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Abstract. We propose a method for feature-preserving regularized re-
construction in coherent imaging systems. In our framework, image for-
mation from measured data is achieved through the minimization of a
cost functional, designed to suppress noise artifacts while preserving
features such as object boundaries in the reconstruction. The cost func-
tional includes nonquadratic regularizing constraints. Our formulation ef-
fectively deals with the complex-valued and potentially random-phase
nature of the scattered field, which is inherent in many coherent systems.
We solve the challenging optimization problems posed in our framework
by developing and using an extension of half-quadratic regularization
methods. We present experimental results from three coherent imaging
applications: digital holography, synthetic aperture radar, and ultrasound
imaging. The proposed technique produces images where coherent
speckle artifacts are effectively suppressed, and important features of
the underlying scenes are preserved. © 2006 Society of Photo-Optical Instrumen-
tation Engineers. �DOI: 10.1117/1.2150368�
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1 Introduction

This paper addresses image reconstruction problems in co-
herent imaging. Coherent imaging is based on recording
spatial and/or temporal variations in both the intensity of a
scattered field and its phase.1 Many microwave, optical,
and acoustic sensing applications use coherent imaging,
and particular modalities include synthetic-aperture radar
�SAR�, holography, sonar, ultrasound, and laser imaging,
among others. In both coherent and incoherent imaging
tasks, reconstruction of an image from observed data is
often an ill-posed inverse problem. Solution of such inverse
problems can be achieved through regularization methods,
which turn the problem into a well-posed one and prevent
the amplification of measurement noise during the recon-
struction process. However, one limitation of straightfor-
ward regularization methods, such as Tikhonov
regularization,2 is the suppression of important features in
the resulting imagery, such as edges. Recently this issue has
been successfully addressed by feature-preserving regular-
ization techniques in incoherent imaging applications, such
as restoration of blurred and noisy optical images3 and re-
construction in x-ray tomography.4

Coherent image reconstruction poses additional chal-
lenges that do not appear in incoherent imaging. First, the
signals involved are in general complex-valued. Further-
more, in many problems, including SAR and holography of
diffuse objects, the phase of the scattered field is a highly
0091-3286/2006/$22.00 © 2006 SPIE r
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andom quantity.* This leads to two complications. First,
ue to constructive and destructive interference of scatter-
rs within a resolution cell, conventional coherent images
uffer from speckle artifacts. �Speckle appears when the
urface being imaged has roughness at the scale of the il-
uminating wavelength.� Second, due to the complex-
alued and possibly random-phase nature of the fields,
traightforward application of image reconstruction meth-
ds originally designed for incoherent imaging may not
roduce accurate reconstructions, as we experimentally
emonstrate in Sec. 3.

To address these challenges, we propose a feature-
reserving regularization method specifically for coherent
maging tasks. The approach we present involves the mini-
ization of a cost functional that contains nonquadratic

egularization constraints. Such nonquadratic constraints
ave been shown to lead to feature preservation by prefer-
ing reconstructions that are sparse in terms of the features
f interest.6 Our framework is general enough to handle
arious features �as we demonstrate later�, but for the sake
f concreteness at this point, let us assume that the features
f interest are the boundaries between distinct physically
eaningful regions in the scene. The goal then is to recon-

truct images where various imaging artifacts and noise are
uppressed, while object and region boundaries �edges� are

This property is known to enable high-quality reconstructions from lim-
ted Fourier-offset data in coherent imaging.5 For this reason, Fourier
ransform holograms are often constructed using a diffuser to impart
ssentially random phase to each point in the original scene before

ecording.
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Çetin, Karl, and Willsky: Feature-preserving regularization method…
preserved. The regularization constraints in our framework
achieve artifact suppression by imposing smoothness on the
magnitudes of the reconstructed complex-valued field re-
flectivities �or transmission coefficients�. The nonquadratic
aspect of these regularizing functionals leads to edge pres-
ervation, similar to the case in incoherent imaging
problems.3,4 To solve the resulting optimization problems,
we provide a formal extension of half-quadratic regulariza-
tion techniques7 to complex-valued, random-phase fields.
This constitutes the major technical contribution of our
work.

There are a number of publications that are related to
some of the coherent-imaging issues that we address. The
implications of the random-phase nature of coherent im-
ages in terms of the quality of the reconstructions has been
analyzed in Refs. 5 and 8. The work in Ref. 9 presents a
maximum likelihood technique for reconstructing complex-
valued, random-phase images from Fourier-offset data us-
ing the expectation-maximization algorithm. Bayesian tech-
niques have been used for filtering complex-valued,
speckled images in Ref. 10, and for ultrasound Doppler
spectral analysis based on autoregressive models in Ref. 11.
A technique for image reconstruction from noisy digital
holograms based on the method of projection onto convex
sets �POCS� has been developed in Ref. 12. These last three
papers are somewhat related to our approach in that they
use regularizing constraints. A number of more recent pub-
lications have a closer relation to our perspective for coher-
ent imaging, in particular in their emphasis on preservation
of edges or other features. A Bayesian approach for the
nonlinear inverse scattering problem of tomographic imag-
ing using microwave or ultrasound probing has been pro-
posed in Ref. 13. In Refs. 14 and 15, maximum-entropy
regularization has been used for image reconstruction from
sparsely sampled coherent field data. The work in Ref. 16
proposes a regularized autoregressive model for spectral
estimation, with application to medical ultrasonic radio-
frequency images. Another method for spectral estimation
involves regularization through a circular Gibbs-Markov
model.17 A statistical deconvolution technique for diffuse
ultrasound scattering has been proposed in Ref. 18, where
sampling techniques are used for inference. In Ref. 19, an-
isotropic diffusion20 has been used for ultrasound speckle
reduction and coherence enhancement. The total variation-
based regularization method proposed in Ref. 21 has been
applied to coherent imaging, in particular to near-field
acoustic holography. Finally, in Ref. 22, a penalized-
likelihood image reconstruction technique has been pro-
posed for image-plane holography, which uses incoherent
illumination.

