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Abstract—We introduce a new class of upper bounds on the log
partition function of a Markov random field (MRF). This quan-
tity plays an important role in various contexts, including approx-
imating marginal distributions, parameter estimation, combinato-
rial enumeration, statistical decision theory, and large-deviations
bounds. Our derivation is based on concepts from convex duality
and information geometry: in particular, it exploits mixtures of
distributions in the exponential domain, and the Legendre map-
ping between exponential and mean parameters. In the special case
of convex combinations of tree-structured distributions, we obtain
a family of variational problems, similar to the Bethe variational
problem, but distinguished by the following desirable properties:
i) they are convex, and have a unique global optimum; and ii) the
optimum gives an upper bound on the log partition function. This
optimum is defined by stationary conditions very similar to those
defining fixed points of the sum–product algorithm, or more gen-
erally, any local optimum of the Bethe variational problem. As
with sum–product fixed points, the elements of the optimizing ar-
gument can be used as approximations to the marginals of the orig-
inal model. The analysis extends naturally to convex combinations
of hypertree-structured distributions, thereby establishing links to
Kikuchi approximations and variants.

Index Terms—Approximate inference, belief propagation,
Bethe/Kikuchi free energy, factor graphs, graphical models,
information geometry, Markov random field (MRF), partition
function, sum–product algorithm, variational method.

I. INTRODUCTION

UNDIRECTED graphical models, otherwise known as
Markov random fields (MRFs), provide a powerful

framework with which to represent a structured set of de-
pendency relations among a set of random variables, e.g.,
[13], [24]. Such models are used in a wide variety of fields,
including statistical physics, coding theory, statistical image
processing, computer vision, and machine learning. Associated
with any MRF is a log partition function, the most obvious
role of which is to normalize the distribution. In addition to
this purpose, it plays a fundamental role in various contexts,
including approximate inference [17], maximum-likelihood
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parameter estimation [19], combinatorial enumeration [34],
and large-deviations bounds [12]. For an undirected graphical
model without cycles (i.e., a tree), the log partition function
can be computed in a straightforward manner by recursive
updates of a dynamic programming nature [30]. For a general
MRF on a graph with cycles, however, exact calculation of
the log partition function is computationally intractable due to
the exponential number of terms. Therefore, approximating or
obtaining bounds on the log partition function is an important
problem.

There is a fairly substantial literature on the use of Monte
Carlo methods for approximating the log partition function in
a stochastic manner, e.g., [18], [31]. It is also of considerable
interest to obtain deterministic upper and lower bounds on the
log partition function. In this context, mean field theory, e.g.,
[48], [19] is well known to provide a lower bound on the log
partition function. By using higher order expansions, Leisink
and Kappen [25] derived lower bounds that are tighter than
naive mean field. In contrast, upper bounds on the log partition
function are not widely available. For the special case of the
Ising model,1 Jaakkola and Jordan [17] developed a recursive
node-elimination procedure for upper bounding the log parti-
tion function. However, this procedure does not appear to have
any straightforward generalizations to more complex MRFs.

In this paper, we develop a new class of upper bounds on the
partition function of an arbitrary MRF. The basic idea is to ap-
proximate the original distribution using a collection of tractable
distributions, where the term “tractable” refers to a distribution
for which the partition function can be calculated efficiently
by a recursive algorithm. The canonical example of a tractable
MRF is one corresponding to a graph without any cycles (i.e., a
tree). More generally, distributions corresponding to graphs of
bounded tree width are tractable, in that the junction tree algo-
rithm [24] can be used to perform exact calculations, albeit with
a cost exponential in the tree width. Although the ideas and anal-
ysis described here can be applied quite generally to approxima-
tions based on bounded tree-width graphs, the primary focus of
this paper is the use of approximations based on spanning trees.

One cornerstone of our work is provided by exponential rep-
resentations of distributions, which have been studied exten-
sively in statistics and applied probability, e.g., [1], [3], [9]. In
particular, the entire collection of MRFs associated with a given
graph constitutes an exponential family. Any member of the
family is specified by an exponential parameter, the elements of
which are weights for potential functions defined on the graph
cliques. Given some target distribution, we decompose its expo-
nential parameter as a convex combination of exponential pa-

1The Ising model [4] is a pairwise MRF on a binary random vector.
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rameters corresponding to tractable distributions. By exploiting
the convexity of the log partition function, such a mixture in the
exponential domain leads to an upper bound on the log parti-
tion function of the target distribution. The collection of weights
defining the convex combination itself can be interpreted as a
probability distribution over the set of tractable distributions.

Of course, even in the case of spanning trees, there is a huge
collection of such bounds—one for every collection of tree ex-
ponential parameters, and corresponding distribution over these
trees. It is natural, then, to consider the problem of optimizing
the choice of these free variables so as to obtain the tightest pos-
sible upper bound. At first sight, solving this problem appears to
be intractable. Even with the distribution over the spanning trees
fixed, there are more free variables in the problem than spanning
trees in the graph, the number of which is very large for a rea-
sonably complex graph with cycles. However, by construction,
the problem involves a convex cost with linear constraints, so
that it is amenable to the methods of convex duality [6], [32]. In
particular, by a Lagrangian dual reformulation, we obtain a vari-
ational problem that can be solved efficiently, thereby yielding
the value of the upper bound that is optimal over all exponential
parameters on all spanning trees of the graph.

Interestingly, the dual function obtained by this Lagrangian
reformulation turns out to be closely related to the Bethe varia-
tional problem of statistical physics. Thus, our analysis makes
connections with the recent work of Yedidia, Freeman, and
Weiss [46], who showed that the well-known belief propagation
or sum–product algorithm, e.g., [23], [30] can be formulated as
a method for attempting to solve this Bethe variational problem.
Not surprisingly then, the conditions defining the optima of our
dual problem are strikingly similar to the conditions that char-
acterize fixed points of the sum–product algorithm. (See [37],
[35] for more details of the reparameterization interpretation of
sum–product and related algorithms.) So as to make the con-
nection with the sum–product algorithm even more concrete,
we develop a tree-reweighted sum–product algorithm, which
can be used to solve our variational problem. Despite these
similarities, our dual function has two properties that are not
typically enjoyed by the Bethe formulation: it is convex, and
the global optimum gives an upper bound on the log-partition
function.

We then turn to the problem of optimizing the choice of dis-
tribution over spanning trees of the graph. Here the exponential
explosion in the problem dimension again poses a challenge.
However, we are able to exploit the fact that our dual func-
tion depends on the spanning tree distribution only via a set of
so-called edge appearance probabilities, one for each edge of the
graph. We show that this edge appearance vector must belong to
the spanning tree polytope. This set, which is a well-studied ob-
ject in combinatorial optimization and matroid theory, e.g., [14],
[42], is characterized by a number of inequalities that is expo-
nential in the graph size, thereby precluding a direct approach to
optimizing our nonlinear dual function. However, maximizing a
linear function over the spanning tree polytope is equivalent to
solving a maximum weight spanning tree problem, which can
be performed efficiently by a greedy algorithm [20]. Thus, it is
feasible to optimize the edge appearance probabilities via a con-
ditional gradient method [6]. We show that this algorithm has

the conceptually appealing interpretation of sequentially fitting
the current data with the spanning tree that is best in the max-
imum-likelihood sense, as in the work of Chow and Liu [11].

The remainder of this paper is organized in the following
manner. In Section II, we introduce the necessary background
for subsequent development, beginning with the basics of graph
theory and then turning to MRFs. Our presentation of MRFs is in
terms of exponential representations, thereby enabling us to har-
ness associated results from information geometry, e.g., [1], [3].
In Section III, we develop the basic form of the upper bounds,
obtained by taking convex combinations of tree-structured dis-
tributions. Section IV is devoted to analysis of the optimal form
of the upper bounds, as well as discussion of their properties.
In Section V, we present efficient algorithms for computing the
optimal form of these upper bounds. Section VI describes the
extensions of our techniques and analysis to convex combina-
tions of hypertree-structured distributions. We conclude in Sec-
tion VII with a discussion, and directions for future research.

II. BACKGROUND

In this section, we first provide some basic concepts from
graph theory that are necessary for development in the sequel;
further background can be found in various sources, e.g., [5],
[7], [8]. We then introduce the concept of an MRF, with partic-
ular emphasis on exponential families of MRFs. More details
on graphical models and MRFs can be found in the books,
e.g., [19], [13], [24]. Next we present a number of results from
convex duality and information geometry that are associated
with exponential families. Our treatment emphasizes only
those concepts necessary for subsequent developments; more
background on information geometry and convex duality can
be found in a variety of sources, e.g., [1]–[3], [32], [39].

A. Basics of Graph Theory

An undirected graph consists of a set of nodes
or vertices that are joined by a set of edges

. This paper focuses exclusively on simple graphs, in which
multiple edges between the same pair of vertices, as well as self-
loops (i.e., an edge from a vertex back to itself) are forbidden. A
clique of the graph is any subset of the vertex set for which
each node is connected to every other. A clique is maximal if it is
not properly contained within any other clique. For each ,
we let denote the set of neighbors
of .

A path from node to node is a sequence of distinct
edges . We say that a graph is
connected if for each pair of distinct vertices, there is a
path from to . A component of a graph is a maximal connected
subgraph. A cycle in a graph is a path from a node back to
itself; that is, a cycle consists of a sequence of distinct edges

such that . A tree
is a cycle-free graph consisting of a single

connected component; a forest is a disjoint union of trees. A
tree is spanning if it reaches every vertex (i.e., ). See
Fig. 1 for illustration of these concepts. Given a graph with a
single connected component, a vertex cutset is any subset

whose removal breaks the graph into two or more pieces. For
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Fig. 1. (a) Graph with cycles. (b) A tree is a cycle-free subgraph. (c) A forest is a disjoint union of trees; it is spanning if it reaches every vertex of the graph.
(d) A spanning tree reaches every vertex of the graph.

Fig. 2. Illustration of the relation between conditional independence and graph
separation. Here the set of nodesB separatesA andC , so that for a MRF, xxx
and xxx must be conditionally independent.

example, with reference to the graph of Fig. 2, the subset of
nodes is a vertex cutset, because it separates the graph into
the disjoint parts and .

