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Abstract. Pixel level image fusion refers to the processing and synergistic combination of information gathered by various imaging
sources to provide a better understanding of a scene. We formulate the image fusion as an optimization problem and propose an
information theoretic approach in a multiscale framework to obtain its solution. A biorthogonalwavelet transform of each source
image is first calculated, and a new Jensen-Rényi divergence-based fusion algorithm is developed to construct compositewavelet
coefficients according to the measurement of the information patterns inherent in the source images. Experimental results on
fusion of multi-sensor navigation images, multi-focus optical images, multi-modality medical images and multi-spectral remote
sensing images are presented to illustrate the proposed fusion scheme.

1. Introduction

The rapid development and deployment of new imag-
ing sensors underline the urgency for novel image pro-
cessing techniques that can effectively fuse images
from different sensors into a single composite for in-
terpretation. Fusion typically begins with two or more
registered images with different representations of the
same scene. They may come from different viewing
conditions, or even different sensors. Image fusion of
multiple sensors in a vision system could significantly
reduce human/machine error in detection and recogni-
tion of objects thanks to the inherent redundancy and
extended coverage. For example, fusion of forward
looking infrared (FLIR) and low light television images
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(LLTV) obtained by an airborne sensor platform would
aid a pilot to navigate in poor weather conditions or
darkness.

The actual fusion process can take place at different
levels of information representation. A generic cate-
gorization is to consider a process at signal, pixel, or
feature and symbolic levels [12]. We focus on the so-
called pixel level fusion process, where a composite
image has to be synthesized from several input images.
Some generic requirements must be imposed on the fu-
sion result. The fusion process should preserve all rele-
vant information of the input imagery in the composite
image (pattern conservation). In particular, that fusion
scheme should not introduce any artifacts or inconsis-
tencies which would distract a human observer or the
following processing stages (i.e. causality).

Over the past two decades, a wide variety of pixel-
level image fusion algorithms have been developed.
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Fig. 1. A general framework for multiscale fusion withwavelet transform.

These techniques can be classified into linear superpo-
sition, logical filter [1], mathematical morphology [9],
image algebra [5,15], artificial neural network [7], and
simulated annealing methods [18]. All of these algo-
rithms aimed at making fused image reveal new infor-
mation concerning features that can not be perceived
in individual sensor images. Some useful information
has, however, been discarded since each fusion scheme
tends more heavily to favor some attributes of the image
over others. A detailed overview of these techniques is
given in [12].

Inspired by the fact that the human visual system
processes and analyzes image information at differ-
ent scales, researchers have recently proposed a mul-
tiscale based fusion method and this has been widely
accepted [4] as one of the most effective techniques for
image fusion. A multiscale transform which may be in
a form of a pyramid or wavelet transform, is first cal-
culated for each input image, and a composite is then
formed by selecting the coefficients from the multiscale
representations of all source images. A fused image is
finally recovered through an inverse transformation. In
Burt’s pioneering work [2], a Laplacian pyramid and a
“choose max” rule is proposed as a model for binocular
fusion in human stereo vision. For each coefficient in
the pyramids of source images, the one with the max-
imum amplitude is copied to the composite pyramid
which serves to reconstruct a fused image by its inverse
pyramid transform. More recently, fusion within a gra-
dient pyramid was shown to provide improved stability
and noise immunity [3].

Wavelet theory has played a particularly important
role in multiscale analysis (see [8,17] and the references
therein). A general framework for multiscale fusion
with wavelet transform is shown in Fig. 1. A number
of papers have proposed fusion algorithms which are

based on the orthogonal wavelet transform [10,19,16].
The wavelet transform success may be credited to cer-
tain advantages it offers over the Laplacian pyramid-
based techniques. The wavelet bases may be chosen
to be orthogonal, making the information gleaned at
different resolution unique. The pyramid decomposi-
tion, on the other hand, contains redundancy between
different scales. Furthermore, a wavelet image repre-
sentation provides directional information in the high-
low, low-high and high-high bands, while the pyra-
mid representation fails to introduce any spatial orien-
tation selectivity into the decomposition process. A
major limitation in all recent wavelet-based fusion al-
gorithms, however, is the absence of a good fusion cri-
terion. Most existing selection rules are to a large ex-
tent similar to “choose max”. This in turn induces a
significant amount of high frequency noise introduced
by a systematic and sudden inclusion of the fused max-
imal wavelet coefficient of a given source. This is par-
ticularly problematic, knowing the highly undesirable
perception of high frequency noise by human vision.