Our approach is significantly different from this body of
previous work in a number of ways. First, we consider the
random-phase aspect �and deal with the effects of speckle�
much more explicitly than any of the previous papers on
inverse problems in coherent imaging. Second, the struc-
tures of the energy functionals used in our framework are
quite different from what has been used in previous work,
and this structure allows the use of a variety of regularizing
constraints within a single framework. Third, the algorithm
we use for optimization, namely an extension of half-
quadratic regularization, is new. We demonstrate the perfor-

mance of the proposed method on examples from a number l
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f coherent imaging applications. With enhanced speckle
nd artifact suppression, as well as feature preservation, the
mages produced by our method appear to yield more ac-
urate reconstructions than conventional coherent imaging
echniques.

In Sec. 2, we present our nonquadratic regularization-
ased approach. We first develop the method with
p-norm-based potential functionals, and then extend it to
ther nonquadratic potentials. Section 3 contains the ex-
erimental results, and we conclude in Sec. 4.

Nonquadratic Regularization for Complex-
Valued Problems

his section contains the description of the nonquadratic
echnique we propose in this paper. We start by describing
he general form of the observation models we consider.

e then formulate an optimization problem for coherent
maging, which involves a cost functional based on �p
orms. To minimize this cost functional, we propose an
lgorithm based on half-quadratic regularization, and pro-
ide a statistical interpretation of this strategy. Finally we
eneralize our method to incorporate nonquadratic cost
unctionals other than �p norms.

.1 Observation Model
n this paper, we are concerned with inverse problems in
hich the sensor measurements y are related to the under-

ying, unknown field f , through a Fredholm integral equa-
ion of the first kind:

�x� = �
�

T�x,x��f�x�� dx� + w�x� , �1�

here � is the spatial region of interest for the reconstruc-
ion, and w is additive measurement noise. The argument of
f corresponds to 2-D or 3-D spatial coordinates, and the
rguments of y and w depend on the domain of the mea-
urements in specific applications.

We assume that the integral kernel T, which models the
elationship between the underlying field and the measured
ata, is known. For example, T may be a band-limited,
ossibly frequency-offset Fourier transform operator, where
he physics of the problem, the sensor parameters, and the
bservation geometry determine the exact structure. An-
ther example for T, used in tomographic imaging modali-
ies, is projection-type operators, related to the Radon
ransform.23 Yet another form arising in many applications
s convolutional operators. For some particular observation
odels that are of interest in our work �and that we use in

ur experimental analysis�, see Refs. 24 for digital holog-
aphy, Refs. 25 and 26 for SAR, and Refs. 14, 27, and 28
or ultrasound.

In many coherent imaging applications, which involve,
.g., multiple scattering and other second-order phenomena,
he exact equations governing the observation process are
ctually nonlinear. In such scenarios, approximate linear
bservation models as in Eq. �1� can be obtained through
rst-order solutions, which exclude all but primary scatter-

ng. Such linear models include the well-known Born ap-
roximation and the physical optics approximation. These

inear approximations yield acceptable results in many
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practical situations, where our techniques are directly ap-
plicable. On the other hand, it is certainly of interest to
develop inversion techniques based on more accurate non-
linear models. While we address only linear problems in
this paper, the key ideas we present are potentially useful in
nonlinear problems as well, and our method could be gen-
eralized to such cases.

In practice, we discretize the relationship in Eq. �1� and
use the following model for the coherent observation
process:

y = Tf + w , �2�

where y , f, and w are the sampled data, the unknown im-
age, and noise, respectively, all column-stacked as vectors.
Similarly, T is a matrix representing the discrete observa-
tion kernel. To provide some flavor of such discrete opera-
tors, in Fig. 1 we illustrate a tomographic projection opera-
tor that arises in one of the applications of interest in this
paper, namely, SAR. The operator is complex-valued, and
we show only the magnitudes of the elements of the matrix
as a grayscale plot. Each column of the matrix corresponds
to one spatial location in the underlying image, and de-
scribes how the reflectivity at that location contributes to
the projectional radar observations. Each row of the matrix
corresponds to one particular data point �one sample in the
discretized radar return at a particular observation angle�,
and describes the effect of various spatial locations in the

Fig. 1 Grayscale plot �black corresponds to th
magnitude of the elements in a SAR projection
operates in the X band with a center frequency o
an angular span of 2.3 deg.
scene on that data point. i
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Given the observation model in Eq. �2�, the objective is
o obtain a reconstruction of f, based on the data y. Con-
entional image formation techniques vary depending on
he particular modality and sensor model, and include algo-
ithms based on beamforming, filtered backprojection, and
nverse Fourier transformation, among others.

.2 Cost Functional Based on �p Norms

e propose to find the reconstructed image f̂ as the mini-
izer of the following cost functional:

0�f� = �y − Tf�2
2 + ��D�f��p

p, �3�

here � · �p denotes the �p norm, D is a matrix to be de-
cribed below, �f� denotes the vector of magnitudes of
he complex-valued vector f, and � , p�2 are scalar
arameters.† Note that the formulation of Eq. �3� takes into
ccount the forward model T and starts from the observed
ensor data y, and hence is not simply a postprocessing of a
ormed image.

The first term of J0�f� in Eq. �3� is a data fidelity term,
hile the second term incorporates prior information re-
arding both the behavior of the field f and the nature of the
eatures of interest in the resulting reconstructions. In par-

When p�1, the triangle inequality is not satisfied and it would be more
recise to use the term “quasi-norm” rather than “norm.” However, we

mum value, and white to the minimum� of the
for a 32�32 field. The radar in this example

Hz, and the underlying scene is viewed through
e maxi
matrix

f 10 G
gnore this subtlety and use the term “�p norm” for any value of p.
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ticular, the nonquadratic structure of the second term pro-
vides feature preservation,3,4 where the matrix D deter-
mines the kind of features to be preserved. For example, if
we are interested in reconstructing images consisting of
spatially extended objects and regions, with slowly varying
physical properties �such as reflectivities� within the re-
gions, then a good choice for D is a discrete approximation
to the 2-D spatial derivative operator �gradient�. With this
choice, the second term in Eq. �3� becomes a piecewise
smoothness constraint, imposing smoothness within regions
and allowing sharp transitions across the region boundaries,
leading to edge preservation. In Sec. 3, we show examples
demonstrating the use of this choice of D on digital holog-
raphy and SAR imaging. For a discussion of the structure
of 2-D discrete derivative operators, see the Appendix �Sec.
5.1�.

