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The execution of reaching movements involves the coordinated activity
of multiple brain regions that relate variously to the desired target and a
path of arm states to achieve that target. These arm states may represent
positions, velocities, torques, or other quantities. Estimation has been
previously applied to neural activity in reconstructing the target sepa-
rately from the path. However, the target and path are not independent.
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Because arm movements are limited by finite muscle contractility, knowl-
edge of the target constrains the path of states that leads to the target. In
this letter, we derive and illustrate a state equation to capture this basic
dependency between target and path. The solution is described for
discrete-time linear systems and gaussian increments with known tar-
get arrival time. The resulting analysis enables the use of estimation to
study how brain regions that relate variously to target and path together
specify a trajectory. The corresponding reconstruction procedure may also
be useful in brain-driven prosthetic devices to generate control signals
for goal-directed movements.

1 Introduction

An arm reach can be described by a number of factors, including the desired
hand target and the duration of the movement. We reach when moving to
pick up the telephone or lift a glass of water. The duration of a reach can
be specified explicitly (Todorov & Jordan, 2002) or emerge implicitly from
additional constraints such as target accuracy (Harris & Wolpert, 1998).
Arm kinematics and dynamics during reaching motion have been studied
through their correlation with neural activity in related brain regions, in-
cluding motor cortex (Moran & Schwartz, 1999), posterior parietal cortex
(Andersen & Buneo, 2002), basal ganglia (Turner & Anderson, 1997), and
cerebellum (Greger, Norris, & Thach, 2003). Separate studies have devel-
oped control models to describe the observed movements without regard to
neural activity (Todorov, 2004a). An emerging area of interest is the fusion
of these two approaches to evaluate neural activity in terms of the control of
arm movement to target locations (Todorov, 2000; Kemere & Meng, 2005).
While several brain areas have been implicated separately in the planning
and execution of reaches, further study is necessary to elucidate how these
regions coordinate their electrical activity to achieve the muscle activation
required for reaching. In this letter, we develop state-space estimation to
provide a unified framework to evaluate reach planning and execution-
related activity.

Primate electrophysiology during reaching movements has focused on
primary motor cortex (M1) and posterior parietal cortex, regions that rep-
resent elements of path and target, respectively. Lesion studies previously
identified M1 with motor execution (Nudo, Wise, SiFuentes, & Milliken,
1996) and PPC with movement planning (Geschwind & Damasio, 1985).
Several experiments have characterized the relationship between M1
neuronal activity, arm positions, and velocities (Georgopoulos, Kalaska,
Caminiti, & Massey, 1982; Schwartz, 1992; Moran & Schwartz, 1999;
Paninski, Fellows, Hatsopoulos, & Donoghue, 2004), and forces
(Georgopoulos, Ashe, Smyrnis, & Taira, 1992; Taira, Boline, Smyrnis,
Georgopoulos, & Ashe, 1995; Li, Padoa-Schioppa, & Bizzi, 2001). PPC is
described as relating broadly to the formation of intent and specifically
to the transformation of sensory cues into movement goals (Andersen &
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Buneo, 2002). More recent experiments are beginning to elucidate the role
of premotor cortical areas in motion planning and execution (Schwartz,
Moran, & Reina, 2004), including interactions with PPC (Wise, Boussaoud,
Johnson, & Caminiti, 1997). Explicit regression analyses have also been
performed to relate motor cortical activity to features of both target and
path (Fu, Suarez, & Ebner, 1993; Ashe & Georgopoulos, 1994).

In parallel, theoretical models for the planning and execution of reaches
have developed to include different concepts in control engineering and
robotics. A common starting point is the state equation, a differential equa-
tion that describes how the arm moves due to passive sources like joint
tension and user-controlled forces such as muscle activation. The state
equation is used to prescribe a path or a sequence of forces to complete
the reach based on the minimization of some cost function that depends on
variables such as energy, accuracy, or time. Many reach models specify con-
trol sequences computed prior to movement that assume a noise-free state
equation and perfect observations of arm state (Hogan, 1984; Uno, Kawato,
& Suzuki, 1989; Nakano et al., 1999). The execution of trajectories planned
by these models can be envisioned in the face of random perturbations by
equilibrium-point control, where each prescribed point in the trajectory is
sequentially made steady with arm tension. Recently, reach models have
been developed that explicitly account for noisy dynamics and observations
(Harris & Wolpert, 1998; Todorov, 2004b). Based on stochastic optimal con-
trol theory, the most recent arm models (Todorov & Jordan, 2002; Todorov,
2004b) choose control forces based on estimates of path history and cost-
to-go, the price associated with various ways of completing the reach. A
general review of control-based models is provided in Todorov (2004a).

Estimation has been used to relate neural activity with aspects of free
arm movements (Georgopoulos, Kettner, & Schwartz, 1988; Paninski et al.,
2004). Alternate models of neural response in a specific brain region can
be compared by mean squared error (MSE). Reconstruction of a measured
parameter is one way to characterize neural activity in a brain region.
Learning rates can be related explicitly and simultaneously to continuous
and discrete behavioral responses using an estimation framework (Smith
et al., 2004). Mutual information is a related alternative that has been preva-
lent in the characterization of neural responses to sensory stimuli (Warland,
Reinagel, & Meister, 1997). Both MSE and conditional entropy (calculated
in determining mutual information) are functions of the uncertainty in an
estimate given neural observations, and MSE rises with conditional en-
tropy for gaussian distributions. These two methods were recently coupled
to calculate the conditional entropy associated with recursively computed
estimates on neural data (Barbieri et al., 2004).

