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Tree-Based Reparameterization Framework for
Analysis of Sum-Product and Related Algorithms
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Abstract—We present a tree-based reparameterization (TRP)
framework that provides a new conceptual view of a large class
of algorithms for computing approximate marginals in graphs
with cycles. This class includes thebelief propagation (BP) or
sum-product algorithm as well as variations and extensions of
BP. Algorithms in this class can be formulated as a sequence of
reparameterization updates, each of which entails refactorizing a
portion of the distribution corresponding to an acyclic subgraph
(i.e., a tree, or more generally, a hypertree). The ultimate goal is to
obtain an alternative but equivalent factorization using functions
that represent (exact or approximate) marginal distributions on
cliques of the graph. Our framework highlights an important
property of the sum-product algorithm and the larger class of
reparameterization algorithms: the original distribution on the
graph with cycles is not changed. The perspective of tree-based
updates gives rise to a simple and intuitive characterization of
the fixed points in terms of tree consistency. We develop inter-
pretations of these results in terms of information geometry. The
invariance of the distribution, in conjunction with the fixed-point
characterization, enables us to derive an exact expression for
the difference between the true marginals on an arbitrary graph
with cycles, and the approximations provided by belief propa-
gation. More broadly, our analysis applies to any algorithm that
minimizes the Bethe free energy. We also develop bounds on the
approximation error, which illuminate the conditions that govern
their accuracy. Finally, we show how the reparameterization
perspective extends naturally to generalizations of BP (e.g.,
Kikuchi approximations and variants) via the notion of hypertree
reparameterization.

Index Terms—Approximate inference, belief propagation
(BP), Bethe/Kikuchi free energies, convex duality, factor graphs,
graphical models, hypergraphs, information geometry, iterative
decoding, junction tree, Markov random fields, sum-product
algorithm.
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I. INTRODUCTION

PROBABILITY distributions defined by graphs arise in a
variety of fields, including coding theory, e.g., [5], [6], arti-

ficial intelligence, e.g., [1], [7], statistical physics [8], as well as
image processing and computer vision, e.g., [9]. Given a graph-
ical model, one important problem is computing marginal dis-
tributions of variables at each node of the graph. For acyclic
graphs (i.e., trees), standard and highly efficient algorithms exist
for this task. In contrast, exact solutions are prohibitively com-
plex for more general graphs of any substantial size [10]. As a
result, there has been considerable interest and effort aimed at
developing approximate inference algorithms for large graphs
with cycles.

The belief propagation(BP) algorithm [11], [3], [1], also
known as thesum-product algorithm, e.g., [12], [13], [2], [6],
is one important method for computing approximate marginals.
The interest in this algorithm has been fueled in part by its
use in fields such as artificial intelligence and computer vision,
e.g., [14], [9], and also by the success of turbo codes and other
graphical codes, for which the decoding algorithm is a partic-
ular instantiation of belief propagation, e.g., [5], [2], [6]. While
there are various equivalent forms for belief propagation [1],
the best known formulation, which we refer to here as the BP
algorithm, entails the exchange of statistical information among
neighboring nodes via message passing. If the graph is a tree, the
resulting algorithm can be shown to produce exact solutions in
a finite number of iterations. The message-passing formulation
is thus equivalent to other techniques for optimal inference on
trees, some of which involve more global and efficient compu-
tational procedures. On the other hand, if the graph contains cy-
cles, then it is the local message-passing algorithm that is most
generally applicable. It is well known that the resulting algo-
rithm may not converge; moreover, when it does converge, the
quality of the resulting approximations varies substantially.

Recent work has yielded some insight into the dynamics and
convergence properties of BP. For example, several researchers
[15]–[17], [11] have analyzed the single-cycle case, where
belief propagation can be reformulated as a matrix powering
method. For Gaussian processes on arbitrary graphs, two
groups [18], [19], using independent methods, have shown that
when BP converges, then the conditional means are exact but
the error covariances are generally incorrect. For the special
case of graphs corresponding to turbo codes, Richardson [13]
developed a geometric approach, through which he was able to
establish the existence of fixed points, and give conditions for
their stability. More recently, Yedidiaet al.[3], [33] showed that
BP can be viewed as performing a constrained minimization of
the so-called Bethe free energy associated with the graphical
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distribution,1 which inspired other researchers (e.g., [22], [23])
to develop more sophisticated algorithms for minimizing the
Bethe free energy. Yedidiaet al.also proposed extensions to BP
based on cluster variational methods [24]; in subsequent work,
various researchers, e.g., [25], [4] have studied and explored
such extensions. Tatikonda and Jordan [26] derived conditions
for convergence of BP based on the unwrapped computation
tree and links to Gibbs measures in statistical physics. These
advances notwithstanding, much remains to be understood
about the behavior of this algorithm, and more generally about
other (perhaps superior) approximation algorithms.

This important area constitutes the focus of this paper. In
particular, the framework presented in this paper provides a
new conceptual view of a large class of iterative algorithms, in-
cluding BP, as well as variations and extensions. A key idea in
graphical models is the representation of a probability distribu-
tion as a product of factors, each of which involves variables
only at a subset of nodes corresponding to a clique of the graph.
Such factorized representations are far from unique, which sug-
gests the goal of seeking areparameterizationof the distribution
consisting of factors that correspond, either exactly or approxi-
mately, to the desired marginal distributions. If the graph is cycle
free (e.g., a tree), then there exists a unique reparameterization
specified by exact marginal distributions over cliques. Indeed,
such a parameterization is the cornerstone of the junction tree
representation (e.g., [27], [28]).

For a graph with cycles, on the other hand, exact factoriza-
tions exposing these marginals do not generally exist. Never-
theless, it is always possible to reparameterize certainportions
of any factorized representation—namely, any subset of factors
corresponding to a cycle-free subgraph of the original graph. We
are thus led to consider iterative reparameterization of different
subsets, each corresponding to an acyclic subgraph. As we will
show, the synchronous form of BP can be interpreted in exactly
this manner, in which each reparameterization takes place over
the extremely simple tree consisting of a pair of neighboring
nodes. This interpretation also applies to a broader class of up-
dates, in which reparameterization is performed over arbitrary
cycle-free subgraphs. As a vehicle for studying the concept of
reparameterization, the bulk of this paper will focus on updates
overspanning trees, which we refer to as tree-based reparam-
eterization (or TRP). However, the class of reparameterization
algorithms is broad, including not only synchronous BP, TRP,
and other variants thereof, but also various generalizations of
BP (e.g., [33]). As a demonstration of this generality, we discuss
in Section VI how reparameterization can also be performed on
hypertreesof a graph, thereby making connections with gener-
alized belief propagation [33].

At one level, just as BP message passing can be reformulated
as a particular sequence of reparameterization updates, the more
global updates of TRP are equivalent to a schedule for message
passing based on spanning trees. We find that tree-based updates
often lead to faster convergence, and can converge on problems
for which synchronous BP fails. At another level, the reparam-
eterization perspective provides conceptual insight into the na-

1Several researchers have investigated the utility of Bethe tree approximations
for graphical models; we refer the reader to, e.g., [20], [21].

ture of belief propagation and related algorithms. In particular, a
fact highlighted by reparameterization, yet not obvious from the
traditional message-passing viewpoint, is that the overall distri-
bution on the graph with cycles is never altered by such algo-
rithms. Thus, from the perspective of tree-based updates arises
a simple and intuitive characterization of BP fixed points, and
more broadly, any constrained minimum of the Bethe free en-
ergy, as atree-consistent reparameterizationof the original dis-
tribution. This characterization of the fixed points allows us to
analyze the approximation error for an arbitrary graph with cy-
cles.

In the next section, we introduce the background and nota-
tion that underlies our development. In the process, we illustrate
how distributions over trees (i.e., cycle-free subgraphs) can be
reparameterized in terms of local marginal distributions. In Sec-
tion III, we introduce the notion of TRP for graphs with cycles.
In this context, it is convenient to represent distributions in an
exponential form using an overcomplete basis. Our choice of
an overcomplete basis, though unorthodox, makes the idea of
reparameterization more transparent, and easily stated. In this
section, we also show an equivalent formulation of BP as a se-
quence of local reparameterizations. Moreover, we present some
experimental results illustrating the benefits of more global tree-
based updates, which include a greater range of problems for
which convergence is obtained, as well as typically faster con-
vergence.

Section IV contains analysis of geometry of reparameteri-
zation updates, as well as the nature of the fixed points. We
begin by formalizing the defining characteristic of all reparam-
eterization algorithms—namely, they do not change the distri-
bution on the graph with cycles, but simply yield an alterna-
tive factorization. Geometrically, this invariance means that suc-
cessive iterates are confined to an affine subspace of exponen-
tial parameters (i.e., an-flat manifold in terms of information
geometry (e.g., [30], [31]). We then show how each TRP up-
date can be viewed as a projection onto an-flat manifold
formed by the constraints associated with each tree. We prove
that a Pythagorean-type result holds for successive TRP iter-
ates under a cost function that is an approximation to the
Kullback–Leibler (KL) divergence. This result establishes inter-
esting links between TRP and successive projection algorithms
for constrained minimization of Bregman distances (e.g., [32]).
The Pythagorean result enables us to show that fixed points of
the TRP algorithm satisfy the necessary conditions to be a con-
strained local minimum of , thereby enabling us to make con-
tact with the work of Yedidiaet al. [3], [33]. In particular, the
cost function , while not the same as the Bethe free energy
[33] in general, does agree with it on the relevant constraint set.
This fact allows us to establish that TRP fixed points coincide
with points satisfying the Lagrangian stationary conditions as-
sociated with the Bethe problem (i.e., with the fixed points of
BP). An important benefit of our formulation is a new and in-
tuitive characterization of these fixed points: in particular, any
fixed point of BP/TRP must be consistent, in a suitable sense to
be defined, with respect to any singly connected subgraph; and
at least one such fixed point of this type is guaranteed to exist.
By adapting the invariance and fixed-point characterization to
the Gaussian (as opposed to discrete) case, we obtain a short
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and elementary proof of the exactness of the means when BP or
TRP converges.

