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Abstract—We develop and analyze methods for computing prov-
ably optimal maximum a posteriori probability (MAP) configura-
tions for a subclass of Markov random fields defined on graphs
with cycles. By decomposing the original distribution into a convex
combination of tree-structured distributions, we obtain an upper
bound on the optimal value of the original problem (i.e., the log
probability of the MAP assignment) in terms of the combined op-
timal values of the tree problems. We prove that this upper bound
is tight if and only if all the tree distributions share an optimal
configuration in common. An important implication is that any
such shared configuration must also be a MAP configuration for
the original distribution. Next we develop two approaches to at-
tempting to obtain tight upper bounds: a) a tree-relaxed linear pro-
gram (LP), which is derived from the Lagrangian dual of the upper
bounds; and b) a tree-reweighted max-product message-passing al-
gorithm that is related to but distinct from the max-product algo-
rithm. In this way, we establish a connection between a certain LP
relaxation of the mode-finding problem and a reweighted form of
the max-product (min-sum) message-passing algorithm.

Index Terms—Approximate inference, integer programming,
iterative decoding, linear programming (LP) relaxation, Markov
random fields, marginal polytope, maximum a posteriori proba-
bility (MAP) estimation, max-product algorithm, message-passing
algorithms, min-sum algorithm.

I. INTRODUCTION

I NTEGER programming problems arise in various fields,
including communication theory, error-correcting coding,

image processing, statistical physics, and machine learning
(e.g., [35], [39], [8]). Many such problems can be formulated
in terms of Markov random fields (e.g., [8], [14]), in which
the cost function corresponds to a graph-structured probability
distribution, and the goal is to find the maximum a poste-
riori probability (MAP) configuration. It is well known that
the complexity of solving the MAP estimation problem on a
Markov random field (MRF) depends critically on the structure
of the underlying graph. For cycle-free graphs (also known as
trees), the MAP problem can be solved by a form of nonserial
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dynamic programming known as the max-product or min-sum
algorithm (e.g., [2], [14], [15]). This algorithm, which entails
passing “messages” from node to node, represents a general-
ization of the Viterbi algorithm [40] from chains to arbitrary
cycle-free graphs. In recent years, the max-product algorithm
has also been studied in application to graphs with cycles as
a method for computing approximate MAP assignments (e.g.,
[1], [21]–[23], [29], [43]). Although the method may perform
well in practice, it is no longer guaranteed to output the correct
MAP assignment, and it is straightforward to demonstrate
problems on which it specifies an incorrect (i.e., nonoptimal)
assignment.

A. Overview

In this paper, we present and analyze new methods for
computing MAP configurations for MRFs defined on graphs
with cycles. The basic idea is to use a convex combination
of tree-structured distributions to derive upper bounds on the
cost of a MAP configuration. We prove that any such bound
is tight if and only if the trees share a common optimizing
configuration; moreover, any such shared configuration must be
MAP-optimal for the original problem. Consequently, when the
bound is tight, obtaining a MAP configuration for a graphical
model with cycles—in general, a very difficult problem—is
reduced to the easy task of examining the optima of a collection
of tree-structured distributions.

Accordingly, we focus our attention on the problem of ob-
taining tight upper bounds, and propose two methods directed
to this end. Our first approach is based on the convexity of
the upper bounds, and the associated theory of Lagrangian
duality. We begin by reformulating the exact MAP estimation
problem on a graph with cycles as a linear program (LP)
over the so-called marginal polytope. We then consider the
Lagrangian dual of the problem of optimizing our upper bound.
In particular, we prove that this dual is another LP, one which
has a natural interpretation as a relaxation of the LP for exact
MAP estimation. The relaxation is obtained by replacing the
marginal polytope for the graph with cycles, which is a very
complicated set in general, by an outer bound with simpler
structure. This outer bound is an exact characterization of the
marginal polytope of any tree-structured distribution, for which
reason we refer to this approach as a tree-based LP relaxation.

The second method consists of a class of message-passing al-
gorithms designed to find a collection of tree-structured distri-
butions that share a common optimum. The resulting algorithm,
though similar to the standard max-product (or min-sum) algo-
rithm (e.g., [23], [43]), differs from it in a number of important
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ways. In particular, under the so-called optimum specification
criterion, fixed points of our tree-reweighted max-product al-
gorithm specify a MAP-optimal configuration with a guarantee
of correctness. We also prove that under this condition, fixed
points of the tree-reweighted max-product updates correspond
to dual-optimal solutions of the tree-relaxed linear program. As
a corollary, we establish that the ordinary max-product algo-
rithm on trees is solving the dual of an exact LP formulation
of the MAP estimation problem.

Overall, this paper establishes connections between two ap-
proaches to solving the MAP estimation problem: LP relax-
ations of integer programming problems (e.g., [7], [38]), and
(approximate) dynamic programming methods using message
passing in the max-product algebra. More specifically, our work
shows that a (suitably reweighted) form of the max-product or
min-sum algorithm is very closely connected to a particular
linear programming relaxation of the MAP integer program.
This variational characterization has links to the recent work
of Yedidia et al. [47], who showed that the sum–product al-
gorithm has a variational interpretation involving the so-called
Bethe free energy. In addition, the work described here is linked
in spirit to our previous work [41], [44], in which we showed
how to upper-bound the log partition function using a “convex-
ified form” of the Bethe free energy. Whereas this convex varia-
tional problem led to a method for computing approximate mar-
ginal distributions, the current paper deals exclusively with the
problem of computing MAP configurations. Importantly, and in
sharp contrast with our previous work, there is a nontrivial set
of problems for which the upper bounds of this paper are tight,
in which case the MAP-optimal configuration can be obtained
by the techniques described here.

B. Notes and Related Developments

We briefly summarize some developments related to the
ideas described in this paper. In a parallel collaboration with
Feldman and Karger [19], [18], [20], we have studied the
tree-relaxed LP and related message-passing algorithms as
decoding methods for turbo-like and low-density parity-check
(LDPC) codes, and provided finite-length performance guar-
antees for particular codes and channels. In independent work,
Koetter and Vontobel [30] used the notion of a graph cover
to establish connections between the ordinary max-product
algorithm for LDPC codes and a particular polytope equivalent
to the one defining our LP relaxation. In other independent
work, Wiegerinck and Heskes [46] have proposed a “fractional”
form of the sum–product algorithm that is closely related to
the tree-reweighted sum–product algorithm considered in our
previous work [44]; see also Minka [36] for a reweighted
version of the expectation propagation algorithm. In other
work, Kolmogorov [31], [32] has studied the tree-reweighted
max-product message-passing algorithms presented here, and
proposed a sequential form of tree updates for which certain
convergence guarantees can be established. In followup work,
Kolmogorov and Wainwright [33] provided stronger optimality
properties of tree-reweighted message passing when applied to
problems with binary variables and pairwise interactions.

C. Outline

The remainder of this paper is organized as follows. Section
II provides necessary background on graph theory and graph-
ical models, as well as some preliminary details on marginal
polytopes and a formulation of the MAP estimation problem. In
Section III, we introduce the basic form of the upper bounds on
the log probability of the MAP assignment, and then develop
necessary and sufficient conditions for these bounds to be tight.
In Section IV, we first discuss how the MAP integer program-
ming problem has an equivalent formulation as an LP over the
marginal polytope. We then prove that the Lagrangian dual of
the problem of optimizing our upper bounds has a natural in-
terpretation as a tree relaxation of the original LP. Section V is
devoted to the development of iterative message-passing algo-
rithms and their relation to the dual of the LP relaxation. We
conclude, in Section VI, with a discussion and extensions to the
analysis presented here.

II. PRELIMINARIES

This section provides the background and some preliminary
developments necessary for subsequent sections. We begin
with a brief overview of some graph-theoretic basics; we refer
the reader to the books [9], [10] for additional background
on graph theory. We then describe the formalism of Markov
random fields; more details can be found in various sources
(e.g., [12], [14], [34]). We conclude by formulating the MAP
estimation problem for a Markov random field.

A. Undirected Graphs

An undirected graph consists of a set of nodes or
vertices that are joined by a set of edges . In
this paper, we consider only simple graphs, for which multiple
edges between the same pair of vertices are forbidden. For each

, we let denote the set
of neighbors of . A clique of the graph is a fully connected
subset of the vertex set (i.e., for all ). The
clique is maximal if it is not properly contained within any
other clique. A cycle in a graph is a path from a node back
to itself; that is, a cycle consists of a sequence of distinct edges

such that .
A subgraph of is a graph

where (respectively, ) are subsets of (respec-
tively, ). Of particular importance to our analysis are those
(sub)graphs without cycles. More precisely, a tree is a cycle-free
subgraph ; it is spanning if it reaches every
vertex (i.e., ).