While edge-preserving reconstruction is of interest in
many coherent-imaging tasks, one might also be interested
in other features. For example, rather than spatially ex-
tended objects, an application might involve imaging spa-
tially localized scatterers. In that case, we would be inter-
ested in preserving the scattering amplitudes of the strong
scatterers in the scene, while suppressing noise and arti-
facts. In our framework, this could be achieved by choosing
D to be an identity operator in Eq. �3�. Such constraints
have been shown to lead to superresolution.29 In Sec. 3, we
show examples demonstrating the use of this choice of D
on ultrasound imaging.

In order to avoid problems due to nondifferentiability of
the �p norm around the origin when p�1, we use a smooth
approximation to the �p-norm in Eq. �3�.3 This leads to the
following slightly modified cost functional to be used in
practice for numerical purposes:

J�f� = �y − Tf�2
2 + ��

i=1

M

���D�f��i�2 + ��p/2, �4�

where ��0 is a small constant, �·�i denotes the i’th element
of a vector, and M is the length of the vector D�f�. Note that
J�f�→J0�f� as �→0.‡

Nonquadratic regularizing constraints such as �p norms
have previously been shown to produce feature-preserving
solutions in problems such as image restoration3 and x-ray
tomography,4 where the signals involved are real-valued. In
contrast, we are interested in coherent systems such as SAR
and holography, where the processed signals are complex-
valued. In many cases of interest, the phase of the unknown
complex-valued field f is highly random, and uncorrelated
with the phase at neighboring pixels. Based on this obser-
vation, in such coherent imaging problems, regularizing
constraints such as smoothness should be applied explicitly
to the magnitudes �f� of the complex-valued reflectivities f.
In our framework, this is achieved through the expression
D�f� in Eq. �4�. This nonlinearity in f makes the optimiza-
tion problem more challenging than those arising in inco-
herent imaging applications. In the next subsection, we pro-

‡Note that there is still some nondifferentiability left in J�f�, due to �f�. One
could in principle apply a similar smooth approximation for this term.
However, to keep the notation simple, we ignore this subtlety in our de-
velopment. One could avoid any practical difficulties this might cause

simply by defining the phase at the origin of the complex plane to be zero. v
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ose an extension of half-quadratic regularization methods7

o complex-valued, random-phase fields for achieving effi-
ient and robust numerical solution of the optimization
roblems of the form �4�, posed in our framework.

.3 Half-Quadratic Regularization for Coherent
Imaging

he main idea in half-quadratic regularization is to intro-
uce and optimize a new cost functional, which has the
ame minimum as the original nonquadratic cost functional
in our case, J�f��, but one which can be manipulated with
inear algebraic methods. In incoherent imaging applica-
ions, such a new cost functional is obtained by augmenting
he original cost functional with an auxiliary vector.

Currently available half-quadratic regularization meth-
ds designed for incoherent imaging cannot handle the
ore complicated structure of the optimization problems

nvolved in coherent imaging. In order to deal with such
omplications, we propose using two auxiliary vectors, b
nd s, matched to the structure of the problem, to form an
ugmented cost functional K�f ,b ,s� which satisfies

nf
b,s

K�f,b,s� = J�f� . �5�

n particular, we construct K�f ,b ,s� in such a way that it is
uadratic in f �hence the name half-quadratic� and easy to
inimize in b and s. Then the minimization of K�f ,b ,s�

an be performed through a block coordinate descent
pproach.

Now, let us consider our particular cost functional J�f�
f Eq. �4�. We can show that the following augmented cost
unctional K�f ,b ,s� satisfies the relationship �5� for the par-
icular J�f� of Eq. �4� �see Appendix, Sec. 5.2�:

�f,b,s� = �y − Tf�2
2 + ��

i=1

M 	bi���DSf�i�2 + ��

+ 
 p

2bi
� p

2−p
1 −
p

2
�� , �6�

here

= diag
exp�− jsl�� , �7�

ith sl the l’th element of the vector s, and diag
·� a diag-
nal matrix whose l’th diagonal element is given by the
xpression inside the braces. Due to Eq. �5�, J�f� and
�f ,b ,s� share the same minima in f. Note that K�f ,b ,s� is
quadratic function with respect to f.§ We benefit from the
alf-quadratic structure through the use of an iterative
lock coordinate descent method on K�f ,b ,s�, in order to

nd the field f̂ that also minimizes J�f�:

�n+1� = arg min
s

K�f̂�n�,b̂�n�,s� , �8�

We have obviously omitted the recipe for finding a valid K�f ,b ,s� from
�f� here. We just want to point out that, given any feature-preserving cost
unctional J�f�, the augmented cost functional can be found by using con-

ex duality relationships, and we refer the interested reader to Ref. 7.

January 2006/Vol. 45�1�
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Çetin, Karl, and Willsky: Feature-preserving regularization method…
b̂�n+1� = arg min
b

K�f̂�n�,b, ŝ�n+1�� , �9�

f̂�n+1� = arg min
f

K�f,b̂�n+1�, ŝ�n+1�� , �10�

where n denotes the iteration number. Using results from
Sec. 5.2, we obtain

ŝi
�n+1� = ���f̂�n��i� , �11�

b̂i
�n+1� =

p

2��DŜ�n+1�f̂�n��i
2 + ��1−p/2

, �12�

�THT + ��Ŝ�n+1��HDTdiag
b̂i
�n+1��DŜ�n+1��f̂�n+1� = THy , �13�

where ��z� denotes the phase of the complex number z. We
can substitute Eqs. �11� and �12� into �13� to obtain a single

iterative expression for f̂�n+1�, which would then constitute
the overall iterative algorithm.