In this paper, and as we explain below, we apply a
biorthogonal wavelet transform in carrying out a pixel
level image fusion. It is well known that smooth
biorthogonal wavelets of compact support may be ei-
ther symmetric or antisymmetric, unlike orthogonal
wavelets, with the exception of the Haar wavelet. Sym-
metric or antisymmetric wavelets are synthesized with
perfect reconstructionfilters with a linear phase. This is
also a very desirable property for image fusion applica-
tions. In lieu of the “choose max” type of selection rule,
we propose an information theoretic fusion scheme. To
each pixel in a source image is associated a vector con-
sisting of wavelet coefficients at that position across
scales. This is in turn is used to reflect the “activity”
of that pixel. We refer to these indicator vectors of all
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Fig. 2. A fast biorthogonal two-dimensionalwavelet transform (a) and its inverse transform (b) implemented by perfect reconstruction filter
banks.

the pixels in a source image as itsactivity map. A deci-
sion map is then obtained by applying an information
theoretic divergence to measure all the source activity
maps. To objectively perform a comparison between
activity indicator vectors, we propose a recently devel-
oped Jensen-Ŕenyi divergence divergence measure [6],
which is defined in terms of Ŕenyi entropy [14]. The
wavelet coefficients of the fused image are in the end
selected according to the decision map. Since all the

fine to coarse scales are considered to assess the ac-
tivity at a particular position within an image, our ap-
proach will clearly be more accurate, in the sense of
selecting coefficients containing rich information than
“select max” type of fusion schemes.

The remainder of this paper is organized as follows.
In the next section and for completeness, we briefly
review a biorthognal wavelet representation of an im-
age. A concise formulation of the problem is given in
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Fig. 3. Ŕenyi’s entropy.

Section 3. In Section 4, we propose an information
theoretic fusion algorithm using the Jensen-Rényi di-
vergence, and present some substantiating numerical
experiments. We finally provide concluding remarks
in Section 5.

2. Background on biorthogonal wavelet
representation of images

Let {ϕ, ϕ̃} and {ψ, ψ̃} be two dual pairs of scal-
ing functions and wavelets that generate biorthogonal
wavelet basis ofL2(R2). For t = (t1, t2) ∈ R

2 and
n = (n1, n2) ∈ Z

2, we write

ϕ2
j,n(t) = ϕj,n1(t1)ϕj,n2(t2), (1)

ψ1(t) = ϕ(t1)ψ(t2), ψ2(t) = ψ(t1)ϕ(t2),
(2)

ψ3(t) = ψ(t1)ψ(t2),

ψ̃1(t) = ϕ̃(t1)ψ̃(t2), ψ̃2(t) = ψ̃(t1)ϕ̃(t2),
(3)

ψ̃3(t) = ψ̃(t1)ψ̃(t2).

For1 � k � 3, we may write out

ψk
j,n(t) =

1
2j
ψk

(
t1 − 2jn1

2j
,
t2 − 2jn2

2j

)
(4)

and

ψ̃k
j,n

¯
(t) =

1
2j
ψ̃k

(
t1 − 2jn1

2j
,
t2 − 2jn2

2j

)
. (5)

It is easy to verify [13] that

{ψ1
j,n, ψ

2
j,n, ψ

3
j,n}(j,n)∈Z3

and

{ψ̃1
j,n, ψ̃

2
j,n, ψ̃

3
j,n}(j,n)∈Z3

form biorthogonal bases ofL2(R2).
Any f ∈ L2(R2) has two possible decompositions

in these basis,

f =
∑

j

∑
n

3∑
k=1

< f, ψk
j,n > ψ̃k

j,n

(6)

=
∑

j

∑
n

3∑
k=1

< f, ψ̃k
j,n > ψk

j,n.

Assuming we chooseψk
j,n as the analysis wavelet, at

any scale2j , we denote the approximation coefficient
by

aj[n] =< f, ϕ2
j,n >

and the wavelet coefficient by

dk
j [n] =< f, ψk

j,n >, k = 1, 2, 3.

The three waveletsψk extract image details at differ-
ent scales and orientations. Over positive frequencies,
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Fig. 4. 3D and contour plots of Jensen-Rényi divergence with equal weights. Top:α ∈ (0, 1). Bottom: α > 1.

ϕ̂ and ψ̂ have an energy mainly concentrated respec-
tively on lower and higher frequencies.