Next, we turn to analysis of the approximation error arising
from application of BP and other algorithms that perform repa-
rameterization. Previous results on this error have been obtained
in certain special cases. For a single cycle, Weiss [11] derived
a relation between the exact marginals and the BP approxima-
tions, and for a binary processes showed how local corrections
could be applied to compute the exact marginals. In the context
of turbo decoding, Richardson [13] provided a heuristic anal-
ysis of the associated error. Despite these encouraging results,
a deep and broadly applicable understanding of the approxima-
tion error remains a challenging and important problem. Our
characterization of the BP fixed points, in conjunction with the
invariance property, allows us to contribute to this goal by an-
alyzing the approximation error for arbitrary graphs. In partic-
ular, our development in Section V begins with the derivation
of an exact relation between the correct marginals and the ap-
proximate marginals computed by TRP or BP. More generally,
our analysis applies to the error in any approximation given by
minimizing the Bethe free energy. We then exploit this exact
relation to derive both upper and lower bounds on the approx-
imation error. The interpretation of these bounds provides an
understanding of the conditions that govern the performance of
approximation techniques based on the Bethe approach.

In Section VI, we demonstrate how the notion of reparame-
terization also applies to generalizations of BP that operate over
higher order clusters of nodes [33], [25], [4]. In particular, we
consider analogs of TRP updates that perform reparameteriza-
tion over hypertrees of the graph, and show how our tree-based
analysis for BP extends in a natural way to these more general
hypertree-based updates. The paper concludes in Section VII
with a summary.

II. BACKGROUND

This section provides background necessary for subsequent
developments. We begin with the basics of graphical models, in-
cluding the necessary preliminaries on graph theory. (See [34],
[35] for more background on graph theory.) As for graphical
models, there are a variety of different formalisms, including
directed Bayesian networks [1], factor graphs [6], and Markov
random fields [36]. With some caveats,2 these different repre-
sentations are essentially equivalent. In this paper, we will make
use of the formalism ofMarkov random fields, which are de-
fined by undirected graphs. More details on graphical models
can be found in the books [37], [28], [7]. Next we discuss the
problem of inference in graphical models, which (for this paper)
refers to computing marginal distributions. We discuss methods
for exact inference on trees, including the message-passing up-
dates of belief propagation. We also show how exact inference
on trees can be interpreted as reparameterization, which moti-
vates our subsequent analysis for graphs with cycles.

2For example, although any directed graph can be converted to an undirected
graph [1], some structure may be lost in the process.

Fig. 1. Illustration of the relation between conditional independence and graph
separation. Here the set of nodesB separatesA andC, so thatxxx andxxx
are conditionally independent.

A. Basics of Graphical Models

An undirected graph consists of a set of nodes or
vertices that are joined by a set of edges. A
cycleis a sequence of distinct edges forming a path from a node
back to itself. Atree is a connected graph without any cycles.
In order to define an (undirected) graphical model, we place at
each node a random variable taking values in some
space. For the bulk of this paper, we focus on random variables
that take values in the discrete alphabet .
In this case, the vector takes values in the set

of all -vectors over symbols.
Of interest are distributions that are constrained by the

graph structure, where the constraints correspond to a set of
Markov properties associated with the undirected graph. Let,

, and be subsets of the vertex set. We say that the set
separates and if in the modified graph with removed,

there are no paths between nodes in the setsand (see Fig. 1).
In other words, is a cutset in the graph.

Let represent the collection of random variables in
conditioned on those in . The notion of graph separation is at
the core of the following definition.

Definition 1—Markov Random Field:A random vector is
Markovwith respect to the graph if and are con-
ditionally independent whenever separates and .

A graph strongly constrains the distribution3 of a vector
that respects its Markov properties. To express these con-

straints, we introduce the notion of a graphclique, which is any
fully connected subset of ; a clique is maximal if it is not prop-
erly contained within any other clique. Acompatibility function
on a clique is a map that depends only on the
subvector . The Hammersley–Clifford the-
orem [38], [36] then guarantees that the distribution of a Markov
process on a graph can be expressed as a product of such com-
patibility functions over the cliques:

Theorem 1—Hammersley–Clifford:Let be a graph with
a set of cliques . Suppose that a distribution is formed as a
normalized product of compatibility functions over the cliques

(1)

where is the partition function. Then,
the underlying process is Markov with respect to the graph.

3Strictly speaking,p is a probability mass function for discrete random vari-
ables; however, we will use distribution to mean the same thing.
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Conversely, the distributionof any Markov random field over
that is strictly positive (i.e., for all ) can be

represented in this factorized form.

For the bulk4 of this paper, we shall assume that the max-
imal cliques of our graph have cardinality two, an assumption
which is implicit in the standard message-passing form of BP, as
presented in Section II-B2. Given only singleton and pairwise
cliques, the clique index set ranges over all edges ,
as well as the singleton cliques . In this case, the compati-
bility functions and denote real-valued functions of
and , respectively. With a minor abuse of notation, we
will often use the same notation to refer to vectors and matrices,
respectively. In particular, for an -state discrete process, the
quantity can be also thought of as an matrix, where
the element is equal to the function value of
for . Similarly, the single-node functions
can be thought of as an-vector, where theth component
equals the value of for .

B. Estimation in Graphical Models

In many applications, the random vectoris not observed;
given instead are noisy observationsof at some (or all)
of the nodes, on which basis one would like to draw inferences
about . For example, in the context of error-correcting codes
(e.g., [2]), the collection represents the bits
received from the noisy channel, whereas the vectorrepre-
sents the transmitted codeword. Similarly, in image processing
or computer vision [8], the vector represents noisy observa-
tions of image pixels or features.

One standard inference problem, and that of central interest
in this paper, is the computation of the marginal distributions

for each node. This task, which in this paper will be
calledoptimal estimation or inference, is intractable [10], since
it requires summations involving exponentially many terms. As
indicated previously, for tree-structured graphs, there exist di-
rect algorithms for optimal estimation. For graphs with cycles,
suboptimal algorithms (such as BP) are used in an attempt to
compute approximations to the desired marginals. In this sec-
tion, we elaborate on both of these topics.

A remark before proceeding: Note that each individual node
forms a singleton clique, so that some of the factors in (1) may
involve functions of each individual variable. As a consequence,
Bayes’ rule implies that the effect of including these measure-
ments—i.e., the transformation from the prior distribution
to the conditional distribution —is simply to modify the
singleton factors of (1). As a result, throughout this paper, we
suppress explicit mention of measurements, since the problem
of computing marginals for either or are of iden-
tical structure and complexity.

1) Exact Inference on Trees as Reparameterization:Al-
gorithms for optimal inference on trees have appeared in
the literature of various fields, including coding theory [6],
artificial intelligence [1], and system theory [39]. In broad
overview, such algorithms consist of a recursive series of
updates, in which “messages” are passed from node to node.

4In Section VI, we shall consider more general Markov random fields that
may include higher order cliques.

(a)

(b)

Fig. 2. A simple example of a tree-structured graphical model. (a) Original
parameterization of distribution as in (1). (b) Alternative parameterization in
terms of marginal distributionsP andP as in (2).

The most efficient implementation of these algorithms follows
a two-pass form, first sweeping upwards from the leaves to
a node designated as the root, and then downwards from the
root to leaves, with an overall computational complexity of

.
It is worth noting that tree inference algorithms can, in prin-

ciple, be applied to any graph by clustering nodes so as to form a
so-calledjunction tree(e.g., [27], [28]). This junction tree pro-
cedure is discussed in more detail in Section VI-B. However,
in many cases of interest, the aggregated nodes of the junction
tree have exponentially large state cardinalities, meaning that
applying tree algorithms is prohibitively complex. This explo-
sion in the state cardinality is another demonstration of the in-
trinsic complexity of exact computations for graphs with cycles.

An important observation that arises from the junction
tree perspective (e.g., [27], [28]) is that any exact algorithm
for optimal inference on trees actually computes marginal
distributions for pairs of neighboring nodes. In doing so,
it produces an alternative factorization of the distribution ,
namely,

(2)

where is the marginal distribution of the variable ,
and is the joint marginal over and . As an
illustration, Fig. 2(a) shows a simple example of a tree-struc-
tured distribution, specified in terms of compatibility functions

and , as in the factorization of (1). Fig. 2(b) shows this
same tree-structured distribution, nowreparameterizedin terms
of the local marginal distributions and . The representa-
tion of (2) can be deduced from a more general factorization
result on junction trees (e.g., [28], [27]). More concretely, (2)



1124 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

can be seen as a symmetrized generalization of the well-known
factorization(s) of Markov chains. For example, the variables
at the three nodes in Fig. 2(b) form a simple Markov
chain, meaning that the joint distribution can be written as

where the last equality is precisely the form of (2). Note that the
final line removes the asymmetry present in the preceding lines
(which resulted from beginning the factorization from node 1,
as opposed to node 2 or 4).

We thus arrive at an alternative interpretation of exact infer-
ence on trees: it entails computing a reparameterized factoriza-
tion of the distribution that explicitly exposes the local
marginal distributions; and also does not require any additional
normalization (i.e., with partition function ).