B. Markov Random Fields (MRFs)

An MRF is defined on the basis of an undirected graph
in the following way. For each , let be a

random variable taking values in some sample space .
This paper deals exclusively with the discrete case, for which

takes values in the finite alphabet .
By concatenating the variables at each node, we obtain a random
vector with elements. Observe that

itself takes values in the Cartesian product space
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. For any subset , we let denote
the collection of random variables associated with
nodes in , with a similar definition for .

By the Hammersley–Clifford theorem (e.g., [34]), any
Markov random fields that is strictly positive (i.e.,
for all ) can defined either in terms of certain Markov
properties with respect to the graph, or in terms of a decom-
position of the distribution over cliques of the graph. We use
the latter characterization here. For the sake of development
in the sequel, it is convenient to describe this decomposition
in exponential form (e.g., [3]). We begin with some necessary
notation. A potential function associated with a given clique
is mapping that depends only on the subcollection

. There may be a family of potential func-
tions associated with any given clique, where

is an index ranging over some set . Taking the union
over all cliques defines the overall index set .
The full collection of potential functions defines
a vector-valued mapping , where is
the total number of potential functions. Associated with is a
real-valued vector , known as the exponential
parameter vector. For a fixed , we use to de-
note the ordinary Euclidean product in between and .

With this setup, the collection of strictly positive Markov
random fields associated with the graph and potential
functions can be represented as the exponential family

, where

(1)

Note that each vector indexes a particular Markov
random field in this exponential family.

Example 1: The Ising model of statistical physics (e.g., [5])
provides a simple illustration of a collection of MRFs in this
form. This model involves a vector , with a distri-
bution defined by potential functions only on cliques of size at
most two (i.e., vertices and edges). As a result, the exponential
family in this case takes the form

(2)

Here is the weight on edge , and is the parameter for
node . In this case, the index set consists of the union .
Note that the set of potentials
is a basis for all multinomials on of maximum degree
two that respect the structure of .

When the collection of potential functions do not satisfy
any linear constraints, then the representation (1) is said to be
minimal [3], [4]. For example, the Ising model (2) is minimal,
because there is no linear combination of the potentials

that is equal to a constant for
all . In contrast, it is often convenient to consider
an overcomplete representation, in which the potential functions

do satisfy linear constraints, and hence are no longer a basis.

More specifically, our development in the sequel makes exten-
sive use of an overcomplete representation in which the basic
building blocks are indicator functions of the form —the
function that is equal to one if , and zero otherwise. In
particular, for an MRF with interactions between at most pairs of
variables, we use the following collection of potential functions:

for (3a)

for (3b)

which we refer to as the canonical overcomplete representation.
This representation involves a total of

potential functions, indexed by the set

(4)

The overcompleteness of the representation is manifest in var-
ious linear constraints among the potentials; for instance, the
relation

holds for all . As a consequence of this overcomplete-
ness, there are many exponential parameters corresponding to a
given distribution (i.e., for ). Although
this many-to-one correspondence might seem undesirable, its
usefulness is illustrated in Section V.

The bulk of this paper focuses exclusively on MRFs with in-
teractions between at most pairs of random variables,
which we refer to as pairwise MRFs. In principle, there is no
loss of generality in restricting to pairwise interactions, since
any factor graph over discrete variables can be converted to this
form by introducing auxiliary random variables [23]; see Ap-
pendix, part A for details of this procedure. Moreover, the tech-
niques described in this paper can all be generalized to apply di-
rectly to MRFs that involve higher order interactions, by dealing
with hypertrees as opposed to ordinary trees.1 Moreover, with
the exception of specific examples involving the Ising model,
we exclusively use the canonical overcomplete representation
(3) defined in terms of indicator functions.

C. Marginal Distributions on Graphs

Our analysis in the sequel focuses on the local marginal distri-
butions that are defined by the indicator functions in the canon-
ical overcomplete representation (3). In particular, taking expec-
tations of these indicators with respect to some distribution
yields marginal probabilities for each node

(5)

1For brevity, we do not discuss hypertrees at length in this paper. Roughly
speaking, they amount to trees formed on clusters of nodes from the original
graph; see Wainwright et al. [42] for further details on hypertrees.



3700 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 11, NOVEMBER 2005

and for each edge

(6)

(7)

Note that (5) and (6) define a -dimensional vector
of marginals, indexed by elements of defined

in (4). We let denote the set of all such marginals
realizable in this way

and

for some (8)

The conditions defining membership in can be ex-
pressed more compactly in the equivalent vector form

where denotes a vector consisting of the potential functions
forming the canonical overcomplete representation (3). We
refer to as the marginal polytope associated with
the graph .

By definition, any marginal polytope is the convex hull of
a finite number of vectors—namely, the collection

. Consequently, the Minkowski–Weyl theorem [37] ensures
that can be represented as an intersection of half-
spaces where is a finite index set and each half-
space is of the form for
some and . These half-space constraints in-
clude the nonnegativity condition for each .
Moreover, due to the overcompleteness of the canonical over-
complete representation, there are various equality2 constraints
that must hold; for instance, for all nodes , we have the
constraint .

The number of additional (nontrivial) linear constraints
required to characterize , though always finite,
grows rapidly in for a general graph with cycles; see Deza
and Laurent [16] for discussion of the binary case. It is straight-
forward, however, to specify a subset of constraints that any

must satisfy. First, as mentioned previously,
since the elements of are marginal probabilities, we must
have (meaning that is in the positive orthant). Second,
as local marginals, the elements of must satisfy the normal-
ization constraints

(9a)

(9b)

Third, since the single-node marginal over must be consistent
with the joint marginal on , the following marginaliza-
tion constraint must also be satisfied:

(10)

2Any equality constraint ha; �i = b is equivalent to enforcing the pair of
inequality constraints ha; �i � b and h�a�i � �b.

On the basis of these constraints,3 we define the set
as all that satisfy constraints (9a), (9b), and (10). Here,
it should be understood that there are two sets of marginaliza-
tion constraints for each edge : one for each of the vari-
ables and . By construction, specifies an outer
bound on ; moreover, in contrast to , it
involves only a number of inequalities that is polynomial in .
More specifically, is defined by
inequalities, where . Since the number of edges

is at most , this complexity is at most . The con-
straint set plays an important role in the sequel.

D. MAP Estimation

Of central interest in this paper is the computation of
maximum a posteriori (MAP) configurations4 for a given
distribution in an exponential form—i.e., configurations in the
set , where is a given vector of
weights. For reasons to be clarified later, we refer to as
the target distribution. The problem of computing a MAP con-
figuration arises in a wide variety of applications. For example,
in image processing (e.g., [8]), computing MAP estimates
can be used as the basis for image segmentation techniques.
In error-correcting coding (e.g., [35]), a decoder based on
computing the MAP codeword minimizes the word error rate.

When using the canonical overcomplete representation
, it is often convenient to rep-

resent the exponential parameters in the following functional
form:

(11a)

(11b)

With this notation, the MAP problem is equivalent to finding a
configuration that maximizes the quantity

(12)

Although the parameter is a known and fixed quantity, it is
useful for analytical purposes to view it as a variable, and define
a function as follows:

(13)

Note that represents the value of the optimal (MAP) con-
figuration as ranges over . As the maximum of a collection
of linear functions, is convex in terms of .

III. UPPER BOUNDS VIA CONVEX COMBINATIONS

This section introduces the basic form of the upper bounds on
to be considered in this paper. The key property of

3Note that the normalization constraint on f� g is redundant given the
marginalization constraint (10) and the normalization of f� g.

4The term a posteriori arises from applications, in which case one often wants
to compute maximizing elements of the posterior distribution p(xxx jyyy; �), where
yyy is a fixed collection of noisy observations.
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is its convexity, which allows us to apply Jensen’s inequality
[28]. More specifically, let be a finite collection of nonneg-
ative weights that sum to one, and consider a collection of
exponential parameters such that . Then applying
Jensen’s inequality yields the upper bound

(14)

Note that the bound (14) holds for any collection of exponential
parameters that satisfy ; however, the bound
will not necessarily be useful, unless the evaluation of
is easier than the original problem of computing . Ac-
cordingly, in this paper, we focus on convex combinations of
tree-structured exponential parameters (i.e., the set of nonzero
components of is restricted to an acyclic subgraph of the full
graph), for which exact computations are tractable. In this case,
each index in (14) corresponds to a spanning tree of the graph,
and the corresponding exponential parameter is required to re-
spect the structure of the tree. In the following, we introduce the
necessary notation required to make this idea precise.

A. Convex Combinations of Trees

For a given graph, let denote a particular spanning tree, and
let denote the set of all spanning trees. For a given
spanning tree , we define a set

corresponding to those indices associated with all vertices but
only edges in the tree.

