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Abstract

In previous work [10], we presented a class
of upper bounds on the log partition func-
tion of an arbitrary undirected graphical
model based on solving a convex variational
problem. Here we develop a class of lo-
cal message-passing algorithms, which we
call tree-reweighted belief propagation, for ef-
ficiently computing the value of these upper
bounds, as well as the associated pseudo-
marginals. We also consider the uses of our
bounds for the problem of maximum likeli-
hood (ML) parameter estimation. For a com-
pletely observed model, our analysis gives rise
to a concave lower bound on the log like-
lihood of the data. Maximizing this lower
bound yields an approximate ML estimate
which, in analogy to the moment-matching
of exact ML estimation, can be interpreted
in terms of pseudo-moment-matching. We
present preliminary results illustrating the
behavior of this approximate ML estimator.

1 Introduction

Associated with any undirected graphical model is a
log partition function. This quantity plays a funda-
mental role in various contexts, including approximate
inference [4], maximum likelihood parameter estima-
tion [5], and large deviations analysis [3]. For a general
undirected model, exact computation of this partition
function is intractable; therefore, developing approxi-
mations and bounds is an important problem.

In previous work [10], we presented a new class of up-
per bounds on the log partition function of an arbi-
trary undirected graphical model. These bounds are
based on approximating the original distribution by
a convex combination of tractable distributions (e.g.,
tree-structured distributions), and then exploiting the

convexity of the log partition function to obtain upper
bounds. Through a Lagrangian dual reformulation, we
showed that the tightest form of such an upper bound
can be obtained by solving a convex variational prob-
lem which, in the case of combining tree-structured
distributions, can be viewed as a “convexified” form
of the Bethe problem [11].

One contribution of this paper is the presentation of lo-
cal message-passing algorithms, analogous to but dis-
tinct from belief propagation [11], for efficiently com-
puting the optimal value of these upper bounds, as well
as pseudomarginals that can be used as approxima-
tions to the marginals. This class of algorithms, which
we refer to as tree-reweighted belief propagation, are
the sum-product version of the tree-reweighted max-
product updates analyzed in our related work [9]. We
then consider the use of our bounds for approximate
maximum likelihood (ML) parameter estimation. For
a completely observed model, our methods give rise
to a concave lower bound on the log likelihood of the
data; consequently, an approximate ML estimate can
be obtained by maximizing this lower bound. We show
that, in analogy to the well-known moment-matching
properties of exact ML estimates [1], the global max-
imum of this lower bound is obtained by performing
a type of pseudo-moment matching. We illustrate the
behavior of this approximate ML estimator in appli-
cation to some simple problems, and compare it to a
heuristic method based on ordinary belief propagation.

The remainder of this paper is organized in the fol-
lowing manner. We begin in Section 2 by introducing
the formalism of graphical models, and more specifi-
cally the exponential representations that are central
to our analysis. In Section 3, we first describe the vari-
ational problem that underlies our upper bounds [10],
and then present tree-reweighted belief propagation al-
gorithms for solving it. In Section 4, we propose and
analyze a technique for approximate ML estimation
based on our upper bounds. In Section 5, we present
some preliminary results of experiments on this ap-



proximate ML estimator, and point out open ques-
tions to be addressed. We conclude in Section 6 with
a discussion.

2 Notation and background

We begin with the notation and background necessary
for subsequent development.

Graphical models: An undirected graph G =
(V,E) consists of a set of N = |V | nodes, joined by
edges (s, t) ∈ E. For each s ∈ V , we let Γ(s) de-
note the set of its neighbors. A graph clique S is a
fully-connected subset of the vertex set (i.e., for all
s, t ∈ S, we have (s, t) ∈ E). To define an undirected
graphical model or Markov random field, we place at
each node s ∈ V a random variable xs taking values
in the discrete space Xs = {0, 1, . . . ,ms − 1}. We let
x = {xs | s ∈ V } be a random vector taking values in
the Cartesian product space XN = X1×X2×· · ·×XN .