B. Exponential Representation of Markov Random Fields

An undirected graph defines an MRF in the fol-
lowing way. We first associate to each vertex a random
variable taking values in some sample space . The focus of
this paper is the discrete case for which .
We let be a random vector with
elements taking values in the Cartesian product space

. For any subset , we let denote
the collection of random variables associated with
nodes in .

Of interest are random vectors that are Markov with respect
to the graph . To define this Markov property, let , , and

be arbitrary subsets of the vertex set , and let denote
the random vector conditioned on . The random vector

is Markov with respect to the graph if and are
conditionally independent whenever separates and . See
Fig. 2 for an illustration of this correspondence between graph
separation and conditional independence.

The well-known Hammersley–Clifford theorem, e.g., [24] as-
serts that any MRF that is strictly positive (i.e.,
for all ) decomposes in terms of functions associated
with the cliques of the graph. To be more precise, a potential
function associated with a given clique is mapping

that depends only on the subcollection .
There may be a family of potential functions
associated with any given clique, where is an index ranging
over some set . Taking the union over all cliques defines
the overall index set . The full collection of po-
tential functions defines a vector-valued map-
ping , where is the total number of
potential functions. Associated with is a real-valued vector

, known as the exponential parameter vector.
For a fixed , we use to denote the ordinary
Euclidean product (in ) between and .

The exponential family associated with consists of the fol-
lowing parameterized collection of MRFs:

(1a)

(1b)

Each vector indexes a particular MRF in this
exponential family; with some abuse of notation, we will often
use the parameter vector itself as a shorthand for the associ-
ated distribution. Of central interest in this paper is the quantity

defined in (1b): it is the log partition function that serves to
normalize the distribution. Note that it is defined by a summa-
tion over all configurations , the number of which grows
exponentially in the number of vertices .

The Ising model of statistical physics, e.g., [4], provides a
simple illustration of an exponential family.2 It involves a binary
random vector , with a distribution defined by a
graph with maximal cliques of size two (i.e., edges)

(2)

Here is the strength of edge , and is the node pa-
rameter for node . In this case, the index set consists of the
union . The exponential representation in the Ising model
is minimal [3], because there are no linear combinations of the
potentials equal to a
constant for all .

In contrast to a minimal representation, it is often conve-
nient to use an overcomplete exponential representation, in
which the potential functions satisfy linear constraints. More
specifically, we will use an overcomplete representation in
which the basic building blocks are indicator functions of the
form —the function that is equal to one if , and
zero otherwise. As an illustration, for a pairwise MRF (i.e.,
defined on a graph with maximal cliques of size two), we use
the following collection of potential functions:

for (3a)

for (3b)

2To be precise, the model presented here is slightly more general than the
classical Ising model, since it allows the parameter for each node and edge to
vary independently.
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The overcompleteness of the representation is manifest
in various linear constraints among the potentials (e.g.,

). As a consequence of
this overcompleteness, there are many exponential parameters
corresponding to a given distribution (i.e.,
for ). As a particular example, consider a Bernoulli
random variable with a minimal exponential distribution

. In this very special case, the
overcomplete representation of (3) takes the form

By inspection, any parameter that satisfies the
linear constraint gives rise to the same distribu-
tion . Despite this many-to-one correspondence between
parameters and distributions, we will make considerable use of
this overcomplete representation, since it leads to more easily
interpretable results.

C. Significance of Graph Structure

We now consider the complexity of computing, for a given
MRF , the value of the log partition function in
(1b). A brute-force approach, which entails a summation over
a number of terms that grows exponentially in , is not
feasible for large problems. It turns out that the inherent com-
plexity of this problem depends critically on the nature of the
underlying graph. Any tree-structured graph can be “rooted”
by specifying some vertex as the root. The log partition func-
tion can then be computed by a sequence of recursive computa-
tions, sweeping upwards from the leaves to the root of the tree.
The overall computational complexity of such an algorithm is

, where . More details on such dy-
namic-programming algorithms for trees can be found in var-
ious sources, e.g., [23], [30], [45].

Any graph with cycles can be converted, through a process
of clustering its nodes together so as to form aggregated nodes,
into a structure known as a junction tree [13], [24]. At least in
principle, standard tree algorithms can be applied to perform
exact computations on this junction tree. This combination of
forming a junction tree and then running a standard tree algo-
rithm to perform exact computation is known as the junction
tree algorithm [24]. As noted above, however, the cost of run-
ning a tree algorithm depends quadratically on the number of
states at each node. This number of states grows exponentially
with the size of the largest cluster involved in the junction tree, a
quantity closely related to the tree width of the graph.3 For many
classes of graphs, this tree width grows sufficiently rapidly (as
a function of ) so as to render prohibitive the cost of running
an exact tree algorithm on the junction tree. This explosion is an
explicit demonstration of the intrinsic complexity of exact com-
putations for graphs with cycles.

Throughout this paper, we use the word tractable to refer to
either a tree-structured distribution (or more generally, a distri-
bution associated with a graph of bounded tree width) for which
it is computationally feasible to apply the junction tree algo-
rithm [24]. Of interest to us, of course, is the approximate com-
putation of the log partition function for an intractable model.

3To be more precise, the tree width k of a graph G is equal to c� 1, where c
is the size of the largest cluster in a minimal junction tree of G.

D. Information Geometry and Convex Duality

In this subsection, we provide a brief overview of the ideas
from convex duality and information geometry that are neces-
sary for development in the sequel. It is well known, e.g., [2],
that the log partition function is convex as a function of the
exponential parameters. This convexity follows from properties
of given in the following lemma.

Lemma 1:

a) Taking first derivatives of generates (first-order) mo-
ments of —viz.

b) Moreover, the second derivatives are covariance
terms of the form

More generally, the log partition function is the cumulant
generating function, in that the partial derivatives of order
correspond to th-order cumulants of . Note that Lemma 1
b) implies that is convex, since any covariance matrix must
be positive semidefinite. Moreover, the convexity is strict for a
minimal representation.

An important quantity is the conjugate dual function of . It
is defined by the optimization problem

(4)

where is a vector of dual variables. For a given dual
vector , it can be shown [39] that the supremum in (4) is either
equal to , or is attained at a vector such that the following
condition holds for each :

(5)

These moment-matching conditions can be obtained by using
Lemma 1 to calculate the gradient of with respect
to , and then setting this gradient to zero. Since (5) involves
taking an expectation, the dual variables are often referred to as
mean or moment parameters. Note that in order for (5) to have a
solution, the dual vector must arise as a vector of realizable
mean parameters; more precisely, it can be shown [39] that it
must belong to the (relative interior) of the set

(6)

More details on the structure of this so-called marginal poly-
tope can be found in the technical report [39]. We also use

to denote the marginal polytope associated with a
graph .

In order to calculate an explicit form for the Legendre dual
, we substitute the result of (5) into (4), which leads to

(7)

Therefore, whenever , the value of the conju-
gate dual is equal to the negative entropy of the distri-
bution .

The conjugate duality between and defines a mapping
between exponential and mean parameters. For a



WAINWRIGHT et al.: A NEW CLASS OF UPPER BOUNDS ON THE LOG PARTITION FUNCTION 2317

minimal representation, the function is strictly convex, and
the function is is one-to-one and hence invertible on its image
which is the relative interior of (see [9], [39]). On the
basis of these mappings, we can specify distributions either in
terms of the exponential parameter , or the associated dual pa-
rameter . Given a valid dual parameter , the notation
will be used as a shorthand for the equivalent exponential dis-
tribution . Any pair and that are related via (7)
are said to be dually coupled.

III. UPPER BOUNDS BY CONVEX COMBINATIONS

In this section, we develop the basic form of the upper bounds
on the log partition function . For simplicity in exposition, the
bulk of our development focuses on the case of a so-called pair-
wise MRF, for which the maximal cliques of the underlying
graph have size two. In this case, the collection of poten-
tials consists only of functions associated with single nodes and
edges (i.e., pairs of nodes). However, as we show in Section VI,
the analysis given here is applicable also to general MRFs that
may include higher order cliques.

In the case of pairwise MRFs, our upper bounds are based
on convex combinations of tree-structured distributions; accord-
ingly, we begin with the notation and definitions necessary to
specify such combinations. Our results are most clearly stated
in the overcomplete exponential representation of (3), which is
based on indicator functions at single nodes and on edges. In
this case, the index set is given by the union

Let be the exponential parameter corre-
sponding to the target distribution of interest. Note that

is a vector in , where

In order to obtain bounds, we will consider only spanning
trees of the graph.4 Accordingly, let denote the set of
all spanning trees of the graph . For each spanning tree ,
let be an exponential parameter vector that respects
the structure of the tree . To be explicit, suppose that ,

, and let be the index subset formed by indices
associated with single nodes, or with edges in the tree

In order for the distribution to be tree structured, the
parameter must belong to the following constraint set5

(8)

For compactness in notation, let denote
the full collection of tree-structured exponential parameter vec-
tors, where indexes those subelements of associated with

4Our methods could be applied more generally to spanning forests, but they
would lead to weaker bounds.

5Since the constraints on �(T ) are affine, each such E(T ) is an e-flat manifold
in the sense of information geometry [1], [2].

Fig. 3. Illustration of the spanning tree polytope (G). Original graph is
shown in panel (a). Probability 1=3 is assigned to each of the three spanning
trees fT j i = 1; 2; 3g shown in panels (b)–(d). Edge b is a so-called bridge
in G, meaning that it must appear in any spanning tree. Therefore, it has edge
appearance probability � = 1. Edges e and f appear in two and one of the
spanning trees, respectively, which gives rise to edge appearance probabilities
� = 2=3 and � = 1=3.

spanning tree . The full collection is required to belong the
affine constraint set

for all (9)

In order to define a convex combination, we require a proba-
bility distribution over the set of spanning trees

(10)

For any distribution , we define its support to be the set of trees
to which it assigns strictly positive probability; that is,

(11)

For a given tree , let be an indicator
vector for the edges that comprise the tree, with element
given by

if
otherwise.

