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Nonlinear Evolution Equations as Fast and Exact
Solvers of Estimation Problems

Ilya Pollak, Alan S. Willsky, Fellow, IEEE, and Yan Huang

Abstract—We develop computationally efficient procedures for
solving certain restoration problems in one dimension, including
the one–dimensional (1-D) discrete versions of the total variation
regularized problem introduced by Sauer and Bouman and the
constrained total variation minimization problem introduced by
Rudin et al. The procedures are exact and have time complexity
( log ) and space complexity ( ), where is the

number of data samples. They are based on a simple nonlinear
diffusion equation proposed by Pollak et al. and related to the
Perona–Malik equation. A probabilistic interpretation for this
diffusion equation in 1-D is provided by showing that it produces
optimal solutions to a sequence of estimation problems. We extend
our methods to two dimensions, where they no longer have similar
optimality properties; however, we experimentally demonstrate
their effectiveness for image restoration.

Index Terms—Estimation, noise removal, partial differential
equations, restoration, scale-space, segmentation, SIDE, total
variation.

I. INTRODUCTION

RECENT years have seen a great number of exciting devel-
opments in the field of image reconstruction, restoration,

and segmentation via nonlinear diffusion filtering (see, e.g.,
a survey article [17]). Since the objective of these filtering
techniques is usually extraction of information in the presence
of noise, their probabilistic interpretation is important. In par-
ticular, a natural question to consider is whether or not these
methods solve standard estimation or detection problems. An
affirmative answer would help us understand which technique
is suited best for a particular application and aid in designing
new algorithms. It would also put the tools of the classical
detection and estimation theory at our disposal for the analysis
of these techniques, making it easier to tackle an even more
crucial issue of characterizing the performance of a nonlinear
diffusion technique given a probabilistic noise model.
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Addressing the relationship between nonlinear diffusion fil-
tering and optimal estimation is, however, very difficult, because
the complex nature of the nonlinear partial differential equations
(PDEs) used in these techniques and of the images of interest
make this analysis prohibitively complicated. Some examples
of the existing literature on the subject are [23] and [28], which
establish qualitative relations between the Perona–Malik equa-
tion [10], [15] and gradient descent procedures for estimating
random fields modeled by Gibbs distributions. Bayesian ideas
are combined in [29] with snakes and region growing for image
segmentation. In [4], concepts from robust statistics are used to
modify the Perona–Malik equation. In [13], a connection be-
tween random walks and diffusions is used to obtain a new evo-
lution equation.

One of the goals of this paper is to move forward the discus-
sion of this issue by establishing that a particular nonlinear dif-
fusion filtering method results in a maximum likelihood (ML)
estimate for a certain class of signals. We expand and develop
our contributions of [16] and [19], obtaining new methods for
solving certain restoration problems. The methods are first de-
veloped in one dimension, where they are provably fast and
provably optimal. While we do not have analytical results on
the two-dimensional (2-D) generalizations of our methods, ex-
periments show that the 2-D algorithms are efficient and robust,
as well.

We concentrate most of our attention on the problem of max-
imum likelihood estimation in additive white Gaussian noise,
subject to a constraint on the total variation (TV). We show that
this problem, in one dimension, is closely related to the total
variation minimization problems posed by Bouman and Sauer in
[6] and [21] and by Rudin et al. in [20]. This choice of our proto-
typical problem is motivated by a great success of total variation
minimization methods [1], [2], [6], [7], [20], [21], which has
demonstrated a critical need for fast computational techniques
[3], [5], [8], [11], [25]–[27]. A major contribution of this paper
is a new fast and exact algorithm for solving the one–dimen-
sional (1-D) discrete-time versions of these problems, as well
as a fast and approximate algorithm for the 2-D versions.

In order to motivate our theoretical results and the ensuing al-
gorithms, we start in Section II by experimentally demonstrating
the effectiveness of the methods proposed in this paper. We pro-
ceed with a review of background material on nonlinear diffu-
sions in Section III and then focus on one very simple evolution
in Section IV. We show in Section V that this evolution results
in a fast solver of our ML problem. Section VI summarizes the
contributions of this paper and presents several future research
directions.
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Fig. 1. Experiment in 1-D. Noise removal via constrained total variation
minimization using our algorithm and the algorithm in [20]. For this
10 000-point signal, with comparable reconstruction quality and RMS errors,
our algorithm takes 0.29 s on a SunBlade 1000 (750 MHz processor), whereas
the algorithm of [20], with the most favorable parameter settings, takes
1005 s. (a) Noise-free signal. (b) Noisy signal. (c) Our reconstruction. (d)
Reconstruction using [20].