Exponential representations: Our work makes
use of exponential representations for undirected
graphical models, which have been studied extensively
in applied probability theory and statistics [e.g., 1, 8].
For some index set I, we let φ = {φα | α ∈ I} denote a
collection of potential functions defined on the cliques
of G, and let θ = {θα | α ∈ I} be a vector of weights
on these potential functions. The exponential family
determined by φ is the following collection of log-linear
models:

p(x; θ) = exp
{∑

α∈I

θαφα(x)− Φ(θ)
}

(1a)

Φ(θ) = log
∑

x∈XN

exp
{∑

α∈I

θαφα(x)
}

(1b)

Here Φ(θ) is the log partition function that serves to
normalize the distribution. This function plays an im-
portant role in various contexts, including approxi-
mate inference, parameter estimation, and large de-
viations analysis.

Much of our analysis uses an overcomplete exponential
representation, in which there are linear dependencies
among the potentials {φα}. In particular, we use in-
dicator functions as potentials:

φs;j(xs) = δs;j(xs), s ∈ V ; j ∈ Xs
φst;jk(xs, xt) = δst;jk(xs, xt), (s, t) ∈ E; j, k ∈ Xs ×Xt

Here δs;j(xs) takes the value one when xs = j, and
zero otherwise. In this case, the index set I consists of
the union of I(V ) = { (s; j) | s ∈ V ; j ∈ X} with the
edge indices I(E) = { (st; jk) | (s, t) ∈ E; j, k ∈ X }.

Convex duality: The following well-known proper-
ties of Φ are central to our analysis:

Lemma 1. (a) For all indices α ∈ I, we have

∂Φ(θ)

∂θα
= Eθ[φα] =

∑

x∈XN

p(x; θ)φα(x)

(b) Moreover, the second derivative is given by an ele-
ment of the Fisher information matrix — namely:

∂2Φ(θ)

∂θα ∂θβ
= Eθ[φαφβ ]− Eθ[φα]Eθ[φβ ]

so that the log partition function Φ is convex as a
function of θ.

A second set of parameters, related to the exponential
parameters θ by Legendre duality [1, 6, 8], are obtained
by taking expectations of the potential functions as
follows:

Pα = Eθ[φα(x)] (2)

These mean parameters are sufficient statistics, in that
they completely specify the distribution p(x; θ). In the
case of an overcomplete representation with indicator
functions, the dual variables correspond to the values
of particular marginal distributions of the distribution
p(x; θ). For example, when α = (s; j), then we have
Ps;j = Eθ[δs;j(xs)] = p(xs = j; θ).

3 Tree-reweighted belief propagation

and optimal upper bounds

In this section, we present the variational problem
that yields upper bounds on the log partition func-
tion [10]. We then develop a family of tree-reweighted
belief propagation algorithms designed to solve this
optimization problem.

3.1 Basic set-up

Here we provide the notation and background to state
our upper bounds.

Edge appearance probabilities: Let T = T(G)
denote the set of all spanning trees of G. We consider
a probability distribution ~µ over the set of spanning
trees — that is, a collection of non-negative numbers

~µ , { µ(T ), T ∈ T | µ(T ) ≥ 0 } (3)

such that
∑

T ∈T µ(T ) = 1. Of particular interest in
the sequel is the probability µe = Pr~µ{e ∈ T } that a
given edge e ∈ E appears in a spanning tree T chosen
randomly under ~µ. We let µe = {µe | e ∈ E} repre-
sent a vector of these edge appearance probabilities. It
can be shown [8] that these edge appearance vectors
must belong to the so-called spanning tree polytope,
denoted by T(G). See Figure 1 for an illustration.
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Figure 1. Illustration of the spanning tree poly-
tope T(G). Original graph is shown in panel (a).
Probability 1/3 is assigned to each of the three
spanning trees { Ti | i = 1, 2, 3 } shown in panels
(b)–(d). Edge b is a so-called bridge in G, mean-
ing that it must appear in any spanning tree (i.e.,
µb = 1). Edges e and f appear in two and one of the
spanning trees respectively, which gives rise to edge
appearance probabilities µe = 2/3 and µf = 1/3.