(12)

The spanning tree polytope [10], [14], which we denote by
, is defined as the convex hull of these tree indicator

vectors

(13)

where ranges over all possible distributions over spanning
trees. Note that for a fixed edge , the element

can be interpreted as the probability
that edge appears in a spanning tree chosen ran-
domly under . Thus, the vector cor-
responds to the full collection of these edge appearance prob-
abilities, and we refer to it as an edge appearance vector. See
Fig. 3 for an illustration of the edge appearance vector and
the spanning tree polytope. Throughout this paper, we assume
that is chosen such that the associated edge appearance prob-
abilities are all strictly positive; that is, each
edge appears in at least one tree . We say
that the distribution , or the edge appearance probabilities
are valid when they satisfy this condition.

A convex combination of exponential parameter vectors is
given by taking an expectation with respect to as follows:

(14)
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Fig. 4. A convex combination of four distributions p(xxx; �(T )), each defined
by a spanning tree T , is used to approximate the target distribution p(xxx; ��) on
the single-cycle graph.

This combination represents a mixture of distributions in the
exponential domain [1], [2]. With reference to the target dis-
tribution , we are especially interested in collections of
exponential parameters for which there exists a convex com-
bination that is equal to . Accordingly, we define the following
set:

(15)

It is not difficult to see that is never empty.

Example 1 (Single Cycle Graph): As an illustration of these
definitions, consider a binary distribution defined by a single
cycle on four nodes. We define the target distribution in the Ising
form

That is, the target distribution is specified by the minimal param-
eter , where the zeros repre-
sent the fact that for all . The four possible span-
ning trees of the single cycle with
four nodes are illustrated in Fig. 4. We define a set of associated
exponential parameters as follows:

Finally, we choose for all . With this uni-
form distribution over trees, we have for each edge,
and moreover, so that the pair belongs
to .

The convexity of allows us to apply Jensen’s inequality
[12] to a convex combination specified by a pair ,
thereby yielding the upper bound

(16)

Note that the bound of (16) is a function of both the distribution
over spanning trees, as well as the collection of tree-struc-

tured exponential parameter vectors. Our goal is to optimize
both of these choices so as to minimize the right-hand side

(RHS) of (16), thereby obtaining the tightest possible upper
bound. A major challenge to be confronted is the dimension-
ality of the problem: the length of corresponds to the number
of spanning trees in the graph, which (for many graphs) is very
large. For example, the complete graph on nodes has

spanning trees; more generally, the number of spanning
trees can be calculated via the matrix-tree theorem [7].

IV. OPTIMAL FORMS OF UPPER BOUNDS

In order to obtain optimal upper bounds of the form in (16),
we begin by fixing the probability distribution over trees, and
then optimizing the choice of the collection of tree-structured
exponential parameters. As we demonstrate, despite the combi-
natorial explosion in the number of spanning trees (and hence
the dimension of ), this problem can be solved efficiently via
its Lagrangian dual. Moreover, the dual formulation also sheds
light on how to optimize over the spanning tree distribution .

A. Optimizing With Fixed

For a fixed distribution , consider the constrained optimiza-
tion problem

such that
(17)

where is defined in (9). Note that is convex as a
function of the full collection

and moreover, the associated constraint set

is linear in . Whenever the distribution is valid (i.e., assigns
strictly positive probability to each edge), then the constraint set
is nonempty. Therefore, the global minimum of problem (17)
could be found, at least in principle, by a variety of standard
methods in nonlinear programming [6]. However, an obvious
concern is the dimension of the parameter vector : it is directly
proportional to , the number of spanning trees in , which
(as noted above) can be very large.

1) Lagrangian Duality: Fortunately, convex duality allows
us to avoid this combinatorial explosion. In particular, the
Lagrangian of problem (17) gives rise to a set of dual variables,
which we show can be interpreted pseudomarginals on the
nodes and edges of the graph. Remarkably, it turns out that this
single collection of pseudomarginals is sufficient to specify
the optimal form of tree-structured distribution for
every spanning tree .

To be more precise, for each node , let
be a pseudomarginal vector with elements; similarly,

for each edge , let be
a pseudomarginal vector with elements. On occasion,
we will also use the notation to refer to the function that
takes the value when ; the joint function
is defined similarly. We use to denote the full collection of
pseudomarginals

(18)

Note that is a vector of the same length as . This
vector of pseudomarginals is required to satisfy a set of local
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normalization and marginalization constraints; in particular, we
require that they are elements of the set given by
the linear constraints

(19)

A key property of this definition is that if is a tree, then
is a complete description of the set of valid single-

node and pairwise marginal distributions. This statement fol-
lows as a special case of the junction tree theorem [13], [24].

Let denote an optimum6 of problem
(17). The significance of is in specifying any such optimum in
a very compact fashion. For each tree , let denote
the projection of onto the spanning tree . Explicitly

(20)

consists only of those elements of corresponding to single
nodes, or belonging to the edge set of the tree .
Any such vector provides an explicit construction of a
tree-structured distribution via the usual factoriza-
tion of tree-structured distributions implied by the junction tree
representation [24]—viz.

(21)

We will prove that the optimal dual solution specifies the
full collection of optimal exponential parameters via the
relation

for all (22)

Equation (22) is an explicit statement of the fact that for each
tree , the exponential parameter and the mean parameter

are dually coupled (see Section II-D).
The significance of (22) is that one set of dual parameters

are shared across all spanning trees of the graph. As a conse-
quence, a single collection of pseudomarginals on nodes and
edges suffices to specify the full collection

of tree parameters. Consequently, the dual formulation reduces
the problem dimension from the size of , which is propor-
tional to , down to the number of elements in —namely,

where . It is this mas-
sive reduction in the problem dimension that permits efficient
computation of the optimum. The conditions defining the op-
timal , given in (22), are very similar to the tree-based repa-
rameterization conditions, see [35], [37], that characterize fixed
points of the sum–product algorithm, and more generally local
optima of the Bethe variational problem. Not surprisingly then,
the dual formulation of Theorem 1 has a very close relation with
this Bethe problem.

2) Optimal Upper Bounds: With this intuition, we are ready
to state and prove the main result of this section. Let be a

6Given its convexity, problem (17) has a unique minimum that is global; how-
ever, in the overcomplete parameterization of (3), this optimum will be attained
at many points. However, our analysis shows that this is not a concern, since any
of these optima are characterized by the dual coupling in (22).

valid distribution over spanning trees, and let be
the associated vector of edge appearance probabilities. For each

and pseudomarginal , we define the single node entropy

(23)

Similarly, for each , we define the mutual informa-
tion between and as measured under the joint pseudo-
marginal

(24)
From these building blocks, we define the following function:

(25)

We also write the inner product between and in as
follows:

(26)

Theorem 1 (Optimal Upper Bounds): For each fixed
, the value of the best upper bound of the form (17) can

be found by solving the following variational problem:

(27)

For any valid , the function is strictly convex over
, so that the optimum on the RHS of (27) is attained

at a unique vector in .
Proof: We establish that the Lagrangian dual of problem

(17) is given by . Let corre-
spond to a collection of Lagrange multipliers. In particular, for
each and , the quantity is associated with the
constraint that , whereas for each
and , the quantity is associated with the
constraint that . To be clear, we are not
assuming that these Lagrange multipliers correspond to pseu-
domarginals; nonetheless, our choice of notation is deliberately
suggestive, in that our proof shows that the Lagrange multipliers
can be interpreted as tree-consistent pseudomarginals as in (18).
With this notation, we form the Lagrangian

(28)

In addition to the constraints that we have enforced via Lagrange
multipliers, each is restricted to belong to the affine space

of tree-structured exponential parameters, as defined in
(8). We enforce these constraints explicitly without Lagrange
multipliers. As before, for a given tree , we use to denote
the subset of indices corresponding to exponential parameters
that are free to vary.
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Now the Lagrangian is also convex function of , so that it
has no local minima. By taking derivatives of the Lagrangian
with respect to for and using Lemma 1, we obtain
the stationary conditions for an
optimum . If , then the tree parameter

plays no role in the problem, so that we can simply ignore
it. Otherwise, if , the Lagrange multiplier vector is
connected to the optimal tree parameters via the relation

for all (29)

Recall that the potentials in our overcomplete representation
correspond to indicator functions (see (3)). Consequently, the
expectations correspond to elements of the mar-
ginal probabilities (for example,

).
Therefore, (29) has two important implications:

a) for all trees and for all , the single-node marginals
are all equal to a common quantity

;
b) for all trees for which , the joint mar-

ginal probability is equal to
.

In other words, for each tree , the tree-structured exponen-
tial parameter is dually coupled to the corresponding set

of mean parameters for that tree. The key here is that
the dual coupling with holds simultaneously for all trees
of the graph.

By the conjugate duality between and given in (7), the
following relation holds for the dually coupled pair and

:

(30)

Recall that denotes the negative entropy of the
tree-structured distribution . Substituting (30) into
the definition of the Lagrangian yields that the dual function is
given by , where we have suppressed
the “ ” on the vector for notational simplicity.

From the tree factorization of (21), we observe that the neg-
ative entropy of any tree-structured distribution can be decom-
posed as follows:

(31)

This decomposition of the entropy allows us to expand the ex-
pectation with respect to as follows:

In moving from the first to second lines, we have used the fact
that the trees are all spanning (so that the weights associated
with each node sum to one), and the definition

of the edge appearance probabilities. Thus, we have recovered
the function given in (25). Each of the negative entropies

is strictly convex; since is a convex combination of negative
entropies, it is certainly convex, and strictly so as long as
for all edges .

For each tree , the subcollection must be a valid set
of marginal distributions for the single nodes and edges in .
Therefore, they must normalize suitably (i.e., for
all ). Moreover, since each edge belongs to at least one
tree, we must have the marginalization constraint

for each edge . As a consequence, the domain of
the dual variables is precisely the constraint set
defined in (19). Since the cost function is convex and Slater’s
condition is satisfied, strong duality holds [6]; therefore, the op-
timum dual value

is equivalent to the optimal value of the primal problem (17).
See Appendix A for an additional argument to establish that

the upper bound of (27) holds not just for edge appearance vec-
tors in the spanning tree polytope that satisfy , but more
generally for any in the spanning tree polytope.

We illustrate Theorem 1 with a simple example.

Example 2: Consider a single cycle graph on four nodes.
Using the overcomplete representation (3), we form a distribu-
tion over a binary random vector with the
following parameters:

for all

for all

The four spanning trees of this single-cycle graph are illustrated
in Fig. 4. If we place probability on each of them, the corre-
sponding edge appearance probabilities are uniform
for all edges . Computing the optimal for the bound in
Theorem 1, we obtain

for all

for all

This set of mean parameters yields a value for the optimal upper
bound in (27) of , as compared
to the exact log partition function .