2) Belief Propagation for Graphs With Cycles:As we have
indicated, the message-passing form of BP, in addition to being
exact in application to trees, yields an iterative message-passing
algorithm for graphs with cycles. In this subsection, we sum-
marize for future reference the equations governing the BP dy-
namics. The message passed from nodeto node , denoted
by , is an -vector in which element gives its value
when . Let be the set of
neighbors of in . With this notation, the message at iteration

is updated based on the messages at the previous itera-
tion as follows:

(3)

where denotes a normalization constant.5 At any iteration,
the “beliefs”—that is, approximations to the marginal distribu-
tions—are given by

(4)

III. T REE-BASED REPARAMETERIZATION FRAMEWORK

In this section, we introduce the class of TRP updates. Key
to TRP is the concept of a tree-structured subgraph of an ar-
bitrary graph with cycles—i.e., a tree formed by removing
edges from the graph. Aspanning treeis an acyclic subgraph
that connects all the vertices of the original graph. Fig. 3 illus-
trates these definitions: Fig. 3(a) shows a nearest neighbor grid,
whereas Fig.3 (b) illustrates a spanning tree. Of course, Fig.3
(b) is just one example of a spanning tree embedded in the orig-
inal graph (a). Indeed, a graph generally has a (large) number
of spanning trees,6 and we exploit this fact in our work. Specif-
ically, suppose that (with corresponding edge
sets ) is a given set of spanning trees for

5Throughout this paper, we will use� to refer to an arbitrary normalization
constant, the definition of which may change from line to line. In all cases, it is
easy to determine� by local calculations.

6In general, the number of spanning trees can be computed by the matrix-tree
theorem (e.g., [34]).

(a)

(b)

Fig. 3. A graph with cycles has a (typically large) number of spanning trees.
(a) Original graph is a nearest neighbor grid. Panel (b) shows one of the 100 352
spanning trees of the graph in (a).

the graph . Then, for any , the distribution
can be factored as

(5)

where includes the factors in (1) corresponding to cliques
of , and absorbs the remaining terms, corresponding to
edges in removed to form .

Because is a tree, the reparameterization operation in (2)
can be applied to the tree-structured distribution in order
to obtain an alternative factorization of the distribution .
With reference to the full graph and distribution , this
operation simply specifies an alternative choice of compatibility
functions that give rise to the same distribution . In a sub-
sequent update, using this new set of functions and choosing
a different tree , we can write , where

includes compatibility functions over cliques in . We
can then perform reparameterization for , and repeat the
process, choosing one of the at each step of the iteration.

The basic steps of this procedure are illustrated for a simple
graph in Fig. 4. Fig. 4(a) shows the original parameterization of

in terms of compatibility functions and , as in (1).
A spanning tree, formed by removing edges and ,
is shown in Fig.4(b); that is,

in this case. The tree distribution , corresponding to the
product of all the other compatibility functions, is reparameter-
ized in terms of marginals and computed from the tree

, as shown in panel (c). Note that the quantities
are exact marginals for the tree, but represent approximations to
the true marginals of the full graph with cycles. The
graph compatibility functions after this first update are shown
in panel (d). In a subsequent update, a different tree is chosen
over which reparameterization is to be performed.
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(a) (b)

(c) (d)

Fig. 4. Illustration of a TRP update. (a) Original parameterization in terms of
compatibility functions and . (b) Isolate terms corresponding to a tree
T . (c) Reparameterize the tree-structured componentp (xxx) of the distribution
in terms of the tree marginalsfT ; T g. (d) New parameterization of the full
distribution after a single iteration.

At one level, the sequence of updates just described is equiva-
lent to a particular tree-based schedule for BP message passing.
In particular, each tree update consists of fixing all messages
on edges not in the tree, and updating messages on the tree
edges until convergence. However, thinking about reparameteri-
zation instead of message passing highlights an important prop-
erty: each step of the algorithm7 entails specifying an alternative
factorization of the distribution , and therefore, leaves the
full distribution intact. To formalize this basic idea, in this sec-
tion, we introduce a particular parameterization of distributions

, such that iterations of the type just described can be
represented as explicit functional updates on these
parameters. We also show that synchronous BP can be inter-
preted as performing reparameterization updates over especially
simple (nonspanning) trees, and we present experimental results
illustrating the potential advantages of tree-based updates over
synchronous BP.

A. Exponential Families of Distributions

Central to our work are exponential representations of distri-
butions, which have been studied extensively in statistics and
applied probability theory (e.g., [31], [40], [30], [41], [42]).
Given an index set , we consider a collection of potential func-
tions associated with the graph. We let

denote a vector of parameters, and then con-
sider following distribution:

(6a)

7Here we have described an unrelaxed form of the updates; in the sequel, we
present and analyze a suitably relaxed formulation.

(6b)

Here, is thelog partition functionthat serves to normalize the
distribution. As the exponential parameterranges over
where , (6) specifies a family of distributions asso-
ciated with the given graph.

The log partition function has a number of useful proper-
ties that we will exploit in subsequent analysis. In particular, by
straightforward calculations, we obtain

(7a)

(7b)

where denotes the expectation taken overwith respect to
the distribution ; that is, .
We note that the quantity in (7b) is an element of the Fisher in-
formation matrix . Therefore, the Hessian

is positive semidefinite, so thatis a convex function of.
In addition, the exponential parameterization of (6) induces

a certain form for the KL divergence [43] that will be useful in
the sequel. Given two parameter vectorsand , we denote by

the KL divergence between the distributions
and . This divergence can be written in the following
form:

(8)

Note that this definition entails a minor abuse of notation, since
the divergence applies to distributions and ,
and not the parametersand themselves.

It remains to specify a choice of functions . Let
be indexes parameterizing the nodes of the graph, and

let the indexes run over the possible states of the discrete
random variables. We then take the index setto be the set of
pairs or -tuples , and choose the potentials
as indicator functions for to take on the indicated value (or
values) at the indicated node (or pair of nodes). That is,

for (9a)

for (9b)

Here, the indicator function is equal to when node
takes the state value, and otherwise. With this choice of

, the length of is given by

(10)

where is the number of edges in. Moreover, note that the
exponential representation is related to the compatibility func-
tions (as in, e.g., (1)) via the relation

with a similar relation for and .
It is typical to choose a linearly independent collection of

functions, which gives rise to a so-calledminimalrepresentation
(e.g., [40]). In this context, the exponential parameterization of
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(9) is unorthodox because it isovercomplete(i.e., there are affine
relations among the functions ). As an example, for
any edge , we have the linear dependence

for all

An important consequence of overcompleteness is the existence
of distinct parameter vectors that induce the same distri-
bution (i.e., ). This many-to-one correspon-
dence between parameters and distributions is of paramount im-
portance to our analysis because it permits reparameterization
operations that leave the overall distribution unchanged.

B. Basic Operators

Given a distribution defined by a graph , the quan-
tities that we wish to compute are elements of the -dimen-
sional marginal probability vector . The
elements of this marginal probability vector are given by

for

for

corresponding to the single-node and joint pairwise marginals,
respectively. We use to denote the -vector of values

, and define the -vector in an
analogous way. Such vectors can be viewed as an alternative
set of parameters for a graphical distribution. More precisely,
the quantities and are a dual set of parameters, related via
the Legendre transform applied to the log partition function
(see [41], [44], [45]).

We will frequently need to consider mappings between these
two parameterizations. In particular, the computation of the
marginals can be expressed compactly as a map acting on the
parameter vector

(11)

Note that the range of is a highly constrained set. Its ele-
ments correspond torealizablemarginal vectors, so that we use

to denote the range of. First of all, any realizable
marginal vector must belong to the unit hypercube .
Second, there are normalization constraints (single-node and
joint marginal probabilities must sum to one); and marginal-
ization constraints (pairwise joint distributions, when marginal-
ized, must be consistent with the single node marginals). That
is, is contained within the constraint set ,
defined as follows:

(12)

Our choice of notation is motivated by the fact that for a
tree-structured graph , we have the equivalence

. More specifically, given some
element of , the local constraints imposed on
are sufficient to guarantee the existence of a unique distribution

such that . This fact—that local consistency

implies global consistency for trees—is the essence of the
junction tree theorem (see, e.g., [28]).

For a graph with cycles, in contrast, there exist elements
of that cannot be realized as the marginals of any
distribution (see [45]), so that is strictly contained
within . This strict containment reflects the fact that
for a graph with cycles, local consistency is no longer sufficient
to guarantee the existence of a globally consistent distribution.

For a general graph with cycles, of course, the computation
of in (11) is very difficult. Indeed, algorithms like BP and
TRP can be formulated as iteratively generating approximations
to . To make a sharp distinction from exact marginal vectors

, we use the symbol to denote
suchpseudomarginals. Moreover, when the graph is clear
from the context, we will simply write and to
denote and , respectively.

We also make use of the following mapping that is defined
for any :

if

if

(13)

The quantity can be viewed as an exponential parameter
vector that indexes a distribution on the graph .
In fact, consider a marginal vector . If is a
tree, then not only is the computation of (11) simple, but we are
also guaranteed indexes the same graphical distribution
as that corresponding to the marginal vector; that is,

(14)

This equality is simply a restatement of the factorization of (2)
for any tree-structured distribution in terms of its single-node
and joint pairwise marginals. However, if has cycles, then,
in general, the marginal distributions of need not
agree with the original marginals (i.e., the equality of (14)
does not hold). In fact, determining the exponential parameters
corresponding to for a graph with cycles is as difficult as the
computation of in (11). Thus, the composition of operators

, mapping one marginal vector to another, is the identity
for trees but not for general graphs.