Tree-consistent pseudomarginals: The con-
straint set associated with our variational formula-
tion [10] is the set of so-called pseudomarginals that
satisfy certain tree-consistency constraints. To be pre-
cise, for each node s ∈ V , let Ts = {Ts;j | j ∈ Xs} be
a non-negative pseudomarginal vector with ms = |Xs|
elements; similarly, for each edge (s, t) ∈ E, let
Tst = {Tst;jk | (j, k) ∈ Xs × Xt} be a non-negative
pseudomarginal vector with ms × mt elements. On
occasion, we will also use the notation Ts(xs) to refer
to the function that takes the value Ts;j when xs = j;
the joint function Tst(xs, xt) is defined similarly. We
let T = {Ts, s ∈ V } ∪ { Tst, (s, t) ∈ E } denote the
full collection of pseudomarginals on nodes and edges.
This set of pseudomarginals is required to satisfy
a set of local normalization and marginalization
constraints; in particular, we require that they are
elements of the set

TREE(G) ,
{

T
∣∣ ∑

k∈Xt

Tst;jk = Ts;j ,
∑

j∈Xs

Ts;j = 1
}

Our choice of notation is motivated by the fact that if
G is a tree, then TREE(G) is a complete description
of the set of valid (single node and edge) marginal
distributions.

Variational formulation We now present the vari-
ational problem that gives rise to upper bounds on the
log partition function. We begin by setting up the nec-
essary notation. For each s ∈ V and pseudomarginal
Ts, we define the single node entropy:

Hs(Ts) = −
∑

j∈Xs

Ts;j log Ts;j

Similarly, for each (s, t) ∈ E, we define the mutual
information between xs and xt as measured under the

joint pseudomarginal Tst:

Ist(Tst) =
∑

(j,k)

Tst;jk log
Tst;jk

(
∑
k∈Xt

Tst;jk)(
∑
j∈Xs

Tst;jk)

Borrowing terminology from statistical physics [11], we
define an “average energy” term as follows:

T · θ∗ =
∑

s∈V

∑

j

Ts;jθ
∗
s;j +

∑

(s,t)∈E

∑

(j,k)

Tst;jkθ
∗
st;jk

Using this notation, our bounds are based on the fol-
lowing function:

F(T;µe; θ
∗) , −

∑

s∈V

Hs(Ts) +
∑

(s,t)∈E

µstIst(Tst)−T · θ∗

It can be seen that this function is closely related to
the Bethe free energy [11]. In fact, suppose that we
set µst = 1 for all edges (s, t) ∈ E, meaning that every
edge appears with probability one. In this case, the
function F(T;µe; θ

∗) is equivalent to the Bethe free
energy on the constraint set TREE(G). However, the
choice µe = 1 belongs to the spanning tree polytope
T(G) only when the graph G is actually a tree.

In the paper [10], we prove the following result:

Theorem 1. For all µe ∈ T(G), the function
F(T ;µe; θ

∗) is a convex in terms of T. Moreover, the
log partition function is bounded above by the solution
of the following variational problem:

Φ(θ∗) ≤ − min
T∈TREE(G)

F(T;µe; θ
∗) (4)

The optimal solution T̂ = T̂(θ∗) to this minimization
is unique.

3.2 Tree-reweighted belief propagation

We now present a tree-reweighted belief propagation
algorithm designed to find the requisite set T̂ of pseu-
domarginals via a sequence of message-passing oper-
ations. This algorithm is the sum-product version of
the tree-reweighted max-product updates analyzed in
our related work [9].

The optimal collection T̂ of pseudomarginals, as a so-
lution to the constrained optimization problem (4),
must belong to TREE(G). In addition, it can be
shown [10] that they are characterized by the following
admissibility condition:

θ∗ · φ(x) + C =

∑

s∈V

log T̂ (xs) +
∑

(s,t)∈E

µst log
T̂st(xs, xt)

T̂s(xs)T̂t(xt)
(5)



Algorithm 1 (Tree-reweighted belief propagation).