Estimation algorithms form the interface between brain and machine
in the control of neural prosthetics, bearing directly on the clinical treat-
ment of patients with motor deficits. Prototype systems have employed
either estimation of free arm movement (Carmena et al., 2003; Taylor,
Tillery, & Schwartz, 2002; Wu, Shaikhouni, Donoghue, & Black, 2004) or
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target location (Musallam, Corneil, Greger, Scherberger, & Andersen, 2004;
Santhanam, Ryu, Yu, Afshar, & Shenoy, 2005). Most recently, several esti-
mation procedures were proposed to combine these two approaches and
specifically facilitate reaching movements for brain-controlled prosthetics
(Srinivasan, Eden, Willsky, & Brown, 2005; Cowan & Taylor, 2005; Yu, San-
thanam, Ryu, & Shenoy, 2005; Kemere & Meng, 2005).

Two probability densities are used implicitly in estimation. The first den-
sity describes the probability of neural activity conditioned on relevant co-
variates like stimulus intensities or kinematic variables. This density arises
through the observation equation in estimation and as an explicit func-
tion in information-theoretic measurements. The second density describes
the interdependence of the relevant covariates before any neural activity is
recorded. This density arises through the state equation in estimation and as
a prior on stimulus values in the information-theoretic characterization of
sensory neurons. In experiments that calculate mutual information between
neural activity and independent stimulus parameters, this second proba-
bility density is commonly chosen to be uniform. In the study of reaching
movements, the complete prior density on target and path variables cannot
be uniform because the target and the path state at all times in the trajectory
are dependent. A state equation naturally expresses these constraints and
serves as a point of departure for analysis based on estimation.

In this letter, we develop a discrete-time state equation that relates target
state and path states under weak assumptions about a reach. Specifically,
the result represents the extension of the linear state-space description of
free arm movement with no additional constraints. The states of the tar-
get or path refer to any vector of measurements of the arm at a particular
point in time, such as joint torque, joint angle, hand velocity, and elbow
position. This method supports arbitrary order, time-varying linear differ-
ence equations, which can be used to approximate more complicated state
equation dynamics. The approach is based on the continuous-time results
by Castanon, Levy, and Willsky (1985) in surveillance theory and draws on
the discrete time derivation of a backward Markov process described by
Verghese and Kailath (1979). Unlike existing theoretical models of reaching
movement, we do not begin with an assumed control model or employ cost
functions to constrain a motion to target. The resulting reach state equation
is a probabilistic description of all paths of a particular temporal duration
that start and end at states specified with uncertainty.

We first develop a form of the reach state equation that incorporates one
prescient observation on the target state. We then extend this result to de-
scribe an augmented state equation that includes the target state itself. This
augmented state equation supports recursive estimates of path and target
that fully integrate ongoing neural observations of path and target. Sample
trajectories from the reach state equation are shown. We then demonstrate
the estimation of reaching movements by incorporating the reach state
equation into a point process filter (Eden, Frank, Barbieri, Solo, & Brown,
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2004). We conclude by discussing the applicability of our approach to the
study of motion planning and execution, as well as to the control of neural
prosthetics.

2 Theory

2.1 State Equation to Support Observations of Target Before
Movement. The objective in this section is to construct a state equation
for reaching motions that combines one observation of the target before
movement with a general linear state equation for free arm movement. The
resulting state equation enables estimation of the arm path that is informed
by concurrent observations and one target-predictive observation, such as
neural activity from brain regions related to movement execution and tar-
get planning, respectively. We begin with definitions and proceed with the
derivation.

A reach of duration T time steps is defined as a sequence of vector ran-
dom variables (x0, . . . , xT ) called a trajectory. The state variable xt represents
any relevant aspects of the arm at time sample t, such as position, velocity,
and joint torque. The target xT is the final state in the trajectory. While we
conventionally think of a target as a resting position for the arm, xT more
generally represents any condition on the arm at time T , such as movement
drawn from a particular probability distribution of velocities.

For simplicity, we restrict our trajectory to be a Gauss-Markov process.
This means that the probability density on the trajectory p(x0, . . . , xT ) is
jointly gaussian and that the probability density of the state at time t con-
ditioned on all previous states p(xt|x0, . . . , xt−1) equals p(xt|xt−1), the state
transition density. Although more general probability densities might be
considered, these special restrictions are sufficient to allow for history de-
pendency of arbitrary length. This is commonly accomplished by including
the state at previous points in time in an augmented state vector (Kailath,
Sayed, & Hassibi, 2000). Figure 1A is a schematic representation of the
trajectory and the target observation, emphasizing that the prescient ob-
servation of target yT is related to the trajectory states xt only through the
target state xT .

The conditional densities of the Gauss-Markov model can alternatively
be specified with observation and state equations. For a free arm movement,
the state transition density p(xt|xt−1) can be described by a generic linear
time-varying multidimensional state equation,

xt = Atxt−1 + wt, (2.1)

where the stochastic increment wt is a zero-mean gaussian random variable
with E[wtw

′
τ ] = Qtδt−τ . The initial position x0 is gaussian distributed with

mean m0 and covariance �0. The prescient observation yT of the target
state xT is corrupted by independent zero-mean gaussian noise vT with
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Figure 1: Alternate representations of a reaching trajectory and one observation
on target. In the Markov model (A), circles represent the state of the arm at
various times, and the arrangement of directed arrows indicates that the state of
the arm at time t is independent of all previous states conditioned on knowledge
of the state at time t − 1. Accordingly, the only state pointing to yT , the prescient
observation of target, is the target state xT itself. In the system diagram (B),
the specific evolution of the arm movement is described. Consistent with the
state equation, the arm state xt−1 evolves to the next state in time xt through the
system matrix At , with additive noise wt that represents additional uncertainty
in aspects of the arm movement that are not explained by the system matrix. The
diagram also specifies that the observation yT of the target state xT is corrupted
by additive noise vT .

covariance �T that denotes the uncertainty in target position:

yT = xT + vT . (2.2)

The state equation coupled with this prescient observation is described
schematically in Figure 1B.

