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TABLE I 
t 

Normalized  cumulat ive power s p e c t r a   o f   n i n e  human W S  waveforms. 1 

The p e r c e n t  of t o t a l  power i s  g i v e n  for th ree   f r equency   r anges .  
I , P a t i e n t  W150 H Z  *<loo H Z  %<50 Hz -- 

No. 1 98  93  58 

2 98 94 62 

3 99  98  92 

4 100 99  62 

5 100 99  78 

6 100 100 96 

7 99  98 88 

8 100 100 100 

9 97 95 78 

, 

I 
1 

Average +-SD 99fl.l  97f2.6  79f16 
I 

More information is also needed to determine  the  optimum lead 
placement, especially in regard to emphasizing specifc structures withh 
the HPS. It has been our experience that most investigators familiar 
with His bundle recordings expect to see recordings at the body surface 
similar to the intracardiac His bundle electrogram. This is a false expec- 
tation because the  catheter recording is local in nature while the  body 
surface lead integrates the HPS activity from a major portion of the 
conducting tissue. 

CONCLUSION 
While many useful and sophisticated computer techniques are used to 

analyze the ECG, most  only replace a human interpreter and do not 
provide additional fundamental information. However, the digital pro- 
cessing technique described here yields the His-Purkinje ECG and 
quantifies a new component of the ECG. If perfected, the technique 
would allow further screening of  patients, perhaps in lieu of cardiac 
catheterization, and would be more amenable to followup  studia  on 
patients. In addition,  the noninvasive nature of the procedure enhances 
its application to a much larger segment of the population with con- 
duction system disorders. The  technique is s t i l l  in the early stages of 
development and such parameters as optimum  bandwidth  and lead axis 
remain to be determined. 
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A Statistical Approach to Rhythm Diagnosis of Cardiograms 

DONALD  E.  GUSTAFSON,  ALAN S. WILLSKY, MI-YUN WANG, 
MALCOM C. LANCASTER, AND JOHN H. TRIEBWASSER 

Abstmct-A new method is presented for detection and classification 
of arrhytfimins m e lec tmcdbpms on the basis of R-R interval data. 
A set of p h e n m e n d o g i d  mod& for both persistent and transient 
rhythms is developed to match observed statistical variations. Ar- 
rhyUunias are. identified by calculating statistical probabilities and 
likelihoods rssocirted with these models using two recentiy developed 
techniques. The important system design considerations are. d e s c r i i .  
F i y ,  representative results using actual arxhytfunir data are. pre- 
sented to illustrate the system performance. 

I. INTRODUCTION AND OVERVIEW 
In this paper we describe a system for  the  detection  and classification 

of arrhythmias  in electrocardiograms. The basis for  our approach is 
the  determination of a set of dynamic models that accurately descriie 
the sequential behavior of the elapsed times between consecutive heart- 
beats (“R-R intervals”).  Specifically, a number of arrhythmias  are 
characterized by persistent patterns of R-R intervals,  while others 
involve abrupt changes in the interval pattern. For each of these we 
develop a simple model that generates an interval pattern  with  the 
corresponding statistical properties. Using these models, we then apply 
two statistical techniques for  the identification of persistent patterns 
and  for  the  detection of abrupt changes. 

It is t h i s  aspect that is novel in our  approach to  arrhythmia analysis. 
That is, we have  developed  very  simple phenomenological models that 
accurately describe the statistical behavior of R-R interval patterns. 
Using these models we can apply powerful statistical techniques to de- 
velop an ECG  analysis system that is simple and  robust  and whose 
performance can be accurately determined as a function of a very 
mall number of design parameters. 

In  the  next section we describe the  dynamic models for various 
classes of arrhythmias. Section 111 summarizes the  methods  and system 
design considerations, while in Section IV we present some results to 
illustrate the performance of prototype system that has been developed. 
Our  treatment is  necessarily  brief. For a complete development, we 
refer the reader to [ 11, [2]. 