Remarks:
a) In our development, we restricted attention to spanning

trees of the original graph, as opposed to all possible
spanning trees of the fully connected graph on
nodes. For instance, with reference to the preceding ex-
ample, we could consider all spanning trees on
the complete graph , as opposed to the four spanning
trees on the single cycles. A natural question, as raised
by one referee, is whether or not relaxing this restriction
would lead to tighter bounds. To see that it will not im-
prove the bounds, note that we can embed any problem on
any graph into the complete graph by augmenting the
exponential parameter vector with zeroes in entries that
correspond to edges not in (i.e., setting where

is the subvector corresponding to elements associated
with edge not in ). Now consider the optimization
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problem in (27): for any choice of the singleton pseudo-
marginals and , the optimal choice of the joint pseu-
domarginal depends only on the negative mutual in-
formation (because ). Therefore,
regardless of the choice of singleton pseudomarginals, the
maximum will entail setting such that ,
and hence this edge will have no influence on the bound.

b) As the statement of Theorem 1 is in terms of an ex-
ponential family representation, it is not immediately
applicable to a graphical model which has deterministic
compatibility functions (e.g., error-control codes). One
way in which the theorem can be extended to such cases
is by using a modified exponential family, in which the
deterministic compatibility functions are absorbed into
the base measure, see, e.g., [40]. Another possibility is
to modify the optimization problem by setting to zero
each pseudomarginal that corresponds to a zero location
in the deterministic compatibility function. In this case,
the tree-reweighted sum–product algorithm described in
Appendix C needs to be modified accordingly.

3) Link to Bethe Variational Problem: Yedidia et al. [46]
showed that the sum–product algorithm can be understood as at-
tempting to solve a variational problem involving the so-called
Bethe free energy from statistical physics. In other work [37],
we have shown that any fixed point of the sum–product algo-
rithm (or more generally, any local optimum of the Bethe varia-
tional problem) constitutes a tree-consistent reparameterization
of the original distribution. In fact, the conditions in (22) that de-
fine the dual coupling between the exponential parameter vec-
tors and the pseudomarginals are very similar
to the conditions defining fixed points of the sum–product algo-
rithm. On this basis, it should be expected that the problem in
(27) is closely related to the Bethe variational problem.

At the heart of the Bethe free energy lies the following Bethe
entropy approximation:

(32)

In this equation, denotes the number of neighbors
of node , whereas and correspond to the single-node
and joint entropies defined by the pseudomarginals and ,
respectively (see (23)). By comparison, Theorem 1 is based on
the function of (25). Consider in the special case
for all , and for a pseudomarginal that belongs to the
constraint set (so that, in particular, the marginal-
ization condition holds at each edge). In this
case, by expanding each mutual information term as the
sum , it can be seen that the func-
tion is equivalent to the Bethe entropy approximation
defined in (32).

It is important to note, however, the condition implies
that each edge belongs to every spanning tree with probability
one, a condition which holds if and only if the graph is actu-
ally a tree. Therefore, for a graph with cycles, the vector
is not a member of the spanning tree polytope . The Bethe
approximation for a graph with cycles entails making—at least

from the perspective of Theorem 1—an invalid choice of
edge appearance probabilities. For any , Theorem 1
guarantees that the function is convex in terms of .
Since for a graph with cycles, this convexity result
does not apply to the Bethe variational problem. Indeed, with
the exception of certain special cases, see, e.g., [26], [29], the
Bethe problem is typically not convex.

B. Optimization of the Distribution

Up to this point, the distribution over spanning trees has
been held fixed; we now consider how to optimize this choice.
Suppose that for a fixed distribution , we have performed the
optimization over specified by (27) of The-
orem 1. This optimization can be used to define the following
function:

(33)

Note that inherits a crucial property of : it depends on the
spanning tree distribution only indirectly, via the vector of
edge appearance probabilities . Therefore, in order to opti-
mize the choice of spanning tree distribution , it suffices to op-
timize over -dimensional vectors in the spanning tree
polytope . Doing so leads to an upper bound that is jointly
optimal over both and (and hence ). The properties of this
upper bound are summarized in the following result.

Theorem 2 (Jointly Optimal Bounds):

a) The function is convex in terms of . Moreover, mini-
mizing it subject to yields an upper bound that
is jointly optimal over both pseudomarginals and edge
appearance probabilities

(34)

b) For any tree in the support set (i.e., for which
), the jointly optimal edge appearances and

pseudomarginals satisfy the relation

(35)

c) The jointly optimal value of the
upper bound is characterized by the following min-max
relation:

(36)

Proof: See Appendix B.

Remarks: It is helpful, in order to gain further insight into
parts b) and c) of Theorem 2, to adopt a game-theoretic perspec-
tive. We begin by developing an important consequence of (35).
Given some spanning tree , consider the nega-
tive entropy of the tree-structured distribution

(37)

Note that the sum over single-node entropy terms (i.e.,
) in (37) is the same for any spanning tree. Moreover,
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(35) guarantees that the sum of mutual information terms
in (37) is constant regardless of the choice of spanning tree

. Consequently, the tree-structured negative
entropy is equal to the same constant for all
spanning trees in .

This entropy equalization can be understood by interpreting
Theorem 2 from a game-theoretic perspective. In particular, let
us consider a two-person zero-sum game, in which player 1
chooses local pseudomarginals so as to maximize

, whereas player 2 chooses a spanning tree so as to
minimize the same quantity. The game is zero-sum, because any
gain by either player translates into a loss for the other player. In
this light, the minimax relation in (36) specifies the value of the
game. With reference to the entropy equalization of Theorem 2
b), suppose that player 1 chooses a pseudomarginal such that
for two trees , , we have . From
the game-theoretic perspective, any optimal strategy of player 2
would exploit this discrepancy by reallocating more weight to
tree . Therefore, at an equilibrium point, the entropies of the
tree-structured distributions should be equalized.

Example 3: To illustrate Theorem 2 a), we follow up on the
single-cycle graph of Example 2. For the choice of exponential
parameter given there, a symmetry argument establishes that
the uniform edge appearance probabilities (i.e., for
all edges ) will be optimal in the sense of Theorem 2 a),
so that the upper bound computed in Example 2 is also jointly
optimal.

Now suppose that we define a new exponential parameter
by setting for all indices , except for those in-
dices corresponding to edge for which we set .
By solving the variational problem (27) with this exponential
parameter and uniform edge weights, we obtain an
upper bound , optimal in the sense of Theorem 1, on the
exact value of the log partition function . How-
ever, since the problem is no longer symmetric, the uniform
choice of edge appearance will no longer be optimal. There-
fore, it is appropriate to consider joint optimization over both
and , as dictated by Theorem 2. Performing this optimization
leads to the following optimal edge appearance probabilities:

Note that the optimum assigns edge appearance probability of
one to the edge , which has the strongest interaction. As a
result, this edge must appear in any spanning tree in the support
of the optimizing distribution . This set of edge appearance
probabilities, combined with the associated , yields the
upper bound on the true log partition func-
tion . Note that this upper bound is tighter than the
previous bound based on uniform edge appearance
probabilities.

V. ALGORITHMS FOR OPTIMIZATION

In this section, we discuss algorithms for computing both the
upper bound of Theorem 1, as well as the jointly optimal upper
bound of Theorem 2. First of all, the optimization specified by
Theorem 1 is a fairly standard convex program. Interestingly,

one method for solving it iteratively is a tree-reweighted variant
of the sum–product algorithm, as presented in Appendix C. Sec-
ondly, with reference to Theorem 2, the probability distribution

itself consists of a number for each of the spanning
trees of , and so will be too large to optimize directly. As
noted earlier, the key property is that the function of The-
orem 2 depends on only indirectly, via the lower dimensional
vector of edge appearance probabilities. It turns out that the
optimal choice of edge appearance probabilities can be found
by an iterative algorithm, each step of which entails solving a
maximum-weight spanning tree problem.

A. Optimizing the Pseudomarginals

We first consider how to compute the upper bound of The-
orem 1. More specifically, for a fixed , we want to
solve the problem

(38)

Note that the objective function of this maximization problem
is concave, and the constraints are linear. Consequently, a va-
riety of standard methods from nonlinear programming can be
used [6]. As noted earlier in Section IV-A3, this optimization
problem is closely related to the Bethe variational problem [46],
and hence, to the sum–product algorithm. This link suggests that
it should be possible to solve the optimization problem (38) by
a type of distributed “message-passing” algorithm. Indeed, we
now describe a form of tree-reweighted sum–product algorithm,
analogous to but distinct from the usual sum–product updates,
that can be be used to solve the optimization problem (38).

As with the sum–product updates, our algorithm also involves
passing messages from node to node. We let denote the
message passed from node to node ; it is a vector of length ,
with one component for each value of . For compactness
in notation, we let be the function that takes the value
when ; explicitly, this function is defined as follows:

The function is defined similarly.
With this notation, the algorithm takes the form shown in

Fig. 5. Observe that the updates in (39), although quite sim-
ilar to the standard sum–product updates [46], differs in some
key ways. First of all, the weights corresponding to edge

are all rescaled by . Secondly, all the messages
for nodes are exponentiated by the corresponding
edge appearance . Finally, the message running in the
reverse direction on edge is involved in updating . De-
spite these differences, it is still possible to perform the mes-
sage updates in a parallel fashion, as in the parallel form of
sum–product.

Overall, the complexity of performing the tree-reweighted
updates in (39) is identical to the standard sum–product updates.
In Appendix C, we prove that the tree-reweighted updates al-
ways have a unique fixed point that specifies the global optimum
of problem (38). Although we have not performed a thorough
convergence analysis at this point, we have observed empiri-
cally that the updates converge if they are suitably damped.
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Fig. 5. Parallel edge-based form of the tree-reweighted sum–product algorithm. The quantity � > 0 denotes a normalization constant (typically chosen such that
M (x ) = 1).

Fig. 6. Conditional gradient method for optimizing the choice of edge appearance probabilities.