II. EXPERIMENTAL RESULTS

A. Comparisons to the Original Method of
Rudin–Osher–Fatemi in 1-D

The algorithms developed in this paper address the problem
of noise removal both in 1-D and 2-D. In particular, the 1-D al-
gorithm described below in Section V-C calculates the solution
to the constrained total variation minimization problem origi-
nally posed by Rudin et al. in [20]. Fig. 1 illustrates the com-
parison of our method to the original method of [20]. Fig. 1(a)
shows a synthetic piecewise constant signal. The same signal,
with additive zero-mean white Gaussian noise of standard de-
viation , is shown in Fig. 1(b). This signal is processed
using our algorithm, and the resulting output, which is obtained
in 0.29 s on a SunBlade 1000, is shown in Fig. 1(c). Note that the
only parameter that our algorithm needs is . In this example,
we assume that we know exactly.

Since the method of [20] is an iterative descent method, no
straightforward comparison is possible. Indeed, in addition to

, that algorithm needs two other parameters: the time step and
the stopping criterion. Choosing the time step a priori is a diffi-
cult task. Generally, the noisier the data, the larger the number
of iterations, and therefore, smaller time steps will be required
for noisier data to achieve a given precision. To make the com-
parison as tough for our own method as possible, we chose the
largest time step for the algorithm of [20] that can result in
the reconstruction quality that is comparable with that of our
method. Specifically, the parameters were chosen to produce a
root mean square (RMS) error per sample of 1.2 (as compared
with 0.9 for our algorithm). We also assume here that the correct
value of is known. The result, for the input signal of Fig. 1(b),
is shown in Fig. 1(d). It took 1005 s to compute the solution,
which is in excess of three orders of magnitude more computa-
tion time than our method.

Fig. 2. Experiment in 1-D. (a) RMS errors, as a function of noise standard
deviation �, for our basic constrained total variation minimization method that
uses the knowledge of � (solid line) and for a variant of the method that does
not rely on knowing � but uses an adaptive stopping rule instead (dotted line).
(b) Piecewise constant signal with additive white Gaussian noise of � = 30.
(c) Restoration using our constrained total variation minimization method with
known � (solid line) superimposed onto the noise-free signal (dotted line). (d)
Restoration using our adaptive stopping rule.

TABLE I
COMPARISON OF COMPUTATION TIMES FOR 50 1024-POINT SIGNALS

The advantages of our method illustrated with this simple
example also apply when comparing it with other, more re-
cent approaches to solving the TV minimization problem or re-
lated problems (e.g., [3], [5]–[8], [11], [14], [20], [25]–[27]).
An important advantage of our method is that a bound on the
overall computational complexity is available. Thanks to Propo-
sition 7 of Section V below, our 1-D algorithm is guaranteed to
achieve the solution of the Rudin–Osher–Fatemi problem ex-
actly (modulo computer precision) in a finite number of steps,
which is .

In addition, our method relies on only one parameter . More-
over, as illustrated in Fig. 2, the requirement to know , which
tells our recursive algorithm when to stop, can be dispensed with
and replaced with an adaptive stopping rule, with essentially no
sacrifice in performance.

To further compare our method with that of [20] in one di-
mension, we refer to Table I, which details the results of a Monte
Carlo simulation. Fifty randomly generated piecewise constant
signals of length with additive white Gaussian noise
SNR are used in the experiment. For each signal, we run

our algorithm and calculate the RMS error . We then try the
descent algorithm of [20] with several different time steps and
choose the time step for which the algorithm can reach the RMS
error of (i.e., be within 10% of our RMS error) with the
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Fig. 3. Experiment in 2-D. Noise removal via constrained total variation minimization using our algorithm and algorithm in [20]. With comparable reconstruction
quality and RMS errors, our algorithm takes 14 s (on a SunBlade 1000 750-MHz processor), whereas the algorithm of [20] takes 151 s. (a) Image. (b) Noisy image.
(c) Our reconstruction. (d) Reconstruction using [20].

fewest iterations. (If it cannot reach in 150 000 iterations,
which happened in three out of 50 cases, we stop.) We then look
at the computation time for the algorithm of [20], with the op-
timal time step. The results of this experiment are summarized
in Table I, showing once again that our 1-D method is much
faster: The fastest run of the algorithm of [20] is more than an
order of magnitude slower than the slowest run of our algorithm.

We now test an adaptive version of our algorithm, which is
outlined below in Section V. Our algorithm is a recursive proce-
dure: When the standard deviation of the noise is known, this
parameter can be used to stop the recursion. If, however, is un-
known, we can apply a different, adaptive, criterion to determine
when to stop. As Fig. 2 shows, the RMS errors for the adaptive
algorithm are very similar to those for the case when the correct
value of is known. Moreover, since we use the same basic pro-
cedure to calculate the solution, the computational complexity
of the adaptive method is the same.