To each spanning tree , we associate an exponential
parameter that must respect the structure of . More pre-
cisely, the parameter must belong to the linear constraint
set given by

(15)

By concatenating all of the tree vectors, we form a larger vector
, which is an element of . The

vector must belong to the constraint set

(16)

In order to define convex combinations of exponential param-
eters defined on spanning trees, we require a probability distri-
bution over the set of spanning trees

For any distribution , we define its support to be the set of trees
to which it assigns strictly positive probability; that is,

(17)

In the sequel, it will also be of interest to consider the probability
that a given edge appears in a span-

ning tree chosen randomly under . We let
represent a vector of these edge appearance probabilities. Any

Fig. 1. Illustration of edge appearance probabilities. Original graph is shown
in panel (a). Probability 1=3 is assigned to each of the three spanning trees
fT j i = 1; 2; 3g is shown in panels (b)–(d). Edge b is a so-called bridge in
G, meaning that it must appear in any spanning tree. Therefore, it has edge
appearance probability � = 1. Edges e and f appear in two and one of the
spanning trees, respectively, which gives rise to edge appearance probabilities
� = 2=3 and � = 1=3.

such vector must belong to the so-called spanning tree poly-
tope [7], [17], which we denote by . See Fig. 1 for an illus-
tration of the edge appearance probabilities. Although we allow
for the support to be a strict subset of the set of all span-
ning trees, we require that for all , so that each
edge appears in at least one tree with nonzero probability.

Given a collection of tree-structured parameters and a dis-
tribution , we form a convex combination of tree exponential
parameters as follows:

(18)

Let be the target parameter vector for which we are in-
terested in computing , as well as a MAP configuration of

. For a given , of interest are collections of tree-struc-
tured exponential parameters such that . Accord-
ingly, we define the following constraint set:

(19)

It can be seen that is never empty as long as for
all edges . We say that any member of specifies
a -reparameterization of .

Example 2 (Single Cycle): To illustrate these definitions,
consider a binary vector on a four-node cycle, with
the distribution in the minimal Ising form

In words, the target distribution is specified by the minimal pa-
rameter , where the zeros represent the
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fact that for all . Suppose that is the uniform dis-
tribution for , so that for each
edge . We construct a member of , as follows:

With this choice, it is easily verified that so that
.

B. Tightness of Upper Bounds

It follows from (14), (18), and (19) that for any ,
there holds

(20)

Our first goal is to understand when the upper bound (20) is
tight—that is, met with equality. It turns out that this equality
holds if and only if the collection of trees share a common op-
timum, which leads to the notion of tree agreement.

More formally, for any exponential parameter vector ,
define the collection of its optimal configurations as
follows:

for all (21)

Note that by the definition (13) of , there holds
for any . With this nota-

tion, we have the following.

Proposition 1 (Tree Agreement): Let ,
and let be the set of configurations that
are optimal for every tree-structured distribution. Then the fol-
lowing containment always holds:

(22)

Moreover, the bound (20) is tight if and only if the intersection
on the left-hand side (LHS) is nonempty.

Proof: The containment relation is clear from the form of
the upper bound (20). Let belong to . Then the dif-
ference of the right-hand side (RHS) and the LHS of (20) can
be written as follows:

where the last equality uses the fact that .
Now for each , the term
is nonnegative, and equal to zero only when belongs to

. Therefore, the bound is tight if and only if
for some .

The preceding result shows that the upper bound (20) is tight
if and only if all the trees in the support of agree on a common
configuration. When this tree agreement condition holds, a MAP
configuration for the original problem can be obtained
simply by examining the intersection of
configurations that are optimal on every tree for which .
Accordingly, we focus our attention on the problem of finding
upper bounds (20) that are tight, so that a MAP configuration can
be obtained. Since the target parameter is fixed and assuming
that we fix the spanning tree distribution , the problem on which
we focus is that of optimizing the upper bound as a function of

. Proposition 1 suggests two different strategies for
attempting to find a tight upper bound, which are the subjects of
the next two subsections.

Direct minimization and Lagrangian Duality: The first ap-
proach is a direct one, based on minimizing (20). In particular,
for a fixed distribution over spanning trees, we consider the
constrained optimization problem of minimizing the RHS of
(20) subject to the constraint . The problem structure
ensures that strong duality holds, so that it can be tackled via its
Lagrangian dual. In Section IV, we show that this dual problem
is an LP relaxation of the original MAP estimation problem.

Message-Passing Approach: In Section V, we derive and an-
alyze message-passing algorithms, the goal of which is to find,
for a fixed distribution , a collection of exponential parame-
ters such that belongs to the constraint set

of (19), and the intersection of config-
urations optimal for all tree problems is nonempty. Under these
conditions, Proposition 1 guarantees that for all configurations
in the intersection, the bound is tight. In Section V, we develop
a class of message-passing algorithms with these two goals in
mind. We also prove that when the bound is tight, fixed points of
these algorithms specify optimal solutions to the LP relaxation
derived in Section VI.

IV. LAGRANGIAN DUALITY AND TREE RELAXATION

In this section, we develop and analyze a Lagrangian refor-
mulation of the problem of optimizing the upper bounds—i.e.,
minimizing the RHS of (20) as a function of . The
cost function is a linear combination of convex functions, and
so is also convex as a function of ; moreover, the constraints are
linear in . Therefore, the minimization problem can be solved
via its Lagrangian dual. Before deriving this dual, it is conve-
nient to develop an alternative representation of as a linear
program.

A. Linear Program Over the Marginal Polytope for Exact
MAP Estimation

Recall from (13) that the function value corresponds
to the optimal value of the integer program . We
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now reformulate this integer program as an LP, which leads to an
alternative representation of the function , and hence of the
exact MAP estimation problem. In order to convert from integer
to linearprogram,ourapproach is thestandardone (e.g., [7], [38])
of taking convex combinations of all possible solutions. The re-
sultingconvexhull isprecisely themarginalpolytope
defined in Section II-C. We summarize in the following.

Lemma 1: The function has an alternative represen-
tation as a linear program over the marginal polytope

(23)

where is shorthand for the sum

Proof: Although this type of LP reformulation is standard
in combinatorial optimization, we provide a proof here for com-
pleteness. Consider the set
of all possible probability distributions over . We first claim
that the maximization over can be rewritten as an equiv-
alent maximization over as follows:

(24)

On one hand, the RHS is certainly greater than or equal to the
LHS, because for any configuration , the set includes the
delta distribution that places all its mass at . On the other
hand, for any , the sum is a convex
combination of terms of the form for , and so
cannot be any larger than .

Making use of the functional notation in (11), we now expand
the summation on the RHS of (24), and then use the linearity of
expectation to write

Here

and

As ranges over , the marginals range over .
Therefore, we conclude that is equal to

, as claimed.

Remarks: Lemma 1 identifies as the support function
[28] of the set . Consequently, can be inter-
preted as the negative intercept of the supporting hyperplane to

with normal vector . This property underlies
the dual relation that is the focus of the following section.

B. Lagrangian Dual

Let us now address the problem of finding the tightest upper
bound of the form in (20). More formally, for a fixed distribu-
tion over spanning trees, we wish to solve the constrained op-
timization problem

(25)

As defined in (16), the constraint set consists of all vectors
such that for each tree , the subvector respects

the structure of , meaning that .
Note that the cost function is a convex combination of convex

functions; moreover, with fixed, the constraints are all linear
in . Under these conditions, strong duality holds [6], so that
this constrained optimization problem can be tackled via its La-
grangian dual. The dual formulation turns out to have a sur-
prisingly simple and intuitive form. In particular, recall the set

defined by the orthant constraint , and the
additional linear constraints (9a), (9b), and (10). The polytope

turns out to be the constraint set in the dual refor-
mulation of our problem.

Theorem 1: The Lagrangian dual to problem (25) is given
by the LP relaxation based on . Given that strong
duality holds, the optimal primal value

(26)

is equal to the optimal dual value

(27)

Proof: Let be a vector of Lagrange multipliers corre-
sponding to the constraints . We then form the
Lagrangian associated with problem (25)

We now compute the dual function

this minimization problem can be decomposed into separate
problems on each tree as follows:

(28)

The following lemma is key to computing this infimum.
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Fig. 2. (a) The constraint set LOCAL(G) is an outer bound on the exact marginal polytope. Its vertex set includes all the integral vertices of MARG(G),
which are in one-to-one correspondence with optimal solutions of the integer program. It also includes additional fractional vertices, which are not vertices of
MARG(G). (b), (c) Solving an LP with cost vector �� entails translating a hyperplane with normal �� until it is tangent to the constraint set LOCAL(G). In (b),
the point of tangency occurs at a unique integral vertex. In (c), the tangency occurs at a fractional vertex of LOCAL(G) that lies outside of MARG(G).

Lemma 2: The function

(29)

has the explicit form

if
otherwise

(30)

where

Proof: See Appendix, part B .

Using Lemma 2, the value of the infimum (28) will be equal
to if for all , and
otherwise. Since every edge in the graph belongs to at least one
tree in , we have

so that the dual function takes the form

if
otherwise.

Thus, the dual optimal value is ; by
strong duality [6], this optimum is equal to the optimal primal
value (25).