B. Optimizing the Spanning Tree Distribution

We now consider the problem of solving the problem
, as required to compute the upper bound

of Theorem 2. A challenge to be overcome here lies in the
nature of the spanning tree polytope . For a general
graph, the number of linear constraints required to specify this
polytope grows exponentially with the graph size
[10], [14]. This exponential growth precludes the use of any
method that deals directly with the constraints themselves.
Interestingly, it turns out that despite the exponential number of
constraints characterizing , maximizing a linear function
over this polytope is feasible. Indeed, this task is equivalent
to solving a maximum-weight spanning tree problem, which
can be solved by well-known greedy methods (e.g., Kruskal’s
algorithm [20]).

The feasibility of solving a linear program over the span-
ning tree polytope suggests the use of the conditional gradient
method [6]. In application to the problem ,
each step of the conditional gradient method entails finding the
descent direction by solving the optimization problem

(40)

Since the set is a polytope and the cost function
is linear in , finding this descent

direction corresponds to solving a linear program over the
spanning tree polytope. The optimum of a linear program is
always attained at (at least one of) the vertices of the con-
straint polytope. In the case of the spanning tree polytope,
each of these vertices corresponds to the indicator vector of a
particular spanning tree. (See the definition of in (13).)
Moreover, note that this linear program can be interpreted
as a minimum-weight spanning tree problem, in which the
element of the gradient serves as the weight on
edge . As a consequence, the descent direction can be

computed very efficiently via Kruskal’s algorithm for finding
optimal weighted spanning trees [20]. With the use of suitable
data structures, the computational complexity of Kruskal’s
algorithm is , where is the number of edges
and is the number of vertices in the graph.

To completely specify the algorithm, it remains to compute
the gradient vector . For a given , let

denote the optimum of the variational problem (38).
It can be shown (see Appendix B) that elements of the gra-
dient are given by negative mutual information terms

. We let denote a vector formed
of these mutual information terms, one for each edge. So as
to facilitate subsequent interpretation, instead of solving the
minimum spanning tree spanning problem with ,
we solve the maximum weight spanning tree problem with
the nonnegative mutual information vector . The
algorithm then takes the form shown in Fig. 6.

With an appropriate choice of step size at each iteration
(chosen, for instance, by Armijo’s rule), the conditional gradient
updates of Algorithm 2 are guaranteed to converge to the global
minimum [6].

Remark: The second step of Algorithm 2 has an interesting
interpretation in terms of fitting a tree distribution to a collec-
tion of data. In particular, for a given set of data ,
let denote the associated empirical
distribution. Now consider the problem of finding the tree-struc-
tured distribution that best fits the data in the sense of
minimizing the Kullback–Leibler divergence .
Chow and Liu [11] showed that an optimal tree-structured
distribution (which need not be unique) can be obtained by
solving a maximum-weight spanning tree problem. In partic-
ular, the edge weights are specified by mutual information terms

, where is the empirical marginal distribution on
defined by . If we view the pseudomarginals
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at iteration as such a set of empirical marginals, then each
iteration of Algorithm 2 entails pushing the edge appearance
vector in the direction of the spanning tree that best fits the
current data in the Kullback–Leibler sense.

C. Experiments

In this section, we present the results of applying the previ-
ously described algorithms to compute the upper bounds spec-
ified in Theorems 1 and 2, as applied to different graphs and
varied types of interactions. In preliminary versions of this work
[35], [36], we presented experimental results for relatively weak
couplings. Here we show the results of simulations for a bi-
nary-valued random vector on both lattices and fully connected
graphs over a much wider range of couplings, from relatively
weak to very strongly coupled. Over this range, we compare the
upper bounds given by our techniques to lower bounds on the
log partition function obtained from the naive mean field method
[19]. For the sake of comparison, we also plot the value of the
optimized Bethe free energy [46]; however, it should be kept
in mind that in general, the Bethe free energy does not provide
a bound—either lower or upper—on the log partition function.
Moreover, we compare the accuracy in the pseudomarginals ob-
tained from the convex upper bounds to those obtained from the
Bethe approximation and the ordinary sum–product algorithm.

The connectivity of the two-dimensional grid is sufficiently
sparse that the use of tree approximations is reasonable. For
the fully connected graph, in contrast, approximations based on
trees are less likely to perform well. Our purpose in showing
results for the fully connected case, then, is to demonstrate how
approximations based on sparse graphs, such as those of this
paper, may behave poorly for very densely connected problems.

1) Procedure: For each trial, we defined a distribution
by a random choice of exponential parameter vector .

We used the standard Ising representation given in (2), except
that each random variable took values in . This
so-called “spin” representation turns out to be more convenient
than a representation for defining attractive and mixed
interactions. In all cases, we choose
independently for each . For a given edge strength ,
we set the pairwise potentials in one of two ways:

a) for attractive interactions, we set indepen-
dently for each edge ;

b) for mixed interactions, we set indepen-
dently for each edge .

For each of the graphs and each of the two edge coupling
conditions (attractive or mixed), we ran simulations with edge
strengths ranging from to . The inner optimization (i.e.,
solving the problem ) was
performed using the tree-weighted sum–product algorithm, as
described in Appendix C, with damping factor . The
optimization of the edge appearance probabilities was per-
formed with the conditional gradient method (Algorithm 2),
where the step size choice was made by the Armijo rule [6].
We computed the value of the actual partition function ei-
ther by brute-force enumeration (fully connected graphs), or by
forming a junction tree and then performing exact computations
(lattices). The mean field lower bounds were computed using the

standard mean field coordinate ascent algorithm [39], taking the
best optimum from a randomly chosen starting point, and the
uniform starting point. Finally, we computed the Bethe free en-
ergy by first applying the sum–product algorithm with damping
factor , and then switching to a convergent double-loop
alternative [15] if ordinary sum–product failed to converge.

In terms of computational complexity, our tree-reweighted
updates involve a computational cost per update that is equiv-
alent to the ordinary sum–product algorithm (i.e., per
update). The tree-reweighted algorithm has a lower complexity
than the double-loop algorithm that needs to be used if the ordi-
nary sum–product updates do not converge. It should be noted
that the complexity of the mean field algorithm is , so that
it is cheaper than either the ordinary or reweighted sum–product
updates.

2) Square Lattices: We first show the results of simulations
for square lattices in two dimensions with four nearest neighbor
connectivity. Although our simulations were necessarily limited
to grids with nodes (due to the computational com-
plexity of performing exact calculations), it should be noted that
as with the ordinary sum–product algorithm, the algorithms for
solving the optimization problems given in Theorems 1 and 2
can be applied to much larger problems. We performed 20 trials
for each of the two conditions (attractive or mixed) and each
setting of the edge strength in increments of in the interval

.
Shown in Figs. 7(a) and 8(a) are plots of the average nor-

malized error versus the edge strength
over the interval in the cases of attractive and mixed

couplings, respectively. Here the terminology “Bound” denotes
either an upper bound (based on the convex approximations),
or a lower bound (mean field). For the Bethe free energy, we
plot the average of the negative absolute value—namely, the
quantity— . For this reason, it appears as
a lower bound (but it is neither a lower nor upper bound in
general). Each panel in Figs. 7(a) and 8(a) displays the relative
error in two types of upper bounds. The “unoptimized” curve
shows the bound of Theorem 1 with the fixed choice of uniform
edge appearance probabilities , whereas
the “optimized” curve corresponds to the jointly optimal (over
both and ) upper bounds of Theorem 2. On the other hand,
Figs. 7(b) and 8(b) show the average -error
between the pseudomarginal and the true marginal proba-
bility at node , averaged over all nodes. Here we compared
the pseudomarginals obtained either from the “unoptimized”
upper bound, the “optimized” upper bound, and the ordinary
sum–product pseudomarginals.

Consider first the case of attractive couplings, as illustrated
in Fig. 7. With reference to the bounds plotted in Fig. 7(a),
we see that the upper bounds are relatively tight for low edge
strengths, and their tightness decreases as the edge strength
is increased over a certain intermediate range of coupling
strengths. Ultimately, for large couplings, the bounds again
become tighter as the edge strength is increased. Indeed, for
this case of pure attractive couplings, it can be shown that the
bounds become tight as the coupling strength tends to infinity
[39]. In comparison to mean field, the unoptimized upper bound
is slightly worse, whereas the optimized upper bound is slightly
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Fig. 7. Comparisons of convex upper bounds, mean field (MF), and the Bethe approximation for attractive couplings on a grid-structured model. (a) Comparison
of the normalized error in the bounds (and Bethe approximation) to the log partition function. (b) Comparison of the error in the approximate marginals.

Fig. 8. Comparisons of convex upper bounds, mean field (MF), and the Bethe approximation for mixed couplings on a grid-structured model. (a) Comparison of
the normalized error in the bounds (and Bethe approximation) to the log partition function. (b) Comparison of the error in the approximate marginals.

better. Optimizing the edge appearance probabilities can lead
to significantly better upper bounds. This effect is especially
pronounced as the edge strength is increased, in which case the
distribution of edge weights becomes more inhomogeneous.
As might be expected, all of the bounds (both lower and upper)
are, at least in general, worse than the Bethe approximation,
which does not provide a bound. Shown in Fig. 7(b) is the
comparison of the average error in the pseudomarginal
approximations of the convex methods versus the ordinary
sum–product algorithm. The upper plot shows the error on a
standard scale, and the bottom on a logarithmic scale. Here we
see that the ordinary sum–product is more accurate for edge
couplings below . Beyond this point, however, the
accuracy of the sum–product algorithm degrades quite rapidly,

whereas the pseudomarginals from the convex approximation
remain quite accurate.

Now let us turn to the case of mixed couplings, as illustrated
in Fig. 8. Looking at the comparison among bounds in Fig. 8(a),
we again see that the bounds are tightest for weak couplings, and
their accuracy degrades as the coupling strength is increased. In
the regime of relatively weak couplings, the upper bounds are
superior to mean field, but this advantage is lost as the coupling
strength is increased. Note that neither the upper nor the lower
bounds are as accurate as the Bethe approximation. A notable
difference between mixed couplings versus attractive couplings
is that the accuracy of the upper bounds does not eventually
improve as the coupling strength is increased. Turning to the
comparison of pseudomarginals in Figs. 7(b) and 8(b), we see a
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Fig. 9. Comparisons of convex upper bounds, mean field (MF), and the Bethe approximation for attractive couplings on a fully connected graph. (a) Comparison
of the normalized error in the bounds (and Bethe approximation) to the log partition function. (b) Comparison of the error in the approximate marginals.