Restated, our objective is to represent the free movement state equa-
tion together with the prescient observation on target, as a Gauss-Markov
model on an equivalent set of trajectory states xt conditioned on yT for
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t = 0, 1, . . . , T . The consequent reach state equation is of the form

xt = Atxt−1 + ut + εt, (2.3)

where ut is a drift term corresponding to the expected value of wt|xt−1, yT ,
and the εt are a new set of independent, zero-mean gaussian increments
whose covariances correspond to that of wt|xt−1, yT . This reach state equa-
tion generates a new probability density on the trajectory of states that
corresponds to the probability of the original states conditioned on the
prescient observation, p(x0, . . . , xT |yT ).

To derive this reach state equation, we calculate the state transition prob-
ability density p(xt|xt−1, yT ). Because wt is the only stochastic component
of the original state equation, the new state transition density is speci-
fied by p(wt|xt−1, yT ). To compute this distribution, we use the conditional
density formula for jointly gaussian random variables on the joint density
p(wt, yT |xt−1). The resulting distribution is itself gaussian, with mean and
variance given by:

ut = E[wt|xt−1, yT ]

= E[wt|xt−1] + cov(wt, yT |xt−1)

× cov−1(yT , yT |xt−1)(yT − E[yT |xt−1]) (2.4)

Q̃t = cov(wt|xt−1, yT )

= cov(wt|xt−1) − cov(wt, yT |xt−1)

× cov−1(yT |xt−1)cov′(wt, yT |xt−1). (2.5)

The mean ut corresponds identically to the linear least-squares estimate of
wt|xt−1, yT , and the variance Q̃ equals the uncertainty in this estimate.

The covariance terms in equations 2.4 and 2.5 can be computed from the
following equation that relates wt to yT given xt−1,

yT = φ(T, t − 1)xt−1 +
T∑

i=t

φ(T, i)wi + vT , (2.6)

where φ(t, s) denotes the state transition matrix that advances the state at
time s to time t,

φ(t, s) =


max(t,s)∏

i=1+min(t,s)
Asign(t−s)

i , t �= s

I, t = s

. (2.7)
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The covariance terms are accordingly given by

cov(wt|xt−1) = Qt (2.8)

cov(wt, yT |xt−1) = Qtφ
′(T, t) (2.9)

cov(yT , yT |xt−1) = �T +
T∑

i=t

φ(T, i)Qiφ
′(T, i). (2.10)

For notational convenience, define the following quantity:

�(t, T) = φ(t, T)�Tφ′(t, T) +
T∑

i=t

φ(t, i)Qiφ
′(t, i). (2.11)

Simplifying and substituting into equations 2.4 and 2.5, we obtain the mean
and covariance of the old increment given the target observation:

ut = Qt�
−1(t, T)φ(t, T) [yT − φ(T, t − 1)xt−1] (2.12)

Q̃t = Qt − Qt�
−1(t, T)Q′

t. (2.13)

The density on the initial state conditioned on the target observation is
calculated similarly. The resulting mean and variance of the initial state are
given by

�̃0 = (�−1
0 + �−1(0, T))−1 (2.14)

E[x0|yT ] = �̃0(0)(�−1
0 m0 + �−1(0, T)φ(0, T)yT ). (2.15)

A recursion can be obtained for equation 2.11 by writing �(t − 1, T) in
terms of �(t, T):

�(t − 1, T) = φ(t − 1, t)�(t, T)φ′(t − 1, t) + φ(t − 1, t)Qt−1φ
′(t − 1, t)

(2.16)

with

�(T, T) = �T + QT . (2.17)

Complementing the new initial conditions 2.14 and 2.15, the reach state
equation can be written in various equivalent forms. The following form
emphasizes that the old increment wt has been broken into the estimate ut

of wt from yT and remaining uncertainty εt ,

xt = Atxt−1 + ut + εt (2.18)

εt ∼ N(0, Q̃t) (2.19)
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with ut as given in equation 2.12 and εt distributed as a zero-mean gaussian
with covariance Q̃t .

This form is suggestive of stochastic control, where ut is the control
input that examines the state at time xt−1, and generates a force to place
the trajectory on track to meet the observed target. Nevertheless, this form
emerges purely from conditioning the free movement state equation on the
target observation rather than from any specific biological modeling of mo-
tor control. Note critically that ut is a function of xt−1, so that the covariance
update in a Kalman filter implementation should not ignore this term.

Alternatively, we can group the xt−1 terms. This form is more conducive
to the standard equations for the Kalman filter prediction step:

xt = Btxt−1 + ft + εt (2.20)

Bt = [I − Qt�
−1(t, T)]At (2.21)

ft = Qt�
−1(t, T)φ(t, T)yT . (2.22)

In both forms, the resulting reach state equation remains linear with in-
dependent gaussian errors εt , as detailed in the appendix. Because xt is
otherwise dependent on xt−1 or constants, we conclude that the reach state
equation in 2.18 or 2.20 is a Markov process.

2.2 Augmented State Equation to Support Concurrent Estimation of
Target. Building on the previous result, we can now construct a more versa-
tile state equation that supports path and target estimation with concurrent
observations of path and target. The previous reach state equation incorpo-
rates prescient target information into a space of current arm state xi . We
now augment the state space to include the target random variable xT . Ac-
cording to this model, the state of the arm at time t is explicitly determined
by the target and the state of the arm at time t − 1.