Forω = (ω1, ω2), the separable wavelet expressions
imply that

ψ̂1(ω) = ϕ̂(ω1)ψ̂(ω2), ψ̂2(ω) = ψ̂(ω1)ϕ̂(ω2),
(7)

ψ̂3(ω) = ψ̂(ω1)ψ̂(ω2).

Hence|ψ̂1(ω)| is larger at low horizontal frequen-
ciesω1 and high vertical frequenciesω2, |ψ̂2(ω)| is
larger at high horizontal frequenciesω1 and low verti-

cal frequenciesω2, whereas|ψ̂3(ω)| is larger at both
high horizontal frequenciesω1 and high vertical fre-
quenciesω2. As a result, wavelet coefficients calcu-
lated withψ1 andψ2 are larger along edges which are
respectively horizontal and vertical, andψ 3 produces
large coefficients at the corners.

The wavelet coefficients at scale2j+1 are calcu-
lated fromaj with two dimensional separable convo-
lutions and subsamplings. Let{h, g} and {h̃, g̃} be
the perfect reconstruction filters associated with the
biorthogonal wavelet{ψ, ψ̃}. For any pair of one-
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dimensional filtersy[n] andz[n], we write the product
filter yz[n] = y[n1]z[n2], and denotēy[n] = y[−n].

Forn = (n1, n2),

aj+1[n] = aj � h̄h̄[n], (8)

d1
j+1[n] = aj � h̄ḡ[n], (9)

d2
j+1[n] = aj � ḡh̄[n], (10)

d3
j+1[n] = aj � ḡḡ[n]. (11)

A separable two dimensional convolution may be
factored into one-dimensional convolutions along rows
and columns of the image. The factorization is illus-
trated in Fig. 2(a). The rows ofaj are first convolved
with h̄ and ḡ, and subsampled by2. The columns of
these two output images are then convolved respec-
tively with h̄ and ḡ and subsampled to result in four
subsampled imagesaj+1, d1

j+1, d2
j+1 andd3

j+1.
We denote

y̆[n] = y̆[n1, n2]

=
{
y[k1, k2] if (n1, n2) = (2k1, 2k2)
0 otherwise.

The image is obtained by inserting a row of zeros and
a column of zeros between pairs of consecutive rows
and columns ofy[n1, n2]. And aj is recovered from
the coarser scale approximationaj+1 and the wavelet
coefficientsd1

j+1, d2
j+1 andd3

j+1 with two-dimensional
separable convolutions

aj [n] = ăj+1 � h̃h̃[n] + d̆1
j+1 � h̃g̃[n] + d̆2

j+1
(12)

�g̃h̃[n] + d̆3
j+1 � g̃g̃[n].

These four convolutions can also be factored into
six groups of one-dimensional convolutions along rows
and columns, as illustrated in Fig. 2(b).

Let aJ [n] be a digital image whose pixel interval
equals2J = N−1. We associate toaJ [n] a function
f(x) ∈ R

2 approximated at the scale2J ,

aJ [n] =< f, ϕ2
J,n >≈ 1

N
f(N−1n).

A biorthogonal wavelet image representation ofaJ

of depthL − J is computed by iterating Eq. (12) for
J < j � L:

{d1
j , d

2
j , d

3
j , aL}J<j�L (13)

The original digital imageaJ is recovered from this
wavelet representation by iterating the reconstruction
Eq. (12) forJ < j � L.

3. Pre-fusion processing and problem formulation

Let f1, f2, . . . , fm : Z
2 → R bem digital images of

the same scene taken from different sensors. For the
pixel level image fusion problem, we assume all the
source images are registered so that the difference in
resolution, coverage, treatment of a theme, characteris-
tics of image acquisition methods are deferred to other
sources. The goal of our fusion algorithm is to con-
struct a composite image with all crucial information
captured from all the source images are combined to
effectively achieve a compressed version of all source
image data. To this end, we exploit an information the-
oretic fusion approach based on a biorthogonal wavelet
representation.