B. Experiments in 2-D

While our 1-D algorithms extend to 2-D, our main theoret-
ical results do not. Propositions 5–7 of Section V do not hold
in 2-D, i.e., we can no longer claim that our algorithm exactly
solves the respective optimization problems in 2-D. Moreover, it
can be shown that the time complexity of the 2-D version of our
algorithm is actually [not ], where
is the total number of pixels in the image. Our algorithm nev-
ertheless solves these problems approximately and still has a
bound on computational complexity. We have also observed that
its actual time complexity is typically lower than the asymptotic
bound of . To illustrate our algorithm, we use two
images: one image from [20], shown in Fig. 3(a), and another
image shown in Fig. 4(a). The two images that are corrupted by
zero-mean additive white Gaussian noise are shown in Figs. 3(b)
and 4(b), respectively. The noise variance for the tank image is
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Fig. 4. Another 2-D experiment. With comparable reconstruction quality and RMS errors, our algorithm takes 14 s (on a SunBlade 1000 750-MHz processor),
whereas the algorithm of [20] takes 54 s. (a) Image. (b) Noisy image. (c) Our reconstruction. (d) Reconstruction using [20].

chosen to achieve the same SNR as in the original paper [20].
The outputs of our algorithm1 are in Figs. 3(c) and 4(c). The
computation time is approximately 14 s in both cases. We use
the parameter settings in the algorithm of [20] to achieve a com-
parable RMS error, in both cases, and the results are depicted in
Figs. 3(d) and 4(d). The computation times were 151 s for the
tank image and 54 s for the airplane image. To better illustrate
the reconstructions, we provide in Fig. 5 enlarged versions of
two patches from the images of Fig. 3. Fig. 5(a) illustrates where
the two patches are taken from. Fig. 5(b)–(e) is the first patch:
original, noisy, restored with our method, and restored with the
method of [20], respectively. Fig. 5(f)–(i) contains similar im-
ages for the second patch. The visual quality of the two recon-
structions is similar; both methods are good at recovering edges
and corners.

1We only show the outputs of the adaptive version of our algorithm since the
results when the noise variance is known are similar.

III. BACKGROUND, NOTATION, AND DEFINITIONS

A. Nonlinear Diffusions

The basic problem considered in this paper is restoration of
noisy 1-D signals and 2-D images. We build on the results in
[18], where a family of systems of ordinary differential equa-
tions, called Stabilized Inverse Diffusion Equations (SIDEs),
was proposed for restoration, enhancement, and segmentation
of signals and images. The (discretized) signal or image to
be processed is taken to be the initial condition for the equation,
and the solution of the equation provides a fine-to-coarse
family of segmentations of the image. This family is indexed by
the “scale” (or “time”) variable , which assumes values from 0
to .

The usefulness of SIDEs for segmentation was shown in
[18]; in particular, it was experimentally demonstrated that
SIDEs are robust to noise outliers and blurring. They are faster



488 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 2, FEBRUARY 2005

Fig. 5. Zooming in on the tank experiment (a) Two patches. (b)-(e) Enlarged versions of the images in Fig. 3 for the first patch. (f)–(i) Enlarged versions of
the images in Fig. 3 for the second patch. (b) Patch. (c) Noisy patch. (d) Our reconstruction. (e) Reconstruction using [20]. (f) Patch. (g) Noisy patch. (h) Our
reconstruction. (i) Reconstruction using [20].

TABLE II
NOTATION FOR THE SEGMENTATION PARAMETERS OF A SIGNAL

than other image processing algorithms based on evolution
equations, since region merging reduces the dimensionality of
the system during evolution. In [12], SIDEs were successfully
incorporated as part of an algorithm for segmenting dermato-
scopic images.

Our first effort in probabilistic analysis of SIDEs is [19],
where we showed that a simple SIDE optimally solves certain

detection problems. In the present paper, we prove that a SIDE
is also an optimal solver for several estimation problems.

B. Notation in 1-D

In this subsection, we introduce notation that will be used
throughout the paper to analyze our 1-D SIDE.

The number of samples in the signals under consideration is
always denoted by . The signals themselves are denoted by
boldface lowercase letters and viewed as vectors in . The
samples of a signal are denoted by the same letter as the signal
itself, but normal face, with subscripts 1 through , e.g.,

. We say that is the intensity of the th sample
of .

A set of the indexes of consecutive samples
of a signal , which have equal intensities

, is called a region if this set cannot be enlarged [in other
words, if (or ) and (or

)]. Any pair of consecutive samples with unequal intensities
is called an edge. The number of distinct regions in a signal is
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denoted by . The indexes of the left endpoints of the regions
are denoted by , (the s are ordered from
left to right: ); the intensity of
each sample within region is denoted by and is referred
to as the intensity of region . This means that and
that

for

where we use the convention .
The length of the th region of (i.e., the number of

samples in the region) satisfies

Two regions are called neighbors if they have consecutive in-
dexes. The number of neighbors of the th region of is denoted
by and is equal to one for the leftmost and rightmost re-
gions and two for all other regions:

otherwise.

We call region a maximum (minimum) of a signal if its inten-
sity is larger (smaller) than the intensities of all its neigh-
bors.2 Region is an extremum if it is either a maximum or a
minimum. We let

if region is a maximum of
if region is a minimum of
otherwise.

The parameter and the four sets of parameters ,
, , and for are crucial to

both the analysis of our 1-D algorithms and the description of
their implementation. Collectively, these parameters will be
referred to as segmentation parameters of signal . They are
summarized in Table II. When it is clear from the context which
signal is being described by these parameters, we will drop
their arguments, and write, for example, instead of .