Fig. 10. Comparisons of convex upper bounds, mean field (MF), and the Bethe approximation for mixed couplings on a fully connected graph. (a) Comparison
of the normalized error in the bounds (and Bethe approximation) to the log partition function. (b) Comparison of the error in the approximate marginals.

similar pattern to the attractive case. In the regime of weak cou-
plings, the ordinary sum–product algorithm is superior, whereas
for sufficiently strong couplings, the pseudomarginals from the
convex upper bounds appear to be more accurate.

It is worthwhile emphasizing the importance of the dual
formulation of our bounds. Indeed, the naive approach of at-
tempting to optimize the primal formulation of the bounds (i.e.,
as in (17)) would require dealing with the astronomical number

, corresponding to the number of spanning
trees on the grid with nodes. (This number can be
calculated by applying the matrix-tree theorem [7].)

3) Fully Connected Graphs: To provide contrast with
the relatively sparse case of a two-dimensional grid, we also
performed simulations on a very dense graph—in particular,

the fully connected graph on nodes, with edge
strengths ranging from to . The results, with the same
legend and layout as the lattice simulations, are shown in Figs. 9
and 10 for the cases of attractive and mixed couplings respec-
tively. With references to Figs. 9(a) and 10(a), overall the upper
bounds are less accurate than their counterparts on the lattices;
nonetheless, the basic qualitative pattern of results is preserved.
In the case of attractive couplings in Fig. 9(a), we see that the
tightness of the bounds degenerates up until a certain point, and
then starts to improve again. For the case of mixed couplings
in Fig. 10(a), the accuracy decreases steadily (in a roughly
linear fashion) as the coupling strength is increased. For this
case of mixed couplings, the upper bounds are significantly
weaker than either the mean field lower bound or the Bethe
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Fig. 11. Scaling of the bounds as a function of the number of nodes N in a four-nearest-neighbor grid with toroidal boundary conditions and homogeneous
interactions between neighbors. (Top) Case of relatively weak coupling J = 0:2 in the spin representation of the Ising model. (Bottom) Case of stronger coupling
(J = 0:5).

approximation. Turning now to Figs. 9(b) and 10(b), the plots
of the errors in the pseudomarginals show a similar pattern.
Looking first at the attractive coupling case in Fig. 9(b), we
see that the ordinary sum–product approximation is more ac-
curate in the regime of weak couplings, but rapidly deteriorates
beyond a certain coupling strength. Over this same range of
coupling strengths, the accuracy of the pseudomarginals from
the convex approximations remains surprisingly robust. The
accuracy of the different types of pseudomarginals in the mixed
case (Fig. 10(b)) is qualitatively similar, though not as clear cut.

D. Scaling With Problem Size

Finally, we investigate how our bounds scale with the number
of nodes . In most cases, the parameters are scaled
such that the log partition function scales linearly with ; thus,
we also expect that our bounds should scale linearly in . The
tree-reweighted message-passing updates scale well to larger
problem sizes; however, so as to enable comparison to the exact
answer, we focus on an exactly solved model: namely, the Ising
model on the toric grid with homogeneous positive interactions
(i.e, for all edges ), and no observations
(i.e., for all ). The high degree of node and edge
symmetry simplifies its analysis. Each of the nodes has ex-
actly four neighbors, so that there are edges in total.
In ground-breaking work, Onsager [28] showed how to reduce
the computation of partition function in this model to a series of
eigenvalue computations, so that it can be computed exactly for
large models.

With reference to our upper bounds, it also follows as a con-
sequence of the symmetry that the optimal choice (in the sense
of Theorem 2) of edge appearances is the uniform one

Fig. 11 compares the exact results obtained from Onsager’s
method to the tree-reweighted upper bound for a range of graph
sizes , and two different coupling strengths. The top panel
shows the case of relatively weak coupling, for which the bound
remains quite accurate even for relatively large problems. For
the stronger couplings illustrated in the bottom panel, in con-
trast, the accuracy of the bound is seen to degrade more swiftly.
In both cases, the upper bound scales linearly with , which is
consistent with the behavior of the exact log partition function.

E. Related Experimental Results

We conclude our experimental section by describing some
related experimental results. Wiegerinck and Heskes [44] have
shown that optimizing reweighted Bethe free energies, though
not necessarily convex, can lead to better results in approximate
inference. In their work, they proposed a heuristic procedure
for optimizing weights on each edge. These weights are anal-
ogous to our edge appearance probabilities, but are not required
to belong to the spanning tree polytope (and hence the guar-
antee of convexity is lost). Interestingly, they showed that their
method of adjusting the weights can in many cases lead to better
results than belief propagation. In later work, Wiegerinck [43]
performed experimental comparisons of tree-reweighted belief
propagation and standard belief propagation, with results anal-
ogous to those shown here, as well as in-depth comparisons to
reweighted variants of generalized belief propagation (as dis-
cussed in Section VI).

VI. GENERALIZATION TO HIGHER ORDER MRFS

Our development in the previous sections focused on the case
of a pairwise MRF, for which the collection of potentials in-
volves only singleton and edge functions. For many problems of
interest, the associated MRF includes potential functions over
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Fig. 12. Graphical representations of hypergraphs. Subsets of nodes
corresponding to hyperedges are shown in rectangles, whereas the arrows
represent inclusion relations among hyperedges. (a) An ordinary single-cycle
graph represented as a hypergraph. (b) A more complex hypergraph that does
not correspond to an ordinary graph.

cliques of size three or larger. In this section, we briefly out-
line how the analysis described in the preceding sections can be
generalized to this case. In order to discuss MRFs with higher
order cliques, it is convenient to introduce the formalism of hy-
pergraphs, e.g., [5]. Having set up this machinery, we demon-
strate how hypertrees, which represent a natural generalization
of trees, can be used to derive upper bounds on the log partition
function. Finally, we demonstrate using a simple example the
link between convex combinations of hypertrees and “convexi-
fied” forms of Kikuchi free energies [46], [47].

A. Hypergraphs

Hypergraphs are a natural generalization of graphs. In par-
ticular, a hypergraph consists of a vertex set

, and a set of hyperedges , where each hy-
peredge constitutes a particular subset of (i.e., an element
of the power set of ). The set of hyperedges is a particular case
of a partially ordered set [33], for which the partial order is spec-
ified by the inclusion relation. Given two hyperedges ,
one of three possibilities can hold: a) either is contained within

, in which case we write , or alternatively, b) contains
, which we denote by , or c) neither containment relation

holds, in which case we say that and are incomparable. A
hyperedge is maximal if it is not contained within any other hy-
peredge. We assume that the intersection between every pair of
maximal hyperedges is contained within the hypergraph.

Given any hyperedge , we define the sets of its descendants
and ancestors in the following way:

(41a)

(41b)

With these definitions, an ordinary graph is a special case of a
hypergraph, in which each maximal hyperedge consists of a pair
of vertices (i.e., an ordinary edge of the graph).7

A convenient graphical representation of a hypergraph is in
terms of a diagram of its hyperedges, with (directed) edges rep-
resenting the inclusion relations, as illustrated in Fig. 12. As a
special case, any ordinary graph can be drawn as a hypergraph;
in particular, Fig. 12(a) shows the hypergraph representation of

7It should be noted there is a minor inconsistency between our definition of a
hypergraph edge set, and a graph edge set; for hypergraphs, the set of hyperedges
can include the individual vertices (unlike the corresponding edge set for an
ordinary graph).

a single cycle on four nodes. Shown in panel Fig. 12(b) is a
more complex hypergraph that does not correspond to an ordi-
nary graph. To illustrate the notions of descendants and ances-
tors, the descendant set is given by ,
whereas since every hyperedge is an ancestor
of .

Even when the original problem of interest corresponds to a
pairwise MRF, hypergraphs can arise naturally by clustering to-
gether nodes from the original graph. As an illustration, consider
the pairwise MRF in Fig. 13(a). One clustering of the nodes,
obtained by grouping together nodes within -cycles, is shown
in Fig. 13(b). We can use this clustering to define a set of hy-
peredges, formed by the clusters themselves (e.g., ), in-
tersections between the clusters (e.g., ), and the intersec-
tions between intersections (e.g., ). The resulting hypergraph
is illustrated in Fig. 13(c). This particular procedure for con-
structing a hypergraph from a given graph is referred to as the
Kikuchi method by Yedidia et al. [46], [47].

B. Hypertrees

Of particular importance are acyclic hypergraphs, which are
also known as hypertrees. In order to define these objects, we
require the notions of tree decomposition and running intersec-
tion, which are well known in the context of junction trees, see
[24], [13]. Given a hypergraph , a tree decomposition is
an acyclic graph in which the nodes are formed by the maximal
hyperedges of . Any intersection of two maximal
hyperedges that are adjacent in the tree is known as a separator
set. The tree decomposition has the running intersection prop-
erty if for any two nodes and in the tree, all nodes on the
unique path joining them contain the intersection ; such a
tree decomposition is known as a junction tree.

A hypergraph is acyclic if it possesses a tree decomposition
with the running intersection property. (Recall that we assume
that any intersection between maximal hyperedges belongs to
the hypergraph). The width of an acyclic hypergraph is the size
of the largest hyperedge minus one; we use the term -hypertree
to mean a singly connected acyclic hypergraph of width . A hy-
perforest is a disjoint union of hypertrees. A hypertree is span-
ning if each vertex is contained within at least one hyperedge.

A simple illustration is provided by any tree of an ordinary
graph: it is a -hypertree, because its maximal hyperedges (i.e.,
ordinary edges) all have size two. As a second example, the hy-
pergraph of Fig. 14(a) has maximal hyperedges of size three.
This hypergraph is acyclic with width two, since it is in direct
correspondence with the junction tree formed by the three max-
imal hyperedges, where appears twice as a separator set.
Fig. 14(b) shows another hypertree; it is of width three, since
its maximal hyperedges consist of four nodes. The junction tree
in this case is formed of the three maximal hyperedges, using
the two hyperedges of size two (i.e., and ) as separator
sets. In this case, the hyperedge in the hypergraph diagram
plays no role, since it is neither a maximal clique nor a separator
set in the junction tree representation.