The equivalence guaranteed by the duality relation in The-
orem 1 is useful, because the dual problem has much simpler
structure than the primal problem. For a general distribution ,
the primal problem (25) entails minimizing a sum of functions
over all spanning trees of the graph, which can be a very large
collection. In contrast, the dual program on the RHS of (27) is
simply an LP over , which is a relatively simple
polytope. (In particular, it can be characterized by

constraints, where .)
This dual LP (27) also has a very natural interpretation.

In particular, the set is an outer bound on the

marginal polytope , since any valid marginal vector
must satisfy all of the constraints defining . Thus,
the dual LP (27) is simply a relaxation of the original LP (23),
obtained by replacing the original constraint set
by the set formed by local (node and edgewise)
constraints. Note that for a graph with cycles,
is a strict superset of . (In particular, Example
3 to follow provides an explicit construction of an element

.) For this reason, we call any
a pseudomarginal vector.

An additional interesting connection is that this polytope
is equivalent to the constraint set involved in the

Bethe variational principle which, as shown by Yedidia et al.
[47], underlies the sum–product algorithm. In addition, it is
possible to recover this LP relaxation as the “zero-temperature”
limit of an optimization problem based on a convexified Bethe
approximation, as discussed in our previous work [44]. For
binary variables, the linear program (27) can be shown to be
equivalent to a relaxation that has been studied in previous
work (e.g., [27], [11]). The derivation given here illuminates the
critical role of graphical structure in controlling the tightness
of such a relaxation. In particular, an immediate consequence
of our development is the following.

Corollary 1: The relaxation (27) is exact for any problem on
a tree-structured graph.

Since the LP relaxation (27) is always exact for MAP esti-
mation with any tree-structured distribution, we refer to it as a
tree relaxation. For a graph with cycles—in sharp contrast to
the tree-structured case— is a strict outer bound on

, and the relaxation (27) will not always be tight.
Fig. 2 provides an idealized illustration of , and its
relation to the exact marginal polytope . It can be
seen that the vertices of are all of the form , corre-
sponding to the marginal vector realized by the delta distribution
that puts all its mass on . In the canonical overcomplete
representation (3), each element of any such is either zero
or one. These integral vertices, denoted by , are drawn with
black circles in Fig. 2(a). It is straightforward to show that each
such is also a vertex of . However, for graphs
with cycles includes additional fractional vertices
that lie strictly outside of , and that are drawn in gray
circles in Fig. 2(a).

Since is also a polytope, the optimum of the LP
relaxation (27) will be attained at a vertex (possibly more than
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one) of . Consequently, solving the LP relaxation
using as an outer bound on can have
one of two possible outcomes. The first possibility is that op-
timum is attained at some vertex of that is, also a
vertex of . The optimum may occur at a unique in-
tegral vertex, as illustrated in Fig. 2 (b), or at multiple integral
vertices (not illustrated here). In this case, both the dual LP re-
laxation (27), and hence also the primal version in (20), are tight,
and we can recover an optimal MAP configuration for the orig-
inal problem, which is consistent with Proposition 1. Alterna-
tively, the optimum is attained only outside the original marginal
polytope at a fractional vertex of , as il-
lustrated in Fig. 2(c). In this case, the relaxation must be loose,
so that Proposition 1 asserts that it is impossible to find a con-
figuration that is optimal for all tree-structured problems. Con-
sequently, whether or not the tree agreement condition of Propo-
sition 1 can be satisfied corresponds precisely to the distinction
between integral and fractional vertices in the LP relaxation (27).

Example 3 (Integral Versus Fractional Vertices): In order
to demonstrate explicitly the distinction between fractional
and integral vertices, we now consider the simplest possible
example—namely, a binary problem defined on
the three-node cycle. Consider the parameter vector with
components defined as follows:

(31a)

(31b)

Suppose first that is positive—say . By construction of
, we have for all . This inequality is

tight when is either the vertex corresponding to the config-
uration , or its counterpart corresponding to . In
fact, both of these configurations are MAP-optimal for the orig-
inal problem, so that we conclude that the LP relaxation (27) is
tight (i.e., we can achieve tree agreement).

On the other hand, suppose that ; for concreteness, say
. This choice of encourages all pairs of configurations
to be distinct (i.e., ). However, in going around

the cycle, there must hold for at least one pair. There-
fore, the set of optimal configurations consists of , and
the other five permutations thereof. (That is, all configurations
except and are optimal.) The value of any such
optimizing configuration—i.e., —will be

, corresponding to the fact that two of the three pairs
are distinct.

However, with reference to the relaxed polytope
, a larger value of can be attained. We begin

by observing that for all .
In fact, equality can be achieved in this inequality by the
following pseudomarginal:

(32a)

(32b)

Overall, we have shown that

which establishes that the relaxation (27) is loose for this partic-
ular problem. Moreover, the pseudomarginal vector defined in
(32a) corresponds to a fractional vertex of , so that
we are in the geometric setting of Fig. 2(c).

V. TREE-REWEIGHTED MESSAGE-PASSING ALGORITHMS

The main result of the preceding section is that the problem of
finding tight upper bounds, as formulated in (25), is equivalent
to solving the relaxed linear program (27) over the constraint
set . A key property of this constraint set is that it
is defined by a number of constraints that is at most quadratic in
the number of nodes . Solving an LP over , then,
is certainly feasible by various generic methods, including the
simplex algorithm (e.g., [7]). It is also of interest to develop
algorithms that exploit the graphical structure intrinsic to the
problem. Accordingly, this section is devoted to the develop-
ment of iterative algorithms with this property. An interesting
property of the iterative methods developed here is that when
applied to a tree-structured graph, they all reduce to the ordi-
nary max-product algorithm [23], [43]. For graphs with cycles,
in contrast, they remain closely related to but nonetheless differ
from the ordinary max-product algorithm in subtle but impor-
tant ways. Ultimately, we establish a connection between partic-
ular fixed points of these iterative algorithms and optimal dual
solutions of the LP relaxation (27). In this way, we show that
(suitably reweighted) forms of the max-product algorithm have
a variational interpretation in terms of the LP relaxation. As a
corollary, our results show that the ordinary max-product algo-
rithm for trees (i.e., the Viterbi algorithm) can be viewed as an
iterative method for solving a particular linear program.

We begin with some background on the notion of max-
marginals, and their utility in computing exact MAP estimates
of tree-structured distributions [2], [14], [15], [43]. We then
define an analogous notion of pseudo-max-marginals for graphs
with cycles, which play a central role in the message-passing
algorithms that we develop subsequently.

A. Max-Marginals for Tree Distributions

Although the notion of max-marginal can be defined for any
distribution, of particular interest in the current context are the
max-marginals associated with a distribution that is
Markov with respect to some tree . For each

and , the associated single-node max-marginal is
defined by a maximization over all other nodes in the graph

(33)

Here is some normalization constant, included for con-
venience, that is independent of but can vary from node to
node. Consequently, the max-marginal is proportional to
the probability of the most likely configuration under the con-
straint . Note that is obtained by maximizing over
the random variables at all nodes , whence the termi-
nology “max-marginal.” For each edge , the joint pairwise
max-marginal is defined in an analogous manner

(34)
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Once again, the quantity is a positive normalization constant
that can vary from edge to edge but does not depend on .

It is convenient to represent all the values
associated with a given node, and the values

associated with a given edge in the functional form

(35)

It is well known [14] that any tree-structured distribution
can be factorized in terms of its max-marginals as

follows:

(36)

This factorization, which is entirely analogous to the more
familiar one in terms of (sum)-marginals, is a special case of
the more general junction-tree decomposition [15], [14]. More-
over, it can be shown [15], [43] that the ordinary max-product
(min-sum) algorithm computes this max-marginal factorization.
The fact that this factorization can be computed in a straightfor-
ward manner for any tree is exploited in the algorithms that we
develop in the sequel.

The max-marginal factorization (36) yields a local criterion
for assessing the validity of tree max-marginals. The following
lemma provides a precise statement.

Lemma 3: A collection are valid max-marginals for
a tree if and only if the edgewise consistency condition

(37)

holds5 for every edge .
Proof: Necessity of the edge consistency is clear. The suf-

ficiency can be established by an inductive argument in which
successive nodes are stripped from the tree by local maximiza-
tion; see [15], [43] for further details.

The max-marginal representation (36) allows the global
problem of MAP estimation to be solved by performing a set
of local maximization operations. In particular, suppose that
the configuration belongs to , meaning that is
MAP-optimal for . For a tree, such configurations are
completely characterized by local optimality conditions with
respect to the max-marginals, as summarized in the following.

Lemma 4 (Local Optimality): Let be a valid set of
max-marginals for a tree-structured graph. Then a configuration

belongs to if and only if the following local
optimality conditions hold:

(38a)

(38b)

Proof: The necessity of the conditions in (38) is clear. To
establish sufficiency, we follow a dynamic-programming pro-
cedure. Any tree can be rooted at a particular node ,

5Here � is a positive constant that depends on both the edge, and the variable
over which the maximization takes place.

and all edges can be directed from parent to child .
To find a configuration , begin by choosing
an element . Then proceed recursively
down the tree, from parent to child , at each step choosing the
child configuration from . By con-
struction, the configuration so defined is MAP-optimal; see
[15], [43] for further details.