11. MODELING OF R-R  INTERVAL  PATTERNS 
Let y ( k )  denote  the actually observed kth R-R interval. We think 

of y as being the  output of an R-R  puttern  generator, which is  charac- 
terized by  the  state vector x @ ) .  The  output lix(k) represents the 
ideal kth R-R interval, which differs from y(k) by the noise Nk), which 
arises from  two sources: 

i)  the unavoidable errors in computing R-R intervals,  caused by in- 
accuracies in locating the fiducial points. 

ii) variations due to the  fact  that  actual  rhythms are never “textbook 
perfect”, rather  there are small, apparently  random variations 
about  the ideal underlying pattern. 

Models are fmt described for several persistent rhythms. 
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Fig. 1. Example of rhythm analysis prototype test  results. 

Small Variation: This class exhibits small but random  deviations 
from  the mean value of the R-R intervals (e.g., normal sinus rhythm) 

x(k)  = x ( &  - l) ,  y ( k )  = x(k)  + v(k) (2.1) 

where u is zero mean Gaussian and  white,  with variance R,. The initial 
mean m(0) and variance P(0) of x(O), as well as R, are design param- 
eters,  reasonable values for which can be determined  with the aid of 
the statistical  techniques described in [ 11. 

Laqe  Variation: This class is characterized  by large but random vari- 
ations in  the R-R intervals (e.g., sinus arrhythmia). The model for this 
class is also given by  (2.1), the only  difference being that the variance 
ofvis takentobeRI>R,.  

Period Two Oscillator: This class is characterized  by R-R intervals 
which are alternately long and short (e.g., bigeminy) 

0 1  

1 0  
x(k )  =( ).(k - 1) (2.2) 

and 

where the initial mean m(0) and covariance P(0) of x(0)  and the vari- 
ance Rz of u are free  parameters to be  detennined  by  some  statistical 
means. 

Period  Three Oscillotoc This class exhibits an  R-R interval sequence 
with  a  period  of  3 (e.g., trigeminy) 

and 

y ( k )  = (1 0 0) x(k)  + v(k). (2.5 1 

Again m(O), P(O), and R3 (the variance of IJ) are  free  parameters. 

We now turn our attention  to  the models of transient events. All 
such events are modeled as sudden,  unpredictable changes on an other- 
wise normal record. Thus  the basic model is (2.1)  with covariance of 
u =  R,, and the various transient  events are modeled as changes in this 
pattern. 

Rhythm Jump: This class is characterized  by  a  sudden change in 
the  heart  rate 

X(k) = X(k - 1) + V60,k. (2.6) 

Here Y is the  unknown size of the  shift  in  the average R-R interval  at 
the unknown time 8. Also, 6ii is the Kronecker  delta (6ii = 0, i # j ,  
while = 1). 

Noncompensutory Beat: This class is characterized  by  the presence 
of a single lengthened or shortened R-R interval (e.g., SA block, PAC) 

X@) - 1) + v[6e,k - 60,k-l I (2.7) 

is., x(k) = x ( 0 )  for k # e,  and x ( e )  = x ( 0 )  + Y.  

Compensatory  Beat: This class is characterized  by  an  isolated  pre- 
mature QRS  complex followed by a  compensatory pause before the 
following beat (i.e., a PVC) 

x(k )   =x (k  - 1) + Y [ 6 e , k  - 68,k-l - 66,k-z 1 .  (2.8) 
Double  Noncompensatory Beat: This class is characterized  by two 

consecutive  shortened  or  lengthened R-R intervals 

X(&) =X(k - 1) + Y[6e,k - 6e,k-2]. (2.9) 

111. AN ARRHYTHMIA DETECTION TECHNIQUE 

Examinhg the models for  the persistent  rhythm classes,  we see that 
they are all linear systems. Thus, given a  sequence of observed R-R 
intervals, we can use the multiple  hypothesis  method [ 11, [ 31 -consist- 
ing of a bank  of Kalman hlters,  one  for  each  of  the  models-to  compute 
the  probabilities for each  of  the  persistent  rhythm categories based on 
analysis of the hlter residuals. 

In the case of the transient categories, the generalized liketihood  ratio 
(GLR) technique [2],  [4] has been implemented. This approach  in- 
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volves the  implementation of a Kalman filter based on the small varia- 
tion model. The residuals of this filter  are  then fed into several matched 
filters that compute  most likely times and the  likelihood  ratios  for 
each type of transient  event.  Estimates of the jump Y are also obtained. 

