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Abstract

This paper presents extensions which improve the performance of the shape-based deformable active contour model presented

earlier in [IEEE Conf. Comput. Vision Pattern Recog. 1 (2001) 463] for medical image segmentation. In contrast to that previous

work, the segmentation framework that we present in this paper allows multiple shapes to be segmented simultaneously in a

seamless fashion. To achieve this, multiple signed distance functions are employed as the implicit representations of the multiple

shape classes within the image. A parametric model for this new representation is derived by applying principal component analysis

to the collection of these multiple signed distance functions. By deriving a parametric model in this manner, we obtain a coupling

between the multiple shapes within the image and hence effectively capture the co-variations among the different shapes. The pa-

rameters of the multi-shape model are then calculated to minimize a single mutual information-based cost criterion for image

segmentation. The use of a single cost criterion further enhances the coupling between the multiple shapes as the deformation of any

given shape depends, at all times, upon every other shape, regardless of their proximity. We found that this resulting algorithm is

able to effectively utilize the co-dependencies among the different shapes to aid in the segmentation process. It is able to capture a

wide range of shape variability despite being a parametric shape-model. And finally, the algorithm is robust to large amounts of

additive noise. We demonstrate the utility of this segmentation framework by applying it to a medical application: the segmentation

of the prostate gland, the rectum, and the internal obturator muscles for MR-guided prostate brachytherapy.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Medical image segmentation – the process of outlin-

ing relevant anatomical structures in an image dataset –

is a problem that is central to a variety of medical ap-
plications including image enhancement and recon-

struction, surgical planning, disease classification, data

storage and compression, and 3D visualization. Medical

images, however, are particularly difficult to segment

due to a number of reasons. These reasons include, but

are not limited to, the following:
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• Soft tissue boundaries are frequently not well defined

as they often blend in with the surrounding tissues.

• Even with the advent of improved technology, image

acquisition systems often still yield low signal-

to-noise ratio (SNR) data.
• Tissue variability across the patient population

makes designing a segmentation algorithm difficult.

• Image artifacts, either due to patient motion or lim-

ited acquisition time, reduce the information content

of the data.

In this paper, we propose a knowledge-based ap-

proach to medical image segmentation. The strength of

such an approach is the incorporation of prior infor-
mation into the segmentation algorithm to reduce the

mail to: atsai@mit.edu
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complexity of the segmentation process. To motivate

this approach, we show, in Fig. 1, an axial brain MR

image depicting three subcortical brain structures. The

dark ventricle is easy to distinguish from the rest of the

brain structures. The boundaries of the other two sub-
cortical brain structures, however, are more difficult to

localize. Despite this apparent difficulty, the human vi-

sion system does not have trouble locating all three

subcortical structures. First, based on prior knowledge

of the spatial relationship of the structures, our vision

system uses the easily identifiable ventricle as a spatial

reference point to localize the other two subcortical

brain structures. Next, based on prior knowledge of the
variability of the individual shapes and their mutual

shape variability, our vision system proceeds to identify

the boundaries of the lenticular and the caudate nuclei.

This two level usage of prior information, first to lo-

calize spatially and then to extract shape, is a powerful

concept, and one that our vision system exploits. In this

paper, we show the development of a segmentation al-

gorithm that is sophisticated enough to mimic this
particular characteristic of the human vision system.

Our work is related to many shape-based active

contour models. Cootes et al. (1995) used linear com-

binations of eigenvectors that reflect shape variations to

parametrize the segmenting curve. Following that,

Frangi et al. (2002) reported a method to automatically

generate landmark points for these models. Staib and

Duncan (1992) used elliptic Fourier decomposition of
various landmark points to parametrize their segment-

ing curve. Wang and Staib (1998) proposed a shape

parametrization scheme based on applying principal

component analysis to covariance matrices that capture

the variations of the shapes’ control points. Leventon

et al. (2000) derived a parametric shape model based on
Fig. 1. Motivational example. (a) MR image showing an axial cross-sectio

structures within the image.
applying principal component analysis to a collection of

signed distance functions to restrict the flow of the

geodesic active contour. Paragios and Rousson (2002)

used a prior level set shape model to restrict the flow of

an evolving level set. Constraints are imposed to force
the evolving level set to remain as a distance function.

Our work also shares many common aspects with a

number of coupled active contour models. Zeng et al.

(1999) introduced a coupled-surfaces propagation

method where each evolving surface is driven by two

forces: (1) an image-derived information force, and (2) a

coupling force to maintain the two evolving surfaces a

certain distance apart. Chan and Vese (2000) employed
n level set functions to represent 2n segments in the

image with the n level set functions coupled to one an-

other through an energy functional. Yezzi et al. (1999,

2002) derived a set of coupled curve evolution equations

from a single global cost functional to evolve multiple

contours simultaneously toward the region boundaries.