Alternatively, we can consider composing and in the
other order

(15)

which defines a mapping from one exponential parameter vector
to another. For a general graph, the operatorwill alter the
distribution (that is, ). For a tree-struc-
tured graph, while is not the identity mapping, it does leave
the probability distribution unchanged; indeed, applyingcor-
responds to shifting from the original parameterization of the
tree distribution in terms of to a new exponential parameter

that corresponds directly to the factorization of (2). As a
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result, in application to trees, the operatoris idempotent (i.e.,
).

C. TRP Updates

The basic idea of TRP is to perform reparameterization up-
dates on a set of spanning trees in succession. We assume that
each edge in the graph belongs to at least on spanning tree in the
collection . The update on any given spanning
tree involves only a subset

of all the elements of . To move back and forth between pa-
rameter vectors on the full graph and those on spanning tree,
we define projection and injection operators

(16a)

if

if .
(16b)

We let , , and denote operators analogous to those in
(11), (13), and (15), respectively, but as defined for.

Each TRP update acts on the full-dimensional vector,
but changes only the lower dimensional subvector

. For this reason, it is convenient to use the
underbar notation to define operators of the following type:

(17a)

(17b)

For instance, projects the exponential parameter vector
onto spanning tree , computes the corresponding marginal
vector for the distribution induced on the tree,
and then injects back to the higher dimensional space by in-
serting zeroes for elements of edges not in(i.e., for indexes

). Moreover, analogous to , we define a con-
straint set by imposing marginalization constraints only
for edges in the spanning tree (i.e., as in (12) withreplaced
by ). Note that , and since every edge is in-
cluded in at least one spanning tree, we have that

.
Using this notation, the operation of performing tree repa-

rameterization on spanning tree can be written compactly as
transforming a parameter vectorinto the new vector given by

(18a)

(18b)

where is the identity operator. The two terms in (18a) par-
allel the decomposition of (5): namely, the operatorperforms
reparameterization of the distribution , whereas the oper-
ator corresponds to leaving the residual term
unchanged. Thus, (18a) is a precise statement of a spanning tree
update (as illustrated in Fig. 4), specified in terms of the expo-
nential parameter.

Given a parameter vector, computing is straightfor-
ward, since it only involves operations on the spanning tree.
The TRP algorithm generates a sequence of parameter vectors

by successive application of these operators. The se-
quence is initialized8 at using the original set of compatibility
functions and as follows:

if

if .

At each iteration , we choose some spanning tree index
from , and then update using the operator on
spanning tree

(19)

In the sequel, we also consider a relaxed iteration, involving a
step size for each iteration

(20)

where recovers the unrelaxed version.
The only restriction that we impose on the set of spanning

trees is that each edge of the full graphis included in at
least one spanning tree (i.e., ). It is also necessary
to specify an order in which to apply the spanning trees—that
is, how to choose the index . A natural choice is thecyclic
ordering, in which we set . More generally,
any ordering—possibly random—in which each spanning tree
occurs infinitely often is acceptable. A variety of possible order-
ings for successive projection algorithms are discussed in [32].

In certain applications (e.g., graphical codes), some of the
compatibility functions may include zeroes that reflect deter-
ministic constraints (e.g., parity checks). In this case, we can ei-
ther think of the reparameterization updates as taking place over
exponential parameters in the extended reals , or
more naturally, as operating directly on the compatibility func-
tions themselves.

D. Belief Propagation as Reparameterization

In this subsection, we show how to reformulate synchronous
BP in “message-free” manner as a sequence of local rather than
global reparameterization operations. Specifically, in each step,
new compatibility functions are determined by performing exact
calculations over extremely simple (nonspanning) trees formed
of two nodes and the corresponding edge joining them.

We denote by the -vector corresponding to the chosen
initialization of the messages. This choice is often the vector of
all ones, but any initialization with strictly positive components
is permissible. The message-free version of BP iteratively up-
dates approximations to the collection of exact marginals

. Initial values of the pseudomarginals
are determined from the initial messages and the original
compatibility functions of the graphical model as follows:

(21a)

(21b)

where denotes a normalization factor.

8Other initializations are also possible. More generally,� can be chosen as
any exponential parameter that induces the same distribution as the original
compatibility functionsf g andf g.
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(a) (b)

Fig. 5. (a) Single cycle graph. (b) Two-node trees used for updates in
message-free version of belief propagation. Computations are performed
exactly on each two-node tree formed by a single edge and the two associated
observation potentials as in (22b). The node marginals from each two-node
tree are merged via (22a).

At iteration , these pseudomarginals are updated according
to the following recursions:

(22a)

(22b)

The update in (22b) is especially noteworthy: it corresponds
to performing optimal estimation on the very simple two-node
tree formed by edge . As an illustration, Fig. 5(b) shows
the decomposition of a single-cycle graph into such two-node
trees. This simple reparameterization algorithm operates by per-
forming optimal estimation on this set of nonspanning trees,
one for each edge in the graph, as in (22b). The single-node
marginals from each such tree are merged via (22a).

We now claim that this reparameterization algorithm is equiv-
alent to belief propagation, summarizing the result as follows.

Proposition 1: The reparameterization algorithm specified
by (21) and (22) is equivalent to the message-passing form of BP
given in (3) and (4). In particular, for each iteration
and initial message vector , we have the following relations:

(23a)

(23b)

where denotes a normalization factor.
Proof: These equations can be established by induction on

iteration , using the BP equations (3) and (4), and the reparam-
eterization equations (21) and (22).

E. Empirical Comparisons of Local Versus Tree-Based
Updates

Given that a spanning tree reaches every node of the graph,
one might expect tree-based updates, such as those of TRP, to
have convergence properties superior to those of local updates
such as synchronous BP. As stated previously, a single TRP up-
date on a given spanning tree can be performed by fixing all
the messages on edges not in tree, and updating messages on
edges in the tree until convergence. Such tree-based message

updating schedules are used in certain applications of BP like
turbo decoding [2], for which there are natural choices of trees
over which to perform updates. In this subsection, we provide
experimental evidence supporting the claim that tree-based up-
dates can have superior convergence properties for other prob-
lems. An interesting but open question raised by these exper-
iments is how to optimize the choice of trees (not necessarily
spanning) over which to perform the updates.

1) Convergence Rates:In this subsection, we report the re-
sults of experiments on the convergence rates of TRP and BP
on three graphs: a single cycle with 15 nodes, a nearest
neighbor grid, and a larger grid. At first sight, the more
global nature of TRP might suggest that each TRP iteration is
more complex computationally than the corresponding BP it-
eration. In fact, the opposite statement is true. Each TRP up-
date corresponds to solve a tree problem exactly, and therefore
requires operations.9 In contrast, each itera-
tion of synchronous BP requires operations, where

is the number of edges in the graph. In order to
make comparisons fair in terms of actual computation required,
the iteration numbers that we report are rescaled in terms of rel-
ative cost (i.e., for each graph, TRP iterations are rescaled by the
ratio ). In all cases, we used unrelaxed updates
for both BP and TRP.

For each graph, we performed simulations under three con-
ditions: edge potentials that arerepulsive(i.e., that encourage
neighboring nodes to take opposite values);attractive(that en-
courage neighbors to take the same value); andmixed(in which
some potentials are attractive, while others are repulsive). For
each of these experimental conditions, each run involved a
random selection of the initial parameter vector defining
the distribution . In all experiments reported here,
we generated the single-node parameters as follows:10

for each node , sample , and set
. To generate the edge potential com-

ponents , we began by sampling for each
edge , With denoting the Kronecker delta for ,
we set the edge potential components in one of three ways
depending on the experimental condition. For therepulsive
condition, we set ; for theattractive
condition, ; whereas for themixed
condition, .

For each experimental condition, we performed a total of 500
trials for each of the single cycle and grid, comparing
the performance of TRP to BP. On any given run, an algo-
rithm was deemed to converge when the meandifference be-
tween successive node elements reached
a threshold of . A run in which a given algorithm
failed to reach this threshold within 3000 iterations was clas-
sified as a failure to converge. In each condition, we report the
total number of convergent trials (out of 500); and also the mean
number of iterations required to converge, rescaled by the ratio

and based only on trials where both TRP and BP
converged.

9Here we are using the fact that a tree problem can be solved efficiently by a
two-pass sweep, where exactly two messages are passed along each edge of the
graph.

10The notationN (0; � ) denotes a zero-mean Gaussian with variance� .
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TABLE I
COMPARISON OFCONVERGENCEBEHAVIOR OF TRP VERSUSBP FOR A SINGLE CYCLE OF 15 NODES; AND A 7� 7 GRID. POTENTIALS WERECHOSENRANDOMLY

IN EACH OF THETHREECONDITIONS: REPULSIVEPOTENTIALS (R), ATTRACTIVE POTENTIALS (A), MIXED POTENTIALS (M). FIRST AND SECONDNUMBERS IN

EACH BOX DENOTE THENUMBER OF CONVERGENTRUNS OUT OF 500;AND THE MEAN NUMBER OF ITERATIONS (RESCALED BY RELATIVE COST AND

COMPUTED USING ONLY RUNS WHERE BOTH TRPAND BP CONVERGED)

Table I shows some summary statistics for the two graphs
used in these experiments. For the single cycle, we implemented
TRP with two spanning trees, whereas we used four spanning
trees for the grid. Although both algorithms converged on all
trials for the single cycle, the rate of TRP convergence was sig-
nificantly (roughly three times) faster. For the grid, algorithm
behavior depends more on the experimental condition. The re-
pulsive and attractive conditions are relatively easy,11 though
still difficult enough for BP that it failed to converge on roughly
10% of the trials, in contrast to the perfect convergence per-
centage of TRP. In terms of mean convergence rates, TRP con-
verged more than twice as quickly as BP. The mixed condi-
tion is difficult for suitably strong edge potentials on a grid: in
this case both algorithms failed to converge on almost half the
trials, although TRP converged more frequently than BP. More-
over, on runs where both algorithms converged, the TRP mean
rate of convergence was roughly three times faster than BP. Al-
though mean convergence rates were faster, we did find indi-
vidual problems on the grid for which the version of TRP with
four trees converged more slowly than BP. However, one possi-
bility (which we did not take advantage of here) is to optimize
the choice of trees in an adaptive manner.

