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Abstract

In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes,
while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation
by employing the level set function as the shape descriptor. Next, for each shape class we assume that there exists an unknown
underlying level set function whose zero level set describes the contour that best represents the shapes within that shape class.
The level set function for each example shape in the database is modeled as a noisy measurement of the appropriate shape class�s
unknown underlying level set function. Based on this measurement model and the judicious introduction of the class labels as the
hidden data, our EM formulation calculates the labels for shape classification and estimates the shape contours that best typify the
different shape classes. This resulting iterative algorithm is computationally efficient, simple, and accurate. We demonstrate the util-
ity and performance of this algorithm by applying it to two medical applications.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Shape classification can be defined as the systematic
arrangement of shapes within a database, based on some
similarity criteria. It has received considerable attention
in recent years with important applications to problems
such as computer aided diagnosis, handwriting recogni-
tion, and industrial inspection. All classification tech-
niques require a shape descriptor that can effectively
capture the important information regarding a shape,
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and a similarity measure that can accurately and effi-
ciently compare different shapes. Given that, it is evident
that several key issues need to be resolved while per-
forming shape classification. In particular, a shape
descriptor needs to be employed, alignment and/or cor-
respondence issues need to be addressed, and a similar-
ity metric needs to be designed. This paper addresses the
similarity metric used in classifying shapes.

1.1. Relationship to prior work

The metric used by various classification schemes in
the literature can be broadly categorized into those based
on feature matching and those based on dense matching.
Dense matching algorithms are computationally expen-
sive as they try to transform or warp one shape into an-
other based on some energy optimization scheme. For
example, Del Bimbo and Pala (1997) derived a similarity
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measure between two shapes based on the amount of
elastic deformation energy involved in matching the
shapes. Cohen et al. (1992) developed an explicit map-
ping between two shape contours based on finite element
analysis. Basri et al. (1995) used the sum of local defor-
mations needed to change one shape into another as
the similarity metric in comparing two shapes.

Feature matching algorithms are more popular and
utilize low-dimensional feature vectors extracted from
the shapes for classification. For example, Dionisio
and Kim (2002) classified objects based on features com-
puted from polygonal approximations of the object.
Kawata et al. (1998) extracted surface curvatures and
ridge lines of pulmonary nodules from 3D lung CT
images to discriminate between malignant and benign
nodules. In (Golland et al., 1999), skeletons are used
to extract features which are then used within different
linear classification methods (Fisher linear discriminant
and linear support vectors method). Gdalyahu and
Weinshall (1999) constructed syntactic representation
of shapes (with primitives consisting of line segments
and attributes consisting of length and orientation),
and used a variant of the edit matching procedure to
classify silhouettes.

We consider our algorithm as a feature matching
algorithm. The individual pixels associated with each
shape�s level set representation are the features associ-
ated with that particular shape. One might argue that
the dimensionality of this feature space is too high,
and is not really a feature space as it does not capture
only the salient information pertinent to a shape. How-
ever, we believe that it is the over representation or
redundancy within this feature space that lends simplic-
ity to our formulation and affords us the ability to cap-
ture very subtle differences among shapes for
classification. We then incorporated this high-dimen-
sional feature vector within an EM framework to pro-
vide us with a simple and principled approach of
comparing shapes for classification.

It is worth noting that our shape classification algo-
rithm is in part motivated by two EM-based algorithms
already in the literature. In (Wells et al., 1996), the
authors formulated an adaptive brain segmenter, based
on the EM algorithm, that utilizes knowledge of tissue
intensity properties and MRI intensity inhomogeneities
to correct and segment MR images of the brain. The
E-step in that formulation calculates the tissue labels
and the M-step calculates the smooth MRI intensity
inhomogeneities. In (Tsai et al., 2001), the authors for-
mulated a ladar target segmentation and range profiling
algorithm based on the EM algorithm. The E-step in
that formulation calculates the segmentation labels for
the ladar image and the M-step calculates the smooth
range profiles. In both these works, the E-step is em-
ployed as a labeling process while the M-step is used
to estimate a smooth field. This setup bears much resem-
blance to the algorithm that we will be presenting in this
paper. Specifically, the E-step in our formulation calcu-
lates the shape class labels and the M-step calculates the
smooth level set functions associated with the various
shape classes.