Definition 1. LetWfi = {d1
i (j,n), d2

i (j,n), d3
i (j,n),

ai(L,n)}0<j�L,n∈Z2 be a biorthogonal wavelet im-
age representation offi as defined in Eq. (13). Without
loss of generality, we setJ = 0. For anyn ∈ Z

2, an
activity pattern vector is defined as

Ai(n) =

[
3∑

k=1

|dk
i (1, 2L−1n)|2,

3∑
k=1

|dk
i

(14)

(2, 2L−2n)|2, . . . ,
3∑

k=1

|dk
i (L,n)|2

]
,

which is a(1 × L) vector of energy concentrated at
pixelfi(2Ln) across scales. We refer to{Ai(n)}n∈Z2

as the activity map of source imagefi.
Activity maps highlight the inherent information pat-

tern in source images. To proceed with a scale-driven
fusion of the source wavelet coefficients, it is crucial to
compare the activity patterns for every pixel. If for in-
stance the activity patterns are different in some region,
an averaging process of wavelet coefficients for a com-
posite output is unlikely to be a good choice as it yields
artifacts. On the other hand, if the activity patterns
are similar in a region, an averaging procedure would
increase information to the fused image on account of
an enhanced contribution from different sources.

A reasonable measure for activity patterns should
satisfy the following properties:

– It provides a quantitative difference measure be-
tween two or more activity patterns.

– It is nonnegative and symmetric.
– It vanishes (to zero) if and only if the activity

patterns are exactly the same.
– It reaches the maximum value when activity pat-

terns are degenerate distributions.
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Fig. 5. Multi-sensor image fusion: (1) a low-light-television sensor image; (2) a forward-looking-infrared image; (3) fusion by averaging; (4)
fusion bywavelet based maximum selection scheme; (5) a selection map; (6) fusion by the proposed information theoretic approach.

In the next section, we propose an information-
theoretic measure called the Jensen-Rényi divergence,
which satisfies the above requirements. A decision map
is then generated by applying the Jensen-Rényi diver-
gence to measure the coherence of source activity maps
at the pixel level. We further segment the decision map
into two regions,D0 andD1. The regionD0 is the
set of pixels whose activity patterns are similar in all
the source images, while the regionD1 is the set of
pixels whose activity patterns are different. Our fusion
technique is the solution to the following optimization
problem.

Wf = argmin
f∈F

{ m∑
i=1

( L∑
j=1

∑
2jn∈D0

|Wf(j,n)

(15)

−Wfi(j,n)|2
)
−

L∑
j=1

∑
2jn∈D1

|Wf(j,n)|2
}
,

whereF is the set of all the imagesf whose wavelet
transform satisfies

min(Wfi(j,n))�Wf(j,n)�max(Wfi(j,n)),

for any 0 < j � L and n ∈ Z
2. This constraint

ensures that the solution does not yield features beyond
the scope of the source images (i.e. artifacts).

4. Information-theoretic image fusion

4.1. Jensen-Ŕenyi divergence measure

Let k ∈ N andX = {x1, x2, . . . , xk} be a finite
set with a probability distributionp = (p1, p2, . . . , pk),
i.e.
∑k

j=1 pj = 1 andpj = P (X = xj) � 0, where
P (·) denotes the probability.

Shannon’s entropy is defined asH(p) = −∑k
j=1 pj

log(pj), and it is a measure of uncertainty, dispersion,
information, and randomness. The maximum uncer-
tainty or equivalently minimum information is achieved
by the uniform distribution. Hence, we can think of
entropy as a measure of uniformity of a probability dis-
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Fig. 6. Multi-focus image fusion: (1) an image focused on the larger clock; (2) an image focused on the smaller clock; (3) fusion by averaging;
(4) fusion bywavelet based maximum selection scheme; (5) a selection map; (6) fusion by the proposed information theoretic approach.

tribution. Consequently, when uncertainty is higher,
the degree of difficulty to predict the outcome of a draw
from a probability distribution increases. A general-
ization of Shannon entropy is Ŕenyi entropy [14] given
by

Rα(p) =
1

1 − α
log

k∑
j=1

pα
j ,

(16)
α ∈ (0, 1) ∪ (1,∞).

Forα > 1, the Ŕenyi entropy is neither concave nor
convex.

Forα ∈ (0, 1), it is easy to see that Ŕenyi entropy
is concave, and tends to Shannon entropyH(p) as
α → 1. One may easily verify thatRα is a non-
increasing function ofα, and hence

Rα(p) � H(p), ∀α ∈ (0, 1). (17)

Whenα→ 0, Rényi entropy is equal to the logarithm
of the cardinality of the set{j ∈ [1, k] : pj > 0}.