Note that each iteration in Eq. �13� requires the solution

of a set of linear equations for the unknown f̂�n+1�. The
coefficient matrix of this set of equations is Hermitian,
positive semidefinite, and usually sparse. Hence these equa-
tions may themselves be efficiently solved using iterative
approaches. We use the conjugate gradient �CG� algorithm
for this solution, and terminate it when the �2 norm of the
relative residual becomes smaller than a threshold

	CG
0.30 We run the iteration �13� until �f̂�n+1�

− f̂�n��2
2 / �f̂�n��2

2�	, where 	
0 is a small constant. In the
Appendix �Sec. 5.3�, we show that this algorithm is conver-
gent in terms of the cost functional. For algorithms of this
type, stronger results on the convergence of the iterates
exist,4,31 requiring certain assumptions on the nature of the
cost functionals4 or on the nature of the local minima.31 For
the specific algorithm we present here, we have not yet
carried out such a more detailed analysis. In our algorithm,
we use a stopping criterion based on the relative change in

the iterates f̂�n� as stated, and we have not run into
any convergence problems in practice. In general, the
algorithm appears to be reaching a local minimum from
any initialization.

2.4 Statistical Interpretation of Half-Quadratic
Regularization

It is well known that optimization problems of the form in
Eq. �3� can also be interpreted as statistical estimation prob-
lems �see, e.g., Ref. 32�. In particular, the same optimiza-
tion problem is reached when we try to find the maximum
a posteriori �MAP� estimate of the field f based on the data
y using a Gaussian, independent identically distributed
noise model, together with a generalized Gaussian prior
model for the field reflectivity magnitudes, where the spa-
tial dependence structure is governed by the matrix D. The
phase distribution is assumed to be uniform and spatially
independent. As an example, when p=1, we have a Laplac-
ian prior model for the field magnitudes. This heavy-tailed

nature of the prior distribution is what leads to preservation 1
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f features such as edges. Note that the prior distribution
ere is non-Gaussian, and spatially stationary.

Now, let us interpret our half-quadratic regularization-
ased algorithm statistically. First note that the cost func-
ional in Eq. �6� is a quadratic function of the field f. Con-
equently, the coordinate-descent-based minimization in
qs. �11�–�13� essentially solves a sequence of quadratic
inimization problems for the field �although this is not

xplicitly shown, it might be observed from the linear
tructure of the iteration in Eq. �13��. However, the qua-
ratic problems contain field-dependent weights involving
he auxiliary vectors b and s. From an estimation stand-
oint, we essentially have a Gaussian prior for the field, but
he distribution is nonstationary due to the field-dependent
eighting, which is adaptively determined. Hence, the half-
uadratic regularization-based algorithm might be viewed
s replacing the original stationary, non-Gaussian problem
ith a series of nonstationary but Gaussian problems.

.5 Extension to Other Nonquadratic
Functionals

n Sec. 2.2, we have formulated the image reconstruction
roblem using a particular family of regularizing function-
ls, namely �p norms. We now generalize our framework
nd iterative algorithm to incorporate a wider range of po-
entially useful choices, which have previously found use
n incoherent image restoration and reconstruction
roblems.4,7,33,34 To this end, let us consider the following
eneral form for the cost functional:

�f� = �y − Tf�2
2 + ��

i

���D�f��i� , �14�

here � denotes the regularizing functional.
Three particular classes of functionals � we consider in

his paper are shown in Table 1.� Note that the use of �1
eads to constraints in terms of approximate �p norms,
hich is precisely what we have discussed in Sec. 2.2. The
otential functional �2 is based on previous work in Ref.
3. Special cases of �2 for p=1 and p=2 yield the potential
unctionals used in Refs. 7 and 4, respectively. Finally, �3
s a generalized version of the potential functional proposed
n Ref. 34. Note that these potential functionals can more
enerally be expressed in terms of x /�, where � is a scal-
ng parameter. We use a fixed �, and omit it in our analysis
or notational simplicity.

One might subtract an appropriate constant from each potential functional
o set �k�0�=0 �k=1, 2, 3�; however, we have chosen not to do so in Table

able 1 Families of potential functionals used. Here p is a param-
ter determining the shape of the functionals, and � is a small
moothing constant.

�1�x� �x2+��p/2

�2�x� �x2+��p/2

1+ �x2+��p/2

�3�x� log�1+ �x2+��p/2�
, to keep the notation simpler.

January 2006/Vol. 45�1�
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Çetin, Karl, and Willsky: Feature-preserving regularization method…
We minimize J�f� in Eq. �14� by using the half-quadratic
regularization-based coordinate descent strategy in Eqs.
�8�–�10�. This requires finding and using the augmented
cost functional K�f ,b ,s� that satisfies the condition in Eq.
�5� for the particular potential functional � used in J�f� of
Eq. �14�. For the sake of brevity, we do not give the ex-
pressions for K�f ,b ,s� for each of the potential functionals
in Table 1, but rather mention how the iterations for the
�p-norm case, given by Eqs. �11�–�13�, would be affected
by the use of a different functional. In fact, the only modi-
fication needed in the iterative algorithm of Eqs. �11�–�13�
is the update for b̂i

�n+1� in Eq. �12�. Table 2 shows the form
of these updates for the three potential functionals of Table
1. Note that the framework we have presented is not limited
to the three specific potential functionals we have used as
examples, and other functionals might be used as well.

3 Experimental Results
We demonstrate the performance of our techniques on three
imaging applications: digital holography, SAR, and ultra-
sound. For particular sensor models in these applications,
see Refs. 14, 24, and 25. In the cost functional of Eq. �4�,
we find that values of p around 1 appear to yield good
results for the applications we consider here. As a result, we
use p=1 in all of our experimental results in this paper. We
choose the hyperparameter �, which appears in the cost
functional J�f� of Eq. �4�, based on subjective qualitative
assessment of the formed imagery. We set the approxima-
tion parameter in the nonquadratic potentials in Table 1 to
be �=10−5, which is small enough not to affect the behavior
of the solution. For the termination condition of our itera-
tive algorithm, we use 	=10−6 and a CG tolerance of 	CG
=10−3.