Of note, our classification technique bears some
resemblence to the k-means clustering algorithm (Mac-
Queen, 1965) which groups data points, and not con-
tours or shapes, according to a parametric model.
Specifically, the M-step of our algorithm is analogous
to calculating the mean value of each k-means cluster.
In addition, the E-step of our algorithm is analogous
to assigning each example data point to its closest clus-
ter mean value. However, as mentioned already,
k-means algorithm is not equipped to cluster shapes as
it can only handle data points. Obviously, an ad hoc
two-step shape classifier can be formed by employing a
feature extractor first to transform the shapes to a set
of representative feature points prior to the application
of the k-means algorithm for shape classification.

1.2. Contributions of our work

Given a database of example shapes, the goal of our
algorithm is twofold: (1) to separate the example shapes
into different groups of approximately the same shapes
(based on some similarity measure), and (2) to estimate
the shape contour for each group that best represents or
typifies the shapes contained within that group. Accom-
plishing these two tasks of shape classification and esti-
mation is difficult, and is the problem which we focus on
in this paper.

Importantly, in our shape classification and estima-
tion problem, if the underlying shape contour of each
shape class is known a priori, then various pattern rec-
ognition techniques in the literature can be employed
to separate the shapes within the database into different
groups. Similarly, if the class labels of every example in
the database is known a priori, then the underlying con-
tour for each shape class can be estimated by calculating
the ‘‘average’’ shape contour within each shape class.
Needless to say, it is difficult to calculate or determine
either the representative shape contour of each class or
the class labels of the example shapes in the database
without knowledge of the other. However, we will show
in this paper that it is possible to estimate both using the
EM algorithm.1

The main contribution of this paper is the formula-
tion of an EM framework that incorporates the level
set method (which we employ as the implicit representa-
tion of shape) in a mathematically sound and principled
fashion to yield a powerful and accurate methodology
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for shape classification. In particular, the E-step of this
algorithm calculates the classification label for each
example shape, and the M-step of this algorithm calcu-
lates the pixelwise implicit level set representation of the
shape that best describes each shape class.

The rest of this paper is organized as follows.
Section 2 describes how shapes are aligned to one an-
other and how they are represented in our algorithm.
Section 3 illustrates how we incorporated the level set
methods into the EM framework for shape classification
and estimation. In Section 4, we present generalizations
of our algorithm and demonstrate them through various
simulations. In Section 5, we present two evaluations of
our algorithm by applying our technique to two medical
problems and then comparing our results to those of
medical experts. We conclude in Section 6 with a sum-
mary of the paper and a discussion on future research
directions.
2. Shape alignment and representation

In the setting of trying to compare different shapes
for classification, the alignment of the example shapes
within this database T is paramount. In particular,
the example shapes within this database need to be nor-
malized to one another with respect to rotation, shift,
and scale so that a proper comparison can be performed
without interference from pose variations of the different
example shapes. We chose to employ the alignment
strategy described in (Tsai et al., 2003) which jointly
align all the shapes within the database from a varia-
tional perspective.

Once the shapes are aligned, a shape representation
scheme needs to be chosen. A number of shape repre-
sentation schemes have been proposed in the literature
ranging from skeletons (Bloomenthal and Lim, 1999;
Golland et al., 1999) to primitives (Cesar and Costa,
1996; Gdalyahu and Weinshall, 1999) to Fourier
decompositions (Staib and Duncan, 1992) to meshes
(Li et al., 2001). Obviously, each type of shape descrip-
tor has its advantages and disadvantages. In addition, a
particular descriptor may be more natural or more
appropriate to use in certain problems/settings or algo-
rithmic approaches than others. Thus, it goes without
saying that the choice of shape descriptor is very much
dependent on the problem at hand and the algorithmic
approach.

Next, we describe the level set function as our implicit
representation of shape. This approach had been utilized
by others, most notably by Osher and Sethian (1988)
and Leventon et al. (2000). Let the shape database T
consist of a set of L aligned contours fC1;C2; ...;CLg.
We employ the signed distance function as the shape
descriptor in representing each of these contours (Osher
and Sethian, 1988). In particular, each contour is
embedded as the zero level set of a signed distance func-
tion with negative distances assigned to the inside and
positive distances assigned to the outside. This technique
yields L level sets functions {Y1,Y2, . . .,YL}, with each
level set function consisting of N samples (using identi-
cal sample locations for each function). Here, if M and
N denote the x- and y-dimensions of the level set, then
N ¼ M � N . In the case of 3D, O is used to denote
the z-dimension, and N ¼ M � N � O.