A particularly simple condition under which the local opti-
mality conditions (38) hold is when for each , the max-mar-
ginal has a unique optimum . In this case, the MAP config-
uration is unique with elements that
are computed easily by maximizing each single-node max-mar-
ginal. If this uniqueness condition does not hold, then more than
one configuration is MAP-optimal for . In this case, max-
imizing each single-node max-marginal is no longer sufficient
[43], and the dynamic-programming procedure described in the
proof of Lemma 4 must be used.

B. Iterative Algorithms

We now turn to the development of iterative algorithms for a
graph that contains cycles. We begin with a high-
level overview of the concepts and objectives, before proceeding
to a precise description.

1) High-Level View: The notion of max-marginal is not lim-
ited to distributions defined by tree-structured graphs, but can
also be defined for graphs with cycles. Indeed, if we were able
to compute the exact max-marginals of and each single-
node max-marginal had a unique optimum, then the MAP esti-
mation problem could be solved by local optimizations.6 How-
ever, computing exact max-marginals for a distribution on a gen-
eral graph with cycles is an intractable task. Therefore, it is again
necessary to relax our requirements.

The basic idea, then, is to consider a vector of the so-called
pseudo-max-marginals , the properties of which
are to be defined shortly. The qualifier “pseudo” reflects the fact
that these quantities no longer have an interpretation as exact
max-marginals, but instead represent approximations to max-
marginals on the graph with cycles. For a given distribution
over the spanning trees of the graph and a tree for which

, consider the subset , corresponding to those
elements of associated with —i.e.,

(39)

We think of as implicitly specifying a tree-structured
exponential parameter via the factorization (36), i.e.,

(40)

which, in turn, implies that is associated with a collection of
tree-structured parameters—viz.

(41)

Now suppose that given , we have a vector that satisfies the
following properties.

a) The vector specifies a vector , meaning that
is a -reparameterization of the original distribution.

6If a subset of the single-node max-marginals had multiple optima, the situa-
tion would be more complicated.
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b) For all trees , the vector consists of
exact max-marginals for ; we refer to this con-
dition as tree consistency.

Our goal is to iteratively adjust the elements of —and hence,
implicitly, as well—such that the -reparameterization condi-
tion always holds, and the tree consistency condition is achieved
upon convergence. In particular, we provide algorithms such
that any fixed point satisfies both conditions a) and b).

The ultimate goal is to use to obtain a MAP configuration
for the target distribution . The following condition turns
out to be critical in determining whether or not is useful for
this purpose:

Optimum Specification (OS): The pseudo-max-marginals
satisfy the optimum specification (OS) criterion if

there exists at least one configuration that satisfies the local
optimality conditions (38) for every vertex and edge

on the graph with cycles.
Note that the OS criterion always holds for any set of exact

max-marginals on any graph. For the pseudo-max-marginals up-
dated by the message-passing algorithms, in contrast, the OS
criterion is no longer guaranteed to hold, as we illustrate in Ex-
ample 4 to follow.

In the sequel, we establish that when satisfies the OS cri-
terion with respect to some configuration , then any such

must be MAP-optimal for the target distribution. In con-
trast, when the OS criterion is not satisfied, the pseudo-max-
marginals do not specify a MAP-optimal configura-
tion, as can be seen by a continuation of Example 3.

Example 4 (Failure of the OS Criterion): Consider the pa-
rameter vector defined in (31a). Let the spanning tree distri-
bution place mass on each of the three spanning trees as-
sociated with a three-node single cycle. With this choice, the
edge appearances probabilities are for each edge. We
now define a -vector of log pseudo-max-marginals as-
sociated with node , as well as a matrix of log
pseudo-max-marginals associated with edge , in the fol-
lowing way:

(42)

For each of the three trees in , the associated vector
of pseudo-max-marginals defines a tree-structured expo-

nential parameter as in (40). More specifically, we have

otherwise.
(43)

With this definition, it is straightforward to verify that
, meaning that the -reparameterization

condition holds. Moreover, for any , the edgewise
consistency condition holds.
Therefore, the pseudo-max-marginals are pairwise-consistent,
so that by Lemma 3, they are tree-consistent for all three
spanning trees.

Now suppose that . In this case, the pseudo-max-mar-
ginal vector does satisfy the OS criterion. Indeed, both con-

figurations and achieve for
all vertices , and for all edges

. This finding is consistent with Example 3, where we
demonstrated that both configurations are MAP-optimal for the
original problem, and that the LP relaxation (27) is tight.

Conversely, suppose that . In this case, the require-
ment that belong to the set for all
three edges means that for all three pairs. Since this
condition cannot be met, the pseudo-max-marginal fails the OS
criterion for . Again, this is consistent with Example 3,
where we found that for , the optimum of the LP relax-
ation (27) was attained only at a fractional vertex.

2) Direct Updating of Pseudo-Max-Marginals: Our first
algorithm is based on updating a collection of pseudo-max-
marginals for a graph with cycles such that -repa-
rameterization (condition a)) holds at every iteration, and
tree consistency (condition b)) is satisfied upon convergence.
At each iteration , associated with each node

is a single node pseudo-max-marginal , and with each
edge is a joint pairwise pseudo-max-marginal .
Suppose that for each tree in the support of , we use these
pseudo-max-marginals to define a tree-structured
exponential parameter via (36). More precisely, again
using the functional notation as in (11), the tree-structured pa-
rameter is defined in terms of (element-wise) logarithms
of as follows:

(44a)

if
otherwise.

(44b)

The general idea is to update the pseudo-max-marginals it-
eratively in such a way that the -reparameterization condition
is maintained, and the tree consistency condition is satisfied
upon convergence. There are a number of ways in which such
updates can be structured; here, we distinguish two broad classes
of strategies: tree-based updates and parallel edge-based up-
dates. Tree-based updates entail performing multiple iterations
of updating on a fixed tree , updating only the
subcollection of pseudo-max-marginals associated with
vertices and edges in until it is fully tree-consistent for this tree
(i.e., so that the components of are indeed max-marginals
for the distribution ). However, by focusing on this
one tree, we may be changing some of the and so that we
do not have tree-consistency on one or more of the other trees

. Thus, the next step entails updating the pseudo-
max-marginals on one of the other trees, and so on, until
ultimately the full collection is consistent on every tree. In con-
trast, the edge-based strategy involves updating the pseudo-max-
marginal on each edge, as well as the associated single-node
max-marginals and , in parallel. This edgewise strategy is
motivated by Lemma 3, which guarantees that is consistent
on every tree of the graph if and only if the edge consistency
condition

(45)

holds for every edge of the graph with cycles.
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Fig. 3. Edge-based reparameterization updates of the pseudo-max-marginals.

It should be noted that tree-based updates are computation-
ally feasible only when the support of the spanning tree distri-
bution consists of a manageable number of trees. When ap-
plicable, however, there can be important practical benefits to
tree-based updates, including more rapid convergence as well
as the possibility of determining a MAP-optimal configuration
prior to convergence. More details on tree-based updates and
their properties in more detail in the Appendix, part C. We pro-
vide some experimental results demonstrating the advantages of
tree-based updates in Section V-D.2.

Here, we focus on edge-based updates, due to their simplicity
and close link to the ordinary max-product algorithm that will be
explored in the following section. The edge-based reparameteri-
zation algorithm takes the form shown in Fig. 3; a few properties
are worthy of comment. First, each scalar appearing in (46b)
and (46a) is the edge appearance probability of edge in-
duced by the spanning tree distribution , as defined in Section
III-A. Second, this edge-based reparameterization algorithm is
very closely related to the ordinary max-product algorithm [43].
In fact, if for all edges , then the updates
(47) are exactly equivalent to a (reparameterization form) of the
usual max-product updates. We will see this equivalence explic-
itly in our subsequent presentation of tree-reweighted message-
passing updates.

The following lemmas summarize the key properties of Algo-
rithm 3. We begin by claiming that all iterates of this algorithm
specify a -reparameterization.

Lemma 5 ( -Reparameterization): At each iteration
, the collection of tree-structured parameter vectors
, as specified by the pseudo-max-marginals

via (44), satisfies the -reparameterization condition.
Proof: Using the initialization (46) and (44), for each tree

, we have the relation for all
edges , and for all vertices .
Thus, we have

for all and

for all , so that -reparameterization holds for .
We now proceed inductively: supposing that it holds for iteration

, we prove that it also holds for iteration . Using the update
equation (47) and (44), we find that for all , the quantity

is equal to

Some algebraic rearrangement leads to an equivalent expression
(up to additive constants independent of ) for the weighted sum

which, using (44), is seen to be equal to .
Thus, the statement follows by the induction hypothesis.

Next we characterize the fixed points of the updates in step 2).