C. Hypertree Factorization and Entropy Decomposition

Fundamental to the Lagrangian reformulation in our earlier
work was the factorization of a tree-structured distribution in
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Fig. 13. Hypergraphs arise naturally by clustering operations. (a) Original pairwise MRF. (b) Particular clustering of the nodes. (c) Hypergraph defined by the
clusters, as well as intersections between clusters, and intersections of intersections (node 3).

Fig. 14. Two examples of acyclic hypergraphs or hypertrees. (a) A hypertree
of width two. The hyperedge (23) will appear twice as a separator set in any
tree decomposition. (b) A hypertree of width 3. Hyperedges (25) and (45) are
separator sets, and node 5 plays no role in the tree decomposition.

terms of local marginal distributions, as in (21). We now con-
sider the hypertree analog of this decomposition. Given any
hyperedge in the hyperedge set of a hypertree , let

denote the associated marginal distribution over the
subset of variables . Let and
denote the set of maximal hyperedges and separator sets in a
junction tree associated with . With this notation, we have the
following well-known junction tree factorization [13], [24]:

(42)

Here denotes the number of maximal hyperedges adjacent
to the separator set in the hypertree.

It turns out to be more convenient for our purposes to make
use of an alternative form of this factorization, which we de-
scribe here. Using the local marginals , we define a func-
tion for every hyperedge as follows:

(43)

where the set of descendants is defined in (41a). This def-
inition is closely tied to the Möbius function associated with the
poset of hyperedges [33]. With this definition, the hypertree fac-
torization of is very simple

(44)

We illustrate the hypertree factorization with a few examples.

Example 4 (Hypertree Factorization):

a) First suppose that the hypertree is an ordinary tree, in
which case the hyperedge set consists of the union of the
vertex set with the (ordinary) edge set. For any vertex ,
we have , whereas for any edge we
have . There-
fore, in this special case, (44) reduces to the ordinary tree
factorization of (21).

b) Now consider the hypertree in Fig. 14(a). First of all, we
have , where we have omitted the explicit de-
pendence on for notational simplicity. Second, we com-
pute , with similar expressions for
and . Forming the product yields the fac-
torization that would be obtained from the junction tree
representation in (42)—namely, .

c) As a third example, consider the hypertree of Fig. 14(b). It
is straightforward to calculate and
with a similar expression for . Next we calcu-
late , with an
analogous expression for . Finally, we calculate

. In this
case, taking the product over hyperedges leads
to the expression

which (once again) agrees with the factorization that
would be obtained by the junction tree representation
(42). Note how the marginal plays no role in the
factorization, since it is neither a maximal hyperedge nor
a separator set in the tree decomposition.

D. Upper Bounds Based on Hypertrees

We now describe the analogs for hypertrees of the basic upper
bound in (16), and its dual form in Theorem 1. The overcomplete
exponential representation given in (3) applies to a particular
type of hypergraph—namely, a graph with pairwise maximal
cliques. Generalizing this type of representation to arbitrary hy-
pergraphs is straightforward. In particular, given the random
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vector associated with a particular hy-
peredge , we let be a multiple-index
of possible assignments for the subvector . We augment the
exponential representation (3) by including the higher order in-
dicator functions . For instance, to
include a hyperedge of size three, we include indicators
of the form

corresponding to the function that is equal to one if
, and zero otherwise.

For a given hypergraph , let be the size of its largest
hyperedge(s). We define a partition of the hyperedge set into
the disjoint union , where denotes the hyperedges of
size . The full index set consists of the following union:

We then consider the exponential family defined by the col-
lection of indicator functions . As before, we
use to denote the -dimensional

exponential parameter corresponding to the target distribu-
tion . In order to upper-bound the log partition function

, we make use of the set of all hypertrees contained within
. For a particular hypertree with associated hyperedge

set , let be a hypertree-structured exponential param-
eter. More formally, letting denote the subset of indices
corresponding to the hypertree, we require that belongs
to the affine subspace , defined in an analogous manner
to (8). The quantity denotes the full collection of
hypertree exponential parameters, which must belong the con-
straint set . Finally, we let be a
probability distribution over these hypertrees. The set of
feasible pairs is defined as in (15).

With these definitions and Jensen’s inequality, we have for
any feasible pair the familiar upper bound

Once again, the natural goal is to optimize the choice of hyper-
tree exponential parameter vectors , as well as the choice of
distribution , so as to obtain the tightest possible bound. As we
describe in Section VI-E, the former problem of optimizing
remains tractable via Lagrangian duality, albeit with a cost that
increases exponentially with the tree width of the hypertrees.
In contrast, the latter problem of optimizing is substantially
more difficult than the case of ordinary trees .

E. Dual Form of Upper Bounds

We are now equipped to state the generalization of Theorem 1
to hypertrees. In particular, as with the tree-based bounds, the
dual form of the hypertree-based bounds depends on a collec-
tion of pseudomarginals defined on the
hyperedges of the hypergraph . As with the earlier pseu-
domarginals , we require that the hypergraph pseudo-
marginals are appropriately normalized (i.e., ).

In addition, they must satisfy marginalization conditions. In par-
ticular, for any nested pair of hyperedge , we define the mar-
ginal induced by on as follows:

(45)

With this notation, the relevant constraint set for the pseudo-
marginals , which we denote by , is defined
by the constraints

(46)

where is one less than the size of the largest hyper-
edge in . Note that this constraint set is the natural hyper-
tree-based generalization8 of the previously defined local con-
straint set. Moreover, it follows from the junction tree theorem
[13], [24] that whenever is a hypertree (of width ), then

is a complete description of valid marginal
distributions over its hyperedges.

Given a pseudomarginal vector and a
hypertree , we let denote the subcollection

of pseudomarginals corresponding to hyperedges in the
hypertree. This subcollection specifies a unique hypertree-struc-
tured distribution via (44), which can be used to define the (neg-
ative) entropy . With this notation, we have the fol-
lowing generalized upper bound on the log partition function:

(47)

In analogy to the tree case (see (31)), the inner expectation
can be explicitly computed, leading to a sum of

local entropy terms weighted by hyperedge appearance proba-
bilities. The vector of these edge appearances must belong
to a higher order analog of the spanning tree polytope, which
amounts to a hypertree polytope [22].

F. Illustrative Example

To provide some intuition, we derive a simple form of (47) for
a particular hypergraph and choice of hypertrees. The original
graph that we consider is shown in Fig. 15(a). We then cluster
the nodes into groups of four, as illustrated in panel Fig. 15(b);
this particular choice is known as Kikuchi four-plaque clus-
tering [46]. On this basis, we can define the collection

of hyperedges, where

The hypergraph defined by this hyperedge set is shown in
Fig. 15(c).

8In particular, for an ordinary graph G, the set LOCAL(G) defined in (19)
is equivalent to LOCAL (G), since the largest (hyper)edge in an ordinary tree
has size two.
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Fig. 15. Kikuchi clustering on the grid. (a) Original two-dimensional grid. (b) Clustering into groups of four. (c) Associated hypergraph with maximal hyperedges
of sizeM = 4. (d) One acyclic hypergraph of width three embedded within (c).

We now consider a convex combination of four hypertrees,
each obtained by removing one of the -hyperedges from
the edge set. For instance, shown in Fig. 15(d) is one par-
ticular acyclic substructure with hyperedge set

. To be precise, the structure so defined is
a spanning hyperforest, since it consists of two connected
components (namely, the isolated hyperedge along with
the larger hypertree). This choice, as opposed to a spanning hy-
pertree, turns out to be simplify the development to follow.

To specify the associated hypertree factorization, we first
compute the form of for the maximal hyperedges (i.e., of
size four). For instance, looking at the , we see
that hyperedges , , , and are contained within
it. Thus, using the definition in (43), we write (suppressing the
functional dependence on )

In performing this calculation, we have assumed that the pseu-
domarginals are hypertree-consistent, so that there is no need
to distinguish, for instance, between and .

Proceeding in this fashion leads an overall factorization of
the probability distribution based on of the
following form:

(48)

Here each term within square brackets corresponds to for
some hyperedge ; for instance, the first three terms
correspond to the three maximal -hyperedges in . Since we
are assuming that all of the pseudomarginals are locally consis-
tent, the factorization in (48) could be simplified substantially by
canceling terms. However, leaving it in its current form allows
us to make the connection to Kikuchi approximations explicit.

Now let denote the four other hyperforests
analogous to —that is, each of them obtained by removing
one -hyperedge from . Let

denote the set of all -hyperedges. We then form the convex
combination of (negative) entropies with uniform weight
on each : this convex combination takes
the form

(49)

Here the term occurs because each of the -hyperedges
appears in three of the four hypertrees. All of the (nonmax-

imal) hyperedge terms receive a weight of one, because they ap-
pear in all four hypertrees. Overall, then, these weights represent
hyperedge appearance probabilities for this particular example,
in analogy to ordinary edge appearance probabilities in the tree
case. We now simplify the expression in (49) by expanding and
collecting terms; doing so yields that is
equal to the following weighted combination of entropies:

(50)

If, on the other hand, starting from (49) again, suppose that
we included each maximal hyperedge with a weight of , instead
of . Then, after some simplification, we would find that the
(negative of the) (49) is equal to the following combination of
local entropies:

This expression is equivalent to the Kikuchi approximation as-
sociated with this particular clustering [46]. However, the choice
of all ones for the hyperedge appearance probabilities is in-
valid—that is, it could never arise from taking a convex com-
bination of hypertree entropies.

More generally, any entropy approximation formed by taking
such convex combinations of hypertree entropies will neces-
sarily be convex. Thus, these functions can be viewed as “con-
vexified” versions of Kikuchi and other free energies. In con-
trast, with the exception of certain special cases, see, e.g., [26],
[29], Kikuchi and other hypergraph-based entropy approxima-
tions are typically not convex.
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G. Methods for Optimization and Open Questions

In this subsection, we discuss optimization methods for the
hypertree-based upper bounds, as well as some associated open
questions that arise. We begin by observing that the function
(47) to be optimized consists of a convex combination of hy-
pertree entropies (plus a linear term), and is therefore concave
in . Given this convexity, the optimal can be found ei-
ther by standard methods from nonlinear programming [6], or
by developing hypertree-reweighted analogs of generalized be-
lief propagation [46]. In parallel to the analog between ordi-
nary sum–product and tree-reweighted sum–product, the com-
putational complexity of these hypertree-weighted algorithms
is identical to that of the corresponding version of generalized
belief propagation.