Mutual-information (MI), or relative entropy, is a

basic concept which underlies much of information
theory (Cover and Thomas, 1991). It plays an integral

part in our shape-based model. Over the past few years,

MI has been used to solve a variety of problems ranging

from image registration to pose alignment to global and

local spatial correspondence (Bello and Colchester,

1998; Viola and Wells, 1995; Wells et al., 1996). Re-

cently, MI has also been introduced as a measure for

image segmentation (Kim et al., 2002; Unal et al., 2002).
The MI segmentation framework only assumes statisti-

cal dependence between pixel intensities within particu-

lar regions of the image, and does not require the

regions to have a particular type of probability distri-

bution. As a result, the MI segmentation framework can

handle a wider range of segmentation problems when
n of the brain. (b) Hand segmentation of the three subcortical brain
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compared to edge-based or simple statistical model

segmenters (e.g. those based on mean and/or variance).

The rest of the paper is organized as follows. Section

2 describes a variational approach to align all the ex-

ample training shapes. Section 3 describes a new ap-
proach to represent multiple shapes. Section 4 illustrates

how our multi-shape model can be incorporated into a

mutual information-based active contour model for

image segmentation. In Section 5, we show the appli-

cation of our technique to a medical application. We

conclude in Section 6 with a summary of the paper.
2. Simultaneous multi-shape alignment

Alignment is an essential pre-processing step prior to

any attempts to capture the shape variations in a

training collection. It functions to remove shape differ-

ences within a particular shape class that might be due

to differences in pose. Since multiple shape classes are

involved in our framework, we seek an alignment pro-
cedure that is able to (1) jointly align the different shapes

within a particular shape class, and (2) perform the

alignment for all the shape classes simultaneously. This

section describes such an alignment procedure. The

approach is a generalization of the method presented in

(Tsai et al., 2001) in which a variational approach is

employed to jointly align a training set consisting of a

single shape class.
In our generalization, let m represent the number of

known shape classes in an image that we would like to

model, and let the training set T consist of n such im-

ages. One way to represent the multiple shapes in an

image is to label each shape by a different intensity va-

lue. Though this representation may be effective for vi-

sualization, it is not the most effective representation for

image manipulation. 1 A more effective and natural way
to represent the m shapes within an image is to encode

the shapes in a m-dimensional binary vector-valued

image. Specifically, let the training set T consist of n
vector-valued images fI1; I2; . . . ; Ing, where Ii ¼
ðI1i ; . . . ; Imi Þ for i ¼ 1; . . . ; n. Each Iki for i ¼ 1; . . . ; n and

k ¼ 1; . . . ;m is a binary image with values of one inside

and zero outside the shape. This resulting multi-shape

encoding scheme is not only flexible as it allows any
number of shapes to be represented compactly, but it

also allows each shape class to have an equal footing

during any image alignment procedure.
1 By assigning different intensity values to different shape classes, a

numerical bias is created among the different shape classes. For

example, in intensity-based grayscale image alignment algorithms, by

assigning an intensity value of 10 to shape class A and an intensity

value of 1 to shape class B, the algorithm incorrectly places an

emphasis on the importance of aligning shape class A relative to shape

class B.
The basic idea behind our approach is to calculate the

set of pose parameters p1; p2; . . . ; pn used to transform

the n binary vector-valued images to jointly align them.

We focus on using rigid body and scaling transforma-

tions to align these binary vector-valued images to each
other. 2 In 2D, the pose parameter p ¼ ½a b h h�T with

a, b, h and h corresponding to x-, y-translation, scale and
rotation, respectively. The transformed image of Iki for

i ¼ 1; . . . ; n and k ¼ 1; . . . ;m, based on the pose pa-

rameter pi, is denoted by eIki , and is defined as

~Iki ð~x; ~yÞ ¼ Iki ðx; yÞ;
where

~x

~y

1
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The transformation matrix T ½pi� is the product of three

matrices: a translation matrix Mðai; biÞ, a scaling matrix

HðhiÞ, and an in-plane rotation matrix RðhiÞ. This

transformation matrix T ½pi� maps the coordinates

ðx; yÞ 2 R2 into coordinates ð~x; ~yÞ 2 R2.

In (Tsai et al., 2001), an alignment cost functional is
constructed based the difference in the area divided by

the total area of any pair of binary images in a given

training collection. We generalize this alignment strat-

egy to jointly align a set of n m-dimensional binary im-

ages. Specifically, we employ gradient descent to

minimize the following energy functional:

Ealign ¼
Xn
i¼1

Xn
j¼1
j 6¼i

Xm
k¼1

R R
Xð~Iki � ~Ikj Þ

2
dAR R

Xð~Iki þ ~Ikj Þ
2
dA

8<:
9=;; ð2Þ

where X denotes the image domain. Minimizing (2) is

equivalent to minimizing the difference between any pair

of binary vector-valued images in the training collection.

The area normalization term in the denominator of (2) is

again employed here to prevent all the binary vector-

valued images from shrinking to improve the cost

function.

The gradient of Ealign, taken with respect to pi, for any
i, is given by
2 Affine transformation can also be used instead without any loss of

generality in the formulation.