Many advantages over other shape descriptors are
associated with the use of level set functions for shape
representation. Specifically, this approach is well known
for its simplicity and numerical stability, its ability to
accurately capture subtle shape characteristics, its seam-
less handling of topological changes in shape, and its
capability to accomodate 2D and 3D data.
3. Shape classification and estimation

In this section, we describe how we employ the EM
algorithm in accomplishing our two goals: separating
the shape database into different groups and estimating
the shape contours that best represent each group. In
Section 3.1, we introduce the hidden variable, and de-
scribe the measurement and probabilistic models neces-
sary in formulating the EM-based algorithm. We then
show how they are incorporated into the EM procedure
in Section 3.2. We conclude this section by describing
the initialization scheme that we utilize in kick starting
our EM iterative scheme.

3.1. Measurement and probabilistic models

For simplicity of derivation and clarity of presenta-
tion, we assume that there are only two shape classes
within the database which we would like to group. It
is important to realize, however, that it is straightfor-
ward to generalize our algorithm to classify more than
two classes. This will be demonstrated in Section 4.2.
By limiting ourselves to the classification of only two
shape classes, we can employ the binary class label
C = {C1,C2,. . .,CL} to indicate which of the two shape
classes each of the example shapes belongs to. Specif-
ically, each Cl "l = 1,. . .,L takes on the values of 0
or 1.

In our problem formulation, because we have limited
ourselves to the classification of two shape classes, we
postulate that there are only two unknown level set
functions X = {X1,X2}, one associated with each of
the two shape classes. Additionally, these level set func-
tions have the property that the zero level sets of X1 and
X2 represent the underlying shape contours of the two
shape classes A and B. Importantly, there are no restric-
tions placed on X being a signed distance function.
Next, we view each example shape�s level set function
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Yl as a noisy measurement of either X1 or X2. Based on
this formulation, the explicit dependence of Yl on X and
Cl is given by the following measurement model:

Y li ¼ Cl ð1� ClÞ½ �
X 1i

X 2i

� �
þ vi 8i ¼ 1; . . . ;N ð1Þ

where v � Gð0; r2IÞ represents the measurement noise
with r as the standard deviation of the noise process.2

This measurement model gives us the following condi-
tional probability of Y given C and X:

pðY jX ;CÞ ¼
YL
l¼1

pðY ljX ;ClÞ

¼
YL
l¼1

Cl ð1� ClÞ½ �

QN
i¼1

1ffiffiffiffi
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e�
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Þ2
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1ffiffiffiffi
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Þ2

2r2

2
6664
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7775. ð2Þ

Of note, this probability model bears resemblance to the
stochastic framework introduced in (Paragios et al.,
2002) for the construction of prior shape models.

We assume that the class labels C and the level set
representations of the shape contours X are statistically
independent, and hence

pðCjX Þ ¼ pðCÞ. ð3Þ
Without any prior knowledge regarding the classifica-
tions of the various example shapes in the database,
we set

pðClÞ ¼
0.5 if Cl ¼ 0

0.5 if Cl ¼ 1

�
8l ¼ 1; . . . ; L. ð4Þ
3.2. The EM framework

The EM procedure, first formalized by Dempster
et al. (1977), is a powerful iterative technique suited
for calculating the maximum-likelihood (ML) estimates
in problems where parts of the data are missing. The
missing data in our EM formulation is the class labels
C. That is, if the class labels for the different shapes
within the database are known, then estimating the
underlying shape contour which best represents each
shape class would be straightforward. The observed
data in our EM formulation is Y, the collection of level
set representations of the example shapes. Finally, X is
the quantity to be estimated in our formulation.