1. Initialize the messages M0 = {M0
st} with arbitrary positive real numbers.

2. For iterations n = 0, 1, 2, . . ., update the messages as follows:

Mn+1
ts (xs) = κ

∑

x′
t∈Xt

exp

(
1

µst
φst(xs, x

′
t; θ

∗
st) + φt(x

′
t; θ

∗
t )

){∏
v∈Γ(t)\s

[
Mn
vt(x

′
t)
]µvt

[
Mn
st(x

′
t)
](1−µts)

}
(6)

Note: The quantity φs(xs; θ
∗
s) takes the value θ∗s;j when xs = j. The function φst(xs, xt; θ

∗
st) is defined

analogously.

Here C is a constant independent of x. If we set
µe = 1, then equation (5) asserts that the collection

T̂ constitutes a reparameterization of the original dis-
tribution. (See [8] for more details on reparameteriza-
tion and invariance properties of BP and related algo-
rithms.) However, as noted before, the choice µe = 1
is a valid choice only when the graph itself is tree-
structured.

We now specify a collection of pseudomarginals T via
a set of messages, such that the admissibility condi-
tion (5) is always satisfied. For each edge (s, t) ∈ E,
letMts(xs) be the message passed from node t to node
s. It is a vector of length ms, with one element for
each state j ∈ Xs. We use the messages M = {Mst}
to specify a set of functions T = {Ts, Tst} as follows:

Ts(xs) = κ exp
(
φs(xs; θ

∗
s)
) ∏

v∈Γ(s)

[
Mvs(xs)

]µvs

(7)

Tst(xs, xt) = κ ϕst(xs, xt; θ
∗)

∏
v∈Γ(s)\t

[
Mvs(xs)

]µvs
[
Mts(xs)

](1−µst)

×

∏
v∈Γ(t)\s

[
Mvt(xt)

]µvt
[
Mst(xt)

](1−µts) (8)

Here κ denotes a constant chosen so as to ensure that
the normalization conditions (e.g.,

∑
x′
s
Ts(x

′
s) = 1)

are satisfied. Moreover, ϕst(xs, xt; θ
∗) is a compact

notation for the quantity

exp
( 1

µst
φst(xs, xt; θ

∗
st) + φs(xs; θ

∗
s) + φt(xt; θ

∗
t )
)

This construction ensures that the admissibility con-
dition is satisfied:

Lemma 2 (Admissibility). Given any collection
T = {Ts, Tst} defined by a set of messages M as in
equations (7) and (8), the admissibility condition (5)
is satisfied.

Proof. First of all, by the definitions of equations (7)
and (8), we have for each (s, t) ∈ E:

µst log
Tst(xs, xt)

Ts(xs)Tt(xt)
= φst(xs, xt; θ

∗
st)

− µst log[Mst(xt)Mts(xs)] + C

Secondly, equation (7) gives for each node s ∈ V :

log Ts(xs) = φs(xs; θ
∗
s) +

∑

u∈Γ(s)

µus logMus(xs) + C

Summing together a copy of the first equation for each
edge (s, t) ∈ E and a copy of the second equation for
each node s ∈ V yields the statement of equation (5).

We now need to ensure that T̂ satisfies the local con-
sistency constraints defining membership in TREE(G)
– namely,

∑
x′
t
Tst(xs, x

′
t) = Ts(xs). In order to do so,

we update the messages according to Algorithm 1. It
can shown with some elementary calculations that any
fixed point of the message update equation (6), as with
fixed points of ordinary belief propagation, satisfies the
following property:

Lemma 3 (Tree consistency). Suppose that we use
a fixed point of the message update equation (6) to

specify a collection of pseudomarginals T̂ as in equa-
tion (7) and (8). Then the marginalization condition∑

x′
t
T̂st(xs, x

′
t) = T̂s(xs) is satisfied.

In fact, since the optimization problem (4) has a
unique global minimum, the message update equa-
tion (6) always has a unique fixed point. By Lemma 3,

the pseudomarginal T̂ specified by this fixed point be-
longs to TREE(G); by Lemma 2, it satisfies the ad-
missibility condition (5). Therefore, it corresponds to
the global minimum of the minimization problem (4).