The TV of a signal is defined by

TV

and stands for the usual Euclidean norm

The following alternative form for TV can be obtained
through a simple calculation:

TV (1)

We are now ready to describe the 1-D SIDE which is analyzed
in this paper.

2The term “local maximum (minimum)” would be more appropriate, but we
omit the word “local” for brevity.

C. A SIDE in 1-D

In [19], we provided a probabilistic interpretation for a spe-
cial case of SIDEs in 1-D in the context of binary change de-
tection problems. In Section IV, we generalize these results to
restoration problems. Specifically, we show that certain restora-
tion problems are optimally solved by evolving the following
system of equations:

sgn

sgn for

and

(2)

with the initial condition

(3)

where is the signal to be processed. Note that when and
when , (2) involves quantities and ,
which have not been defined. We use the following conventions
for these quantities:

sgn sgn

(4)

Equation (2) says that the intensities of samples within a region
have the same dynamics and, therefore, remain equal to each
other. A region cannot therefore be broken into two or more re-
gions during this evolution. The opposite, however, will happen.
As soon as the intensity of some region becomes equal to that of
its neighbor ( for some and for some
time instant ), the two become a single region; this follows
from our definition of a region. This merging of two regions
into one will express itself in a change of the segmentation pa-
rameters of in (2):

(5)

(6)

for (7)

for (8)

Equation (5) says that the number of samples in the newly
formed region is equal to the total number of samples in the
two regions that are being merged. Equation (6) reflects the
reduction in the total number of regions by one. Equation (7)
and (8) express the fact that, since region is getting merged
onto region , the region that used to have index will now
have index ; the region that used to have index will
now have index , etc. Borrowing our terminology from
[18], we call such time instant when two regions get merged
a hitting time. Note that between two consecutive hitting times,
the segmentation parameters of remain constant. We
denote the hitting times by , where is the

earliest hitting time, and is the final hitting time:
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Note that two hitting times can be equal to each other, when more
than one pair of regions are merged at the same time. Proposition
1 of Section IV shows that the evolution (2) will reach a constant
signalinfinitetime,startingfromanyinitialcondition.Allsamples
will thereforebe merged intoone region, withinfinite time, which
means that therewillbeexactly hitting times:onefewer
than the initial number of regions.

The rest of the paper analyzes the SIDE (2), with initial condi-
tion (3), conventions (4), and the ensuing merging rules (5)–(8).
An example of its evolution, for , is depicted in Fig. 6.
Fig. 6(a) shows the solution at all times from until .
The initial signal has regions, and therefore,
there are four hitting times. They are , ,

, and . The initial condition and
the solution at the four hitting times are plotted in Fig. 6(b).

We conclude this subsection by deriving an alternative form
for (2), which will be utilized many times in the remainder of
the paper. If region is a maximum of , (2) and conventions
(4) say that each of its neighbors contributes to the rate
of change of its intensity . Similarly, if region is a
minimum, each neighbor contributes . If region is not an
extremum, then it necessarily has two neighbors, one of which
contributes and the other one . In this latter case,
the rate of change of is zero. Combining these consid-
erations and using our notation from the previous subsection,
we obtain an alternative form for (2):

(9)

where, to simplify notation, we did not explicitly indicate the
dependence of the segmentation parameters on .

IV. BASIC PROPERTIES OF THE 1-D SIDE

In this section, we study the system (2) and prove a number of
its properties, which both allow us to gain significant insight into
its behavior and are critical for developing optimal estimation
algorithms presented in Section V. The most basic properties,
which are illustrated in Fig. 6 and proved in [18], assert that the
system has a unique solution that is continuous and becomes a
constant signal in finite time.

Throughout this section, stands for the solution of (2)
and (3), with initial condition . All the segmentation parame-
ters encountered in this section are those of . The final hit-
ting time is denoted by .

Proposition 1: The solution of the SIDE (2) and (3) exists, is
unique, is a continuous function of the time parameter for all
values of , and is a differentiable function of for all , except
possibly the hitting times. Every pair of neighboring regions is
merged in finite time. After the final hitting time , the solution
is a constant:

for

Proof: See [18].
Our plan is to use the system (2) to solve a Gaussian esti-

mation problem with a TV constraint, as well as related prob-
lems originally posed in [6], [20], and [21]. As we will see

Fig. 6. Evolution of SIDE. (a) Mesh plot of the solution u(t) as a function of
time t and index n, with hitting times t = 3:2, t = 6:54, t = 9:21, and
t = t = 15:53. (b) Plots of the initial signal (top) and the solution at the four
hitting times.
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(a) (b)

Fig. 7. (a) Total variation of the solution, as a function of time for the evolution
of Fig. 6. (b) Its time derivative.

in Section V, this necessitates understanding the time behavior
of TV and . Propositions 2 and 3 below
show that both these quantities are Lyapunov functionals of our
system (i.e., decrease as functions of time). In the same propo-
sitions, we also derive formulas for computing the time deriva-
tives of these quantities.