3.2.1. The E-step

The E-step computes the following auxilliary func-
tion Q:
2 The notation I represents the identity matrix and the notation
Gðl;KÞ represents a Gaussian random vector with mean l and
variance K.
QðX jX ½k�Þ ¼ hlog pðY ;CjX ÞjY ;X ½k�i; ð5Þ
where X[k] is the estimate of X from the kth iteration,
and Æ Æ æ represents the conditional expectation over C gi-
ven Y and the current estimate X[k]. Using Bayes� rule
and our earlier simplified assumption that C and X are
statistically independent, Q can be rewritten as

QðX jX ½k�Þ ¼ hlog pðY jX ;CÞjY ;X ½k�i þ hlog pðCÞjY ;X ½k�i.
ð6Þ

Since the M-step will be seen below to be a maximi-
zation of Q(XjX[k]) over X, we can discard the second
term in Eq. (6) since it does not depend on X. Expanding
the remaining term in Eq. (6), we have that3

QðX jX ½k�Þ ¼ �
XL

l¼1

hCljY l;X ½k�i ð1� hCljY l;X ½k�iÞ
� �

�

PN
i¼1

ðY li � X 1iÞ
2

PN
i¼1

ðY li � X 2iÞ
2

2
6664

3
7775. ð7Þ

As evident from above, the core of the E-step is the com-
putation of ÆCljYl,X

[k]æ. Using the formula for expecta-
tions, Bayes�s rule, and Eqs. (2)–(4), we find that

hCljY l;X ½k�i

¼
QN

i¼1 expð�ðY li �X ½k�
1i
Þ2=2r2ÞQN

i¼1 expð�ðY li �X ½k�
1i
Þ2=2r2Þþ

QN
i¼1 expð�ðY li �X ½k�

2i
Þ2=2r2Þ

.

ð8Þ

This equation is equivalent to calculating the posterior
shape class probabilities assuming that the underlying
level set functions X1 and X2 are known.

3.2.2. The M-step

Estimates of X1 and X2 are obtained in the M-step of
our formulation by maximizing the auxiliary function Q.
In other words, the M-step calculates the X[k + 1] such
that

X ½kþ1� ¼ argmax
X

QðX jX ½k�Þ. ð9Þ

To solve for X[k + 1], we imposed the zero gradient
condition to Eq. (7). In particular, by differentiating
Q(XjX[k]) with respect to X 1i and X 2i for each pixel i,
and setting each resulting equation to 0, we obtain the
following two expressions:
3 Here, in order to take the log of p(YjX,C) in Eq. (2), we have used
the fact that each Cl is a binary indicator which selects the appropriate
probability distribution function.
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ð10Þ
Eq. (10) is equivalent to an ML estimator of the level

set functions X1 and X2 when the shape labels are
known. Of interest, note that both X1 and X2 are
weighted averages of distance maps from different shape
examples.4 As a result, neither X1 nor X2 are signed dis-
tance functions because distance functions are not
closed under linear operations. Though this gives rise
to an inconsistent framework, it does not affect the qual-
ity of the shape representation based on our experimen-
tal results.

3.2.3. Initialization

Since the EM algorithm is an iterative scheme, initial-
ization is required. The initialization of this algorithm
can either be an initial guess of the shape labels (the out-
put of the E-step) or of the level set for each shape class
(the output of the M-step). Either one of these initializa-
tion schemes can be employed in a straightforward man-
ner. Specifically, to obtain an initial estimate of the
shape labels, one can randomly label the various shapes
in the database into n different labels with n denoting the
number of classes that we wish to classify the database
into. So far, we have limited ourselves to classification
of two shape classes so n = 2. The random labels serve
as the initial shape labels in our EM algorithm. Alterna-
tively, to obtain an initial estimate of the level set for
each shape class, one can randomly divide the database
into n groups. Based on this random grouping scheme,
the arithematic average level set for each assigned group
is calculated. The resulting average level sets serve as the
initial level sets in our EM algorithm. Through various
experiments, we have found that both of these ap-
proaches are robust to the initial random grouping
scheme.