For any set of hypertrees that cover the graph, computing
the vector of of hyperedge appearance probabilities requires
computational effort linear in the number of hypertrees. Thus,
it is feasible to choose a particular small set of hypertrees that
cover the graph, formulate the corresponding optimization
problem (47), and then solve it. However, in contrast to the case
of spanning trees, optimizing the vector over all hypertrees
is no longer a straightforward problem. Unlike the case of trees
(i.e., hypertrees of width ), computing the maximum weight
hypertree is an NP-hard problem for width two or larger, see
[22]. Consequently, we cannot optimize the choice of via
the conditional gradient method, since it is no longer feasible
to solve the linear program that specifies the descent direction.
One open research question, then, is to develop methods for ap-
proximately solving the maximum-weight hypertree problem,
and to apply them to tightening the hypertree bounds described
here. In addition, just as with ordinary cluster variational ap-
proximations, there are various open questions associated with
which clusters to choose, and how to assess their effect on the
approximation accuracy [46], [47], [21], [41]. A desirable fea-
ture of the convex framework presented here is that using more
complex hypertrees is always guaranteed to produce tighter
upper bounds, since the optimization problems are naturally
nested. Specifically, Wiegerinck [43] has compared hyper-
tree-reweighted forms of generalized belief propagation (GBP)
to ordinary GBP, as well as the standard and tree-reweighted
belief propagation (BP) algorithms. Interestingly, his results
show that using hypertree-reweighted forms of GBP not only
leads to tighter bounds (which is theoretically guaranteed), but
also seems to lead to consistently better approximations to the
marginals. In contrast, there are certain cases in which using
ordinary Kikuchi approximations may lead to worse results that
the usual Bethe approximation [21], [43] (but see Yedidia et al.
[47] for the relevance of “max-ent normal” approximations). A
final interesting direction for future research is to explore the
effect of different choices of hypertrees on the accuracy of the
pseudomarginal approximations.

VII. CONCLUSION

In this paper, we have developed and analyzed a new class
of upper bounds for the log partition function of an arbi-
trary MRF. The basic form of these upper bounds follows by

forming a mixture in the exponential domain of tractable (e.g.,
tree-structured) distributions, and applying Jensen’s inequality.
Using convex duality, we showed that the optimal form of
such bounds can be obtained by solving a convex variational
problem. We explored in detail the case of spanning trees,
and showed how the Lagrangian reformulation allows us to
optimize efficiently—though implicitly—over all possible
choices of exponential parameters for the tractable distribu-
tions, as well as over all choices of weights for the exponential
mixture. The cost function in the spanning tree case, while
similar to the Bethe variational problem [46], is distinguished
by its convexity, which holds for an arbitrary graph. This
derivation provides a novel perspective on the Bethe variational
problem. In addition, we established a concrete link to the
sum–product algorithm by deriving a tree-reweighted version
of the sum–product updates for solving our convex program.
More generally, we discussed how stronger bounds can be
obtained by taking convex combinations of hypertrees, and
the resulting link to Kikuchi and other entropy variational
problems, e.g., [26], [27], [29], [37], [46], [47]. This extension
raises a number of open questions, including how to choose
the base set of hypertrees, as well as how to optimize (at least
approximately) the choices of hyperedge weights.

We conclude by discussing a few directions for future re-
search. First, the basic idea of generating upper bounds using
convex combinations need not be restricted to trees or hyper-
trees. One interesting direction is developing upper bounds
based on other types of convex combinations, or combinations
that involve distributions over parameters as well as weights.
Second, in previous work [35], [37], we have derived lower and
upper bounds on the error in the sum–product algorithm (i.e.,
the difference between the exact marginals and the approximate
marginals computed by sum–product). In conjunction with
techniques described in this paper, it is possible to efficiently
compute bounds on the approximation error of the sum–product
algorithms, as well as various generalizations thereof, e.g., [46].
It remains to explore the usefulness of these bounds for larger
scale practical problems. Finally, the optimization problems
defined in this paper define a new convex function that can
be viewed as a surrogate to the log partition function. This
surrogate has a number of possible applications to param-
eter estimation, as our initial work [38] in this direction has
suggested.

APPENDIX A
ADDITIONAL REMARKS ON THEOREM 1

In this appendix, we establish the validity of the bound in (27)
for arbitrary , which enables us to remove the re-
striction that , and instead enforce the weaker constraint

. Recall the definition of from (6). In the
particular case of the overcomplete exponential parameteriza-
tion of (3) for a pairwise MRF based on a graph ,
consists of the set of all single-node and edgewise marginals

that arise from taking expectations with respect
to some distribution . We denote this set of realizable
pairwise and singleton marginals associated with the graph
by .
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By the conjugate duality between the log partition function
and the negative entropy , we are guaranteed the following

variational representation of the log partition function:

(51)

Our strategy is to exploit this variational representation in order
to obtain an upper bound on .

The first requirement is a lower bound on , or equiva-
lently, an upper bound on the entropy . For any spanning
tree of the graph , consider the tree-structured distribution

defined as in (21). We first claim that the inequality

(52)

holds for any tree , meaning that the entropy of the mo-
ment-matched tree-structured distribution must be at least as
large as the entropy of the distribution on the full graph with cy-
cles. A full proof of this inequality can be found in Wainwright
and Jordan [39]. The basic intuition follows from the interpre-
tation of exponential family members as maximum entropy dis-
tributions subject to constraints [12]. The distribution on the
full graph with cycles arises from a maximization problem with
more constraints, and hence it must have a lower entropy than
the tree-structured version.

Since inequality (52) holds for any spanning tree , we can
take a convex combination of such bounds using
as nonnegative weights, which yields

(53)

The second requirement is an outer bound on the mar-
ginal polytope . It is clear that any single-node
marginal must be normalized (i.e., ), and
moreover, that any joint marginal on the edge
must marginalize appropriately (i.e., ).
Therefore, the constraint set defined in
(19) is an outer bound on the marginal polytope (i.e.,

).
Finally, to obtain the desired upper bound, we first apply

(53) to the variational formulation of (51), thereby obtaining the
upper bound

We complete the proof by using the fact that
to write

Thus, the bound of (27) holds for any choice of , and hence
any .

APPENDIX B
PROOF OF THEOREM 2

We first prove the following lemma.

Lemma 2: For each valid , the function is dif-
ferentiable in , with partial derivatives given by (negative) mu-
tual information terms

(54)

Proof: Consider the function

It is continuous in and , and for each fixed , is
linear and hence convex and differentiable in . Moreover,
the constraint set is compact, and by Theorem
1, for each fixed valid , the optimum that defines

—namely, —is attained at a
unique point . Therefore, by results on the suprema of convex
functions, e.g., [16], the function is differentiable at , with
partial derivatives given by

Proof of Theorem 2:
a) The bound of (27) holds for all , from which

(34) follows. Observe that is linear in .
Therefore, is the maximum over a collection of linear
functions, and so is convex [6] as a function of . From The-
orem 1, for any fixed , the value gives an
upper bound on . Therefore, minimizing over all yields
the optimal value of the upper bound, as in (34).

b) For each spanning tree and each edge , let
be the indicator function for the event .

Now is convex and the constraint set is linear. There-
fore, by standard necessary conditions for the minimum of a
convex function over a convex set [6], we are guaranteed that
for all

(55)

Here we have used Lemma 2 in order to compute the partial
derivatives of in (55)

For a given spanning tree , consider the indicator ,
a vector of length with the element equal to one if
belongs to , and zero otherwise. The vector so defined is an
element of the spanning tree polytope (an extreme point, in fact),
so that (55) applies, in particular, to it.

Now, since is a member of the spanning tree polytope,
there must exist a distribution over spanning trees such that
for each , we have the relation

or, equivalently, such that

(56)
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We multiply (56) by , and sum the resultant col-
lection of equations (one for each ) to obtain

(57)

Now by (55), for each , the term within square brackets on the
RHS of (57) is nonpositive. Since the overall sum is equal to
zero, we must have that

for all . We thus have established (35).
c) The function is continuous as a function

of both and . By Theorem 1, it is concave in ; moreover, it
is linear and hence convex in . Moreover, the constraint sets

and are both convex and compact. Equation
(36) therefore follows from standard minimax results [16].

APPENDIX C
TREE-REWEIGHTED SUM–PRODUCT

In this appendix, we establish that Algorithm 1 solves the
optimization problem (38). We begin by observing that any
set of messages can be used to define a set of singleton
pseudomarginals

(58)

as well as a set of joint pseudomarginals

(59)

where the notation is shorthand for

Moreover, the term denotes a constant chosen so as to ensure
that the normalization conditions (e.g., ) are
satisfied.

Proposition 1: For any valid , the pseudo-
marginals specified by a fixed point of Algorithm 1
via (58) and (59) attain the global optimum of the variational
problem of (27).

Proof: As with the work of Yedidia et al. [46] on ordinary
sum–product and the Bethe problem, we show that any fixed
point of Algorithm 1 satisfies the conditions to be a stationary
point of the Lagrangian associated with the constrained op-
timization problem (27). In contrast to the ordinary Bethe
problem, our problem is convex (by Theorem 1), so that these
stationarity conditions are sufficient to ensure that we have
found a global optimum. For each edge , let
be a Lagrange multiplier associated with the marginalization
constraint . We then
form the Lagrangian associated with the variational problem
of (27) (where we enforce the normalization and nonnegativity
constraints explicitly without multipliers)

(60)

Taking the derivative with respect to and setting it to zero
yields

(61)

Similarly, taking derivatives with respect to yields

(62)

In these equations, denotes a constant (independent of ) that
will be chosen to ensure that the normalization conditions are
satisfied. Imposing the fact that an optimal solution must satisfy
the marginalization conditions and then using (61) allows us to
rearrange (62) into the form

(63)

We now define ( ) “messages” via

Making these replacements in (61) and (63) yields the expres-
sions for and in (58) and (59), respectively.

Finally, we need to ensure that and belong to the con-
straint set . Since we imposed the normalization
constraints explicitly, we need to update the “messages” so
that the marginalization constraint
is satisfied. Enforcing this constraint yields the message update
in (39).
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