Proposition 2: For , the total variation TV
is a monotonically decreasing function of time, which changes
continuously from TV TV to TV
(see Fig. 7). It is a differentiable function of time, except at the
hitting times, and its rate of change is

TV (10)

Proof: Using the expression (1) for the TV of , dif-
ferentiating it with respect to , and substituting (9) for re-
sults in (10). This identity is valid for all , where the
solution is differentiable and where the segmentation pa-
rameters are not changing, i.e., for all except the hitting times.
Since, by Proposition 1, the solution is a continuous func-
tion of , so is TV . We therefore conclude that TV
is a monotonically decreasing, continuous function of time for

. Its value at is zero, since, by Proposition 1,
is a constant signal.

Proposition 3: Let . Then, for
, is a monotonically increasing function of time,

which changes continuously from to . It is a
differentiable function of time except at the hitting times, and
its rate of change is

(11)

Proof: The following identity is a direct corollary of
Lemma 2, which is proved in the Appendix:

(12)

We are now ready to show that (11) holds.

This identity is valid for all where the solution
is differentiable and where the segmentation parameters are not
changing, i.e., for all except the hitting times. Since, by Propo-
sition 1, the solution is a continuous function of , so is

. We therefore conclude that is a monotonically in-
creasing, continuous function of time for .

Corollary 1: Let , and let , be
two consecutive hitting times. Then

for any

Proof: This formula is simply the result of integrating (11)
from to and using the fact that segmentation parameters
remain constant between two hitting times.

Proposition 4 characterizes the behavior of the functional
, where is an arbitrary fixed signal satisfying

TV . This result is critical in demonstrating the opti-
mality of our algorithms of Section V.

Proposition 4: Let be the solution of (2) and (3), with
TV and TV , for some positive constants

, . Suppose that is an arbitrary signal with TV
. Then, for all except possibly the hitting times, we

have

TV (13)

TV (14)

Proof: is in Appendix.

V. OPTIMAL ESTIMATION IN 1-D

In this section, we present 1-D estimation problems that can
be efficiently solved using our evolution equation.

A. ML Estimation With a TV Constraint

Our first example is constrained maximum likelihood (ML)
estimation [24] in additive white Gaussian noise. Specifically,
suppose that the observation is an -dimensional vector of
independent Gaussian random variables of variance , whose
mean vector is unknown. The only available information
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about is that its total variation is not larger than some known
threshold . Given the data , the objective is to produce an
estimate of .

The ML estimate maximizes the likelihood of the observation
[24]

Simplifying the likelihood and taking into account the constraint
TV , we obtain the following problem:

Find
TV

(15)

In other words, we seek the point of the constraint set
TV , which is the closest to the data . We now show
that a fast way of solving this optimization problem is to use (2)
and (3).

Proposition 5: If TV , then the solution to (15) is
. Otherwise, a recipe for obtaining is to evolve the

system (2) and (3) forward in time until the time instant when
the solution of the system satisfies TV . Then,

. The ML estimate is unique and can be found in
time and with memory requirements, where

is the size of the data vector.
Proof of Proposition 5, Part 1—Optimality: The first sen-

tence of the proposition is trivial: If the data satisfies the con-
straint, then the data itself is the maximum likelihood estimate.
Proposition 2 of the previous section shows that if is the
solution of the system (2) and (3), then TV is a monoton-
ically decreasing function of time, which changes continuously
from TV to 0 in finite time. Therefore, if TV , then
there exists a unique time instant when the total variation of
the solution is equal to . We now show that is indeed the
ML estimate sought in (15) and that this estimate is unique.

Let us denote . To show that
is the unique ML estimate, we need to prove that for any

such that TV , the following holds:

(16)

To compare with , note that

Since and for ,
our task would be accomplished if we could show that

(17)
Note that by Proposition 1, is well defined
for all , except possibly on the finite set of the hitting times,

where the left derivative may not be equal to the right deriva-
tive. Both integrals in (17) are, therefore, well defined. More-
over, (17) would follow if we could prove that

for almost all
(18)

but this is exactly what Proposition 4 of Section III states.
Finding the constrained ML estimate thus amounts to solving

our system of ordinary differential (2) and (3) at a particular
time instant . We now develop a fast algorithm for doing
this. Roughly speaking, the low computational cost is the conse-
quence of Propositions 2 and 3 and Corollary 1 (which provide
formulas for the efficient calculation and update of the quanti-
ties of interest) and the fast sorting of the hitting times through
the use of a binary heap [9].

Proof of Proposition 5, Part 2—Computational Com-
plexity: Equations (9) and (10) show that, between the hitting
times, every intensity value changes at a constant rate,
and so does TV , as illustrated in Figs. 6 and 7. It would
thus be straightforward to compute the solution once we know
what the hitting times are and which regions are merged at each
hitting time.