Figure 3 depicts Ŕenyi entropy for a Bernoulli dis-
tribution p = (p, 1 − p), with different values of the
parameterα. As illustrated in Fig. 3, the measure of
uncertainty is at a minimum when Shannon entropy is
used, and it increases as the parameterα decreases.
Rényi entropy attains a maximum uncertainty when its
exponential orderα is equal to zero. Note that smaller
values ofα tend to emphasize probability tails.

Definition 2. Let p1,p2, . . . ,pn ben probability dis-
tributions. The Jensen-Ŕenyi divergence is defined as

JRω
α (p1, . . . ,pn) = Rα

(
n∑

i=1

ωipi

)

−
n∑

i=1

ωiRα(pi),

whereRα(p) is Rényi’s entropy, andω = (ω1, ω2, . . . ,
ωn) be a weight vector such that

∑n
i=1 ωi = 1 and

ωi � 0.
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Fig. 7. Multi-modality image fusion: (1) a CT image; (2) a MRI image; (3) fusion by averaging; (4) fusion bywavelet based maximum selection
scheme; (5) a selection map; (6) fusion by the proposed information theoretic approach.

Using the Jensen inequality, it is easy to check that
the Jensen-Ŕenyi divergence is nonnegative forα ∈
(0, 1). It is also symmetric and vanishes if and only if
the probability distributionsp1,p2, . . . ,pn are equal,
for all α > 0.

Note that the Jensen-Shannon divergence [11] is
a limiting case of the Jensen-Rényi divergence when
α→ 1.

Unlike other entropy-based divergence measures
such as the Kullback-Leibler divergence, the Jensen-
Rényi divergence has the advantage of being symmet-
ric and generalizable to any arbitrary number of prob-
ability distributions or data sets, with a the additional
flexibility of assigning weights to these distributions
(i.e. prior beliefs). Figure 4 shows three-dimensional
representations and contour plots of the Jensen-Rényi
divergence with equal weights between two Bernoulli
distributions forα ∈ (0, 1) and also forα ∈ (1,∞).

In addition to its convexity property, the Jensen-
Rényi divergence is shown to be an adapted measure of

disparity among probability distributions, as recently
demonstrated in registering Inverse Synthetic Aperture
Radar (ISAR) images [6].

4.2. Image fusion with Jensen-Rényi divergence

As noted earlier, our primary goal in image fusion
is to integrate complementary information from multi-
sensor data with resulting fused images offering richer
features and a better human visual perception.

Let f1, f2, · · · , fm : Z
2 → R be m digital im-

ages generated by different sensors. Our information-
theoretic fusion approach first calculates a biorthogo-
nal wavelet image representation for eachf i, then a
pixel level activity map{Ai(n)}n∈Z2 is formed, as
described in Section 3. Denote by‖·‖ the�1 norm, and
for anyn ∈ Z

2 we define a normalized activity pattern

pi(n) =
{
Ai(n)/‖Ai(n)‖ if ‖Ai(n)‖ �= 0
∆1 if ‖Ai(n)‖ = 0,
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(5) (6)

Fig. 8. Multi-spectral image fusion: (1) a high resolution remote sensing image; (2) a low resolution remote sensing image; (3) fusion by
averaging; (4) fusion bywavelet based maximum selection scheme; (5) a selection map; (6) fusion by the proposed information theoretic approach.

where∆1 = [1, 0, · · · , 0] is a (1 × L) degenerate dis-
tribution. To fuse the source wavelet coefficients, we
compare the normalized activity patterns of all the
source images in terms of Jensen-Rényi divergence,
and create a selection map{S(n)}n∈Z2 :

S(n) = JRω
α (p1(n), · · · ,pn(n)) . (18)

The selection map is further segmented into two de-
cision regions,D0 andD1. SettingT to be the mean
value of a selection map, we write

D0 = {n ∈ Z
2 : S(	2−Ln
) < T }

and

D1 = {n ∈ Z
2 : S(	2−Ln
) � T }

where	x
 denotes the integer part ofx.
Let f be a composite image with its wavelet coeffi-

cients

Wf = {d1
f (j,n), d2

F (j,n),

d3
f (j,n), af (L,n)}0<j�L,n∈Z2

defined as

ak
f (L,n)=

{
(1/n)

∑n
i=1 a

k
i (L,n) if 2Ln ∈ D0

max(ak
i (L,n)) if 2Ln ∈ D1

and fork = 1, 2, 3,

dk
f (j,n)=

{
(1/n)

∑n
i=1 d

k
i (j,n) if 2jn ∈ D0

max(dk
i (j,n)) if 2jn ∈ D1

It can be verified that the fused imagef is the solution
to the optimization criteria Eq. (15).