Lemma 6: Any fixed point of the updates (47) satisfies the
tree consistency condition b).

Proof: At a fixed point, we can substitute
at all places in the updates. Doing so in (47b) and can-

celing out common terms leads to the relation

for all , from which the edgewise consistency condition
(45) follows for each edge . The tree consistency
condition then follows from Lemma 3.

3) Message-Passing Updates: The reparameterization up-
dates of Algorithm 3 can also be described in terms of explicit
message-passing operations. In this formulation, the pseudo-
max-marginals depend on the original exponential param-
eter vector , as well as a set of auxiliary quantities
associated with the edges of . For each edge

is a function from the state space to the
positive reals. The function represents information
that is relayed from node to node , so that we refer to it
as a “message.” The resulting algorithm is an alternative but
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Fig. 4. Parallel edge-based form of tree-reweighted message-passing updates. The algorithm reduces to the ordinary max-product updates when all the edge
weights � are set equal to one.

equivalent implementation of the reparameterization updates
of Algorithm 3.

More explicitly, let us define pseudo-max-marginals
in terms of and a given set of messages as
follows:

(48a)

(48b)

where

As before, these pseudo-max-marginals can be used to de-
fine a collection of tree-structured exponential parameters

via (44). First, we claim that for any choice of
messages, the set of tree-structured parameters so defined
specifies a -reparameterization.

Lemma 7: For any choice of messages, the collection
is a -reparameterization of .

Proof: We use the definition (44) of in terms of
to write as

Expanding out the expectation yields

(49)

Using the definition (48) of and , we have

As a consequence, each weighted log message
appears twice in (49): once in the term with a plus

sign, and once in the term with a
negative sign. Therefore, the messages all cancel in the summa-
tion. This establishes that for all , we have

The message-passing updates shown in Fig. 4 are designed to
find a collection of pseudo-max-marginals that satisfy
the tree consistency condition b).

First, it is worthwhile to note that the message update (50)
is closely related to the standard [23], [43] max-product up-
dates, which correspond to taking for every edge. On
one hand, if the graph is actually a tree, any vector in the
spanning tree polytope must necessarily satisfy for
every edge , so that Algorithm 2 reduces to the or-
dinary max-product update. However, if has cycles, then it
is impossible to have for every edge , so
that the updates in (50) differ from the ordinary max-product
updates in three critical ways. To begin, the exponential pa-
rameters are scaled by the (inverse of the) edge ap-
pearance probability . Second, for each neighbor

, the incoming message is exponentiated by the
corresponding edge appearance probability . Finally,
the update of message —that is, from to along edge

—depends on the reverse direction message from
to along the same edge. Despite these features, the messages
can still be updated in an asynchronous manner, as in ordinary
max-product [23], [43].

Moreover, we note that these tree-reweighted updates are re-
lated but distinct from the attenuated max-product updates pro-
posed by Frey and Koetter [24]. A feature common to both al-
gorithms is the reweighting of messages; however, unlike the
tree-reweighted update (50), the attenuated max-product update
in [24] of the message from to does not involve the message
in the reverse direction (i.e., from to ).

By construction, any fixed point of Algorithm 2 specifies a
set of tree-consistent pseudo-max-marginals, as summarized in
the following.

Lemma 8: For any fixed point of the updates (50), the as-
sociated pseudo-max-marginals defined as in (48a) and (48b)
satisfy the tree-consistency condition.

Proof: By Lemma 3, it suffices to verify that the edge con-
sistency condition (45) holds for all edges . Using the
definition (48) of and , the edge consistency condition (45)
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is equivalent to equating
with

Pulling out all terms involving , and canceling out
all remaining common terms yields the message update equa-
tion (50).

C. Existence and Properties of Fixed Points

We now consider various questions associated with Algo-
rithms 1 and 2, including existence of fixed points, convergence
of the updates, and the relation of fixed points to the LP re-
laxation (27). As noted previously, the two algorithms (repa-
rameterization and message-passing) represent alternative im-
plementations of the same updates, and hence, are equivalent
in terms of their fixed point and convergence properties. For
the purposes of the analysis given here, we focus on the mes-
sage-passing updates given in Algorithm 2.

With reference to the first question, in related work [43],
we proved the existence of fixed points for the ordinary max-
product algorithm when applied to any distribution with strictly
positive compatibilities defined on an arbitrary graph. The same
proof can be adapted to show that the message-update equation
(50) has at least one fixed point under these same condi-
tions. Unfortunately, we do not yet have sufficient conditions to
guarantee convergence on graphs with cycles; however, in prac-
tice, we find that the edge-based message-passing updates (50)
converge if suitably damped. In particular, we apply damping in
the logarithmic domain, so that messages are updated according
to , where is calculated
in (50). Moreover, we note that in follow-up work, Kolmogorov
[31] has developed a modified form of tree-based updates for
which certain convergence properties are guaranteed.

Finally, the following theorem addresses the nature of the
fixed points, and in particular, provides sufficient conditions for
Algorithm 2 to yield exact MAP estimates for the target distri-
bution , and thereby establishes a link to the dual of the
LP relaxation of Theorem 1.

Theorem 2: Let be a fixed point of Algorithm 2, and sup-
pose that the associated pseudo-max-marginals satisfy the
OS criterion. Then the following statements hold.

a) Any configuration satisfying the local optimality con-
ditions in the OS criterion is a MAP configuration for

.
b) Let be the logarithm of the fixed point

taken element-wise. Then, a linear combination of
specifies an optimal solution to the dual of the LP

relaxation (27) of Theorem 1.
Proof:

a) By Lemma 7, the pseudo-max-marginals specify a
-reparameterization of . Since the message vector

defining is a fixed point of the update equation (50),
Lemma 8 guarantees that the tree consistency condition holds.
By the OS criterion, we can find a configuration that is node
and edgewise optimal for . By Lemma 4, the configuration

is optimal for every tree-structured distribution .
Thus, by Proposition 1, the configuration is MAP-optimal
for .

b) Let be a fixed point of the update equation (50), such
that the pseudo-max-marginals satisfy the OS criterion. The
proof involves showing that a linear combination of the vector

, defined by the element-wise logarithm of the
message fixed point, is an optimal solution to a particular La-
grangian dual reformulation of the LP relaxation (27). For this
proof, it is convenient to represent any pseudomarginal more
compactly in the functional form

(51)

For each edge and element , define the linear
function

and let be a Lagrange multiplier associated with the
constraint . We then consider the Lagrangian

(52)

Note that we have rescaled the Lagrange multipliers by the edge
appearance probabilities so as to make the connection
to the messages in Algorithm 2 as explicit as possible. For any
vector of Lagrange multipliers , the dual function is defined
by the maximization , over the
constraint set

(53)

Now our goal is to specify how to choose a particular La-
grange multiplier vector in terms of the log messages , or
equivalently, the pseudo-max-marginals and defined by
the messages . To define the link between
and , we let be an arbitrary node of the graph, and suppose
that every tree is rooted at , and the remaining
edges are directed from parent-to-child. More formally, for each
node , let denote its unique parent. We now define

(54)

With this definition, the Lagrangian evaluated at takes a par-
ticular form.



WAINWRIGHT et al.: MAP ESTIMATION VIA AGREEMENT ON TREES 3711

Lemma 9: With defined in (54), the Lagrangian
can be written as

where and are constants, and is given by

(55)

Proof: See Appendix, part D .

We now determine the form of the dual function .
Note that and on the
constraint set defined in (53), so that the terms involving
and play no role in the optimization. Using the definition of

and Lemma 9, we write

(56)

where .
Now since satisfies the OS criterion by assumption, we

can find a vector that achieves for every
node, and for every edge. Consider the
pseudomarginal vector given by

(57a)

(57b)

The following lemma is proved in the Appendix, part E.

Lemma 10: For each tree , we have
.

This lemma shows that each of the maxima on the RHS of
(56) are achieved at the same , so that the inequality labeled

in (56) in fact holds with equality. Consequently, we have

(58)

Since by construction satisfies all of the marginalization con-
straints (i.e., ), the Lagrangian re-
duces to the cost function, so that we have shown that the dual
value is equal to

or, equivalently, by ,
which is the optimal primal value. By strong duality, the pair

are primal-dual optimal.

For a general graph with cycles, the above proof does not
establish that any fixed point of Algorithm 2 (i.e., one for

which does not satisfy the OS criterion) necessarily spec-
ifies a dual- optimal solution of the LP relaxation. Indeed, in
follow-up work, Kolmogorov [32] has constructed a particular
fixed point, for which the OS criterion is not satisfied, that does
not specify an optimal dual solution. However, for problems
that involve only binary variables and pairwise interactions,
Kolmogorov and Wainwright [33] have strengthened Theorem
2 to show that a message-passing fixed point always specifies
an optimal dual solution.

However, on a tree-structured graph, the tree-reweighted max-
product updates reduce to the ordinary max-product (min-sum)
updates, and any fixed point must satisfy the OS criterion. In
this case, we can use Theorem 2 to obtain the following corollary.