Observe that Algorithm 1, although quite similar to
the standard belief propagation updates [11], differs in



some key ways. First of all, the weights θst;jk corre-
sponding to edge (s, t) are all rescaled by 1/µst. Sec-
ondly, all the messages Mus for nodes u ∈ Γ(s)\t are
exponentiated by the corresponding edge appearance
µus. Lastly, the message Mst running in the reverse
direction on edge (s, t) is involved in updating Mts.
Despite these differences, it is still possible to perform
the message updates in a parallel fashion, as in ordi-
nary belief propagation. It is also possible to perform
updates over spanning trees, as in the tree reparam-
eterization approach to BP [8]. In practice, we find
that the updates of Algorithm 1 converge when suit-
ably relaxed,1 although the convergence rate can be
slower than that of ordinary BP. However, we do not
have a proof of convergence.

4 Approximate ML estimation

An important feature of ML parameter estimation, as
well as other problems (e.g., large deviations analysis),
is that the solution is specified by moment-matching.
To illustrate this notion, suppose that we are given an
IID sequence Y = {y1, . . . ,yM} of data from some
unknown model p(x; θ). The log likelihood L(θ) of the
data Y is given by:

L(θ) =
1

M

M∑

k=1

log p(yk; θ) =
∑

α∈I

θαP̄α − Φ(θ)

(9)

where P̄α , 1
M

∑M
k=1 φα(y

k) is the empirical marginal
of φα under the data. Taking derivatives of L(θ) using
Lemma 1, we find that the maximum likelihood solu-
tion θML satisfies EθML [φα] = P̄α. That is, the opti-
mal distribution p(x; θML) has its moments matched
to the empirical averages P̄ . In this section, we show
how our upper bounds on the partition function can be
used to develop a method for approximate ML estima-
tion that, in analogy to this exact moment-matching,
performs a type of pseudo-moment matching.

We begin by defining a function via the minimization
specified by Theorem 1 as follows:

H(θ) = − min
T∈TREE(G)

F(T;µe; θ) (10)

Here we view µe ∈ T(G) as a fixed parameter, so that
H is a function only of θ. By Theorem 1, the function
H gives an upper bound on the log partition function.
In addition, it turns out to have the following desirable
properties:

Theorem 2. The function H is convex (strictly so in
a minimal representation), and differentiable in terms

1By relaxation, we mean performing updates of the form
(1−α) logMn

ts+α logMn+1
ts , where α ∈ (0, 1] is a step size.

of θ. Moreover, for each α ∈ I, the partial derivative
is given by the pseudomarginal vector:

∂H

∂θα
(θ) = T̂α(θ) (11)

where T̂(θ) = argminT∈TREE(G) F(T;µe; θ
∗).

Proof. SinceH is the negative of the minimum of a col-
lection of functions that are linear in θ, it is convex [2].
For a fixed µe ∈ T(G), the function F(T;µe; θ) is
differentiable in terms of (T, θ); moreover, it is lin-
ear (and hence concave) in θ for each fixed T, and
the constraint set TREE(G) is convex and compact.
For each fixed θ, the minimum of F(T;µe; θ) over T
is attained at a unique point in TREE(G). There-
fore, the problem satisfies the hypotheses of Danskin’s
theorem [2], implying that H is differentiable, with
derivatives given by the pseudomarginals ∂H

∂θα
(θ) =

− ∂F
∂θα

(T̂;µe; θ) = T̂α(θ) as claimed.