Fig. 2. Collection of subcortical brain structures before alignment. The three brain structures depicted in different colors are: ventricles (black),

lenticular nucleus (white), and caudate nucleus (gray).
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where rpi

~Iki is the gradient of the transformed image ~Iki
taken with respect to the pose parameter pi. Using the

chain rule, the lth component of rpi
~Iki is given by

rpli
~Iki ð~x; ~yÞ ¼

o~Iki ð~x;~yÞ
o~x

o~Iki ð~x;~yÞ
o~y 0

h i oT ½pi�
opli

x
y
1

24 35;
where

oT ½pi�
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¼ oT ½pi�
oai

¼ oMðai; biÞ
oai

HðhiÞRðhiÞ; ð4aÞ

oT ½pi�
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¼ oT ½pi�
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¼ oMðai; biÞ
obi

HðhiÞRðhiÞ; ð4bÞ
oT ½pi�
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ohi
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oRðhiÞ
ohi

: ð4dÞ

The matrix derivatives in Eq. (4a) are taken compo-
nentwise. The update equation for the pose parameter pi
is then given, in terms of rpi

Ealign, as

ptþ1
i ¼ pti � Dtprpi

Ealign;

where t denotes the iteration number and Dtp denotes the
step size in updating pi. Since the solution of this

alignment problem is under-determined, we regularize

the problem by keeping the pose of an arbitrarily chosen

training example fixed and calculating the pose param-

eters for the remaining training examples using the
above approach. The initial poses of the training shapes

in T are determined by the user. The gradient descent

method of above is then performed until convergence.

This method jointly aligns the n example shapes in a

shape class, and performs this alignment task on all the

m shape classes simultaneously.



Fig. 3. A visual assessment of the collection’s initial alignment. From left to right, this figure shows the summation images of the ventricle, the

lenticular nucleus, and the caudate nucleus before alignment. The blurriness in the summation images are due to the misalignment of the example

shapes.
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We use a 2D toy example to illustrate our multi-

shape alignment technique. 3 We employ a training set
consisting of 30 synthetic examples. Each of these ex-

amples depicts a different axial cross-section of three

subcortical brain structures. The subcortical brain

structures within each of the training images, shown in

Fig. 2, consist of the ventricle (shown in black), the

lenticular nucleus (shown in white), and the caudate

nucleus (shown in gray). These three structures form

the three shape classes of our alignment algorithm.
Notice that in the majority of these examples, the

ventricle appears as three separate black regions while

in four of these examples, the ventricle appears as one

single black ‘‘X’’-shaped region. The appearance of the

topologically changing ventricle depends largely on the

level at which the 2D cross-section of the brain was

performed. In this alignment example, the pose pa-

rameter associated with the image in the upper left
corner of the figure is chosen to be fixed, i.e.

p1 ¼ ½0 0 1 0�T. One way to visually judge the align-

ment of the example shapes within each shape class is

to form a ‘‘summation’’ image for that shape class. The

summation image of a shape class is formed by sum-

ming together, in a pixelwise fashion, all the binary

representations of the example shapes belonging to that

shape class. The intensity range of the summation
image ranges between 0 (when a particular pixel rep-

resents the background pixel in all the example shapes)

and n, the number of example shapes (when a partic-

ular pixel represents a pixel located within all the ex-

ample shapes). The summation images of the three

subcortical brain structures before alignment, based on

summing together binary representations of the exam-

ples shapes before alignment, are shown in Fig. 3. The
3 This example is artificial and is simply employed for demonstration

purposes only. Being structures that vary in 3-space, optimal alignment

of the brain structures should be performed in 3D as well.
blurriness in the summation images are due to the

misalignment of the example shapes.
After employing our multi-shape alignment scheme

outlined in this section, we show in Fig. 4 the post-

aligned summation images of the three subcortical brain

structures, based on summing together post-aligned bi-

nary representations of the examples shapes. The co-

herence of the aligned shapes is indicated by the

increased sharpness of the summation images. This is

one way to visually judge the effectiveness of our multi-
shape alignment strategy. Fig. 5 shows the post-aligned

training collection consisting of 30 training examples of

subcortical brain structures. The various subcortical

brain structures, when compared against one another

within the same shape class, share roughly the same

center, are all pointing roughly in the same direction,

and are approximately equal in size.
3. Implicit multi-level set parametric shape model

Shape representation is an important element in any

shape-based segmentation algorithm, including ours.

This section describes an approach to represent multi-

ple shape classes in a single framework. Because our

approach is an extension of the implicit parametric
single shape representation presented in (Leventon

et al., 2000) and (Tsai et al., 2001), it enjoys many of the

same advantages, namely, computationally efficiency,

accuracy in representing shapes (even in traditionally

problematic areas such as high curvature points), nu-

merical stability, effectiveness in capturing a wide range

of shape variabilities, and capability to handle topo-

logical changes. In this section, we detail how we ad-
vanced this approach to (1) allow the simultaneous

representation of any number of complicated shape

classes, (2) display a wide range of individual shape

variability, (3) capture co-variations shared among

different shape classes, and (4) handle images with



Fig. 4. A visual assessment of the collection’s final alignment. From left to right, this figure shows the post-aligned summation images of the ventricle,

the lenticular nucleus, and the caudate nucleus. The coherence of the aligned example shapes is reflected by the increased sharpness of the summation

images.