The reach state equation derived above suggests an approach to calculat-
ing the state transition density p(xt, xT |xt−1, xT ) that corresponds to an aug-
mented state equation. Because xT is trivially independent of xt conditioned
on xT , we can equivalently calculate the transition density of p(xt|xt−1, xT ).
This is identical to the reach state equation derivation of p(xt|xt−1, yT ) with
vT set to zero. The resulting state equation can be consolidated into vector
notation to give the augmented form:

(
xt

xT

)
=

(
� �

0 I

)(
xt−1

xT

)
+

(
εt

0

)
(2.23)

� = Bt (2.24)

� = Qt�
−1(t, T)φ(t, T) (2.25)

�T = 0. (2.26)
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The initial condition on the augmented state [x0, xT ]’ is the joint distribution
that corresponds to our uncertainty as external observers about the true
starting and target states chosen by the brain at time zero.

This augmented state equation confers additional features over the reach
state equation. First, observations of the target can be incorporated through-
out the duration of the reach to improve arm reconstructions. In contrast,
the reach state equation incorporated one target observation before move-
ment. Second, refined estimates of the target can be generated recursively
as estimates become more informed by reach and target-related activity.

3 Results

3.1 Sample Trajectories. We proceed to illustrate the underlying struc-
ture of a reach for our goal-directed state equation, which appropriately
constrains a general linear state equation to an uncertain target. We also
explain how the underlying reach structure is affected by parameters of the
model: reach duration, the target state observation, and target uncertainty.

The density on the set of trajectories, p(xt, xt−1, . . . , x0|yT ), can be calcu-
lated by iteratively multiplying the transition densities p(xt|xt−1, yT ) given
by the state equation. This density represents our assumptions about the
trajectory before receiving additional observations of neural activity dur-
ing the reach. Broader probability densities on the set of trajectories imply
weaker assumptions about the specific path to be executed.

We can visually examine the structure of our assumptions by plotting
samples from the density on trajectories as well as the average trajectory.
Sample trajectories are generated by drawing increments εt from the density
specified in equation 2.19.

The simulated increments are accumulated at each step with Atxt + ut ,
the deterministic component of the state equation 2.18. The resulting trajec-
tory represents a sample drawn from p(xt, xt−1, . . . , x0|yT ), the probability
density on trajectories. The average trajectory is generated from the same
procedure, except that the increments εt are set to their means, which equal
zero.

We first examine sample trajectories that result from small changes in
model parameters. For illustration, the states were taken to be vectors
[x, y, vx , vy]′t , representing position and velocity in each of two orthog-
onal directions. The original noise covariance was nonzero in the entries
corresponding to velocity increment variances:

Q =


0 0 0 0

0 0 0 0

0 0 q 0

0 0 0 q

 . (3.1)



Reconstruction of Goal-Directed Movements 2475

A B

C D

x position (m)

x position (m) x position (m)

y 
po

si
tio

n 
(m

)

x position (m)

y 
po

si
tio

n 
(m

)

y 
po

si
tio

n 
(m

)
y 

po
si

tio
n 

(m
)

Figure 2: Sample trajectories (gray) and the true mean trajectory (black) corre-
sponding to the reach state equation for various parameter choices. Appropri-
ate changes in model parameters increase the observed diversity of trajectories,
making the state equation a more flexible prior in reconstructing arm move-
ments from neural signals. Parameter choices (detailed in section 3.1) were
varied from (A) baseline, including (B) smaller distance to target, (C) increased
time to target, and (D) increased increment uncertainty.

The uncertainty in target state �T was also diagonal, with

�T =


r 0 0 0

0 r 0 0

0 0 p 0

0 0 0 p

 . (3.2)

In Figure 2, sample trajectories from the reach state equation are generated
with baseline parameters (see Figure 2A) from which distance to target,
reach duration, and increment uncertainty have been individually changed
(see Figures 2B–2D). The baseline model parameters are given in Table 1.
Parameters were individually altered from baseline as shown in Table 2.
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Table 1: Sample Trajectory: Baseline Model Parameters.

Parameter Baseline Value

Reach distance 0.35 m
Time step 0.01 sec.
Noise covariance (q ) 1e-4 m2

Reach duration 2 sec.
Target position uncertainty (r ) 1e-6 m2

Target velocity uncertainty (p) 1e-6 m2

Table 2: Sample Position Trajectory: Altered Model Parameters.

Parameter Altered Value Graph

Reach distance 0.25 m Figure 2B
Reach duration 4 sec. Figure 2C
Noise covariance (q ) 3e-4 m2 Figure 2D

In Figure 3, sample trajectories are plotted for increasing uncertainty
(r ) in target position, with variances (A) 1e-4, (B) 1e-3, (C) 1e-2, and (D)
1e-1 m2. This corresponds to scenarios in which observations of neural
activity before movement initiation provide estimates of target position
with varying certainty.

Figures 4A to 4C examine the velocity profiles in one direction generated
by the reach state equation with various parameter choices. Velocity profiles
from the baseline trajectory are displayed in Figure 4A, and parameters
are sequentially altered from the baseline values (see Figures 4B and 4C)
as shown in Table 3. Figure 4D examines the effect of target information
on uncertainty in the velocity increment. The magnitude of one diagonal
velocity term of the noise covariance Q̃t is plotted over the duration of the
reach for comparison against the noise covariance Qt of the corresponding
free movement state equation.