We also examined convergence behavior for the grid
with 1600 nodes, using a version of TRP updates over two span-
ning trees. Fig. 6 provides an illustration of the convergence be-
havior of the two algorithms. Plotted on a log scale is thedis-
tance between the single-node elements ofand at each it-
eration, where is a fixed point common to BP and TRP, versus
the iteration number. Again, the TRP iteration are rescaled by
their cost relative to BP iterations , which for this
large grid is very close to . Fig. 6 (a) illustrates a case with
repulsive potentials, for which the TRP updates converge quite
a bit faster than BP updates. Examples in the attractive condi-
tion show similar convergence behavior. Fig. 6 (b) and (c) shows
two different examples, each with a mixed set of potentials. The
mixed condition on the grid is especially difficult due to the
possibility of conflicting or frustrated interactions between the
nodes. For the problem in Fig. 6 (b), the two spanning trees used
for this particular version of TRP are a good choice, and again
lead to faster convergence. The potentials for the problem in
Fig. 6 (c), in contrast, cause difficulties for this pair of spanning
trees; note the erratic convergence behavior of TRP.

Each TRP update ignores some local interactions corre-
sponding to the edges removed to form the spanning tree.
These edges are covered by other spanning trees in the set

11In fact, on a bipartite graph like the nearest neighbor grid, the repulsive and
attractive conditions are equivalent.

used; however, it remains an open question how to choose trees
so as to maximize the rate of convergence. In this context, one
could imagine a hybrid algorithm in which pure synchronous
BP iterations are interspersed with iterations over more global
structures like trees (not necessarily spanning). The exploration
of such issues remains for future research.

2) Domain of Convergence:We have also found that tree-
based updates can converge for a wider range of potentials than
synchronous BP. The simple five-node graph shown in Fig. 7(a)
serves to illustrate this phenomenon. We simulated a binary
process over a range of potential strengthsranging from
to . Explicitly, for each value of , we made a determin-
istic assignment of the potential for each edge of the graph
as . For each potential strength, we con-
ducted 100 trials, where on each trial the single-node potentials
were set randomly by sampling and setting

. On any given trial, the convergence
of a given algorithm was assessed as in Section III-E1. Plotted
in Fig. 7(b) is the percentage of successfully converged trials
versus potential strength for TRP and BP. Both algorithms ex-
hibit a type of threshold behavior, in which they converge with
100% success up to a certain potential strength, after which their
performance degrades rapidly. However, the tree-based updates
extend the effective range of convergence.12 To be fair, recently
proposed alternatives to BP for minimizing the Bethe free en-
ergy (e.g., [23], [22]), though they entail greater computational
cost than the updates considered here, are guaranteed to con-
verge to a stationary point.

IV. A NALYSIS OF GEOMETRY AND FIXED POINTS

In this section, we present a number of results related to the
geometry and fixed points of reparameterization algorithms like
TRP and BP. The defining characteristic of a reparameterization
algorithm is that the original distribution is never altered. Ac-
cordingly, we begin in Section IV-A with a formal statement of
this property in terms of exponential parameters, and then es-
tablish its validity for the more general class of relaxed updates.
We also develop the geometric interpretation of this result: all
iterates are confined to an affine subspace of the exponential pa-
rameters (i.e., an-flat manifold in information geometry [30],
[40]). Motivated by this geometric view, we show that a TRP
update can be viewed as a projection onto the tree constraint set

. This projection is defined by a particular cost function,

12This result is not dependent on the symmetry of the problem induced by our
choice of edge potentials; for instance, the results are similar if edge potentials
are perturbed from their nominal strengths by small random quantities.
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(a) (b)

(c)

Fig. 6. Convergence rates for TRP versus BP on a40� 40 grid. Plotted on a log scale is theL distance( j� � � j ) from current iterate� to fixed
point� versus iteration numbern. In all cases, both BP and TRP converge to the same fixed point� . (a) Repulsive potentials. (b) Mixed potentials. (c) Particular
choice of mixed potentials that causes difficulty for TRP.

defined in Section IV-B, that arises as an approximation to the
KL divergence and agrees with the Bethe free energy [3] on
the constraint set. In Section IV-C, we show that successive
TRP iterates satisfy a Pythagorean relation with respect to this
cost function. This result is of independent interest because it
establishes links to successive projection techniques for con-
strained minimization of Bregman distances (e.g., [32]). In Sec-
tion IV-D, we use this Pythagorean relation to prove that fixed
points of the TRP algorithm satisfy necessary conditions to be
a constrained minimum of this cost function. By combining our
results with those of Yedidiaet al. [3], we conclude that fixed
points of the TRP algorithm coincide with those of BP. The
Pythagorean result also allows us to formulate a set of sufficient
conditions for convergence of TRP in the case of two spanning
trees, which we briefly discuss in Section IV-E. In Section IV-F,
we provide an elementary proof of the result originally devel-
oped in [19], [18] concerning the behavior of BP for jointly
Gaussian distributions.

A. Geometry and Invariance of TRP Updates

Highlighted by our informal setup in Section III is an im-
portant property of reparameterization algorithms like TRP and
BP—namely, they do not change the original distribution on the

graph with cycles. In this section, we formalize this notion of in-
variance, and show that it also holds for the more general class of
relaxed updates in (20). On the basis of this invariance, we pro-
vide an illustration of the TRP updates in terms of information
geometry [41], [31], [46]. This geometric perspective provides
intuition and guides our subsequent analysis of reparameteriza-
tion algorithms and their fixed points.

From the perspective of reparameterization, a crucial feature
of the exponential parameterization defined in (9) is its over-
completeness. For this reason, given a fixed exponential param-
eter , it is interesting to consider the following subset of :

(24)

where denotes the length of as defined in (10). This set
can be seen to be a closed submanifold of —in particular,
note that it is the inverse image of the pointunder the contin-
uous mapping .

In order to further understand the structure of , we need
to link the overcomplete parameterization to a minimal param-
eterization, specified by a linearly independent collection of
functions. To illustrate the basic intuition, we begin with the
special case of binary-valued nodes . In this case, the
indicator functions of the-representation can be expressed as
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(a)

(b)

Fig. 7. (a) Simple five-node graph. (b) Comparison of BP and TRP
convergence percentages versus function of potential strength on graph
in (a). Plotted along the abscissa as a measure of potential strength is the
multi-informationD(p(xxx; �) k p(x ; �)). Both TRP and BP exhibit a
threshold phenomenon, with TRP converging for a wider range of potentials.

linear combinations of the functions and . For example,
we have . Thus, in the binary
case, a minimal parameterization is given by

(25)

Such a model is known as the Ising model in statistical physics
(e.g., [8]).

These ideas are extended readily to discrete processes with
states. In general, for a graph with pairwise cliques, the

following collection of functions constitute a minimal represen-
tation:

(26a)

(26b)

As in the binary case illustrated above, we letbe a parameter
vector of weights on these functions.

In contrast to the overcomplete case, the minimal represen-
tation induces a one-to-one correspondence between parameter
vectors and distributions . Therefore, associated with
the distribution is a unique vector such that

. The dimension of the exponential family (see [30]) is
given by the length of , which we denote by . From (26),
we see that this dimension is

where is the number of edges in the graph. On the basis of
these equivalent representations, the set can be charac-
terized as follows.

Lemma 1: The set of (24) is an affine subspace (-flat
submanifold) of of dimension . It has the form

, where is an appropriately defined
matrix of constraints.

Proof: See Appendix A.

Based on this lemma, we can provide a geometric statement
and proof of the invariance of TRP updates, as well as message-
passing algorithms.

Theorem 2—Invariance of Distribution:
a) Any sequence of TRP iterates , whether relaxed or

unrelaxed, specifies a sequence of reparameterizations of the
original distribution on the graph with cycles. More specifically,
for any , the iterate belongs to the set

b) Similarly, any form of BP message passing, when suitably
reformulated (see Section III-D), specifies a sequence of repa-
rameterizations.

Proof:
a) As previously described, the unrelaxed TRP update of

(19) does indeed leave the distribution unchanged, so that
for all . The relaxed update of (20) is nothing

more than a convex combination of two exponential vectors
( and ) that parameterize the same distribution, so
that by recourse to Lemma 1, the proof of the first statement
is complete. As noted earlier, is a closed submanifold,
so that any limit point of the sequence must also belong
to .

b) Given a message-passing algorithm, the messages
at iteration define a set of pseudomarginals as follows:

(27a)

(27b)

Note that from these definitions, it follows that for any
edge , the ratio is proportional to

. Using this observation, we see that the
product

is proportional to the following expression:

Now for any edge , consider the message . Note
that it appears once in the numerator (in the definition of),
and once in the denominator (in the edge term). There-
fore, all messages cancel out in the product, and we are left with
the assertion that the pseudomarginals specify a reparameteriza-
tion of the original distribution.
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Fig. 8. Geometry of tree-reparameterization updates in the exponential
domain. Iterates are confined to the linear manifoldM(� ). Curved lines
within M(� ) correspond to the intersection� (TREE ) \ M(� ), for a
particular spanning tree constraint set�(TREE ). Each update entails moving
along the line between� and the pointQ (� ) on�(TREE ). Any
fixed point � belongs to the intersection of�(TREE) = \ �(TREE )
withM(� ).