Besides providing the initialization to the EM algo-
rithm, the parameter r also needs to be chosen prior
to starting our algorithm. In all our experiments, we
empirically chose r ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ N 2

p
for 2D cases. In the

case of 3D, we use r ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ N 2 þ O2

p
. Intuitively,

this value of r was chosen to ensure that it is large en-
ough so that various level set differences will lie well
within the Gaussian distribution.
4 As weighted averages of different distance maps, even with large
number of EM iterations, the estimates of X1 and X2 will continue to
be stable level set functions.
4. Generalization

In this section, we offer a few generalizations to the
methodology developed in Section 3. Specifically, in Sec-
tion 4.1, we illustrate how our algorithm can be applied
to classify shapes having differing topologies. In Section
4.2, we illustrate how our algorithm can be used to clas-
sify more than just two shape classes. And finally, in
Section 4.3, we illustrate how our algorithm can be used
to classify 3D shapes. Complex synthetic 2D and 3D
shapes are employed in each subsection to complement
the text, and to serve as a vehicle to explain and high-
light each generalization of our methodology.

4.1. Classification of shapes with different topologies

In Fig. 1, we show the outlines of 12 aligned synthet-
ically generated hand written fours. Notice that some
outlines require two separate curves while other only re-
quire one curve in describing the shapes. Level set meth-
ods afford us the luxury of describing these shapes
without any additional overhead. In fact, topological
different shapes are transparent to the users in this clas-
sification scheme. Each of these shapes are embedded in
a 200 · 200 pixel level set image. It took 7 iterations for
our algorithm to converge to the results shown in Table
1 and Fig. 2. Based on Fig. 2, it appears that Class A in-
cludes those fours with an ‘‘open’’ top and Class B in-
cludes those fours with a ‘‘closed’’ top. Of note, as
shown in this example, our algorithm does not classify
shapes based on topology. Specifically, the topology of
Shape #10 is closer to Class B (requiring two curves)
but is classified as Class A because it has an ‘‘open’’
top. On a 933 MHz Pentium 3 personal computer, this
particular simulation took approximately 8.80 s to
converge.

4.2. Classification of arbitrary number of shape classes

Up to this point, we have only shown derivations and
simulation results for the classification of two shape
classes. We demonstrate, in this section, how our algo-
rithm can be generalized, in a straightforward manner,
to handle classification of more than two shape classes.
Let n denote the number of shape classes that one would
like to separate the database into. Redefine the binary
shape labels as Clh where h = 1,. . .,n denotes the shape
class number and l = 1,. . .,L again denotes the particu-
lar example shape within the database so that

Xn

h¼1

Clh ¼ 1 8l ¼ 1; . . . ; L; ð11Þ

and

pðClhÞ ¼
1

n
8h ¼ 1; . . . ; n and 8l ¼ 1; . . . ; L. ð12Þ



Shape  1 Shape  2 Shape  3 Shape  4

Shape  5 Shape  6 Shape  7 Shape  8

Shape  9 Shape 10 Shape 11 Shape 12

Fig. 1. Database of 12 contours of the number four.

Table 1
Classification of the number four by our EM algorithm

Shape 1 2 3 4 5 6 7 8 9 10 11 12

Class B A A A B A A B B A A B

The EM algorithm classified the fours into class A or class B.
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As an example, if example shape #5 is classified as
belonging to shape class #3, then

C5;3 ¼ 1 ð13Þ
Fig. 2. Level set estimates of the two shape classes with the zero level
set marked in white.
and

C5;h ¼ 0 8h ¼ 1; . . . ; n except h ¼ 3. ð14Þ
Besides redefining the class label C, we also need to rede-
fine X so that

X ¼ fX 1;X 2;X 3; . . . ;Xng. ð15Þ
Based on these new definitions, the E-step calculates

hClhjY l;X ½k�i ¼
QN

i¼1 expð�ðY li � X ½k�
hi Þ

2
=2r2ÞPn

~h¼1

QN
i¼1 expð�ðY li � X ½k�

~hi
Þ2=2r2Þ

n o

8h ¼ 1; . . . ; n; ð16Þ

and the M-step calculates

X ½kþ1�
hi ¼

PL
l¼1hClhjY li ;X

½k�
i iY liPL

l¼1hClhjY li ;X
½k�
i i

8i ¼ 1; . . . ;N and 8h ¼ 1; . . . ; n. ð17Þ

To illustrate the classification of more than two shape
classes, we show in Fig. 3 a database consisting of 12
aligned fighter planes. The goal is to separate this data-
base into three separate groups. Grossly examining this
database, one criteria for separation is likely based on