Corollary 2 (Ordinary Max-Product): For a tree-structured
graph , the ordinary max-product algorithm is an iterative
method for solving the dual of the exact LP representation of
the MAP problem

(59)

Proof: By Lemma 1, the MAP problem
has the alternative LP representa-

tion as . By Corollary 1, the relaxation
based on is exact for a tree, so that

from which (59) follows. For the case of a tree, the only valid
choice of is the vector of all ones, so the tree-reweighted up-
dates must be equivalent to the ordinary max-product algorithm.
The result then follows from Theorem 2.

D. Additional Properties

As proved in Corollaries 1 and 2, the techniques given here
are always exact for tree-structured graphs. For graphs with
cycles, the general mode-finding problem considered here in-
cludes many NP-hard problems, so that our methods cannot
be expected to work for all problems. In general, their perfor-
mance—more specifically, whether or not a MAP configura-
tion can be obtained—depends on both the graph structure and
the form of the parameter vector . In parallel and follow-up
work to this paper, we have obtained more precise performance
guarantees for our techniques when applied to particular classes
of problems (e.g., binary linear coding problems [20]; binary
quadratic programs [33]). We discuss these results in more de-
tail in the sequel.

In this section, we begin with a comparison of reweighted
max-product to the standard max-product. In particular, we ex-
plicitly construct a simple problem for which the ordinary max-
product algorithm outputs an incorrect answer, but for which the
reweighted updates provably find the global optimum. We then
demonstrate the properties of edge-based versus tree-based up-
dates, and discuss their relative merits.

1) Comparison With Ordinary Max-Product: Recall that for
any graph with cycles, the tree-reweighted max-product algo-
rithm (Algorithm 2) differs from the ordinary max-product al-
gorithm in terms of the reweighting of messages and potential
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Fig. 5. Simple diamond graph G .

functions, and the involvement of the reverse direction mes-
sages. Here, we illustrate with a simple example that these mod-
ifications are in general necessary for a message-passing al-
gorithm to satisfy the exactness condition of Theorem 2 part
a). More precisely, we construct a fixed point of the ordinary
max-product algorithm that satisfies the OS criterion, yet the
associated configuration is not MAP-optimal.

In particular, consider the simple graph shown in Fig. 5,
and suppose that we wish to maximize a cost function of the
form

(60)

Here the minimization is over all binary vectors ,
and and are parameters to be specified. By design, the
cost function (60) is such that if we make sufficiently posi-
tive, then any optimal solution will either be or

. More concretely, suppose that we set
, and . With these parameter set-

tings, it is straightforward to verify that the optimal solution is
. However, if we run the ordinary max-product algorithm on

this problem, it converges to a set of singleton and edge-based
pseudo-max-marginals of the form

for
if

for

otherwise.

Note that these pseudo-max-marginals and the configuration
satisfy the OS criterion (since the optimum is uniquely attained
at for every node, and at the pair
for every edge); however, the global configuration is not
the MAP configuration for the original problem. This problem
shows that the ordinary max-product algorithm does not satisfy
an exactness guarantee of the form given in Theorem 2.

In fact, for the particular class of problems exemplified by
(60), we can make a stronger assertion about the tree-reweighted
max-product algorithm: namely, it will never fail on a problem
of this general form, where the couplings are nonnegative.
More specifically, in follow-up work to the current paper, Kol-
mogorov and Wainwright [33] have established theoretical guar-
antees on the performance of tree-reweighted message-passing
for problems with binary variables and pairwise couplings. First,
it can be shown that tree-reweighted message-passing always

succeeds for any submodular binary problem, of which the ex-
ample given in Fig. 5 is a special case. Although it is known
[26] that such problems can be solved in polynomial time via re-
duction to a max-flow problem, it is nonetheless interesting that
tree-reweighted message-passing is also successful for this class
of problems. An additional result [33] is that for any pairwise bi-
nary problem (regardless of nature of the pairwise couplings),
any variable that is uniquely specified by a tree-reweighted
fixed point (i.e., for which the set is a sin-
gleton) is guaranteed to be correct in some globally optimal con-
figuration. Thus, tree-reweighted fixed points can provide useful
information about parts of the MAP optimal solution even when
the OS criterion is not satisfied.

2) Comparison of Edge-Based and Tree-Based Updates: In
this subsection, we illustrate the empirical performance of the
edge-based and tree-based updates on some sample problems.
So as to allow comparison to the optimal answer even for large
problems, we focus on binary problems. In this case, the the-
oretical guarantees [33] described earlier allow us to conclude
that the tree-reweighted method yields correct information about
(at least part of the) optimum, without any need to compute the
exact MAP optimum by brute force. Thus, we can run simply
tree-reweighted message passing—either the edge-based or
tree-based updates—on any submodular binary problem, and be
guaranteed that given a fixed point, it will either specify a glob-
ally optimal configuration (for attractive couplings), or that any
uniquely specified variables (i.e., for which
is a singleton) will be correct (for arbitrary binary problems).

Our comparison is between the parallel edge-based form of
reweighted message-passing (Algorithm 2), and the tree-based
Algorithm 3 described in the Appendix, part C. We focus on
the amount of computation, as measured by the number of mes-
sages passed along each edge, required to either compute the
fixed point (up to accuracy) or—in the case
of tree-based updates—to find a configuration on which all
trees agree. In this latter case, Proposition 1 guarantees that the
shared configuration must be globally MAP-optimal for the
original problem, so that there is no need to perform any further
message-passing.

We performed trials on problems in the Ising form (2), de-
fined on grids with nodes. For the edge-based updates,
we used the uniform setting of edge appearance probabilities

; for the tree-based updates, we used two spanning
trees, one with the horizontal rows plus a connecting column
and the rotated version of this tree, placing weight
on each tree . In each trial, the single-node potentials
were chosen randomly as , whereas the edge cou-
plings were chosen in one of the following two ways. In the at-
tractive case, we chose the couplings as , where

is the edge strength. In the mixed case, we chose
. In both cases, we used damped forms of the updates

(linearly combining messages or pseudo-max-marginals in the
logarithmic domain) with damping parameter .

We investigated the algorithmic performance for a range of
coupling strengths for both attractive and mixed cases. For
the attractive case, the tree-reweighted algorithm is theoreti-
cally guaranteed [33] to always find an optimal MAP config-
uration. For the mixed case, the average fraction of variables in
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(a) (b)

Fig. 6. Comparison of parallel edge-based message-passing (Algorithm 2) and tree-based updates (Algorithm 3 described in the Appendix, part C) on a nearest
neighbor grid with n = 400 variables. (a) Attractive couplings. (b) Mixed couplings.

the MAP optimal solution that the reweighted message-passing
recovered was above 80% for all the examples that we consid-
ered; for mixed problems with weaker observation terms ,
this fraction can be lower (see [36]). Fig. 6 shows results com-
paring the behavior of the edge-based and tree-based updates.
In each panel, plotted on the -axis is the number of messages
passed per edge (before achieving the stopping criterion) versus
the coupling strength . Note that for more weakly coupled
problems, the tree-based updates consistently find the MAP op-
timum with lower computation than the edge-based updates. As
the coupling strength is increased, however, the performance
of the tree-based updates slows down and ultimately becomes
worse than the edge-based updates. In fact, for strong enough
couplings, we observed on occasion that the tree-based updates
could fail to converge, but instead oscillate (even with small
damping parameters). These empirical observations are consis-
tent with subsequent observations and results by Kolmogorov
[31], who developed a modified form of tree-based updates for
which certain convergence properties are guaranteed. (In par-
ticular, in contrast to the tree-based schedule given in the Ap-
pendix, part C, they are guaranteed to generate a monotonically
nonincreasing sequence of upper bounds.)

3) Related Work: In related work involving the methods de-
scribed here, we have found several applications in which the tree
relaxation and iterative algorithms described here are useful. For
instance, we have applied the tree-reweighted max-product algo-
rithm to a distributed data association problem involving mul-
tiple targets and sensors [13]. For the class of problem consid-
ered, the tree-reweighted max-product algorithm converges, typ-
ically quite rapidly, to a provably MAP-optimal data association.
In other colloborative work, we have also applied these methods
to decoding turbo-like and LDPC codes [19], [18], [20], and pro-
vided finite-length performance guarantees for particular codes
and channels. In the context of decoding, the fractional vertices
of the polytope have a very concrete interpretation
as pseudocodewords (e.g., [22], [25], [29], [45]). More broadly,

it remains to further explore and analyze the range of problems
for which the iterative algorithms and LP relaxations described
here are suitable.