Figure 2 contains the results of currently available meth-
ods for a holography experiment. The magnitude of the
underlying complex-valued scene is shown in Fig. 2�a�.
The phase of the scene at each pixel is uniformly distrib-
uted, and uncorrelated with the phase at other pixels. We
consider the case of Fraunhofer diffraction1,24 and compute
a band-limited Fourier hologram, which constitutes the
measured data. The amount of data we have after band-
limitation is equal to 76% of the hologram data that would
be needed to form a full-resolution reconstruction of the
original image. The image in Fig. 2�b� is the magnitude of
the conventional reconstruction from the hologram. This

Table 2 The updates for the auxiliary variable b for each of the three
potential functionals

Potential functional Associated b̂i
�n+1�

�1 p /2

��DŜ�n+1�f̂�n��i
2+��1−p/2

�2 p /2

��DŜ�n+1�f̂�n��i
2+��1−p/2
��DŜ�n+1�f̂�n��i

2+��p/2+1�2

�3 p /2

��DŜ�n+1�f̂�n��i
2+��1−p/2
��DŜ�n+1�f̂�n��i

2+��p/2+1�
result is dominated by coherent speckle artifacts. We now r

Optical Engineering 017003-6
how how incoherent image-processing techniques can fail
n this problem. In Fig. 2�c�, we show the result of an
ncoherent edge-preserving reconstruction method. In
articular we use nonquadratic regularization with
p-norm-based constraints.3,4 Since such techniques have
een designed for real-valued signals, they are not able to
reat the magnitude and phase components properly. This
eads to some smoothing in the real and imaginary compo-
ents of the field; however, a speckle-dominated magnitude
mage is produced, which shows only minor improvement
ver the conventional image of Fig. 2�b�. In Fig. 2�d�, we
resent the result of applying a variant of anisotropic
iffusion20 to the magnitude of the conventionally recon-
tructed image. Some speckle suppression seems to have
een achieved; however, a significant amount of detail in
he scene has been lost.

In Fig. 3, we present the results of the technique we have
roposed in Sec. 2, with each of the three regularizing po-
entials from Table 1, and p=1. In this experiment, we
hoose D to be a discrete approximation to the 2-D spatial
erivative operator. With suppressed speckle and preserved
dges, our method provides what appears to be an accurate
econstruction of the original scene in Fig. 2�a�. These re-
ults demonstrate the power of our model-based coherent
mage reconstruction approach as compared to standard co-
erent image formation �Fig. 2�b��, incoherent edge-
reserving regularization �Fig. 2�c��, and anisotropic
iffusion-based postprocessing for image enhancement
Fig. 2�d��.

For the remaining examples, we only present images
roduced by conventional imaging and our nonquadratic

ig. 2 Reconstruction of an image from its band-limited Fourier ho-
ogram using currently available techniques. �a� Original scene. �b�
onventional reconstruction. �c� Reconstruction by an edge-
reserving regularization method designed for incoherent imaging.
d� Postprocessing of the conventionally reconstructed image by an
nisotropic diffusion-based method.
egularization-based method. An additional analysis similar
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to that carried out for the digital holography example of
Fig. 2 and 3 yields qualitatively very similar results.

Our next example is from X-band SAR imaging, where
we use a tomographic observation model.25 Figure 4�a�
contains a conventional SAR image of three vehicles in a
field containing some trees. Speckle artifacts, clearly vis-
ible in this reconstruction, make, e.g., automatic segmenta-
tion of SAR images very challenging. In contrast, the im-
ages produced by our method �with p=1 and D being a
derivative operator�, shown in Fig. 4�b�–4�d� for different
regularizing potentials �, produce regions �vehicle,
tree, shadow, background� that appear to be more easily
separable.

Our final results are from ultrasound imaging motivated
by the application of nondestructive evaluation �NDE�. One
of the goals in nondestructive evaluation is to image the
internal structure of homogeneous materials to detect ma-
terial defects such as cracks. We present experimental re-
sults based on data collected at the Large Ultrasound Test

Fig. 3 Reconstruction of an image from its ban
in Sec. 2, with the following choices of regularizin
�3.

Fig. 4 �a� Conventional SAR image of a scene. �b�,�c�,�d� Recon-
structions produced by the technique proposed in Sec. 2, with the
following choices of regularizing functionals from Table 1, and p=1:
l�b� �1, �c� �2, �d� �3.

Optical Engineering 017003-7
acility35 at Boston University. The goal in this experimen-
al setup is to image the cross section of an aluminum ob-
ect �modeling the crack� immersed in a tank full of water
modeling the homogeneous material�. Data are collected in

monostatic data acquisition configuration by mechani-
ally scanning a single transducer through a set of aperture
oordinates above the tank. At each data collection point,
e record a broadband echo signal. For the experiments

eported here, we only use frequency-domain data at a tem-
oral frequency of 730 kHz, although our approach could
lso use data at multiple frequencies. For the mathematical
odel relating the underlying image to the observed data,
e use the physical optics approximation, as in Ref. 14.
his leads to a Green’s function, or a complex-valued point
pread function �PSF�, which we use to construct the matrix

in Eq. �2�. This theoretical observation model appears to
e in good agreement with the experimental PSF we have
btained using a spherical point target in our experimental
etup. Further details of this experimental setup are beyond
he scope of the current paper, and will be described else-
here. Let us now start presenting our image reconstruc-

ion results. The synthetic image in Fig. 5�a� shows the
-shaped cross section of the aluminum object, based on

he true dimensions of the object, and its actual relative
ocation within the viewing geometry. This synthetic image
s just to help visualize the “underlying true field” in this
xperiment, and the results we present next are based on
easured data and not on synthetically generated data. In
ig. 5�b�, we show a conventional image, reconstructed us-

ng a regularized pseudoinverse technique.36 Such tech-
iques are widely used in a variety of inverse problems.
his image exhibits some artifacts, making it difficult to
etermine the shape of the imaged object �hence the shape
nd structure of the crack in NDE�. In this application, the
oal is to image narrow cracks rather than spatially distrib-
ted objects; hence in our methods we use D=I in Eqs. �4�
nd �14�. Our technique �p=1� produces the images in Fig.
�c�–5�e� where artifacts are reduced, and the shape of the
luminum object is preserved.