Table 2
Classification of the fighters by our EM algorithm

Shape 1 2 3 4 5 6 7 8 9 10 11 12

Class B A B A B A B A C A C B

Shape  1 Shape  2 Shape  3 Shape  4

Shape  5 Shape  6 Shape  7 Shape  8

Shape  9 Shape 10 Shape 11 Shape 12

Fig. 3. Database of 12 fighter planes.
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the length of the wing span. We embedded each of these
fighter planes in a 75 · 75 pixel level set image. It took 7
iterations for the algorithm to converge to the results
shown in Table 2 and Fig. 4. Based on these results, it
appears that Class A contains those planes with a short
wing span, Class B contains those planes with a long
wing span, and Class C contains those planes with med-
ium wing span. On a 933 MHz Pentium 3 personal com-
puter, this simulation took approximately 2.97 s to
converge.

Fig. 5 shows a database consisting of 15 aligned real
fish silhouettes. The task is to classify the silhouettes
into three groups. Visually examining the database, it
is relatively easy to pick out the silhouettes that belong
to the ‘‘shark’’ shape class. However, separating the rest
of the silhouettes into the remaining two groups is not
trivial. Each of these silhouettes are embedded in a
500 · 500 pixel level set image. It took 7 iterations for
the algorithm to converge to the results shown in Table 3
and Fig. 6. Indeed as expected, Class B is the ‘‘shark’’
group. Class A and Class C differ from one another
based on the width or girth of the fish silhouettes. On
a 933 MHz Pentium 3 personal computer, this simula-
tion took approximately 56.82 s to converge. The longer
elapse time for this simulation is mainly due to the larger
size of the level set images.

4.3. Extension to 3D

The generalization of our EM-based shape classifica-
tion algorithm to 3D is also straightforward. The only
difference here is that the bounding surfaces of each
3D shape is embedded as the zero level set of a signed
distance function with negative distances assigned to
the inside and positive distances assigned to the outside
of the 3D object.

Fig. 7 shows a database of seven aligned 3D car-
toon vehicles. Each of these shapes is embedded in a
50 · 50 · 50 pixel level set volume. It took 10



Shape  1 Shape  2 Shape  3 Shape  4 Shape  5

Shape  6 Shape  7 Shape  8 Shape  9 Shape 10

Shape 11 Shape 12 Shape 13 Shape 14 Shape 15

Fig. 5. Database of 18 fish silhouettes.

Fig. 4. Level set estimates of the three shape classes with the zero level set marked in white.

Table 3
Classification of the fish silhouettes by our EM algorithm

Shape 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Class A C B A C B A B A C B C A A B

The EM algorithm classified the fish silhouettes into class A, B, or C.
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iterations for the algorithm to converge to the
results shown in Table 4 and Fig. 8. Based on Fig.
8, it appears that the classification is done based on
the size of each vehicle�s trunk. Specifically, Class A
includes those vehicles with a low or flat trunk while
Class B includes those vehicles with a elevated
trunk. And as expected, Table 4 shows that vehicles
#2, #3 and #4 are labeled as Class A, and
vehicles #1, #5, #6 and #7 are labeled as Class B.
On a 933 MHz Pentium 3 personal computer, this
particular simulation took approximately 8.30 s to
converge.



Fig. 7. Database of seven vehicles.

Fig. 6. Level set estimates of the three shape classes with the zero level set marked in white.

Fig. 8. Shape estimates of the two shape classes.

Table 4
Classification of the vehicles by our EM algorithm

Shape 1 2 3 4 5 6 7

Class B A A A B B B

The EM algorithm classified the vehicles into class A or class B.
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5. Applications

In this section, we present two medical applications
to illustrate the performance of our algorithm.
Section 5.1 illustrates a 2D example, while Section 5.2
illustrates a 3D example.

5.1. Chest radiographs of normal and emphysematous

patients

Emphysema is a lung disease which involves the
destruction of alveoli and its surrounding tissue. Typical
findings on chest X-rays of emphysema patients include
hyperinflation of the lung fields and flattened diaphram.
Fig. 9 shows a database consisting of eight sets of
aligned contours with each set representing the outlines
of the right and left lung fields from a different patient�s
chest radiograph. The eight patients� chest radiographs
have been classified a priori by a radiologist as having
either normal or emphysematous lung.