In what follows, we present four examples, includ-
ing multi-sensor navigation image fusion, multi-focus
optical image fusion, multi-modality medical image fu-
sion and multi-spectral remote sensing image fusion to
illustrate the fusion scheme proposed above.

4.3. Multi-sensor image fusion

To help helicopter pilots navigate under poor visibil-
ity conditions, such as fog or heavy rain, helicopters
are equipped with several imaging sensors, which are
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accessible to the pilot through a helmet mounted dis-
play. A typical sensor suite includes both a low-
light-television (LLTV) sensor and a thermal imaging
forward-looking-infrared (FLIR) sensor. In the current
configuration, the pilot can only choose one of the two
sensors to watch on his display. Sample LLTV and
FLIR images are shown in Figs 5(1) and 5(2) respec-
tively. A possible improvement is to combine both
imaging sources into a single fused image.

Image fusion by standard techniques such as pixel
averaging and multiscale based maximum selection
scheme are shown in Figs 3(3) and 3(4) respectively.
Note that the pixel averaging method has a “muddy”
appearance. This is due primarily to the fact that aver-
aging results in reduced contrast areas for all the pat-
terns that appear in only one source. On the other hand,
the maximum selection scheme produces some mosaic
like artifacts due to the high frequency noise intro-
duced by sudden switches between two sets of source
wavelet coefficients. Image fusion with our proposed
multiscale information-theoreticapproach is illustrated
in Fig. 5(6). As may be seen, all the significant fea-
tures from both sources are retained in the fused image
without the artifacts of previous approaches.

4.4. Multi-focus image fusion

Due to the limited depth-of-focus of optical lenses, it
is often not possible to get an image which contains all
relevant objects ‘in focus’. One possibility to overcome
this problem is to take several pictures with different
focus points and to combine them into a single frame
which finally includes the focused regions of all input
images. Figure 6 illustrates our multiscale information-
theoretic fusion approach. For comparison purpose, fu-
sion by pixel averaging and multiscale based maximum
selection scheme are shown in Figs 6(3) and 6(4).

4.5. Multi-modality image fusion

With the development of new imaging methods
and increasing challenges in medical applications,
arises the demand for meaningful and spatial correct
combination of all available image datasets. Exam-
ples for imaging devices include computer tomogra-
phy (CT), magnetic resonance imaging (MRI) or the
newer positron emission tomography (PET). Our mul-
tiscale information-theoretic approach is illustrated in
Fig. 7(6). For comparison purpose, fusion by pixel
averaging and multiscale based maximum selection
scheme are shown in Figs 7(3) and 7(4).

4.6. Multi-spectral image fusion

Image fusion is often of interest in Remote sens-
ing applications: modern spectral sensors include up
to several hundred spectral bands which may be either
processed and visualized individually, or may be fused
into a single image, depending on the image analysis
task. Image fusion of two bands from a multispec-
tral sensor with our multiscale information-theoretic
approach is illustrated in Fig. 8. For comparison pur-
pose, fusion by pixel averaging and multiscale based
maximum selection scheme are shown in Figs 8(3) and
8(4).

5. Conclusion

In this paper, we proposed a new multiscale image
fusion algorithm aimed at integrating complementary
information from multi-sensor data so that the fused
images are enhanced and more human perception-
friendly. We formulate the image fusion as an opti-
mization problem whose solution is achieved by the
proposed method.

As a first step, a biorthogonal wavelet transform
of each source image is calculated to yield a scale
space representation. Compared to most orthogonal
wavelets, biorthogonal wavelets may be synthesized by
perfect reconstruction filters with a linear phase. This
is a desirable property for image fusion applications.

Unlike the “choose max” type of selection rules, our
proposed technique is based on an information theo-
retic fusion measure. Since all the scales, from fine to
coarse, are considered in assessing the activity at a par-
ticular position within an image, our approach is more
accurate, as the selected source coefficients yield richer
information.

We have successfully tested the new technique on fu-
sion of multi-sensor (low-light-television and forward-
looking-infrared),multi-focus, multi-modality (CT and
MRI), and multi-spectral images. The presented algo-
rithm clearly outperforms current wavelet based fusion
methods in preserving significant features from a vari-
ety of sources without the common shortcomings such
as artifacts.
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