Fig. 5. Collection of post-aligned subcortical brain structures. The three brain structures depicted in different colors are: ventricles (black), lenticular

nucleus (white), and caudate nucleus (gray).

4 The signed distance WðpÞ from an arbitrary point p to a known

surface Z is the distance between p and the closest point z in Z,

multiplied by 1 or )1, depending on which side of the surface p lies in

(Borgefors, 1986).
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multiple junctions (i.e. points at which greater than two

regions intersect).

3.1. Construction of shape parameters

Following the lead of Leventon et al. (2000), Tsai
et al. (2001) and Frangi et al. (2002), the signed distance
function W is employed as the representation of a par-

ticular shape. 4 Let m be the number of shape classes



Fig. 6. Diagram illustrating the formation of the column vectors f~w1; . . . ;
~wng.
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that we would like to represent simultaneously. For
example, m ¼ 3 if we would like to represent the three

subcortical brain structures in Fig. 1. The boundaries of

each of the m shapes are embedded as the zero level sets

of m distinct signed distance functions fW1; . . . ;Wmg
with negative distances assigned to the inside and posi-

tive distances assigned to the outside of the shape. Osher

and Sethian (1988) made popular this level set repre-

sentation for single object boundaries.
Suppose there are n aligned examples of these images,

each with m shapes, in the collection. 5 For each of the n
example images, m signed distance functions are gener-

ated, giving rise to nm signed distance functions. Let Wk
i

denote the signed distance function associated with the

kth shape class in the ith example image of the training

collection. Using the technique developed earlier in

(Leventon et al., 2000) and (Tsai et al., 2001), we com-
5 The n examples in the collection are aligned by employing the

method presented in Section 2.
pute m mean level set functions f�U1; . . . ; �Umg, one for
each shape class, by averaging n signed distance func-

tions from that shape class. Mathematically,
�Uk ¼ 1

n

Pn
i¼1 W

k
i for any k ¼ 1; . . . ;m. To extract the

shape variabilities of each shape class, the mean level set

function from each shape class is subtracted from each

of the n signed distance functions belonging to that

shape class. This gives rise to the following nm mean-

offset functions: ~Wk
i for i ¼ 1; . . . ; n and k ¼ 1; . . . ;m.

These mean-offset functions are then used to capture the

variabilities within and across the m shape classes.

To capture the shape variabilities, we form n column

vectors f~w1; . . . ;
~wng. Each column vector fwi , of size

ðmNÞ, is made up of m mean-offset functions

f ~W1
i ; . . . ;

~Wm
i g stacked on top of one another with each

mean-offset function consisting of N samples (using

identical sample locations for each mean-offset func-
tion). The most natural sampling strategy for the mean-

offset functions is to utilize the N1 � N2 rectangular grid

to generate N ¼ N1N2 lexicographically ordered samples
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(where the columns of the rectangular grid are sequen-

tially stacked on top of one another to form one large

column). Fig. 6 illustrates how the column vectors

f~w1; . . . ;
~wng are formed from the nm mean-offset func-

tions ~Wk
i for i ¼ 1; . . . ; n and k ¼ 1; . . . ;m.

Define a tall rectangular shape-variability matrix S
as

S ¼ ½ ~w1
~w2 � � � ~wn �:

An eigenvalue decomposition is employed to factor
1
nSST as

1

n
SST ¼ URUT; ð5Þ

where U is a tall rectangular mN � n matrix whose

columns represent the n principal variational modes or

eigenshapes of the m shape classes, and R is an n� n
diagonal matrix whose diagonal elements, denoted by

r2
1; . . . ; r

2
n, represent the corresponding non-zero ei-

genvalues. Each non-zero eigenvalue reflects the vari-

ance of shape variability associated with that

eigenvalue’s corresponding eigenshape. The mN ele-

ments of the ith column of U , denoted by Ui, are ar-

ranged back into m rectangular structures of dimension

N1 � N2 (by undoing the earlier stacking and lexico-
graphical concatenation of the grid columns). This
Fig. 7. Illustration of the shape variabilities in the subcortical brain s
‘‘unwrapping’’ process yields the ith principal modes or

eigenshapes for all the m shape classes denoted by

fU1
i ; . . . ;U

m
i g. In the end, this approach generates a

maximum of n different eigenshapes fUk
1;U

k
2; . . . ;U

k
ng

for shape classes k ¼ 1; . . . ;m.
Very importantly, because the eigenshapes are de-

rived by performing principal component analysis on a

shape variability matrix S which contains information

about all the m shape classes, the eigenshapes derived for

each shape class will naturally have strong couplings

between the different shape classes. That is, any co-de-

pendencies between the m shape classes will be captured

by the various eigenshapes.
In most cases, the dimension of the matrix 1

nSST is

large, of size mN � mN , so the calculation of the eigen-

vectors and eigenvalues of this matrix is computation-

ally expensive. In practice, the eigenvectors and

eigenvalues of 1
nSST can be efficiently computed from a

much smaller n� n matrix W given by

W ¼ 1

n
STS:

It is straightforward to show that if d is an eigenvector

of W with corresponding eigenvalue k, then Sd is an

eigenvector of 1
nSST with eigenvalue k (see (Turk and

Pentland, 1991) for a proof).
tructures based on our implicit multi-shape parametric model.
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Suppose that we choose to use q6 n modes in our

shape representation. 6 We now introduce m new level

set functions:

U1½w� ¼ �U1 þ
Xq
i¼1

wiU
1
i ; ð6aÞ

U2½w� ¼ �U2 þ
Xq
i¼1

wiU
2
i ; ð6bÞ

..