Theorem 2a) and Lemma 1 together lead to a geometric un-
derstanding of the TRP updates in the exponential domain (i.e.,
in terms of the parameter vector). In order to describe this ge-
ometry, consider the image of the constraint set under the
mapping ; it is a subset of the exponential domain, which we
denote by . Any vector must satisfy
certain nonlinear convex constraints (e.g.,

for all ; and for all
). For each spanning tree constraint set , we

also define the image in an analogous manner. Note
that for any , the updated is guaranteed to belong to

. Moreover, the setup of the algorithm ensures that
.

Fig. 8 illustrates the geometry of TRP updates. The sequence
of iterates remains within the linear manifold .
In terms of information geometry [30], this manifold is-flat,
since it is linear in the exponential parameters. Note that
and each are defined by linear constraints in terms of
the (pseudo)marginal , and so are -flat manifolds. Each set

is a curved manifold in the space of exponential
parameters. Therefore, the intersection
forms a curved line, as illustrated in Fig. 8. Each update consists
of moving along the straight line between the current iterate,
and the point obtained by applying the tree reparame-
terization operator . By construction, the vector
belongs to the constraint set . The ultimate goal
of a reparameterization algorithm is to obtain a pointin the
intersection of all the tree constraint sets.

B. Approximation to the KL Divergence

Based on the geometric view illustrated in Fig. 8, an unre-
laxed TRP update corresponds to moving fromto the point

in the constraint set . We now show
that this operation shares certain properties of a projection
operation—that is, it can be formulated as finding a point in

that is closest to in a certain sense. The cost
function , central to our analysis, arises as an approximation
to the KL divergence [43], one which is exact for a tree.

Let be a pseudomarginal vector, and let
be a parameter vector for the original graphwith cycles. As

building blocks for defining the full cost function, we define
functions for each nodeand edge as follows:

(28)

We then define the cost function as

(29)

This cost function is equivalent to the Bethe free energy [3]
when belongs to the constraint set , but distinct for
vectors that do not satisfy the marginalization constraints
defining membership in .

To see how is related to the KL divergence, as defined in
(8), consider the analogous function defined on spanning tree

for a vector

(30)

where and are exponential parameter vectors and
marginal vectors, respectively, defined on. With the expo-
nential parameterization of (9) applied to any tree, we have

for all indexes . As a result,
the function is related to the KL divergence as follows:

(31)
In establishing this equivalence, we have used the fact that
the partition function of the factorization in (2) is unity,
so that the corresponding log partition function is zero (i.e.,

). Therefore, aside from an additive constant
independent of , the quantity ,

when viewed as a function of , is equivalent to the KL
divergence.

Now consider the problem of minimizing the KL divergence
as a function of , subject to the constraint . The
KL divergence in (31) assumes its minimum value of zero at the
vector of correct marginals on the spanning tree—namely

By the equivalence shown in (31), minimizing the function
over will also yield the same

minimizing argument .
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For the original graph with cycles, the cost functionof (29)
is not equivalent to the KL divergence. The argument leading
up to (31) cannot be applied because for a gen-
eral graph with cycles. Nevertheless, this cost function lies at the
core of our analysis of TRP. Indeed, we show in Section IV-C
how the TRP algorithm shares certain properties of a successive
projection technique for constrained minimization of the cost
function , in which the reparameterization update on spanning
tree as in (19) corresponds to a projection onto constraint
set . Moreover, since agrees with the Bethe free en-
ergy [3] on the constraint set , this allows us to establish
equivalence of TRP fixed points with those of BP.

C. Tree Reparameterization Updates as Projections

Given a linear subspace and a vector , it is
well known [47] that the projection under the Euclidean norm
(i.e., ) is characterized by an orthog-
onality condition, or equivalently a Pythagorean relation. The
main result of this subsection is to show that a similar geometric
picture holds for TRP updates with respect to the cost function

. In stating the result, we let denote a pseudomarginal
vector13 such that .

Proposition 2—Pythagorean Relation:Assume that the se-
quence generated by (19) remains bounded. Let
be the tree index used at iteration. Then, for all

(32)

Proof: See Appendix C.

A result analogous to (32) holds for the minimum of a
Bregman distance over a linear constraint set (e.g., [32]).
Well-known examples of Bregman distances include the Eu-
clidean norm, as well as the KL divergence. Choosing the KL
divergence as the Bregman distance leads to the I-projection in
information geometry (e.g., [41]), [31], [46].

Even when the distance is not the Euclidean norm, results
of the form in (32) are still called Pythagorean, because the
function plays the role (in a loose sense) of the squared Eu-
clidean distance. This geometric interpretation is illustrated in
Fig. 9. For the unrelaxed updates, we use to denote the
pseudomarginal satisfying . The three points ,

, and are analogous to the vertices of a right triangle, as
drawn in Fig. 9. We project the point onto the constraint set

, where the function serves as the distance measure.
This projection yields the point , and we have
depicted its relation to an arbitrary also in .

It is worthwhile comparing Fig. 9 to Fig. 8, which repre-
sent the same geometry in the two different coordinate systems.
Fig. 9 gives a picture of a single TRP update in terms of pseu-
domarginal vectors ; in this coordinate system, the constraint
set is affine and hence illustrated as a plane. Fig. 8 pro-

13For an arbitrary exponential parameter� , this will not always be possible.
For instance, observe that the image of the open unit hypercube(0; 1) under
the map� is not all of , since, for example, given any pseudomarginalT 2

(0; 1) , we have[�(T )] = logT < 0. Nonetheless, for unrelaxed
updates producing iterates� , it can be seen that the inverse image of a point
� under� will be nonempty as soon as each edge has been updated at least
once, in which case we can construct the desiredT .

Fig. 9. Illustration of the geometry of Proposition 2. The pseudomarginal
vector T is projected onto the linear constraint setTREE . This yields
the pointT that minimizes the cost functionG over the constraint set
TREE .

vides a similar picture in terms of the exponential parameters.
The nonlinear mapping transforms this constraint set
to its analog in the exponential domain. As a conse-
quence of the nonlinearity, the sets in Fig. 8 are rep-
resented by curved lines in exponential coordinates. In Fig. 9, a
single TRP update corresponds to moving along the straight line
in exponential parameters between and the point

that belongs in . Conversely,
in Fig. 9, this same update is represented by moving along the
curved line between and .

D. Characterization of Fixed Points

Returning to the Euclidean projection example at the start of
Section IV-C, consider again the problem of projecting
onto the linear constraint set . Suppose that constraint
set can be decomposed as the intersection . Whereas
it may be difficult to compute directly the projection ,
performing projections onto the larger linear constraint sets
is often easier. In this scenario, one possible strategy for finding
the optimal projection is to start at , and then perform a
series of projections onto the constraint sets in succession.
In fact, such a sequence of projections is guaranteed [32] to
converge to the optimal approximation .

More generally, a wide class of algorithms can be formulated
as successive projection techniques for minimizing a Bregman
distance over a set formed by an intersection of linear constraints
[32]. An example that involves a Bregman distance other than
the Euclidean norm is the generalized iterative scaling algorithm
[48], used to compute projections involving the KL divergence.
A Pythagorean relation analogous to (32) is instrumental in es-
tablishing the convergence of such techniques [46], [32].

The problem of interest here is similar, since we are interested
in finding a point belonging to a constraint set formed as an
intersection of linear constraint sets (i.e., ).
However, the function is certainly not a Bregman distance
since, for instance, it can assume negative values; moreover, the
TRP update at iterationminimizes , as opposed to the full

. Nonetheless, the Pythagorean result in Proposition 2 allows
us to show that any bounded fixed pointof the TRP algorithm
satisfies the necessary conditions for it to be a local minimum
of over the constraint set .

Theorem 3—Characterization of Fixed Points:
a) Fixed points of the TRP updates in (20) exist, and coin-

cide with those of BP. Any fixed point of TRP is associated
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with a unique pseudomarginal vector that satis-
fies the necessary first-order condition to be a local minimum
of over the constraint set : that is, we have

for all in the constraint set .
b) The pseudomarginal vector specified by any fixed point

of TRP or, more generally, any algorithm that solves the Bethe
variational problem, istree consistentfor every tree of the graph.
Specifically, given a tree , the subcollection
of pseudomarginals

are the correct marginals for the tree-structured distribution de-
fined as follows:

(33)
Proof: See Appendix C.

A few remarks about Theorem 3 are in order. First, with ref-
erence to statement a), the unique pseudomarginal vector
associated with can be constructed explicitly as follows. For
an arbitrary index , pick a spanning tree such that .
Then define ; that is, is the value of
this (single-node or pairwise) marginal for the tree distribu-
tion on specified by . Note that this is a consistent
definition of , because the condition of part a) means that

is the same for all spanning tree indexes
such that . Moreover, this construction

ensures that , since it must satisfy the normaliza-
tion and marginalization constraints associated with every node
and edge. With reference to any message-passing algorithm, any
fixed point can be used to construct the unique
pseudomarginal vector of Theorem 3 via (27a) and (27b).

Fig. 10 provides a graphical illustration of the tree-consis-
tency statement of Theorem 3b). Shown in Fig. 10 (a) is an ex-
ample of a graph with cycles, parameterized according to the
approximate marginals and . Fig. 10 (b) shows the tree
obtained by removing edges and from the graph
in Fig. 10 (a). Consider the associated tree-structured distribu-
tion —that is, formed by removing the functions

and from the original distribution .
The consistency condition of Theorem 3b) guarantees that all
the single-node pseudomarginals, and all of the pairwise
pseudomarginals except for the nontree edges and

, areexactmarginals for this tree-structured distribution.
For this reason, we say that the pseudomarginal vectoris
tree consistent with respect to the tree. In the context of the
TRP algorithm, it is clear from definition of the updates (see
Fig. 4) that this tree consistency must hold for any tree included
in the set . In fact, tree consistency holds for
any acyclic substructure embedded within the full graph with
cycles—not just the spanning trees used to implement the algo-
rithm.