Conclusions
e have presented an optimization-based method for image

ormation in coherent systems. Our approach is based on
ost functionals that are extensions of nonquadratic regu-

d Fourier hologram by the technique proposed
tionals from Table 1, and p=1: �a� �1, �b� �2, �c�
d-limite
g func
arization techniques. The cost functionals are constructed
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in such a way to achieve noise and artifact suppression
together with feature preservation in the resulting images,
while taking into account the nature of the signals involved
in coherent imaging. In order to efficiently solve the opti-
mization problems formulated for coherent imaging, we ex-
tend and use half-quadratic regularization methods. Our ex-
perimental study has shown the effectiveness of this
strategy in obtaining reconstructions that are superior in a
number of ways to conventional coherent images. The im-
provements provided by these reconstructions appear to be
promising for visual and automatic interpretation of the un-
derlying scenes. One interesting direction for future work is
the extension of the techniques presented in this paper to
coherent imaging problems involving nonlinear observation
models.

5 Appendix

5.1 Discrete 2-D Derivative Operators
In our method, we use smoothness constraints on a field,
which require the spatial derivatives of the field. We use the
horizontal and vertical first-order difference operators in
approximating such derivatives. Derivatives of the field in
other directions, such as the diagonals, may be used as
well; however, we have found the use of horizontal and
vertical derivatives sufficient. Consider a real-valued,
sampled field z, column-stacked as a vector of length N
=NxNy, where Nx and Ny denote the numbers of rows and
columns, respectively, in the 2-D field. We can compute
first differences of this field, Dxz and Dyz, in the horizontal
and vertical directions, respectively, where the discrete de-

Fig. 5 Ultrasound imaging experiments based
scribing the underlying scene to be imaged. �b
tions produced by the technique proposed in S
tionals from Table 1, and p=1: �c� �1, �d� �2, �e
rivative operators are given by f

Optical Engineering 017003-8
x = �− I I

� �

− I I
� �15�

nd

y = �
D1

D1

�

D1

� , �16�

ith

1 = �− 1 1

� �

− 1 1
� . �17�

ote that, since we take first differences between neighbor-
ng pixels, it is appropriate to have the discrete derivatives
efined on the locations between the adjacent pixels. With
hese definitions, Dx then has a size of Ny�Nx−1��NxNy,
nd Dy has a size of Nx�Ny −1��NxNy. Hence, these are
onsquare operators. However, if the use of square deriva-
ive operators is desired, the preceding definitions can be
ugmented by derivatives defined at the boundary of the
eld. This may be preferred, for example, when one wants

o associate each derivative to a pixel location.
We now describe two ways to compute the smoothness

onstraint terms, of the form �Dz�p
p, that appear in objective

asured 730-kHz data. �a� Synthetic image de-
entional reconstruction. �c�,�d�,�e� Reconstruc-
with the following choices of regularizing func-
on me
� Conv
ec. 2,
unctionals such as that in Eq. �3�. The discussion can eas-
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ily be generalized to smoothness constraints with other po-
tential functionals, such as those considered in Sec. 2.5.

The first approach is based on treating the horizontal and
vertical derivatives separately when imposing a smoothness
constraint. This is achieved by defining the 2-D discrete
derivative operator D as follows:

D � �Dx

Dy
� . �18�

With this definition, we can write �Dz�p
p as

�Dz�p
p = �

i=1

M

��Dz�i�p = �
i=1

Mx

��Dxz�i�p + �
i=1

My

��Dyz�i�p

= �Dxz�p
p + �Dyz�p

p, �19�

where Mx�Ny�Nx−1� , My�Nx�Ny −1�, and M =Mx+My.
The second approach is based on treating the gradient

at each pixel location as a two-element vector
��Dxz�i �Dyz�i�T, composed of the horizontal and vertical
gradients, and using the �2 norms of such gradients at all
locations in the field for the computation of the overall �p
norm:

�Dz�p
p � �

i=1

N

���Dxz�i�2 + ��Dyz�i�2�p/2. �20�

Two things must be noted here. First, the use of a linear
operator D is only conceptual in this case, because no such
explicit matrix exists. Second, this approach requires a one-
to-one correspondence between horizontal and vertical de-
rivatives at each location in the scene; hence in this case we
use square �N�N� derivative operators Dx ,Dy.

In our method, we make use of both approaches de-
scribed; however, all the mathematical expressions in the
body of this paper are based on the first approach. Note that
when p=2, the two approaches are identical, with the use
of square derivative operators. To make the association be-
tween the two approaches clear, let us consider square de-
rivative operators, and examine the first approach in this
case:

�Dz�p
p = �

i=1

N

��Dxz�i�p + �
i=1

N

��Dyz�i�p �21�

=�
i=1

N

���Dxz�i�p + ��Dyz�i�p� . �22�

Let us compare this expression with the second approach,
given in Eq. �20�. There the �2 norm of the gradient vector
at each location is used in the computation of the overall �p
norm. In contrast, the first approach, as shown in Eq. �22�,
corresponds to using an �p norm for the gradient vector
��Dxz�i �Dyz�i�T at each location. This association lets us
compare the consequences of using the two approaches.
For example, when p�2, the first approach used in a
smoothness constraint would favor horizontal and vertical
edges over diagonal edges, more than in the second

approach. i
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.2 Half-Quadratic Functional for �p-Norm-Based
Regularization

he objective of this subsection is to prove the relationship
5�, which we repeat below, between the particular func-
ionals J�f� of Eq. �4� and K�f ,b ,s� of Eq. �6�:

nf
b,s

K�f,b,s� = J�f� . �23�

his relationship shows that K�f ,b ,s� of Eq. �6� is a valid
ugmented cost functional to be used in half-quadratic
egularization for the functional J�f� of Eq. �4�.