.

Um½w� ¼ �Um þ
Xq
i¼1

wiU
m
i ; ð6cÞ

where w ¼ fw1;w2; . . . ;wqg are the weights for the q ei-

genshapes in each of the m new level set functions. The

variances of these weights fr2
1; r

2
2; . . . ; r

2
qg are given by

the eigenvalues calculated earlier. We propose to use

these newly constructed level set functions fU1; . . . ;Umg
as our implicit representation of the m shape classes.
Specifically, the zero level set of Uk describes the

boundaries of the kth shape class with that shape’s

variability directly linked to the variability of its level set

function. Note that the shape variability we allow in this

representation is restricted to the variability given by the

q eigenshapes.

Because of this construction, the m new level set

functions fU1; . . . ;Umg are all linked to one another
through the weights w. This provides another coupling

mechanism between the different shape classes. By

varying w, all the Uk for k ¼ 1; . . . ;m vary together.

To illustrate the parametric multi-shape representa-

tion described in Eq. (6a), we show, in Fig. 7, the shape

variations of the subcortical brain structures based on

varying the model’s first six eigenshapes by different

amounts. Each row of the figure demonstrates the effect
of a particular principal mode in altering the shapes of

the subcortical brain structures. Notice that by varying

the first principal mode, the shape of the ventricle

changes topology going from three regions to one. This

is an additional advantage of using the Eulerian

framework for shape representation as it can handle

topological changes in a seamless fashion. Further, be-

cause multiple level sets are employed to represent
multiple curves in this framework, multiple junctions

can be captured automatically. Specifically, triple points

(i.e. points at which three regions intersection) formed

by the ventricle and the caudate nucleus can be seen

throughout Fig. 7. In this particular case, parts of two

zeroth level sets about against one another resulting in

the formation of a triple point.
6 The number of modes we consider in our shape representation, q,
should be chosen large enough to be able to capture the prominent

shape variations present in the training set, but not so large that the

model begins to capture intricate details particular to a certain training

shape. In all of our examples, we chose q empirically.
It is important to realize that because there are no

restrictions placed on the range of values that w can

take, it is possible that the different shape classes may

overlap one another, especially with extreme values of w.

In fact, this phenomenon can be seen starting to develop
in a number of image frames shown in Fig. 7. For ex-

ample, the caudate nucleus and the lenticular nucleus,

shown in the image frame located in row three column

seven, overlap. With further increase in the additive

weight of the third eigenshape, overlap of the these two

shapes is inevitable. We show in Section 4 the method by

which we avoid overlapping of the different shapes

during the segmentation process.

3.2. Addition of pose parameters

At this point, our implicit representation of multiple

shape classes described in Eq. (6a) cannot accommodate

shape variabilities that are due to pose differences. To

have this flexibility, pose parameter p is added as an-

other parameter to the level set functions of Eq. (6a).
With this new addition, the implicit descriptions of the m
shape classes are given by the zero level set of the fol-

lowing m level set functions:

U1½w; p�ðx; yÞ ¼ �U1ð~x; ~yÞ þ
Xq
i¼1

wiU
1
i ð~x; ~yÞ; ð7aÞ

U2½w; p�ðx; yÞ ¼ �U2ð~x; ~yÞ þ
Xq
i¼1

wiU
2
i ð~x; ~yÞ; ð7bÞ

..

.

Um½w; p�ðx; yÞ ¼ �Umð~x; ~yÞ þ
Xq
i¼1

wiU
m
i ð~x; ~yÞ; ð7cÞ

where

~x
~y
1

24 35 ¼ T ½p�
x
y
1

24 35
with T ½p� defined in Eq. (1). The addition of p to our

parametric shape model enables us to accommodate a

larger class of objects. In particular, the model can now

handle object shapes that may differ from each other in

terms of scale, orientation, or translation. In the next
section, we describe how w and p of Eq. (7a) are opti-

mized, via coordinate descent, for image segmentation.
4. Mutual information-based segmentation model

Mutual information-based models (Kim et al., 2002;

Unal et al., 2002) view the segmentation problem as a

region labeling process with the objective of the process

being to maximize the mutual information between the

image pixel intensities and the segmentation labels. A
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generalization of the mutual information-based energy

functional EMI, proposed by Kim et al. (2002) for image

segmentation, to handle mþ 1 regions is given by

EMI ¼ �ÎðI ; LÞ

¼ �ĥðIÞ þ
Xm
i¼1

PRi ĥðI jL
 

¼ RiÞ
!

þ PRc ĥðI jL ¼ RcÞ

�
Xm
i¼1

PRi ĥðI jL
 

¼ RiÞ
!