Since a hitting time is, by definition, an instant when the in-
tensities of two neighboring regions become equal, the hitting
times are determined by the absolute values of the first differ-
ences for .
Let be the rate of change of . It follows from
(9) that, for a fixed , the rate is constant between two suc-
cessive hitting times:

Suppose that after some time instant , the rate never
changes: for . If this were the case, we
would then be able to infer from the above formula that
would become zero at the time instant , where
is defined by

if
otherwise

(19)

but as soon as one of the s becomes equal to zero, the two cor-
responding regions are merged. The first hitting time is there-
fore . Similarly, the second hitting time is

, and, in general

The st hitting time is

We now show how to compute , , and the hitting times
without explicitly computing .

Let the signal be comprised of average values of the
initial condition , taken over the regions of :

for (20)
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where the segmentation parameters are those of . One of
the key reasons for the low time complexity of the algorithm is
that the solution is never explicitly computed until .
Keeping track of is enough, because of a simple relation-
ship between the two signals. We first derive this relationship
and then show that keeping track of indeed leads to a com-
putationally efficient algorithm.

An immediate corollary of the definition (20) is that has
the same number of regions as : ,

. It is also immediate that edges occur in the same places in
these two signals: for . It follows
from (12) that the intensity values within the regions are related:

(21)

Finally, note that (21) implies that the minima and maxima of
occur in the same places as the minima and maxima of

. To see this, suppose that . Then,
and , and therefore

It is analogously shown that if , then
. Therefore, the th region of is

a maximum (minimum) if and only if the th region of is
a maximum (minimum), which means that . We
have thus shown that the signals and have identical
segmentation parameters and that the intensities of these signals
are related through (21).

Putting these computations together, we have the following
algorithm.

1) Initialize. If TV , output and stop. Else,
assign , , TV TV ,

; initialize the segmentation parameters; use (10) to
initialize .

2) Find possible hitting times. For each ,
find from , using
(21). Use (9) to calculate from the segmen-
tation parameters of , and use (19) to find all the
candidates for the next hitting time:

.
3) Sort. Store these candidates on a binary heap [9].
4) Find the next hitting time. Find

find the next hitting time .
5) Find the new TV. Calculate the TV at :

TV TV

6) Merge. If TV , then merge regions and
, as follows:

i) remove from the heap;
ii) update :

iii) update the time derivative of TV, using (10).
iv) update the segmentation parameters via (5)–(8);
v) increment by 1;
vi) update the heap;
vii) go to Step 4.

7) Output. Calculate and , output , and stop.
The rest of this section explains and analyzes this algorithm.
It is easy to see that both Steps 1 and 2 have time

complexity. Indeed, both of them involve a constant number of
operations per region of the initial signal, and since the total
number of regions cannot exceed the total number of samples

, Steps 1 and 2 can take at most time. Note that Step 2
does not require the knowledge of . A binary heap is built
in Step 3; the complexity of this is also [9].

Next follows a loop consisting of Steps 4–6. Step 4 finds the
minimum of s, which is equivalent to extracting the root of
a binary heap and is done in time [9]. There are at most

hitting times; the worst-case scenario is that the loop
(Steps 4–6) terminates after the last of these hitting times, i.e.,
after iterations. In this case, the contribution of Step 4 to
the total time complexity is .

The calculation in Step 5 is . Removing one number
from a binary heap is [9]. The calculation of

in Step 6 is . Obtaining from
via (10) is also . The reassignments (5) and

(6) are , whereas the reassignments (7) and (8) are never
explicitly performed since the underlying data structure is a
dynamic linked list.

Note that a merging of two regions does not change the speed
of evolution of any other regions. Therefore, updating the heap
in Step 6 amounts to changing and resorting two (at most) en-
tries that involve the newly formed region. As follows from our
discussion of Step 2 above, changing the two entries takes
time. Resorting them on the heap is [9]. One execution
of Steps 5 and 6, therefore, takes , and so, the contri-
bution of Steps 5 and 6 to the time complexity (i.e., after
or fewer iterations of the loop) is .

The loop terminates when TV TV .
Therefore, can be found from

TV TV
TV

Since and have the same segmentation parameters,
it follows that . Therefore, we can use (21) to
calculate from with time complexity.

The total time complexity of the algorithm is therefore
.
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Storing the initial -point signal and the accompanying pa-
rameters requires memory. As the number of regions de-
creases, the memory is released accordingly. Therefore, the total
space required is .

B. Bouman–Sauer Problem

The problem treated in the previous subsection is closely re-
lated to the tomographic reconstruction strategy considered by
Bouman and Sauer in [6] and [21]. They proposed minimizing
a functional that is the sum of a quadratic penalty on the differ-
ence between the data and the estimate and a regularization term
that is a discretization of the total variation. Specializing their
formulation to a 1-D restoration problem yields the following:

Find (22)

where TV (23)

where is the data, and is a known parameter that
controls the amount of regularization. This problem has a simple
probabilistic interpretation. Just like in the previous subsection,
we are estimating the mean vector of a conditionally Gaussian
random vector ; however, now, is modeled as random, with
prior distribution

TV

where is a normalizing constant. The optimum is then
the maximum a posteriori (MAP) estimate [24] of based on
observing .