To keep the derivation simple, we consider a 1-D signal
, rather than a 2-D field, in this subsection. The results
owever can easily be extended to the 2-D case. We assume
he following structure for the discrete 1-D derivative
perator D:

= �− 1 1

� �

− 1 1
� , �24�

hich simply consists of two-element differences.
Let us now find s and b that minimize K�f ,b ,s� of Eq.

6�. First consider s. The portion of K�f ,b ,s� that depends
n s is the following:

i=1

M

bi��DSf�i�2. �25�

ased on the structures of D in Eq. �24� and S in Eq. �7�,
e have

DSf�i = − exp�− jsi� fi + exp�− jsi+1� fi+1, �26�

nd consequently

�DSf�i�2 = �fi�2 + �fi+1�2 − 2R��fi� �fi+1�exp�j
���f�i�

− ���f�i+1���exp�j�si+1 − si��� . �27�

ere ���f�i� denotes the phase of the complex number fi.
he sum in Eq. �25� takes its minimum value when the
roduct inside the outermost brackets in Eq. �27� has
zero imaginary part for all i. Hence the minimizing s

atisfies

i+1 − si + ���f�i� − ���f�i+1� = 0. �28�

We could have obtained this result by the following
ualitative argument as well. We want to minimize Eq.
25�, which is a weighted sum of squared norms of the
ifferences between complex-number pairs of the form zi
exp�−jsi� fi. The variables we have for optimization are si

or all i, hence we can essentially choose the phase of each
omplex number. Naturally, the minimum is obtained when
he complex numbers zi have identical phase, since this
akes the norm of the difference between two complex

umbers as small as possible. This is exactly what the con-
ition in Eq. �28� implies: the optimum si should “rotate” fi

n such a way that the resulting zi have the same phase for
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all i. Note that we still have a freedom in choosing what
that identical phase is. If we simply choose it to be 0, then
we have the following optimal s:

si = ���f�i� ∀ i . �29�

Note that with this s, we have Sf= �f�. Hence,

inf
s

K�f,b,s� = �y − Tf�2
2 + ��

i=1

M �bi���D�f��i�2 + ��

+ 
 p

2bi
� p

2−p
1 −
p

2
�� . �30�

Next, let us consider b. Differentiating the summand in
Eq. �30� and setting it equal to zero, we obtain the follow-
ing condition for the minimizing b:

bi =
p

2���D�f��i�2 + ��1−p/2 . �31�

Substituting Eq. �31� in K�f ,b ,s�, we obtain the result we
desire:

inf
b,s

K�f,b,s� = �y − Tf�2
2 + ��

i=1

M

���D�f��i�2 + ��p/2 = J�f� , �32�

which shows that Eq. �5� holds for J�f� of Eq. �4� and
K�f ,b ,s� of Eq. �6�.

5.3 Convergence of the Algorithm in Sec. 2.3

Let us consider the sequence Kn=K�f̂�n� , b̂�n+1� , ŝ�n+1��, and
show that it is convergent. From Eqs. �8� and �9�, we have

K�f̂�n�,b̂�n�, ŝ�n+1�� � K�f̂�n�,b̂�n�, ŝ�n�� ∀ n , �33�

K�f̂�n�,b̂�n+1�, ŝ�n+1�� � K�f̂�n�,b̂�n�, ŝ�n+1�� ∀ n , �34�

which implies

K�f̂�n�,b̂�n+1�, ŝ�n+1�� � K�f̂�n�,b̂�n�, ŝ�n�� . �35�

Similarly, from Eq. �10�, we have

K�f̂�n+1�,b̂�n+1�, ŝ�n+1�� � K�f̂�n�,b̂�n+1�, ŝ�n+1�� ∀ n . �36�

Now, let us consider the difference:

Kn − Kn−1 = �K�f̂�n�,b̂�n+1�, ŝ�n+1�� − K�f̂�n�,b̂�n�, ŝ�n���
+ �K�f̂�n�,b̂�n�, ŝ�n�� − K�f̂�n−1�,b̂�n�, ŝ�n��� . �37�

Using Eqs. �35� and �36�, we obtain

Kn − Kn−1 � 0 ∀ n , �38�

which means that the sequence Kn is decreasing. Since it is
bounded below and decreasing, the sequence Kn converges.
Hence the algorithm in Sec. 2.3 is convergent in terms of

the cost functional. A similar convergence result can be

Optical Engineering 017003-1
pplied to the variants of this algorithm described in later
ections.

cknowledgments
e would like to thank in Emmanuel Bossy and Robin
leveland, from the Acoustics Group at Boston University,

or collecting and providing the ultrasound data. This work
as supported in part by the Army Research Office under
rants DAAD19-00-1-0466 and DAAG55-97-1-0013, the
ir Force Office of Scientific Research under grants
49620-00-0362 and F49620-96-1-0028, and the National
nstitutes of Health under grant NINDS 1 R01 NS34189.

eferences

1. J. M. Blackledge, Quantitative Coherent Imaging, Academic Press,
San Diego, CA �1989�.

2. A. N. Tikhonov, “Solution of incorrectly formulated problems and
the regularization method,” Sov. Math. Dokl. 4, 1035–1038 �1963�.

3. C. R. Vogel and M. E. Oman, “Fast, robust total variation-based
reconstruction of noisy, blurred images,” IEEE Trans. Image Process.
7�6�, 813–824 �1998�.

4. P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Deter-
ministic edge-preserving regularization in computed imaging,” IEEE
Trans. Image Process. 6�2�, 298–310 �1997�.

5. D. C. Munson, Jr., and J. L. C. Sanz, “Image reconstruction from
frequency-offset Fourier data,” Proc. IEEE 72�6�, 661–669 �1984�.

6. D. L. Donoho and M. Elad, “Optimally sparse representation in gen-
eral �nonorthogonal� dictionaries via �1 minimization,” Proc. Natl.
Acad. Sci. U.S.A. 100�5�, 2197–2202 �2003�.