þ PRc ĥðI jL ¼ RcÞ; ð8Þ

where L is the segmentation label determined by the
segmenting curve ~C, Î is the estimate of the mutual

information I between the test image I and the seg-

mentation label L, PRi denotes the prior probability of

pixel values in the ith region Ri, PRc denotes the prior

probability of pixel values in Rc (the area outside of the

m regions), ĥð�Þ is the estimate of the differential entropy

hð�Þ, and ĥð�j�Þ is the estimate of the conditional differ-

ential entropy hð�j�Þ. The estimate of the differential
entropy ĥðIÞ provides an estimate of the amount of

randomness in the test image I . This term is removed

from EMI because it is independent of the segmentation

label L, and hence the segmenting curve ~C. Each esti-

mate of the mþ 1 conditional differential entropy terms

(i.e. ĥðI jL ¼ RiÞ for i ¼ 1; . . . ;m and ĥðI jL ¼ RcÞ) quan-
tifies the randomness of I conditioned on the segmen-

tation label L.
Let pRiðIÞ and pRcðIÞ denote the probability density

function (pdf) of I in regions Ri and Rc, respectively. By

using weak law of large numbers to approximate en-

tropy, the estimates of the conditional differential en-

tropy terms ĥðI jL ¼ RiÞ for i ¼ 1; . . . ;m and ĥðI jL ¼ RcÞ
are given by Kim et al. (2002):

ĥðI jL ¼ RiÞ ¼ � 1

ARi

Z Z
Ri

logðp̂RiðIÞÞ dA

¼ � 1

ARi

Z Z
X
logðp̂RiðIÞÞHð�UiÞ dA; ð9Þ

ĥðI jL ¼ RcÞ ¼ � 1

ARc

Z Z
Rc

logðp̂RcðIÞÞ dA

¼ � 1

ARc

Z Z
X
logðp̂RcðIÞÞ

Ym
j¼1

HðUjÞ dA; ð10Þ

where the Heaviside function H is given by

HðUiÞ ¼ 1 if Ui P 0;
0 if Ui < 0;

for i
�

¼ 1; . . . ;m;

p̂RiðIÞ and p̂RcðIÞ are estimates of pRiðIÞ and pRcðIÞ, re-
spectively, and X denotes the image domain. We apply

the non-parametric Parzen window method (Parzen,

1962) and use the bandwidth recommended by Silver-

man (1986) to estimate these densities from the training

data. Importantly, these density estimates are obtained

‘‘off-line’’ prior to the segmentation process.
The gradients of EMI, taken with respect to w and p,

are given by

rwEMI ¼
Xm
i¼1

PRirwĥðI jL
 

¼ RiÞ
!

þ PRcrwĥðI jL ¼ RcÞ;

rpEMI ¼
Xm
i¼1

PRirpĥðI jL
 

¼ RiÞ
!

þ PRcrpĥðI jL ¼ RcÞ;

where the lth component of gradients rwh and rph is

given by

rwl ĥðI jL ¼ RiÞ ¼
1

ARi

I
~Ci

rwlUi logðp̂RiðIÞÞ ds
� �

; ð11Þ

rpl ĥðI jL ¼ RiÞ ¼
1

ARi

I
~Ci

rplU
i logðp̂RiðIÞÞ ds

� �
; ð12Þ

rwl ĥðI jL ¼ RcÞ ¼ �1

ARc

Xm
j¼1

I
~Cj

rwlUj logðp̂RcðIÞÞ ds
( )

;

ð13Þ

rpl ĥðI jL ¼ RcÞ ¼ �1

ARc

Xm
j¼1

I
~Cj

rplU
j logðp̂RcðIÞÞ ds

( )
ð14Þ

with rwlUi, rplU
i, rwlUj, and rplU

j defined as

rwlUi ¼ Ui
l;

rplU
i ¼ rplU

ið~x; ~yÞ ¼ oUið~x;~yÞ
o~x

oUið~x;~yÞ
o~y 0

h i oT ½pl�
opl

x
y
1

24 35;
rwlUj ¼ Uj

l;

rplU
j ¼ rplU

jð~x; ~yÞ ¼ oUjð~x;~yÞ
o~x

oUjð~x;~yÞ
o~y 0

h i oT ½pl�
opl

x
y
1

24 35
and oT ½pl�

opl previously defined in Eq. (4a).

The update equations for the shape parameter w and

the pose parameter p are then given, in terms of rwEMI

and rpEMI, as

wtþ1 ¼ wt � DtwrwEMI; ð15Þ
ptþ1 ¼ pt � DtprpEMI: ð16Þ

Eqs. (15) and (16) are used to update w and p, respec-

tively, in an alternating fashion, to minimize Eq. (8).

As mentioned previously in Section 3.2, since there

are no restrictions on the range of values that w can

take, calculating w based on Eq. (15) can result in the
overlap of the various shapes. One way to avoid this

problem is to constrain the value of w during its calcu-

lation so that the various shapes never overlap. A heu-

ristic approach is to perform a check at each

minimization step prior to updating w to see if updating

w causes any of the m shapes to overlap. If updating w

causes an overlap, this particular update of w is not



Fig. 8. Palette showing a close-up view of the four textures used: (a) vertical wood grain, (b) fine fabric, (c) diagonal knit, and (d) rocky terrain.