To establish strict convexity in a minimal represen-
tation, we use γ to denote the minimal analog of θ.
For each tree T , let γ(T ) denote an arbitrary tree-
structured exponential parameter (i.e., γα(T ) = 0 for
all α /∈ I(T ), where I(T ) are the indices correspond-
ing to tree T ). In our previous work [10, 8], we showed
that the optimal solution in Theorem 1 is defined by a
particular set of tree-structured exponential parame-
ters {γ̂(T )} such that (i) the tree-structured distribu-
tions p(x; γ̂(T )) all share a common set of marginals

T̂(γ) (i.e., given by the optimum in Theorem 1); (ii)
we have the equivalence

∑
T µ(T )γ̂(T ) = γ; and lastly

(iii) we have the relation H(γ) =
∑

T µ(T )Φ(γ̂(T )).
Given two bounded minimal parameter vectors that
are distinct (i.e., γ1 6= γ2), consider the associated tree
parameters {γ̂1(T )} and {γ̂2(T )}. For each tree, we
use the convexity of Φ, property (i) and Lemma 1(a)
to write:

Φ(γ̂1(T )) ≥ Φ(γ̂2(T ))+
∑

α∈I(T )

T̂α(γ
2)
[
γ̂1(T )−γ̂2(T )

]
α

From property (ii) and the fact γ1 6= γ2, we must have
γ̂1(T ) 6= γ̂2(T ) for at least one tree T , whence by the
strict convexity of Φ in a minimal representation this
inequality is strict. Thus, the inequality remains strict
in the weighted sum:

∑

T

µ(T )Φ(γ̂1(T )) >
∑

T

µ(T )Φ(γ̂2(T ))

+
∑

α∈I

T̂α(γ
2)
∑

T

µ(T )
[
γ̂1(T )− γ̂2(T )

]
α

(12)

where we have used the fact that T̂α(γ
2) is the same

for all trees such that α ∈ I(T ) to move the sum over



T inside in the second term on the RHS. Finally, using
properties (ii) and (iii), we can re-write equation (12)

as H(γ1) > H(γ2) +
∑

α∈I T̂α(γ
2)
[
γ1 − γ2]α. Since

∂H
∂γα

(γ) = T̂α(γ), this establishes the strict convex-
ity.

Another way to understand the nature of H is on the
basis of conjugate duality [6, 8]. First, let us define
the function:

G(T;µe) = −
∑

s∈V

Hs(Ts) +
∑

(s,t)∈E

µstIst(Tst) (13)

By Theorem 1, this function is convex in terms of T.
We use it to define H in an alternative but equivalent
manner as follows:

H(θ) = max
T∈TREE(G)

{
T · θ − G(T;µe)

}
(14)

Equation (14) shows that for each fixed µe, H is the
conjugate dual of G.

We now use H to form the following approximation to
the log likelihood:

L̃(θ) ,
∑

α∈I

θαP̄α −H(θ) (15)

Note that Theorems 1 and 2, in conjunction, guar-
antee that L̃(θ) is a concave lower bound on the ex-
act log likelihood L(θ) of equation (9). It is therefore

reasonable to consider maximizing L̃(θ) as a proxy to
the exact log likelihood. Using Theorem 2, we see
that the approximate ML solution θ̂ thus obtained is
specified by the pseudo-moment matching conditions
T̂α(θ̂) = P̄α for all indices α ∈ I.

For a given set of empirical marginals {P̄α}, this
pseudo-moment matching characterization enables us
to specify the maximizing argument θ̂ of L̃(θ). In fact,

using the admissibility of equation (5), we see that θ̂
can be specified, for each s ∈ V and edge (s, t), as
follows:

θ̂s;j = log P̄s(xs = j) (16a)

θ̂st;jk = µst log
P̄st(xs = j, xt = k)

P̄s(xs = j) P̄t(xt = k)
(16b)

Running tree-reweighted BP on the problem p(x; θ̂)
will, by construction, yield a set of pseudomarginals
T̂α equal to the empirical marginals P̄α. Therefore,
the appropriate pseudomarginal matching is ensured.

Of course, one can also imagine performing a similar
kind of pseudomarginal matching using the ordinary
BP approximation. That is, we could form another
approximate ML estimate θBP via equation (16) with

the choice µst = 1 for all edges (s, t). By the tree repa-
rameterization characterization of BP fixed points [8],
this estimation method has the property that if BP is
run on the problem p(x; θBP ), then one of its (possibly
many) fixed points are the correct empirical marginals
P̄α. Unlike the tree-reweighted analog, however, it is
not guaranteed to maximize a lower bound on the log
likelihood. Moreover, the experiments to follow sug-
gest that it is less stable than the tree-reweighted ap-
proximate ML estimator.