3.2 Reconstructing Arm Movements During a Reach. The reach state
equation can be incorporated into any estimation procedure based on prob-
abilistic inference since it represents a recursively computed prior. Because
the reach state equation minimally constrains the path to the target obser-
vation, it may be useful in the analysis of coordinated neural activity with
respect to planning and execution. We illustrate the reconstruction of reach-
ing movements from simulated neural activity using a point process filter
(Eden, Frank, et al., 2004), an estimation procedure that is conducive to the
description of spiking activity in particular. The extension to variants of the
Kalman filter is also direct, because the reach state equation, 2.20, is written
in standard Kalman filter notation.
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Figure 3: Sample trajectories (gray) and the true mean trajectory (black) of
the reach state equation corresponding to various levels of uncertainty about
target arm position. Variance in the noise vT of the prescient observation yT is
progressively increased from (A) 1e-4, to (B) 1e-3, (C) 1e-2, and (D) 1e-1 m2. As
target uncertainty grows, trajectories become more unrestricted, corresponding
to increasing flexibility in the prior for reconstruction of arm movements.

We first simulated arm trajectories using the reach model as described in
the previous section. For comparison, arm trajectories were also generated
from a canonical model. This model was a family of movement profiles
from which specific trajectories could be chosen that guaranteed arrival at
the desired target location and time:


x

y

vx

vy


t

=


1 0 � 0

0 1 0 �

0 0 1 0

0 0 0 1




x

y

vx

vy


t−1

+
(

1
2δ

)
(π/T)2 cos(πt/T)


0

0

xT − x0

yT − y0

 .

(3.3)
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Figure 4: Sample velocity trajectories (gray) and the true mean velocity trajec-
tory (black) generated by the reach state equation. (A) For baseline parameters
(detailed in section 3.1) with reach duration of 2 seconds, the velocity profile
is roughly bell shaped. (B) As reach duration increases to 4 seconds, the tra-
jectories become more varied. (C) If uncertainty in the observed target velocity
and position is large (1e3 m2 for each variance), velocity trajectories resemble
samples from the free movement state equation. (D) Uncertainty in the velocity
increment decreases with time due to the prescient target observation (solid
line) as compared to the original velocity increment of the corresponding free
movement state equation (dashed line).

This deterministic equation relates velocities [x, y, vx, vy]′t to the time in-
crement δ, the current time step t, and the distances in two orthogonal
directions between the target and starting points, over T + 1 time steps.

After generating trajectories, we simulated the corresponding multiunit
spiking activity from 9 neurons, a typical ensemble size for recording from
a focal, single layer of cortex (Buzáki, 2004). Output from each unit in the
ensemble was simulated independently as a point process with an instanta-
neous firing rate that was a function of the velocity. This function, referred
to as the conditional intensity (Eden, Frank, et al., 2004), is equivalent to
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Table 3: Sample Velocity Trajectory: Altered Model Parameters.

Parameter Altered Value Graph

Reach duration 4 sec. Figure 4B
Target position and r = 1e3 m2 Figure 4C

velocity uncertainty p = 1e3 m2

Table 4: Simulated M1 Activity: Receptive Field Parameters.

Parameter Assignment or Interval

β0 2.28
β1 4.67 sec/m
θp [−π ,π ]

specifying a receptive field. Our conditional intensity function is adapted
from a model of primary motor cortex (Moran & Schwartz, 1999):

λ(t|vx, vy) = exp(β0 + β1(v2
x + v2

y)1/2 cos(θ − θp)) (3.4)

= exp(β0 + α1vx + α2vy), (3.5)

where vx and vy are velocities in orthogonal directions.
The receptive field parameters were either directly assigned or drawn

from uniform probability densities on specific intervals as shown in Table 4.
The corresponding receptive fields had preferred directions between −π

and π, background firing rates of 10 spikes per second, and firing rates
of 24.9 spikes per second at a speed of 0.2 m per second in the preferred
direction.

Together with the simulated trajectory, this conditional intensity func-
tion specifies the instantaneous firing rate at each time sample based on
current velocity. Spikes were then generated using the time rescaling the-
orem (Brown et al., 2002), where interspike intervals are first drawn from
a single exponential distribution and then adjusted in proportion to the
instantaneous firing rate. This method is an alternative to probabilistically
thinning a homogeneous Poisson process.

The simulated spiking activity served as the input observations for the
point process filter, described extensively in Eden, Frank, et al. (2004). The
two defining elements of this filter are the state equation and observation
equation. Our state equation is the reach model and represents the dy-
namics of the variables we are estimating, specified by p(xt|xt−1, y). Our
observation equation is the receptive field of each neuron, specified by
p(�Nt|�N1:t−1, xt, yT ). This is the probability of observing �Nt spikes at
time t, given previous spike observations �N1:t−1, the current kinematic
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state xt , and the observation of target yT . Because the spiking activity is
described as a point process, the conditional intensity function specifies
this observation density:

p(�Nt|�N1, . . . ,�Nt−1, xt, yT ) ≈ exp[�Ni
t log(λ(t|xt)δ) − λ(t|xt)δ],

(3.6)

where δ denotes the time increment.
The formulation of a recursive estimation procedure from these two

probability densities is the topic of Eden, Frank, et al. (2004). As with the
Kalman filter, the resulting point process filter comprises a prediction step
to compute p(xt|�N1:t−1, yT ) and an update step to compute p(xt|�N1:t, yT ).
The reach state equation determines the mean and variance prediction steps
of the point process filter, as given by

x̂t|t−1 = Bt x̂t−1|t−1 + ft (3.7)

�t|t−1 = Bt�t−1|t−1 B ′
t + Q̃t. (3.8)

The update step remains unchanged:

(�t|t)−1 = �−1
t|t−1 +

[(
∂ log λ

∂xt

)
[λ�δk]

(
∂ log λ

∂xt

)

− (�Nt − λ�δk)
∂2 log λ

∂xt

]
xt|t−1

(3.9)

x̂t|t = x̂t|t−1 + �t|t

[(
∂ log λ

∂xt

)′
(�Nt − λ�δk)

]
xt|t−1

. (3.10)

We compared the quality of reconstruction using the reach state equation
versus the standard free arm movement state equation. The same covari-
ance Qt from equation 3.1 was incorporated into the free arm movement
state equation 2.1 and the reach state equation 2.20. Figure 5 compares po-
sition and velocity decoding results for one simulated trial on a trajectory
generated from the reach state equation. In this trial, the filter employing a
reach state equation is provided the target location with relative certainty
by setting both the r and p parameters of �T to 1e-5 m2 in equation 3.2. The
point process filter appears to track the actual trajectory more closely with
the reach state equation than with the free movement state equation.