Fig. 9. Training collection containing 30 brain texture images. The four texture types shown in Fig. 8 and the 30 training template images shown in

Fig. 5 are used to generate these images.
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performed and the algorithm skips forward to the next

step which involves updating p.

We employ texture images to illustrate this powerful

image segmentation methodology. Fig. 8 shows real-

izations of four different textures. The textures are all

purposely scaled to have approximately the same mean
intensity and the same dynamic range of �1 to 1 to

make the segmentation process even more difficult.

Texture A is an example of a vertical wood grain texture.

Texture B is an example of a fine fabric texture. Texture

C is an example of a diagonal knit texture. And Texture
D is an example of a rocky terrain. Segmentation algo-

rithms need to capture the complicated statistical de-

pendencies between a particular pixel and its neighbors

within each texture in order to successfully segment

these images. Using the subcortical brain images shown

in Fig. 5 as templates and 30 different realizations of
each of the four textures shown in Fig. 8, we construct

the 30 different subcortical brain texture images shown

in Fig. 9. These newly generated subcortical brain tex-

ture images serve as our training collection. Notice that

the various regions within these texture images are not
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Fig. 11. Parzen density estimate of the pixel intensities in the various regions.
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separated from each other by large image gradients or
characterized by different mean intensities. In fact, the

mean intensities of each of the texture classes are all

roughly zero. 7 This means that neither edge- nor re-

gion-based techniques will be successful in segmenting

these texture images. The histograms of the pixel in-

tensity distributions in the various subcortical brain re-

gions of the 30 texture images are shown in Fig. 10.

Notice that the mean and the standard deviation of
the pixel intensities within the caudate nucleus and the

background are approximately the same. This makes the

separation of the caudate nucleus from the background

very challenging. This observation is also visually vali-

dated by looking at Fig. 9. The boundaries of the cau-

date nucleus in all 30 brain texture images are extremely

difficult to find. Using non-parametric Parzen window-

ing method (Parzen, 1962), we obtain pdf estimates of
the pixel intensities in each of the subcortical brain re-

gions. These density estimates are shown in Fig. 11.

Figs. 12 and 13 demonstrate the performance of the

mutual information-based image segmentation model

described in Eq. (8). In frame (a) of each figure, a syn-

thetic image of the subcortical brain structures is dis-

played. These two synthetic images are similar to the

subcortical brain images shown in the training collection
of Fig. 2 but neither are part of that collection. Using
7 The mean intensities of each texture class were removed so that

they all have the same mean intensity of zero. This is aimed to increase

the difficulty of the segmentation process.
these two synthetic images as the template, we generated
the subcortical brain texture images shown in frame (b)

of each figure. Frame (c) of each figure then shows the

subcortical brain texture image contaminated by addi-

tive Gaussian noise. These two resulting images serve as

the test images. We employ the pose-aligned collection

shown in Fig. 5 to derive an implicit parametric multi-

shape model for the subcortical brain structures in the

form of Eq. (7a). In the segmentation examples shown in
Figs. 12 and 13, we choose q ¼ 15. The zero level sets of
�Ui½w; p� for i ¼ 1; 2; 3 are employed as the starting

curves. The locations of the initializing contours are

shown in frame (d) of each figure. Frame (e) of each

figure shows the final positions of the segmenting curves

after evaluating Eqs. (15) and (16) until convergence.

The size of both these images are 300� 300 pixels. On

an Intel Xeon 4.4GHz dual processor personal com-
puter, it took 283 s to generate the segmentation result

of Fig. 12 and 236 s to generate the segmentation result

of Fig. 13.

Notice that in both test images, despite having very

similar textures between the background and the cau-

date nucleus, our algorithm is still able to find the

boundaries of the caudate nucleus. This is due to the

strong spatial coupling and shape co-variability between
the various subcortical brain structures. Notice that

triple points formed by the ventricle and the caudate

nucleus are easily captured by our algorithm. In addi-

tion, Fig. 13 shows that without any additional effort,

the three starting curves that describe the ventricle



Fig. 12. Performance of the mutual information-based model described in Eq. (8): (a) subcortical brain template image, (b) subcortical brain texture

image based on the template image shown in (a), (c) test image I obtained after adding Gaussian noise to image shown in (b), (d) starting location of

the segmenting curve, (e) final location of the segmenting curve.

Fig. 13. Another demonstration of the mutual information-based model showing topological changes of the shapes: (a) subcortical brain template

image, (b) subcortical brain texture image based on the template image shown in (a), (c) test image I obtained after adding Gaussian noise to image

shown in (b), (d) starting location of the segmenting curve, (e) final location of the segmenting curve.

Fig. 14. The 3D models all eight patients pelvic structures after alignment.
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merged to form one single segmenting curve at the end.

This ability to handle topological changes of the shapes

in a seamless fashion is a very attractive feature associ-

ated with our algorithm.