5 Experiments

Suppose that we are given a set of data Y with as-
sociated empirical marginals {P̄α}. Using a fixed set
of edge appearance probabilities µe ∈ T(G), we can

then estimate θ̂ from equation (16); this yields an es-

timated distribution p(x; θ̂), for which applying the
tree-reweighted BP algorithm will compute the “cor-
rect” marginals (i.e., the empirical marginals). In this

InferenceEstimation

Estimation
Approximate Approximate

Inference

ExactExact
{yi}

{yi}
θ̂

θ
ML

P̄

P̄

Figure 2. Block diagram of inference and param-
eter estimation. The combination of approximate
estimation and inference is matched to the exact
combination at a single point.

sense, as illustrated in Figure 2, the combination of
tree-reweighted approximate ML estimation and in-
ference is functionally equivalent to performing exact
inference with the exact ML distribution. Of course,
this exact relation holds only at a single point; of in-
terest, then, is its robustness to perturbations in the
problem.

To be more specific, suppose, for instance, that we
receive a new set of noisy observations z. Taking the
assumption that the components of z are conditionally
independent given x, the measurement model has the
form p(z |x) =

∏
s∈V p(zs |xs). On one hand, we can

combine this measurement model with the ML distri-
bution p(x; θ) so as to obtain the “true” posterior dis-
tribution p(x | z; θ) ∝ p(x; θ)p(z |x), for which we can
then (at least in principle) compute the exact marginal
distributions. An alternative and computationally
tractable approach is to combine the measurements
with the approximate ML model p(x; θ̂) so as to form

an approximate posterior p(x | z; θ̂), and then com-
pute approximations to its marginals using the tree-
reweighted BP algorithm. The interesting question is
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Figure 3. Behavior of BP-based method for parameter estimation (top plot in each column) versus TRW-based
method (bottom plot in each column). Each of the five panels in each plot shows the marginal probability of

xs = 1 (exact marginal Ps;1 in open circles, and approximate marginal T̂s;1 with stars) versus node number s.
Top panel in each plot shows the marginals estimated from original data without any new data. By construction,
both BP and TRW marginals are matched to the exact ones. Remaining four panels in each subplot shows four
trials with new data added. (a) For weak attractive potentials (σedge = 0.2), both methods perform well. (b) For
stronger attractive potentials (σedge = 0.6), BP-based method becomes overly sensitive to effect of new data, while
TRW-based method remains stable. (c) For strong mixed potentials (σedge = 0.6), BP-based method is erratic,
whereas TRW-method is still reasonable.

assessing how close these approximate marginals are
to the exact marginals of the ML posterior. Accord-
ingly, this section describes the results of experiments
designed to test how the combination of approximate
tree-reweighted ML estimation and inference perform
as additional data is collected. We also compared the
performance of the tree-reweighted combination to the
heuristic BP analog described above.

We performed experiments for a binary Ising model of
spins {−1,+1}:

p(x; θ) = exp
{∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt − Φ(θ)
}

The parameter vector θ was chosen randomly from
various ensembles in the following manner. In all
cases, we chose the single node parameters randomly
as θs ∼ N (0, σ2node). In the mixed condition, we chose
edge weights θst ∼ N (0, σ2edge) independently for each
edge. In the attractive condition, we set the edge
weights θst = |ast| independently for each edge, where
ast ∼ N (0, σ2edge). For all the experiments reported
here, we preserved the ratio σnode = 0.5σedge, and
varied the choice of σedge.

Given a randomly chosen p(x; θ), we computed the
exact marginals P̄α of p(x; θ), and used them as input

to the approximate parameter estimator θ̂ specified in
equation (16) for a fixed set of edge appearance proba-
bilities µe ∈ T(G). This procedure yields an approxi-

mation p(x; θ̂) to the true ML distribution p(x; θ). We
performed the same procedure with µst = 1 so as to
obtain a BP-based estimate θBP . (Recall that µe = 1
is not a valid choice, from the perspective of the tree-
reweighting, unless the graph itself is a tree).