(a)

(b)

Fig. 10. Illustration of fixed-point consistency condition. (a) Fixed pointT =
fT ; T g that reparameterizes the original distribution on the full graph with
cycles. (b) A treeT with edge setE(T ) formed by removing edges(4; 5) and
(5; 6). The corresponding tree-structured distributionp (xxx; T ) is formed
by removing the reparameterized functionsT =(T T ) andT =(T T ).
The subset of pseudomarginalsfT j s 2 V g [ fT j (s; t) 2 E(T )g are
a consistent set of marginals for this tree-structured distributionp (xxx; T )
constructed as in (33).

Overall, Theorems 2 and 3 in conjunction provide an alterna-
tive and very intuitive view of BP, TRP , and more generally, any
algorithm for solving the Bethe variational problem (e.g., [23],
[22]). This class of algorithms can be understood as seeking a
reparameterization of the distribution on a graph with cycles (as
in Theorem 2) that is consistent with respect to every tree of the
graph (as in Theorem 3b)). Since these algorithms have fixed
points, one consequence of our results is that any positive dis-
tribution on any graph can be reparameterized in terms of a set of
pseudomarginals that satisfy the tree-based consistency con-
dition of Theorem 3b). Although the existence of such a repa-
rameterization is well known for trees [37], it is by no means
obvious for an arbitrary graph with cycles.

E. Sufficient Conditions for Convergence for Two Spanning
Trees

Proposition 2 can also be used to derive a set of conditions that
are sufficient to guarantee the convergence in the case of two
spanning trees. To convey the intuition underlying the result,
suppose that it were possible to interpret the cost functionas
a distance function. Moreover, supposewere an arbitrary el-
ement of , so that we could apply Proposi-
tion 2 for each index. Then (32) would show that the “distance”
between and an arbitrary element , as measured



WAINWRIGHT et al.: ANALYSIS OF SUM-PRODUCT AND RELATED ALGORITHMS BY TREE-BASED REPARAMETERIZATION 1135

by , decreases at each iteration. As with proofs on the con-
vergence of successive projection techniques for Bregman dis-
tances (e.g., [32]), [46], this property would allow us to establish
convergence of the algorithm.

Of course, there are two problems with the use ofas a type
of distance: it is not necessarily nonnegative, and it is possible
that for some . With respect
to the first issue, we are able to show in general that an ap-
propriate choice of step size will ensure the nonnegativity of

. We can then derive sufficient conditions (in-
cluding assuming that the second problem does not arise along
TRP trajectories) for convergence in the case of two spanning
trees. A detailed statement and proof of this result can be found
in the thesis [45].

F. Implications for Continuous Variables

Although our focus to this point has been on random vectors
taking discrete values, the idea of reparameterization can ap-
plied to continuous variables as well. In particular, by extension
to the Gaussian case, we obtain an elementary proof of the result
[19], [18] that the means computed by BP, when it converges,
are correct. To establish this result, consider the Gaussian analog
of a reparameterization algorithm. For simplicity in notation,
we treat the case of scalar Gaussian random variables at each
node (though the ideas extend easily to the vector case). In the
scalar Gaussian case, the pseudomarginal at each node

is parameterized by a meanand variance . Similarly,
the joint pseudomarginal can be parameterized by
a mean vector and a covariance matrix.
At any iteration, associated with the edge is the quotient

, where

is the marginal distribution over induced by . This edge
function is parameterized by the mean vector, and a
matrix . With this setup, we have the following proposition.

Proposition 3: Consider the Gaussian analog of BP, and sup-
pose that it converges. Then the computed means are exact,
whereas in general the error covariances are incorrect.

Proof: The original parameterization on the graph with
cycles is of the form

(34)

Here, is the inverse covariance,is a constant independent
of , and is the exact mean vector on the graph with cycles.

We begin by noting that the Gaussian analog of Theorem 2
guarantees that the distribution will remain invariant under the
reparameterization updates of TRP (or BP). At any iteration, the
quantity is reparameterized in terms of and the
edge functions as follows:

(35)

Note that the pseudomarginal vector need not be con-
sistent so that, for example, need not equal .
However, suppose that TRP (or BP) converges so that these
quantities are equal, which, in particular, implies that

for all such that . In words, the means pa-
rameterizing the edge functions must agree with the means at
the node marginals. In this case, (34) and (35) are two alterna-
tive representations of the same quadratic form, so that we must
have for each node . Therefore, the means com-
puted by TRP or BP must be exact. In contrast to the means,
there is no reason to expect that the error covariances in a graph
with cycles need be exact.

It is worth remarking that there exist highly efficient tech-
niques from numerical linear algebra (e.g., conjugate gradient)
for computing the means of a linear Gaussian problem on a
graph. Therefore, although algorithms like BP compute the cor-
rect means (if they converge), there is little reason to apply them
in practice. There remains, however, the interesting problem of
computing correct error covariances at each node: we refer the
reader to [49], [50] for description of an embedded spanning
tree method that efficiently computes both means and error co-
variances for a linear Gaussian problem on a graph with cycles.

V. ANALYSIS OF THE APPROXIMATION ERROR

An important but very difficult problem is analysis of the
error in the BP approximation—that is, the difference between
the exact marginals and the BP approximate marginals. As dis-
cussed in Section I, results on this error have been obtained for
the special cases of single cycle graphs [11], and for turbo codes
[13]. A more general understanding of this error is desirable in
assessing the accuracy of the BP approximation. In this section,
we make a contribution to this problem by deriving an exact ex-
pression for the error in the BP approximation for an arbitrary
graph, as well as upper and lower bounds.

Our analysis of the BP approximation error is based on two
key properties of a fixed point . First, by the invariance stated
in Theorem 2, the distribution induced by the fixed
point is equivalent to the original distribution .
Second, part b) of Theorem 3 dictates that for an arbitrary
spanning tree , the single-node elements
correspond to exact marginal distributions on the spanning tree.
Consequently, the quantities have two
distinct interpretations:

a) as the BP approximations to the exact marginals on the
graph with cycles;

b) as the exact single-node marginals of a distribution de-
fined by the spanning tree.

The basic intuition is captured in Fig. 10. Fig. 10(a) shows
the original distribution on the graph with cycles, now reparam-
eterized in an alternative but equivalent manner by the set of
pseudomarginals . As a consequence, if it were
possible to perform exact computations for the distribution il-
lustrated in Fig. 10(a), the result would be the desired exact
marginals of the original distribution. On the other hand,
given a tree like that shown in Fig. 10(b), suppose that we
form a tree-structured distribution , as in (33), by
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removing the functions on non-tree edges. Then,
the tree-consistency condition of Theorem 3 ensures that the
quantities are a consistent set of single-node marginals for

. Therefore, the exact marginals on the graph
with cycles are related to the approximationsby a relatively
simply perturbation—namely, removing functions on edges to
form a spanning tree. In the analysis that follows, we make this
basic intuition more precise.

A. Exact Expression

Our treatment begins at a slightly more general level, before
specializing to the case of marginal distributions and the BP ap-
proximations. Consider a function , and two distri-
butions and . Suppose that we wish to express
the expectation in terms of an expectation under the
distribution . Using the exponential representation of
(6), it is straightforward to re-express as follows:

(36)
Note that this is a change of measure formula, where the expo-
nentiated quantity can be viewed as the Radon–Nikodym deriva-
tive.

We will use (36) to derive an expression for marginals on the
graph with cycles in terms of an expectation over a tree-struc-
tured distribution. In particular, we denote the true single-node
marginal on the graph with cycles by

(37)

To assert equality , we have used the invariance property (i.e.,
) of Theorem 2, as applied to the fixed-

point .
Given an arbitrary spanning tree , let

be the set of tree indexes, and let
be the projection of onto these tree indexes. By Theorem
3b), any fixed point is associated with a tree-consistent pseu-
domarginal vector . More specifically, the tree consistency
guarantees that the single-node elements ofcan be inter-
preted as the following expectation:

(38)

We now make the assignments , , and
in (36) and rearrange to obtain the exact ex-

pression for the error in the log
domain shown in (39) at the bottom of the page. In deriving this
expression, we have used the fact that for any
tree . Equation (39) is an exact expression for the error
in terms of an expectations involving the tree-structured distri-
bution . Note that (39) holds for any spanning tree

.

B. Error bounds

It is important to observe that (39), though concep-
tually interesting, will typically be difficult to compute.
A major obstacle arises from the presence of the term

in the denominator. For most
problems, this computation will not be tractable, since it
involves all the potential functions on edges removed to form
spanning tree . Indeed, if the computation of (39) were
easy for a particular graph, this would imply that we could
compute theexactmarginals, thereby obviating the need for an
approximate algorithm such as BP/TRP.

This intractability motivates the idea of bounding the approx-
imation error. In order to do so, we begin by considering the fol-
lowing problem: given distributions and , and a
function , give a bound for the expectation
in terms of quantities computed using the distribution .
The linearity of expectation allows us to assume without loss of
generality that for all . If is another
function, the covariance of and under is defined as

(40)

With these definitions, we have the following result.

Lemma 2: Let and be two arbitrary parameter vectors,
and let be a function from to the nonnegative reals. Then
we have the lower bound

(41)

Proof: See Appendix D.