Next, we examined the performance of the reach model point process
filter in estimating trajectories that were generated from the canonical
equation, 3.3, rather than the reach state equation to determine whether
the reconstruction would still perform under model violation. Decoding
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performance for one trial with the canonical trajectory is illustrated in Fig-
ure 6, using the free movement state equation and the reach state equation
with r and p in �T set to 1e-5 m2, as with Figure 5. Again, the point process
filter tracks the actual trajectory more closely when using the reach state
equation than when using the free movement state equation.

We then assessed whether incorrect and uncertain target planning infor-
mation could be refined with neural activity that was informative about the
path. We implemented the target-augmented state equation and examined
the mean and variance of estimates of the target position as the reach pro-
gressed. Although the true target coordinates were (0.25 m, 0.25 m) on the
x-y plane, the initial estimate of the target location was assigned to (1m,
1m) with a variance of 1 m2, large relative to the distance between the initial
target estimate and correct target location. Decoding performance for one
trial is illustrated in Figure 7. In Figures 7A and 7B, the estimate of the target
location is shown to settle close to the true target location relative to the
initial target estimate within 1.5 seconds of a 2 second reach. In Figure 7C,
the variances in the position (solid) and velocity (dotted) estimates for tar-
get (black) approach the variances in estimates for the path (gray) as the
reach proceeds.

Finally, we confirmed in simulation that the MSE of reconstruction using
the reach state equation approaches that of the free movement state equation
as the uncertainty in target position grows. One common simulated set of
neural data was used to make a performance comparison between the two
methods. Mean squared errors were averaged over 30 trials for the point
process filter using the free and reach state equations separately. The results
are plotted in Figure 8 for values of r and p in �T set equal and over a range
from 1e–7 m2 to 10 m2, evenly spaced by 0.2 units on a log10(m2) scale. The
MSE line for the reach state equation approaches that of the free movement
state equation as �T grows large and also flattens as �T approaches zero.

4 Discussion

We have developed a method for describing reaching arm movements with
a general linear state equation that is constrained by its target. We first
derived a reach state equation, which incorporates information about the
target that is received prior to movement. This derivation was then adapted
to explicitly include the target as an additional state space variable. The
resulting augmented state equation supports the incorporation of target
information throughout the reach as well as during the planning period.

As described in the derivation, the reach state equation is Markov. This
property is guaranteed in part by the independence of noise increments that
is demonstrated in the appendix. Consequently, the reach state equation is
amenable to recursive estimation procedures. With no further alterations,
the estimate of xt can be obtained exclusively from the neural observation
at time t and the estimate of xt−1 given data through time t − 1.
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The form of the reach state equation presented in 2.18 is particularly
suggestive of stochastic control. In fact, the ut component in equation 2.18
is the solution to the standard linear quadratic control problem. This repre-
sents a duality between estimation and control (Kailath et al., 2000). In this
interpretation, the reach state equation is a model for the way in which the
subject dynamically plans their path from a current position to the target.
The stochastic increment εt represents our uncertainty as external observers,
about the precise control strategy being employed. The variable ut takes the
role of a control input that represents the adjustments that the subject is
expected to make to return the trajectory to a path that puts it on track to
the target. In the reach state equation, ut is a function of the state xt−1 and
target observation yT . In the augmented state equation, ut is a function of
xt−1 and the actual target xT rather than the target observation yT .

Various parameters work together to determine our uncertainty in the
control strategy, including the increment variance in the original free move-
ment state equation, distance to target, time to target, and target uncer-
tainty. Together, these parameters determine whether the state equation at
any given time forces the trajectory toward a particular target or whether
the trajectory tends to proceed in a relatively unconstrained fashion.
Figures 2 and 3 describe the variation in trajectories that can be gener-
ated by modulating these parameters, from very directed movements to
paths with nearly unconstrained directions.

The reach state equation in its simplest form is sufficient to generate,
on average, bell-shaped velocity profiles that are similar to those observed
in natural arm reaching (Morasso, 1981; Soechting & Lacquaniti, 1981).
Models of reaching movement that are based on optimization of specific
cost functions, examples of which include Hogan (1984) Uno et al. (1989),
Hoff and Arbib (1993), and Harris and Wolpert (1998), also generate these
bell-shaped velocity profiles. It has been previously noted in a literature
review (Todorov, 2004a) that these various methods implicitly or explic-
itly optimize a smoothness constraint. In our reach state equation, the

Figure 5: Reconstruction of reaching arm movements from simulated spiking
activity. The reach state equation was used to generate trajectories, from which
spiking activity was simulated with a receptive field model of primary motor
cortex. Point process filter reconstructions using a free movement state equation
(thin gray) and a reach state equation (thick gray) were compared against true
movement values (black). Trajectories of x and y arm positions were plotted
against each other (A) and as a function of time (B, C). Additionally, trajectories
of x and y arm velocities were plotted against each other (D) and as a function
of time (E, F). In these examples, target location is known almost perfectly to
the reconstruction that uses the reach state equation, with position and velocity
variances of 1e-5 m2.
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bell-shaped velocity profile emerges implicitly from the zero-mean gaus-
sian increment of the original free movement state equation. This proba-
bility density sets a probabilistic smoothness constraint, where it is more
likely that the state at consecutive time steps will be similar.