We then perturbed the original problem by adding
new noisy observations at the single nodes. In the
exponential domain, the effect of this new set of (ran-
domly specified) noisy observations can be modeled
by the addition of a random vector δ. We chose a
perturbation vector δ with components δst = 0 for
all edges (s, t) ∈ E, and made independent random
choices δs ∼ N (0, σ2pert) for each node. For all exper-
iments reported here, we fixed the standard deviation
σpert = 0.5.

In the exponential representation, the “true” posterior
is given by p(x; θ + δ). As a measure of ground truth,
we computed the exact single node marginals Ps of
this true posterior using the junction tree algorithm
on the grid. We also formed the approximate poste-
rior p(x; θ̂ + δ), and computed approximations T̂s to



its single node marginal distributions using the tree-
reweighted BP (Algorithm 1). We performed similar
calculations using the BP-based approximate posterior
p(x; θBP + δ), where we used the ordinary BP algo-
rithm to compute approximations to its marginals.

Figure 3 shows the results of a number of experiments
on a 5×5 grid. Each of the six plots shows five trials for
one experiment and one method; plots in the top and
bottom rows correspond, respectively, to the BP-based
method and the tree-reweighted method as applied to
same problem. Within each plot, the first trial shown
in the top panel corresponds to the non-perturbed case
(δ = 0). For all of these trials, we see that the ap-
proximate marginals computed by either method are
equivalent to the exact empirical marginals, as they
should be. The remaining four panels show differ-
ent trials with independent choices of δ as described
above. For an original distribution p(x; θ) with rel-
atively weak couplings (column (a)), both methods
perform well. However, in general, for problems with
stronger weights (columns (b) and (c)), the behavior
of the BP-based method can be erratic, whereas the
tree-reweighted technique appears more stable.

Given the preliminary nature of these experimental re-
sults, there remain a number of open questions. One
important issue is a better understanding of the bias
in the approximation (i.e., difference between exact
marginals of p(x; θML + δ), and the approximations

computed from θ̂ + δ using tree-reweighted BP). At
least to first order, this bias is determined by the dif-
ference between the Fisher information matrix and the
Hessian of H. Secondly, in the simple experiments de-
scribed here, the approximate ML estimator was given
as input the exact marginals, which can be viewed as
the limit of infinite data. It would be interesting to ex-
plore the behavior of the approximate ML estimator
given only a finite sample of data. Moreover, the work
described here treated the case of perfectly observed
data. It remains to be seen if similar ideas, perhaps in
conjunction with other variational techniques [e.g., 5],
are useful in the partially observed context. Lastly, we
have not yet explored the choice of the spanning tree
probabilities µe, and its effect on approximate param-
eter estimation.

6 Discussion

Building on our previous work [8, 9, 10], we devel-
oped a family of tree-reweighted belief propagation al-
gorithms for computing an upper bound on the log
partition function, as well as the associated minimiz-
ing arguments (pseudomarginals). In the case of com-
plete observations, we showed how to use this upper
bound to derive a concave lower bound on the log like-

lihood. This lower bound has a unique global maxi-
mum, which can be obtained by performing pseudo-
moment matching. We provided the results of some
preliminary experiments to illustrate its behavior. In
fact, the method presented here is a particular type of
M-estimator, so that known techniques [7] can be used
to analyze its asymptotic behavior.

Finally, it is worthwhile to note the connection be-
tween the approximate methods described in this pa-
per, and the classical Legendre duality between the
negative entropy function and the log partition func-
tion [1, 6]. In particular, the approximation methods
in this paper are based on a parallel Legendre dual-
ity between the function G defined in equation (13),
which gives a lower bound on the negative entropy,
and the function H in equation (10), which gives an
upper bound on the log partition function. As with the
one-to-one Legendre mapping between exponential pa-
rameters and moments [1, 6, 8], our functions H and
G induce a one-to-one mapping between approximate
exponential parameters and moments.
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