As evident in this contrived example, one of the im-

portant features associated with having distinct signed

distance functions representing the different shape clas-
ses is that we are able to capture, and later utilize, the

information content particular to a shape class for seg-

mentation. In other words, suppose the different shape

classes in this synthetic example are non-overlapping

and non-adjacent to one another, and one would like

to use a single signed distance function to represent

all the three shape classes. In this case, the statistical
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Fig. 15. Parzen density estimate of the pixel intensities in the various regions.

Fig. 16. Segmentation of a new patient’s pelvic MR image using the mutual information-based model. The segmentations of the prostate (red), the

rectum (green), and the internal obturator muscles (yellow) are shown.
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Fig. 17. Manual segmentation of a new patient’s pelvic MR image. The segmentations of the prostate (red), the rectum (green), and the internal

obturator muscles (yellow) are shown.
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information particular to each shape class will be lost as

they will be combined together into the statistical in-
formation of a single shape class. Each original shape

class’ distinguishing features will be lost and cannot be

utilized for segmentation.
5. Application to medical imagery

Our strategy to segment the prostate gland from a
pelvic MR volumetric dataset for prostate brachyther-

apy is to use easily identifiable structures within the

pelvic MR dataset to help localize the prostate gland.
The most prominent structure within the pelvic MR

dataset is the dark-colored rectum. The prostate gland is
flanked on either side by the internal obturator muscles

which are also easy to find. The prostate gland, the

rectum, and the internal obturator muscles form the

three shape classes in our parametric multi-shape

segmentation algorithm.

We employ eight hand segmented 3D models of the

prostate, the rectum, and the internal obturator muscles

as our training set. The 3D version of the alignment
procedure is used to (1) jointly align the eight example

shapes from each shape class, and (2) simultaneously

perform this task on all three shape classes. Fig. 14



Fig. 18. The 3D representation of the segmentation results shown in

Fig. 16. Fig. 19. The 3D representation based on a hand segmentation.
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displays all eight hand segmented 3D models of the

three pelvic structures after alignment. The shape classes

are color coded as follows: the rectum (green), the

prostate gland (red), and the internal obturator muscles

(yellow). Next, we employed the 3D version of our

shape modeling approach to obtain a 3D multi-shape

parametric model of the three pelvic structures. We then

employ the mutual information-based segmentation
model described in Section 4 as our segmentation model.

In order to implement this model, however, the proba-

bility density function of the pixel intensities within the

different regions need to be estimated. We apply the

non-parametric Parzen window method to the eight

pelvic MR volumetric datasets to estimate these prob-

ability densities within the three pelvic structures and the

background region. 8 The Parzen density estimate of
the pixel intensities in the three pelvic structures and the

background region are shown in Fig. 15. 9

Fig. 16 shows 20 consecutive axial slices of the pelvic

MR volumetric dataset of a new patient. The segmen-

tation results of this dataset, based on our algorithm, are

shown in this figure as well. The boundaries of the rec-

tum, the prostate gland, and the internal obturator

muscles, as determined by our algorithm, are shown in
green, red and yellow contours, respectively. For com-

parison, we show in Fig. 17 the manual segmentation of

this dataset. Fig. 18 shows the 3D representations of this
8 The eight pelvic MR volumetric datasets used here are the same

eight volumetric datasets from which we derived the 3D models shown

in Fig. 14.
9 The pixel intensities from each of the eight MR dataset are scaled

down so they all range between 0 and 1 for ease of manipulation and

display.
new patient’s rectum, prostate gland, and internal ob-

turator muscles obtained by our algorithm. Again, for

comparison, we show in Fig. 19 the hand segmentations

of the same patient’s rectum, prostate gland, and the

internal obturator muscles. This example demonstrates

that, even with a very limited dataset, our algorithm
performed very well in segmenting the anatomical

structures of interest. By having a larger dataset for

training, our algorithm should be able to perform even

better.
6. Conclusions

We presented an unified analytical formulation that

extends the work of Tsai et al. (2001) to multiple shapes.

In particular, we described a new multi-shape modeling

approach that (1) can capture important co-variations
shared among the different shape classes, (2) allows

multiple junctions to be captured automatically, (3) does

not require point correspondences during the training

phase of the algorithm, (4) can handle topological

changes of the shapes in a seamless fashion, and (5) can

be extended from a 2D to a 3D framework in a

straightforward manner. We then showed the utility of

this parametric multi-shape model by incorporating it
within a mutual information-based framework for

medical image segmentation.

It is also important to realize that the parametric

multi-shape model that we proposed in this paper is very

flexible. It is flexible enough that it can be incorporated

into other segmentation model besides the mutual in-

formation-based model demonstrated in this paper. We
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show, in (Tsai, 2003), how our multi-shape model is

incorporated into an edge-based and a region-based

model for image segmentation. In addition, in (Tsai,

2003), we demonstrate and validate, through simulation

studies, some of the unique properties associated with
our parametric multi-shape model that we have already

mentioned in this paper, namely, the ability to (1) cap-

ture important co-variations among the different shape

classes, (2) display a wide range of shape variability, and

(3) handle large amounts of additive noise.
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