The  prototype system consists of both of  these  subsystems  with 
several additional  features designed to: 

a) shorten the response time of the multi-filter in the case  of a  shift 

b) improve the distinguishability of  small variation  from the period 

c) speed up the GLR identification process by  looking at a  narrow 

d) provide an initialization  procedure for all filters to enhance  detec- 

e)  reset the system subsequent to  the detection of a  transient  event. 

IV. RESULTS 

Fig. 1 depicts the result of one  test on real ECG data using the proto- 
type system. The format of the figure is as follows: At the  top of the 
figure is the actual ECG waveform being processed. The small vertical 
lines beneath the waveform are the R-wave detector. The mulmte r  
probabilities (in percentage form)  are displayed next,  where  the R-R 
intervals (between the present R-wave and the preceding one)  are mea- 
sured in units of 4 ms. The symbol “OUT” is used to indicate  a  multi- 
filter  outlier-an  indication that a previously identified  persistent  pat- 
tern has been  interrupted. 

The GLR likelihood  ratios are plotted below the multifilter  results. 
Again the horizontal axis is actual  time, while the numbers given 
represent  the  running  estimate of the mean R-R interval, as produced 
by the small variation GLR filter. We note  that in  addition to  the 
categories, “noncompensatory” (N) ,  “compensatory” (0, and  “double 
noncompensatory” (D), we have the category  “warning” (W), which 
indicates that  the preceding R-R interval is fine but that the  present 
one is aberrant.  This signal tells us that when  we look at  the next 
interval, we should be able to decide among the various transient 
categories. The  actual GLR decisions  are  located  beneath the plot. 
In  addition to W, C, N, and D, two other symbols are used. “JD” 
denotes the detection of a  double  noncompensatory and indicates that 
it might really be  a  jump-a  question  that is resolved upon  looking  at 
the  next interval. Finally, at  the  top of the GLR plot, the times at 
which the GLR filter is adjusted  are  indicated. “JUMP” indicates that 
the filter  estimate has been  adjusted following the  detection of  a  jump. 
“OUT” indicates that the GLR fdter has  been  reinitialized.  This  only 
happens if the  multifiter has locked onto period two or three oscilla- 
tion  and  an  outlier has been  detected. 

The waveform in Fig. 1 contains  a  number of premature  ventricular 
contractions (PVC). For  most of the record,  these  fall into a  trigeminal 
pattern. As the  results  indicate, the multifilter locks onto period  three 
oscillation (P3) and GLR detects  the PVC‘s as compensatory  beats. 
When the P3 pattern  ends, the multifilter signals an outlier which leads 
to a  reinitialization.  The  reinitialization of the GLR small variation 
filter yields an initial estimate of 124.5 (the average  of the second and 
third intervals following the  outlier), and thus, when the first R-R 
interval (the compensatory pause = 167) is processed, the GLR system 
signals a  noncompensatory. Following this, the R-R interval pattern 
consists of 3 short R-R intervals followed by 4 long ones. As one 
might suspect,  the  multifilter  locks onto large variation, while GLR 
detects  the shift  from the fast  rhythm to  the slower one. Note that 
the last PVC falls as the beat dividing the series of short and long R-R 
intervals,  and,  looking  at  the  sequence of intervals alone, this beat is 
not premature.  Incorporation of other  information, such as gross  wave- 
form  morphology, will lead to a clearer indication that this is an ectopic 
beat. 

from  one  normal  rhythm pattern  to another  one; 

two  and  three  oscillators and from large variations; 

“window” of the most recent data; 

tion of events at the beginning of an ECG record; 

REFERENCES 

[ l ]  D. E. Gustafson, A. S. Willsky,  J. Y. Wang, M. C. Lancaster, and 
J. H. Triebwasser, “ECG/VCG rhythm diagnosis using statistical 
signal analysis I :  Identification of persistent  rhythms,”  submitted 

[2]  D. E. Gustafson, A. S. Willsky, J. Y. Wang, M. C. Lancaster, and 
to IEEE Trans. Biomed.  Eng. 

signal analysis 11: Identification of transient  rhythms,”  submitted 
J. H. Triebwasser, ‘‘ECG/VCG rhythm diagnosis using statistical 

(31 D. G. Lainiotis and S. K. Park, “On pint  detection, estimation, 
to IEEE Trans. Biomed.  Eng. 

and svstem  identification: Discrete data case.” In?. J. Control. vol. 
17, no. 3, pp. 609-633,  1973. 