We now show that in order to solve this problem, we can still
evolve (2) and (3) using our algorithm of the previous subsection
but with a different stopping rule.

Proposition 6: The solution to Problem (22) is unique
and can be calculated from the solution to the system (2)
and (3). If , where is the final hitting time, then

; otherwise, . The time complexity
of this calculation is , and the space complexity is

, where is the size of the data.
Proof: First, note that TV , whereas if

TV TV , then TV . Therefore, the
total variation of the solution to the Bouman–Sauer problem
(22) cannot exceed the total variation of .

Let be a fixed real number such that TV . As
shown in Proposition 2, there is a unique time instant during
the evolution of (2) and (3) when TV . Moreover, it
is a direct consequence of Proposition 5 that minimizes

over the set of all signals for which TV .
Since, for every signal in the set ,

, it follows that minimizes over the set . In
order to find the global minimum of , we therefore need
to minimize over or, equivalently, find the time
instant that minimizes . Combining Propositions 2
and 3, we obtain

For , this time derivative is negative; for ,
it is positive. Therefore, if , the unique minimum is

achieved when ; if , then the unique minimum
is achieved when . Thus, , which
can be computed using our algorithm of the previous subsection
whose time and space complexity are and ,
respectively.

Similar to the SIDEs, Bouman and Sauer’s optimization
method [6], [21], called segmentation based optimization, uses
the idea of merging neighbors with equal intensities. In their
method, a merge-and-split strategy is utilized. Neighboring
pixels with equal intensities are temporarily merged. This is
alternated with a split step which follows a Gauss–Seidel-type
approach and optimizes over each pixel separately.

C. Rudin–Osher–Fatemi Problem

In [20], Rudin et al. proposed to enhance images by mini-
mizing the total variation subject to an -norm constraint on
the difference between the data and the estimate. In this section,
we analyze the 1-D discrete3 version of this problem:

Find TV (24)

where is the signal to be processed, and is a known param-
eter. We now show that in order to solve this problem, we can
still evolve (2) and (3) using our algorithm of Section V-A but
with a different stopping rule.

Proposition 7: If , then a solution to (24)
that achieves zero total variation is . Otherwise,
the solution to (24) is unique and is obtained by evolving the
system (2) and (3) forward in time, with the following stopping
rule: Stop at the time instant when

(25)

This solution can be found in time and with
memory requirements, where is the size of the data vector.

Proof: According to Proposition 3, is a con-
tinuous, monotonically increasing function of time, and there-
fore, a time instant for which (25) happens is guaranteed to exist
and be unique, as long as . Let be
the total variation of the solution at that time instant, and denote
the time instant itself by . Proposition 5 of Section V-A says
that is the unique solution of the following problem:

subject to TV

In other words, if is any signal with TV ,
then . This means that if

is any signal with , then we must
have TV . Therefore, is the unique solution of
(24).

We note moreover that the new stopping rule does not change
the overall computational complexity of our algorithm of Sec-
tion V-A. Every time two regions are merged, two terms in
the sum disappear, and one new term appears. All
other terms stay the same, and therefore, updating the sum after
a merge takes time. Once this sum is updated, computing
the new is also thanks to the Corollary of
Proposition 3.

3This means that our signals are objects in , rather than L .
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D. Adaptive Stopping

We now outline a strategy for a simple heuristic modification
of our algorithm for the case when the parameters , , and
of Sections V-A–C, respectively, are unavailable and cannot be
easily estimated.

In the absence of these parameter values, a different stopping
rule for our evolution equation can be designed, based on the
following qualitative considerations. The underlying algorithm
is a region-merging procedure that starts with a fine segmenta-
tion and then recursively removes regions. The regions that are
removed at the beginning of the process typically correspond
to noise. However, as shown above, the process will eventu-
ally aggregate all signal samples into one region, and therefore,
it will at some point start removing “useful” regions (i.e., the
regions that are due to the underlying signal that is to be re-
covered). A good stopping rule would stop this evolution when
most of the “noise” regions have been removed but most of
the “useful” regions are still intact. A good heuristic for dis-
tinguishing the two types of region is the energy: We would ex-
pect the “noise” regions to have a small energy and the “useful”
regions to have a high energy. Specifically, we track the quan-
tity . At each hitting time, this quantity
is evaluated and compared to its average over the previous hit-
ting times. When this quantity abruptly changes, the evolution
is stopped.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper, we presented a relationship between nonlinear
diffusion filtering and optimal estimation. We showed that this
relationship is precise in 1-D and results in fast restoration
algorithms both in 1-D and 2-D. In particular, we developed

algorithms to exactly solve the following three
problems in 1-D:

• the problem of finding the TV-constrained maximum like-
lihood estimate of an unknown -point signal corrupted
by additive white Gaussian noise;

• the Bouman–Sauer problem [6], [21] of minimizing a
TV-regularized functional;

• the Rudin–Osher–Fatemi problem [20] of constrained TV
minimization.