Additionally, symmetry in the profile emerges from the choice of a con-
stant, invertible matrix At in equation 2.18 and equal mean starting and
ending velocities, as with trajectories in Figure 4A. Optimal control mod-
els have previously reproduced the skewed velocity profiles (Hoff, 1992)
that occur in experiments (Milner & Ijaz, 1990) where the target must be
acquired with increased precision. With the reach state equation, skewed
profiles may require the appropriate choice of time-varying components
such as At and wt . When the arrival time grows longer (see Figure 4B) or
the end point becomes less constrained (see Figure 4C) in the reach state
equation, the trajectory tends to resemble a sample path of the free move-
ment state equation, as intended by construction.

As the reaching motion approaches the target arrival time, our sense
of the subject’s control strategy becomes clearer, because we know the in-
tended target with some uncertainty. We also know that the path must
converge to this target soon. Furthermore, we can calculate the control sig-
nal that would achieve this goal based on the system dynamics represented
by the At matrices in equation 2.18. Figure 4D illustrates that the uncer-
tainty in the control strategy, represented by the variance in the stochastic
increment εt , decreases over the duration of the reach based on yT, the
prescient observation of the target. In contrast, the free movement state
equation maintains constant uncertainty in the control strategy as the reach
progresses because it is not informed about the target location.

Because the reach state equation incorporates target information, it is
able to perform better than the equivalent free movement state equation
that is uninformed about target. This is illustrated in Figure 5, where closer
tracking is achieved over the entire reach when the state equation is in-
formed about target than otherwise.

This reach model and its augmented form are minimally constrained
linear state equations. In a probabilistic sense, this means that the estimation
prior at each step is only as narrow (or broad) as implied by the original free

Figure 6: Reconstruction in the face of model violation. Trajectories are gen-
erated with an appropriately scaled cosine velocity profile. Again, results are
compared for point process filtering using free (thin black) and reach (thick
gray) movement state equations against true values (thick black). As with
Figure 5, trajectories of x and y arm positions were plotted against each other
(A) and as a function of time (B, C). Similarly, trajectories of x and y arm veloci-
ties were plotted against each other (D) and as a function of time (E, F). Position
and velocity variances of the target observation are 1e-5 m2.
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movement state equation and observations of path and target. In contrast,
most reach models based on specific control strategies (Todorov, 2004b), cost
functions (Todorov, 2004a), or canonical models (Kemere, Santhanam, Yu,
Shenoy, & Meng, 2002; Cowan & Taylor, 2005) place additional constraints
on the path that make the estimation prior more exclusive of alternate paths
to target. An exception is Kemere and Meng (2005), which uses the linear
quadratic control solution that provides identical average trajectories to the
reach state equation, based on the estimation control duality (Kailath et al.,
2000) although the resulting increment variances are different. As depicted
in Figure 6, estimation with a reach state equation is able to perform under
model violation, where arm movements are generated by a different model
while still taking advantage of the target information.

The target-augmented state equation also allows neural activity related
to the path to inform estimates of the target. This is illustrated in Figure 7,
where the initial estimate of target position was assigned to be incorrect
and with large uncertainty (variance). Consequently, the estimate of the
target location relied in large part on neural activity that related to the path.
The augmented state equation projects current path information forward
in time to refine target estimates. As a result, the estimated target location
in Figure 7B settled close to the actual target location 0.5 second before
completion of the 2 second reach. The remaining distance between the
target location estimate and the actual target location is limited by the extent
to which path-related neurons provide good path estimates. For example,
path-related neural activity that is relatively uninformative about the path
will result in poor final estimates of the target when combined only with
poor initial target information. Because the target in the augmented state
equation is simply the final point of the path, the variance in the target
estimate plotted in Figure 7C approaches that of the path estimate as the
reach proceeds to the arrival time T .

Figure 7: Target estimation with the augmented state equation for one trial.
The initial estimate of the target is intentionally set to be incorrect at (1 m, 1 m)
and with variance of 1 m2 that is large relative to the distance to the true target
location at (0.25 m, 0.25 m). Subsequent target estimates are produced using
simulated neural spiking activity that relates directly to the path rather than the
target. (A) Estimates of the target position are plotted in gray on the x-y axis,
with the actual target marked as a black cross. (B) Distances from target estimates
to the actual target location are plotted in meters against time. (C) Variances in
estimates of target (black) and path (gray) are plotted on a logarithmic scale
over the duration of one reach for position (solid) and velocity (dashed). These
target estimate variances reduce with observations consisting of only simulated
primary motor cortical activity relating to path.
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Figure 8: Performance comparison between two approaches to estimation on
the same simulated set of neural data. MSE of position reconstruction is plotted
versus log10 of uncertainty (variance) in the prescient observation of target. For
each of 30 trials, receptive field parameters, trajectory, and spiking activity were
simulated anew. For each target variance, MSE is averaged over reconstructions
from the 10 trials. In the case of large initial target uncertainty, the MSE for
reconstruction with the reach state equation (dotted) asymptotes to that of the
free movement state equation (solid). The MSE for reconstruction with the reach
state equation also asymptotes as initial target uncertainty diminishes.