141 A. S. Willsky and H. L. Jones, “A generalized likelihood  ratio 
approfch to  the detection and estimation of jumps in linear sys- 
tems, IEEE Trans. Automat. Contr., vol. AC-21, pp. 108-112, 
Feb. 1976. 

Reduced Spline Representations for EEG Signals 
R. D. LARSEN, E. F. CRAWFORD, AND P. W. SMITH 

A b m c t :  EEG data were approximated in a least squares sense by  a 
normalized B-spline system having a prescribed knot sequence. The 
frequency content of the EEG is preserved in  the power spectrum of a 
splined EEG having substantially fewer knots than sample points. 

1. INTRODUCTION 
The EEG has  a special appeal to  the biosignal processing and electrical 

engineering community,  in  addition to providing significant and  useful 
electrophysiological  parameters for  both research and clinical investi- 
gators. The EEG is a) of relatively low frequency (0-50 Hz) content, 
b) contains  considerable structure and  noise, c) consists of 8, and often 
16, channels  of data, and d) frequently  consists  of  record  lengths 
obtained  in 6-12 h sleep studies which involve millions of data points. 
The training of  computer  scientists  and  electrical engineers may be 
brought to bear on numerous  facets  of  this  rich area of activity [ 11. 

Because  of the wide interdisciphry appeal of the EEG signal a  con- 
siderable variety of analysis techniques have been  proposed by statisti- 
cians, biomathematicians,  computer  scientists  and  electrical engineers. 
These methods have included  Fourier  spectral analysis via the  FFT, 
auto- and cross-correlation methods,  time series models, pattern remg- 
nition,  complex  demodulation,  bispectmm  analysis, and timedomain 
period analysis. 

In this paper we examine  a  method  of EEG analysis which comple- 
ments  certain a s p e c t s  of these  traditional methods A spline technique 
which serves to filter the EEG is followed  by  Fourier  spectral analysis. 
It is shown that with a B-spline  basis it is possible to reduce the infor- 
mation content of the N-point EEG data set into M points  which  are 
the  knots of the spline basis. This  results  in an  N/M  data  compression 
which  retains the low frequency  information  inherently  present in 
the EEG. 

The advantages of and potential  utility to  routine EEG signal pro- 
cessing resulting  from  a  spline/Fourier  transformation  include a) the 
smoothing or  filtering  of the EEG data giving visually pleasing  EEG 
structural  features,  b)  data compression resulting in  a  reduced data set, 
and c) efficient  feature  extraction resulting from  Fourier  transforma- 
tion of the reduced data set. 

11. SPLINE REPRESESTATION 
Although the term “spline” now means many things to  many people, 

we will adhere to  the  notion  that a  spline is a piecewise polynomial  of  a 
given order (degree plus  one). The  points  at which the polynomial 
pieces join m a p r e s c r i i  smooth  fashion are called knots.  In the early 
days of approximation,  polynomials  were used extensively, but  it was 
soon discovered that polynomial  approximations  tended to oscillate 
much  more  and  approximate less than  one  would like. Additionally, in 
order to  obtain greater  accuracy, the degree had to be  increased, 
causing many  numerical problems. Recent work on  the use of splines 
in function  approximation has minimized the above difficulties, as will 
be  indicated below. 

There  are several methods of obtaining spline approximants to  data 
{ (xi ,  yj)}kl. Conceptually,  the simplest method is via interpolation. 
That is, find  a spline so that s ( q )  = y i .  It is well-known that inter- 
polation of noisy data does not produce  satisfactory  approximations to 
the  unknown function  from which the  data arises. The least squares 
approximation to  the  data is  a  time-honored  method  of  smoothing the 
data and producing  a  reasonable  approximation.  This  is basically the 
method we use. 

Let a positive integer k be given and let  the knot sequence t satisfy, 

t = : t l =  ... t k = a < ? k + ~ < “ ’ ( t n < t , + l “ ” = t n + k = b .  

The spline basis most often preferred by people involved in spline 
computations is that composed of the normalized B-spline [2].  The 
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