Shape 1 Shape 2 Shape 3 Shape 4

Shape 5 Shape 6 Shape 7 Shape 8

Fig. 9. Database of eight contours outlining the right and left lung fields from a collection of chest radiographs.
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The experimental results based on our algorithm are
shown in Table 5 and Fig. 10. The two images shown in
Fig. 10 represent the level set functions of the two shape
classes with the zero level set of each level set function
outlined in white. The white contours can be thought
of as the representative shape of each shape class.
Table 5 shows that the grouping scheme generated by
our EM algorithm exactly matched the one generated
Table 5
Comparion of chest radiograph labelings between a radiologist and
our EM algorithm

Shape 1 2 3 4 5 6 7 8

Radiologist Nl Nl Dz Nl Dz Dz Nl Dz
EM A A B A B B A B

The radiologist classified the chest radiographs into normal (Nl) or one
with emphysema disease (Dz). The EM algorithm classified them into
class A or class B.

Fig. 10. Level set estimates of the two shape classes with the zero level
set marked in white.
by the radiologist. In particular, notice that Class A cor-
responds to normal and Class B corresponds to diseased
patients. Not surprisingly, Class B�s representative shape
shows the hyperinflated lung as well as the flatten diag-
phram typical of emphysematous patients. For this par-
ticular experiment with each shape having 300 · 300
pixels, it took 5 iterations to converge requiring approx-
imately 1.67 s on an Intel Xeon 4.4 GHz dual processor
computer.

5.2. Cerebellum of neonates with Dandy–Walker

syndrome

Dandy–Walker Syndrome is a congenital brain mal-
formation associated with agenesis of the cerebellum.
Our task is to separate the aligned cerebellum database
shown in Fig. 11 into normal cerebellums and those af-
flicted with Dandy–Walker Syndrome. The eight cere-
bellums in the database are known a priori to either
have the disease or not. These eight cerebellums are
hand-segmented from eight MRI data set.

The experimental results based on our algorithm are
shown in Table 6 and Fig. 12. The two shapes shown in
Fig. 12 are the representative shapes of the two shape
classes. Table 6 shows that the grouping scheme gener-
ated by our EM algorithm matched the correct answer.
In particular, notice that Class A corresponds to normal
and Class B corresponds to diseased patients. Class B�s
representative shape shows partial agenesis of the supe-
rior aspect of the cerebellum. For this 3D experiment,
each example shape�s level set function is represented
by 256 · 256 · 50 pixels. In terms of processing time,
10 iterations were required for convergence taking



Fig. 11. Database of normal and diseased cerebellums.

Table 6
Comparion of labelings between the truth and our EM classifier

Shape 1 2 3 4 5 6 7 8

Diagnosis Nl Nl Nl DWS DWS Nl DWS Nl
EM Classifier A A A B B A B A

The diagnosis of the cerebellum is either normal (Nl) or one with
Dandy–Walker syndrome (DWS). The EM algorithm classified the
cerebellums into class A or class B.
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approximately 39 s on an Intel Xeon 4.4 GHz dual pro-
cessor computer.
Fig. 12. Shape estimates of the two classes.
6. Conclusion and future research directions

We have outlined a novel approach for statistical
shape classification and estimation based on the EMalgo-
rithm and the level set representation of shapes. The ap-
proach we have outlined is fast as demonstrated by the
short processing time, and flexible as it can handle the
classification of complex shapes (including those that
have dimensionality greater than two and thosewith com-
plex topologies), and the classification of multiple shape
classes. Finally, the results of the two medical applica-
tions we showed are encouraging as they illustrated the
accuracy of our methodology suggesting potential appli-
cations of this method for computer aided diagnosis.

We are currently exploring the use of other implicit
shape representations (other than distance transforms)
that will not cause any inconsistencies in the shape rep-
resentation during the calculation of the M-step (i.e. the
level set function estimated in the M-step is no longer a
distance function). We are also interested in extending
this formulation to enable it to provide users with infor-
mation regarding the specific differences among the dif-
ferent shape classes as this will be immensely helpful to
clinicians. Finally, we are actively exploring the use of
Eq. (8) as a similarity measure in matching a query
shape to a large database for shape retrieval with appli-
cations to hand writing recognition.
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