7. D. Geman and G. Reynolds, “Constrained restoration and the recov-
ery of discontinuities,” IEEE Trans. Pattern Anal. Mach. Intell. 14�3�,
367–383 �1992�.

8. J. He and S. X. Pan, “Magnitude reconstruction of complex images
from incomplete Fourier phase data,” in 16th Annual Conf. of the
IEEE Industrial Electronics Society, Vol. 1, pp. 357–362 �1990�.

9. B. K. Jennison and J. P. Allebach, “Maximum likelihood image re-
construction from Fourier-offset data using the expectation-
maximization algorithm,” in IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, Vol. 4, pp. 2597–2600 �1991�.

0. M. Rabbani and B. E. A. Saleh, “Bayesian filtering of speckled im-
ages,” Opt. Commun. 53�3�, 147–152 �1985�.

1. J. F. Giovannelli, A. Herment, and G. Demoment, “A Bayesian ap-
proach to ultrasound Doppler spectral analysis,” in IEEE Ultrasonics
Symp., pp. 1055–1058 �1993�.

2. C. P. Mariadassou and B. Yegnanarayana, “Image reconstruction
from noisy digital holograms,” IEE Proc. F, Radar Signal Process.
137�5�, 351–356 �1990�.

3. H. Carfantan and A. Mohammad-Djafari, “A Bayesian approach for
nonlinear inverse scattering tomographic imaging,” in IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing, Vol. 4, pp. 2311–
2314 �1995�.

4. D. J. Battle, R. P. Harrison, and M. Hedley, “Maximum entropy im-
age reconstruction from sparsely sampled coherent field data,” IEEE
Trans. Image Process. 6�8�, 1139–1147 �1997�.

5. D. J. Battle, “Maximum entropy regularisation applied to ultrasonic
image reconstruction,” PhD Thesis, Univ. of Sydney �1999�.

6. J. M. Gorce, D. Friboulet, J. D’hooge, B. Bijnens, and I. E. Magnin,
“Regularized autoregressive models for a spectral estimation scheme
dedicated to medical ultrasonic radio-frequency images,” in IEEE
Ultrasonics Symp., pp. 1461–1464 �1997�.

7. P. Ciuciu, J. Idier, and J. F. Giovannelli, “Regularized estimation of
mixed spectra using a circular Gibbs-Markov model,” IEEE Trans.
Image Process. 49�10�, 2202–2213 �2001�.

8. O. Husby, T. Lie, T. Langø, J. Hokland, and H. Rue, “Bayesian 2-D
deconvolution: a model for diffuse ultrasound scattering,” IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 48�1�, 121–130 �2001�.

9. K. Z. Abd-Elmoniem, A.-B. M. Yousef, and Y. M. Kadah, “Real-time
speckle reduction and coherence enhancement in ultrasound imaging
via nonlinear anisotropic diffusion,” IEEE Trans. Biomed. Eng. 49�9�,
997–1014 �2002�.

0. P. Perona and J. Malik, “Scale-space and edge detection using aniso-
tropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12�7�, 629–
639 �1990�.

1. A. Abubakar and P. M. van den Berg, “A multiplicative weighted
l2-norm total variation regularization for deblurring algorithms,” in
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Vol. 4,
pp. 3545–3548 �2002�.

2. S. Sotthivirat and J. A. Fessler, “Penalized-likelihood image recon-

struction for digital holography,” J. Opt. Soc. Am. A 21�5�, 737–750

January 2006/Vol. 45�1�0



i
s

h
S
D
b
c
i
e
v
C
o
t
i
c
i
E

a
s
l
m
m
t
o
t
h
f
p

Çetin, Karl, and Willsky: Feature-preserving regularization method…
�2004�.
23. A. C. Kak and M. Slaney, Principles of Computerized Tomographic

Imaging, IEEE Press, New York �1988�.
24. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holog-

raphy, Consultants Bureau, New York �1980�.
25. D. C. Munson, Jr., J. D. O’Brien, and W. K. Jenkins, “A tomographic

formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE
71, 917–925 �Aug. 1983�.

26. C. V. Jakowatz, Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A.
Thompson, Spotlight-mode Synthetic Aperture Radar: A Signal Pro-
cessing Approach, Kluwer Academic Publishers, Norwell, MA
�1996�.

27. J. A. Jensen, Estimation of Blood Velocities Using Ultrasound: A
Signal Processing Approach, Cambridge University Press, Cam-
bridge, UK �1996�.

28. J. T. Ylitalo and H. Ermert, “Ultrasound synthetic aperture imaging:
monostatic approach,” IEEE Trans. Ultrason. Ferroelectr. Freq. Con-
trol 41�3�, 333–339 �1994�.

29. D. L. Donoho, I. M. Johnstone, J. C. Koch, and A. S. Stern, “Maxi-
mum entropy and the nearly black object,” J. R. Stat. Soc. Ser. B.
Methodol. 54�1�, 41–81 �1992�.

30. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hop-
kins Univ. Press, Baltimore �1996�.

31. A. H. Delaney and Y. Bresler, “Globally convergent edge-preserving
regularized reconstruction: an application to limited-angle tomogra-
phy,” IEEE Trans. Image Process. 7�2�, 204–221 �1998�.

32. W. C. Karl, “Regularization in image restoration and reconstruction,”
in Handbook of Image and Video Processing, A. Bovik, Ed., pp.
141–160, Academic Press �2000�.

33. S. Geman and D. E. McClure, “Statistical methods for tomographic
image reconstruction,” in Proc. 46th Sess. Int. Statistical Institute,
Bull. ISI 52 �1987�.

34. T. Hebert and R. Leahy, “A generalized EM algorithm for 3-D Baye-
sian reconstruction from Poisson data using Gibbs priors,” IEEE
Trans. Med. Imaging 8, 194–202 �1989�.

35. Boston University Acoustics Group, Medical Ultrasound Testbed
�MedBED�, Web page, http://www.bu.edu/paclab/censsis/medbed/

36. R. L. Lagendijk and J. Biemond, Iterative Identification and Resto-
ration of Images, Kluwer, Boston, �1991�.

Müjdat Çetin received his BS degree from
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