VI. DISCUSSION

In this paper, we demonstrated the utility of convex combi-
nations of tree-structured distributions in upper-bounding the
value of the MAP configuration on an MRF on a graph with
cycles. A key property is that this upper bound is tight if and
only if the collection of tree-structured distributions shares a
common optimum. Moreover, when the upper bound is tight,
then a MAP configuration can be obtained for the original MRF
on the graph with cycles simply by examining the optima of the
tree-structured distributions. This observation motivated two ap-
proaches for attempting to obtain tight upper bounds, and hence
MAP configurations. First of all, we proved that the Lagrangian
dual of the problem is equivalent to an LP relaxation, wherein
the marginal polytope associated with the original MRF is re-
placed with a looser constraint set formed by tree-based consis-
tency conditions. Interestingly, this constraint set is equivalent
to the constraint set in the Bethe variational formulation of the
sum–product algorithm [47]; in fact, the LP relaxation itself can
be obtained by taking a suitable limit of the “convexified” Bethe
variational problem analyzed in our previous work [41], [44].
Second, we developed a family of tree-reweighted max-product
algorithms that reparameterize a collection of tree-structured
distributions in terms of a common set of pseudo-max-marginals
on the nodes and edges of the graph with cycles. When it is
possible to find a configuration that is locally optimal with re-
spect to every single node and edge pseudo-max-marginal, then
the upper bound is tight, and the MAP configuration can be ob-
tained. Under this condition, we proved that fixed points of these
message-passing algorithms specify dual-optimal solutions to
the LP relaxation. A corollary of this analysis is that the ordi-
nary max-product algorithm, when applied to trees, is solving
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the Lagrangian dual of an exact LP formulation of the MAP es-
timation problem.

Finally, in cases in which the methods described here do not
yield MAP configurations, it is natural to consider strengthening
the relaxation by forming clusters of random variables, as in the
Kikuchi approximations described by Yedidia et al. [47]. In the
context of this paper, this avenue amounts to taking convex com-
binations of hypertrees, which (roughly speaking) correspond to
trees defined on clusters of nodes. Such convex combinations of
hypertrees lead, in the dual reformulation, to a hierarchy of pro-
gressively tighter LP relaxations, ordered in terms of the size
of clusters used to form the hypertrees. On the message-passing
side, it is also possible to develop hypertree-reweighted forms
of generalizations of the max-product algorithm.

APPENDIX

A. Conversion From Factor Graph to Pairwise Interactions

In this part of the appendix, we briefly describe how any factor
graph description of a distribution over a discrete (multinomial)
random vector can be equivalently described in terms of a pair-
wise MRF [23], to which the pairwise LP relaxation based on

specified by (9a), (9b), and (10) can be applied. To
illustrate the general principle, it suffices to show how to con-
vert a factor defined on the triplet of random
variables into a pairwise form. Say that each takes values in
some finite discrete space .

Given the factor-graph description, we associate a new
random variable with the factor node , which takes values
in the Cartesian product space . In this
way, each possible value of can be put in one-to-one
correspondence with a triplet , where . For
each , we define a pairwise compatibility function

, corresponding to the interaction between and , by

where is a -valued indicator function for the
event . We set the singleton compatility functions as

and

With these definitions, it is straightforward to verify that the
augmented distribution given by

(61)

marginalizes down to . Thus, our augmented
model with purely pairwise interactions faithfully captures the
interaction among the triplet .

Finally, it is straightforward to verify that if we apply the
pairwise LP relaxation based on to the augmented
model (61), it generates an LP relaxation in terms of the vari-
ables that involves singleton pseudomarginal distributions ,
and a pseudomarginal over the variable neighborhood of

each factor . These pseudomarginals are required to be nonneg-
ative, normalized to one, and to satisfy the pairwise consistency
conditions

(62)

for all and for all factor nodes . When the factor
graph defines an LDPC code, this procedure generates the LP
relaxation studied in Feldman et al. [20]. More generally, this
LP relaxation can be applied to factor graph distributions other
than those associated with LDPC codes.

B. Proof of Lemma 2

By definition, we have .
We rewrite this function in the following way:

where equality follows from Lemma 1, and equality
follows because for all . In this way,
we recognize as the support function of the set

, from which it follows [28] that the conjugate
dual is the indicator function of , as specified
in (29).

For the sake of self-containment, we provide an explicit proof
of this duality relation here. If belongs to , then

holds for all , with
equality for . From this relation, we conclude that

whenever .
On the other hand, if , then by the

(strong) separating hyperplane theorem [28], there must exist
some vector and constant such that i) for all

; and ii) . Since conditions i) and
ii) do not depend on elements with , we can take

without loss of generality. We then have

(63)

Note that conditions i) and ii) are preserved under scaling of
both and by a positive number, so that can send the
quantity (63) to positive infinity. We thus conclude that

whenever . This completes the proof of the
lemma.

C. Tree-Based Updates

This part of the appendix provides a detailed description of
tree-based updates. In this scheme, each iteration involves mul-
tiple rounds of message-passing on each tree in the support of
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Fig. 7. Tree-based updates for finding a tree-consistent set of pseudo-max-marginals.

. More specifically, the computational engine used within each
iteration is the ordinary max-product algorithm, applied as an
exact technique to compute max-marginals for each tree-struc-
tured distribution.

At any iteration , we let denote a set of exponen-
tial parameters for the tree . To be clear, the notation
used in this part of the appendix differs slightly from its use
in the main text. In particular, unlike in the main text, we can
have for distinct trees at immediate
iterations, although upon convergence this equality will hold.
Each step of the algorithm will involve computing, for every
tree , the max-marginals , associated with
the tree-structured distribution . (Once again, unlike
the main text, we need not have for distinct
trees .) Overall, the tree-based updates take the form
given in Fig. 7.

Termination: Observe that there are two possible ways in
which Algorithm 3 can terminate. On one hand, the algorithm
stops if in Step 2(b)(i), a collection of tree-structured distribu-
tions is found that all share a common optimizing configuration.
Herein lies the possibility of finite termination, since there is no
need to wait until the values of the tree max-marginals
all agree for every tree. Otherwise, the algorithm terminates in
Step 2(b)(ii) if the max-marginals for each tree all agree with
one another, as stipulated by (64).

A key property of the updates in Algorithm 3 is that they
satisfy the -reparameterization condition.

Lemma 11: For any iteration , the tree-structured parame-
ters of Algorithm 3 satisfy .

Proof: The claim for follows from directly the ini-
tialization in Step 1. In particular, we clearly have

for any node . For any edge , we compute

To establish the claim for , we proceed by induction. By
the claim just proved, it suffices to show that , as defined in
(65), defines the same distribution as .

We begin by writing as

Using the definition (65), we can re-express it as follows:

(66)

Recall that for each tree , the quantities are the max-
marginals associated with the distribution . Using the
fact (36) that the max-marginals specify a reparameterization
of , each term within curly braces is simply equal
(up to an additive constant independent of ) to .
Therefore, by the induction hypothesis, the RHS of (66) is equal
to , so that the claim of the lemma follows.

On the basis of Lemma 11, it is straightforward to prove the
analog of Theorem 2, part a) for Algorithm 3. More specifically,
whenever it outputs a configuration, it must be an exact MAP
configuration for the original problem .

D. Proof of Lemma 9

We first prove an intermediate result.
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Lemma 12: Let and represent pseudo-max-marginals,
as defined as in (48), with the message , where
the exponential is taken element-wise. Then the Lagrangian

can be written as

where and are constants, and is given by

Proof: Straightforward algebraic manipulation allows us
to re-express the Lagrangian as

Using the definition of in terms of , we can
then write in terms of as

where the constants and arise from the normalization of
and .

Recall that we root all trees a fixed vertex , so that
each vertex has a unique parent denoted . Using the
parent-to-child representation of the tree , we can re-express

as

Recalling the definition of from (55), we can write
as

or, equivalently, as

where

is the constraint. Note that for each fixed and , the term
can be interpreted as a contribu-

tion to the Lagrange multiplier associated with the constraint
.

Finally, since the Lagrangian is linear in the Lagrange
multipliers, we can use Lemma 12 to express the Lagrangian

as

where is the vector of Lagrange multipliers with components

E. Proof of Lemma 10

Since by assumption the pseudo-max-marginals defined
by (with the exponential defined element-wise)
satisfy the optimum specification criterion, we can find a con-
figuration that satisfies the local optimality conditions (38)
for every node and edge on the full graph .

Since the pseudo-max-marginals are defined by a
fixed point (with the exponential defined
element-wise) of the update (50), the pseudo-max-marginals
must be pairwise-consistent. More explicitly, for any edge

and , the pairwise consistency condition
holds, where is a positive

constant independent of . Using this fact, we can write

(67)

Moreover, since by assumption the pseudo-max-marginals
satisfy the optimum specification criterion, we can find a con-
figuration that satisfies the local optimality conditions (38)
for every node and edge on the full graph . For this configura-
tion, we have the equality

(68)

and

(69)

for all , where the final equality follows from (67).
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Recall the definition of from (57a). Using (68) and (69),
we have

(70)

for all , and

(71)

for all . Both (70) and (71) hold for all
(i.e., for all nonnegative such that and

). Finally, inequalities (70) and (71)
imply that as claimed.
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