In each case, our algorithm requires one parameter—the stop-
ping criterion—which is related to the noise variance. When this
parameter is unavailable, we can use an adaptive version of our
procedure.

The generalization of our algorithm to 2-D is achieved by
defining a region as any connected set of pixels and defining two
regions to be neighbors if they share a boundary, as described
in [18]. The 2-D algorithm was illustrated above and shown to
produce comparable results to the existing methods, with con-
siderable computational savings.

We believe that there are several interesting theoretical and
practical issues for future research. Since our basic algorithm is
a region-merging algorithm, the estimates it produces are piece-
wise-constant. An issue therefore arises of modifying the algo-
rithm in such a way that it produces better estimates in smooth

regions. One possibility is to seek approximations by higher
order splines, rather than by staircase functions.

A more thorough investigation of the adaptive stopping rules
is another open research issue. This includes finding better sta-
tistics for differentiating between the “noise” regions and the
“useful” regions, as well as utilizing better change detection al-
gorithms.

Finally, we would like to obtain results similar to Proposition
5 for Laplacian noise, i.e., for the case when the quantity to be
minimized in (15) is the norm rather than the square of the
norm.

APPENDIX

The proof of the central result of this paper (Proposition 5 of
Section V) uses (18), which follows from Proposition 4 of Sec-
tion III. We prove this proposition below. The proof is organized
in several modules: the main body of the proof and auxiliary
lemmas, which prove one equality and two inequalities used in
the main body.

A. Proof of Four Auxiliary Lemmas

In the first lemma, we consider the solution of (2) and
(3) at some fixed time instant . For the case when
has an edge at (i.e., ), we calculate
the rate of change of the cumulative sum during the
time interval .

Lemma 1: Let be the solution of (2) and (3), with final
hitting time , and let be a fixed time instant with .
Suppose that index is such that

(26)

Then

for any (27)

Similarly, if , then

for any (28)

Proof: Suppose (26) holds. Then, necessarily

for any (29)

Indeed, suppose this was not true, i.e., there was a time instant
for which . Then, owing to the con-

tinuity of the solution, there would be a time instant
such that . At that time instant, the samples

and would be merged, and their intensities would stay
equal for all future time, resulting in and con-
tradicting (26).

It follows from (29) that samples and belong to dif-
ferent regions of , for any , which means that
is always the left endpoint of a region. Suppose that at some
time instant , the point is the left endpoint of region :

.
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It follows from (2) that the time derivatives of all samples of
the th region of are the same and equal to , and
therefore

sgn

sgn

sgn

sgn

It is similarly shown that (28) holds if .
In the next lemma, we consider a region of the solution

to (2) and (3) at a particular time instant and use Lemma 1 to
calculate the rate of change for the sum of intensities within the
region for .

Lemma 2: Let be the solution of (2) and (3), with final
hitting time , and let be a fixed time instant with .
Then

for any (30)

In other words, for any region of , the sum of values within
the region evolves with a constant velocity (given by the right-
hand side of (30)) from until .

Proof: Representing the left-hand side of (30) as

with and , we get (30)
as a direct corollary of Lemma 1.

The next lemma essentially says that a local averaging opera-
tion cannot result in an increase of the total variation. This is nat-
ural toexpect,sincethetotalvariationisameasureof“roughness.”

Lemma 3: Let be arbitrary signals, and let
; for ; and . Let

be the result of averaging over the regions of :

for

Then, TV TV .
Proof: For , we define

if
if

Note that

TV (31)

Since , , and are the mean, min, and
max, respectively, of the numbers , we have

. Therefore, it follows from the first line
of the definition of that if , then

Similarly, from the second line of the definition of , we have
that if , then

In both cases, . Summing both sides of this
inequality from to and using (31), we get

TV TV

The next lemma says that if, in (1), one uses incorrect loca-
tions of the extrema, the result will be less than or equal to the
actual total variation.

Lemma 4: Let be two signals whose segmen-
tation parameters are identical, except for s. In other words,
the extrema of the two signals do not necessarily occur at the
same locations, but , and for

. Then

TV (32)

Proof: Let be the regions that are
the extrema of . Without loss of generality, suppose that the
leftmost extremum is a minimum. The right-hand side of (32)
can then be rewritten as follows:

TV



POLLAK et al.: NONLINEAR EVOLUTION EQUATIONS AS FAST AND EXACT SOLVERS 497

B. Proof of Proposition 4

Note that, by Proposition 1, we can differentiate at all time
points except possibly the hitting times.

(33)

Let us now calculate the two terms in (33) separately. In this first
calculation, all segmentation parameters are those of .

TV (34)

When with , the second term of (33) is eval-
uated as follows (where now the segmentation parameters are
those of ):

(35)

TV

(36)

Using segmentation parameters of in this third calculation,
we have, for a general with TV :

TV

TV

(37)

where is as defined in Lemma 3, i.e., obtained by averaging
over the regions of . Substituting (34), (36), and (37) into

(33), we obtain (13) and (14), which we needed to verify.
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