. This outer loop 
uses provisional failure decisions,  allowed  by the dual sensor r e  
dundancy, to minhize identification time  without corresponding in- 
creased  false identification penalties. 

Several additional areas of future investigation  have  been  mentioned- 
Among  these are the use of SPRTs to identify  failures  when no dual 
instrument redundancy is available, and identification of simultaneous 
failure of the roll and pitch outputs of a  vertical gyro. We add here that 
an effort  was  recently  completed to define the aerodynamic coefficients 
used in Section 111-B as functions of the air data variables. This has 
resulted in a factor-ofeight decrease in required  storage compared with 
the  tables used in the reported simulations.  These approximations pro- 
duce errors in the translationai dynamics SPRTs which are minimal in 
the  most common flight regimes. 
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