The reach state equation in 2.18 or 2.20 reduces to the original free move-
ment state equation in the limit that the prescient target observation is
completely uncertain. This explains the trend in Figure 8, where MSE in
trajectory estimates with the reach state equation approaches that of the
free movement state equation. Estimates were produced from a common
simulated set of neural data to allow performance comparison between
these two approaches.

Filtering with the reach and augmented state equations, 2.18 and 2.23,
respectively, bears resemblance to fixed interval smoothing. Fixed interval
smoothing refers to a class of estimation procedures that produce maximum
a posteriori estimates of trajectory values over an interval with observations
of the trajectory over the entire interval (Kailath et al., 2000). In filtering with
the reach state equation, estimates at a given time t are based on data re-
ceived through time t and the single prescient observation yT on the target
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state xT . In filtering with the augmented state equation, estimates of xt are
based on data received through time t and potentially multiple prescient
observations on xT . While these three filter types employ observations of
future states in maximum a posteriori estimates, there are important distinc-
tions in terms of which observations are used and allowance for multiple
sequential observations of a single state, such as with xT in the augmented
state equation.

Although parallels exist to stochastic control, there is a sharp distinc-
tion between the results of this article and a control-based state equation
(Todorov, 2004b; Kemere & Meng, 2005). First, the reach state equation was
derived as the natural extension of a free movement state equation, with
no further assumptions. In contrast, control-based state equations are de-
rived by assuming a specific form for the brain’s controller and choosing
the parameters that optimize some cost function. Second, the increment in
the reach state equation approaches zero for perfectly known targets. The
increment of control-based state equations persists and represents system
properties rather than our uncertainty about the control signal. Third, the
reach state equation describes the target state in the most general sense,
including the possibility of nonzero velocities. While this can be accommo-
dated in the control framework, the classical notion of a reaching motion
has been to a target with zero velocity.

Distinctions between the reach state equation and control-based state
equations are especially important in considering the study of reaching
motions. Recursive estimation coupled with a state equation that relates
target to path provides a convenient tool for the analysis of neural data
recorded during planning and execution of goal-directed movements. The
state-space estimation framework can assess the extent to which neural data
and an observation equation improve the reconstruction beyond informa-
tion about the movement built into the state equation.

Classically, control-based state equations have been developed to explain
as many features about reaching movements as possible without any neural
data. In contrast, the reach state equation was developed to extend the free
movement state equation with no further assumptions. Both approaches
represent different levels of detail in a spectrum of models for the dynamics
that drive the observed neural activity in brain regions that coordinate
movement. These models can be used to clarify the roles of various brain
regions or the validity of alternate neural spiking relationships.

The reach and augmented state equations may also provide improved
control in brain machine interfaces (Srinivasan et al., 2005) by allowing the
user to specify a target explicitly with neural signals or implicitly through
the probability density of potential targets in a workspace. This and other
recent approaches (Cowan & Taylor, 2005; Yu et al., 2005; Kemere & Meng,
2005) are hybrids between target-based control prosthetics (Musallam et al.,
2004; Santhanam et al., 2005) and path-based control prosthetics (Carmena
et al., 2003; Taylor et al., 2002; Wu, Shaikhouni, et al., 2004), perhaps most
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relevant when neither approach alone is sufficient for the desired level of
control using available recording hardware to complete a task. Additionally,
the method could support more robust receptive field estimates in the face
of disappearing units due to neuronal death or tissue retraction (Eden,
Truccolo, Fellows, Donoghue, & Brown, 2004). The flexibility of the reach
and augmented state equations over more specific reach models might also
allow the user to employ the same reaching algorithm to navigate obstacles
in acquiring the target.

In developing the method further for scientific and clinical application, it
is important to consider limitations of the equations presented in this article.
Importantly, both the augmented and reach state equation are written for
the prescient observation of a target with known arrival time T . We are cur-
rently developing a principled approach to accommodate uncertain arrival
time, although uncertainty in the target velocity estimate might be a conve-
nient surrogate. Also, the calculations were simplified greatly by assuming
a linear free-arm-movement state equation with gaussian increments. This
may not be possible if linear approximation is insufficient to describe the
nonlinear dynamics of a movement. Finally, additional experimental work
will be needed to elucidate the appropriate observation equations, record-
ing sites, and patient rehabilitation regimen that would enhance the clinical
application of this hybrid approach to control prosthetics.

Appendix: Proof of Independent Increments in the Reach State
Equation

The new increments are defined as εt = wt − E[wt|yT , xt−1]. Substituting
equation 2.6 into an equation that is equivalent to equation 2.12, we can
rewrite the new increments as

εt = wt − Qtφ(T, t)′S−1
t

(
T∑

i=t

φ(T, i)wi + vT

)
, (A.1)

where St = RT + ∑T
i=t φ(T, i)Qiφ(T, i)′ and RT is the covariance of the

observation random variable yT , with RT = φ(T, t − 1)Vt−1φ
′(T, t − 1) +∑T

i=t φ(T, i)Qiφ
′(T, i) + �T . Therefore, εt can be written entirely in terms

of the future increments {wi }T
i=t and vT . For s < t,

E[εtε
′
s] = E

[(
wt − Qtφ(T, t)′S−1

t

(
T∑

i=t

φ(T, i)wi + vT

))

×
(

ws − Qsφ(T, s)′S−1
s

(
T∑

i=s

φ(T, i)wi + vT

))′]
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= −Qtφ(T, t)′S−1
s φ(T, s)Qs + Qtφ(T, t)′S−1

t

×
(

T∑
i=t

φ(T, i)Qiφ(T, i)′ + RT

)
S−1

s φ(T, s)Qs

= −Qtφ(T, t)′S−1
s φ(T, s)Qs + Qtφ(T, t)′S−1

s φ(T, s)Qs = 0.

(A.2)
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