The bound in Lemma 2 is first order, based on the convexity
of a (tilted) log-partition function; we note that tighter bounds
of this nature can be derived by including higher order terms
(see, e.g., [51]). We now use Lemma 2 to develop bounds on
the approximation error in the single-node marginals. In order
to state these bounds, it is convenient to define a quantity that,

(39)
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for each spanning tree, measures the difference between the
exact node marginal (corresponding to ) and the
approximation (corresponding to the tree-structured distri-
bution ). Consider the set ,
corresponding to the set of potentials that must be removed from
the full graph in order to form the spanning tree. Associ-
ated with this tree, we define a quantity as a sum over the
removed potentials

(42)

With this definition, we have the following error bounds on the
approximation error.

Theorem 4—Error Bounds:Let be a fixed point of
TRP/BP, giving rise to approximate single-node marginals

, and let be the true marginal distributions on the
graph with cycles. For any spanning treeof the graph, the
error is bounded above and below
as follows:

Err (43a)

Err (43b)

where

Proof: We first make the identifications and
, and then set , a choice which satis-

fies the assumptions of Lemma 2. Equation (43a) then follows
by applying Lemma 2, and then performing by some algebraic
manipulation. The lower bound follows via the same argument
applied to , which also satisfies the hy-
potheses of Lemma 2.

On the conceptual side, Theorem 4 highlights three factors
that control the accuracy of the TRP/BP approximation. For the
sake of concreteness, consider the upper bound of (43a).

a) The covariance terms in the definition of (see (42))
reflect the strength of the interaction, as measured under
the tree distribution , between the delta
function and the clique potential . When
the removed clique potential interacts only weakly with
the delta function, then this covariance term will be small
and so have little effect.

b) The parameter in the definition of is the strength
of the clique potential that was removed to form the
spanning tree.

c) The KL divergence measures the
discrepancy between the tree-structured distribution

and the distribution on the

graph with cycles. It will be small when the distribution
is well approximated by a tree. The presence of

this term reflects the empirical finding that BP performs
well on graphs that are approximately tree-like (e.g.,
graphs with fairly long cycles).

On the practical side, there is a caveat associated with the
computation of the upper and lower bounds in Theorem 4. On
the one hand, the summations appearing in (43a) and (43b) are
tractable. In particular, each of the covariances can be calculated
by taking expectations over tree-structured distributions, and
their weighted summation is even simpler. On the other hand,
within the KL divergence lurks a log-partition
function associated with the graph with cycles. In gen-
eral, computing this quantity is as costly as performing infer-
ence on the original graph. What is required, in order to compute
the expressions in Theorem 4, are upper bounds on the log-par-
tition function. A class of upper bounds are available for the
Ising model [52]; in related work [53], [45], we have developed
a technique for upper bounding the log partition function of an
arbitrary undirected graphical model. Such methods allow upper
bounds on the expressions in Theorem 4 to be computed.

C. Illustrative Examples of Bounds

The tightness of the bounds given in Theorem 4 varies, de-
pending on a number of factors, including the choice of span-
ning tree, the graph topology, as well as the strength and type of
clique potentials. In this subsection, we provide some examples
to illustrate the role of these factors.

For the purposes of illustration, it is more convenient to dis-
play bounds on the difference . Using
Theorem 4, it is straightforward to derive the following bounds
on this difference:

(44a)

(44b)

As a difference of marginal probabilities, the quantity
belongs to the interval . It can be seen that the upper and
lower bounds are also confined to this interval. Since the pri-
mary goal of this subsection is illustrative, the bounds displayed
here are computed using the exact value of .

1) Choice of Spanning Tree:Note that a bound of the form
in Theorem 4 (or (44)) holds for any singly connected subgraph
embedded within the graph (not just the spanning trees used to
implement the algorithm). This allows us to choose thetightest
of all the spanning tree bounds for a given index . Here
we provide a simple example demonstrating the effect of tree
choice on the quality of the bounds.

Using a binary distribution on the complete graph
with nodes, we chose spanning trees according to

the following heuristic. For a given (overcomplete) exponen-
tial parameter , we first computed the minimal exponential
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(a) (b)

Fig. 11. Effect of spanning tree choice on the bounds of Theorem 4. Each panel shows the errorP �T versus node number for the complete graphK on
nine nodes. (a) Upper and lower bounds on the error computed using the maximum-weight spanning tree. (b) Error bounds for thesame problemcomputed using
the minimum-weight spanning tree. Note the difference in vertical scales between parts (a) and (b).

parameter , as in (25). Using as the weight on edge
, we then computed the maximum- and minimum-weight

spanning trees using Kruskal’s algorithm (e.g., [54]). Fig. 11(a)
and (b) shows the upper and lower bounds on the error

obtained from (44a) and (44b), using the maximum- and
minimum-weight spanning trees, respectively. The disparity be-
tween the two sets of bounds is striking: bounds on the error
from the maximum-weight spanning tree (Fig.11 (a)) are very
tight, whereas bounds from the minimum-weight tree are quite
loose (Fig. 11(b)). Further work should examine principled tech-
niques for optimizing the choice of spanning tree so as to obtain
the tightest possible error bounds at a particular node.

2) Varying Potentials:Second, for a fixed graph, the bounds
depend on both the strength and type of potentials. Here, we
examine the behavior of the bounds for binary variables with
attractive, repulsive, and mixed potentials; see Section III-E1
for the relevant definitions. Fig. 12 illustrates the behavior for
a binary-valued process on a grid under various condi-
tions. Each panel shows the error for a randomly
chosen subset of 20 nodes, as well as the lower and upper bounds
on this error in (44). Fig.12(a) corresponds to a problem with
very weak mixed potentials, for which both the BP approxi-
mation and the corresponding bounds are very tight. In con-
trast, Fig.12(b) shows a case with strong repulsive potentials,
for which the BP approximation is poor. The error bounds are
correspondingly weaker, but nonetheless track the general trend
of the error. Fig. 12(c) and (d) shows two cases with attrac-
tive potentials: medium strength in Fig.12(c), and very strong in
Fig. 12(d). In Fig.12(c), the BP approximation is mediocre, and
the bounds are relatively loose. For the strong potentials in Fig.
12(d), the BP approximation is heavily skewed, and the lower
bound is nearly met with equality for many nodes.

3) Uses of Error Analysis:The preceding examples serve to
illustrate the general behavior of the bounds of Theorem 4 for a
variety of problems. We reiterate that these bounds were com-
puted using the exact value of ; in general, it will be nec-
essary to upper-bound this quantity (see, e.g., [53]), which will
tend to weaken the bounds. For sufficiently strong potentials on

very large graphs, the upper and lower bounds in (44) may tend
toward and , respectively, in which case the bounds would
no longer provide useful quantitative information. Nonetheless,
the error analysis itself can still be useful. First, one direction to
explore is the possibility of using our exact error analysis to de-
rive correction terms to the BP approximation. For instance, the
term defined in (42) is a computable first-order correc-
tion term to the BP approximation. Understanding when such
corrections are useful is an interesting open problem. Second,
our error analysis can be applied to the problem of assessing the
relative accuracy of different approximations. As we discuss in
Section VI, various extensions to BP (e.g., [33], [29], [25], [4])
can be analyzed from a reparameterization perspective, and a
similar error analysis is applicable. Since the (intractable) parti-
tion function of the original model is the same regardless of the
approximation, it plays no role in the relative error between the
accuracy of different approximations. Therefore, these bounds
could be useful in assessing when a more structured approxima-
tion, like generalized BP [33], yields more accurate results.

VI. EXTENSIONS OFTREE-BASED REPARAMETERIZATION

A number of researchers have proposed and studied exten-
sions to BP that involve operating over higher order clusters of
nodes (e.g., [33], [4], [25], [29]). In this section, we describe
how such extensions of BP can also be interpreted as performing
reparameterization.

We begin our development with background onhypergraphs
(e.g., [55]), which represent a generalization of ordinary graphs
and provide a useful framework in which to discuss general-
ized forms of reparameterization. In this context, the natural
generalization of trees are known as hypertrees (i.e., acyclic hy-
pergraphs). As will be clear, the notion of a hypertree is inti-
mately tied to that of a junction tree [37]. Equipped with this
background, we then describe how to perform reparameteriza-
tion updates over hypertrees. As a specific illustration, we show
how generalized BP (GBP) updates over Kikuchi clusters on



WAINWRIGHT et al.: ANALYSIS OF SUM-PRODUCT AND RELATED ALGORITHMS BY TREE-BASED REPARAMETERIZATION 1139

(a) (b)

(c) (d)

Fig. 12. Behavior of the bounds of Theorem 4 for various types of problem on a10� 10 grid. Each panel shows the errorT �P in the BP approximation
versus node index, for a randomly chosen subset of 20 nodes. (a) For weak potentials, the BP approximation is excellent, and the bounds are quite tight.(b)
For strong repulsive potentials, the BP approximation is poor; the error bounds are considerably looser, but still track the error. (c) Medium-strength attractive
potentials, for which the approximation is mediocre and the bounds are relatively loose. (d) For strong attractive potentials, the BP approximationis very poor, and
the difference between lower and upper bounds is relatively loose.

the two-dimensional grid can be understood as reparameteriza-
tion over hypertrees. The reparameterization perspective allows
much of our earlier analysis, including the geometry, charac-
terization of fixed points, and error analysis, to be extended to
generalizations of BP in a natural way. More details on this repa-
rameterization analysis are provided in [45].

A. Hypergraphs

A hypergraph consists of a vertex set
and a set of hyperedges, where eachhyperedge

is a particular subset of (i.e., an element of the power set of
). The set of hyperedges can be viewed as a partially ordered

set, where the partial ordering is specified by inclusion. More
details on hypergraphs can be found in Berge [55], whereas
Stanley [56] provides more information on partially ordered sets
(also known as posets).

Given two hyperedgesand , one of three possibilities can
hold: i) the hyperedge is contained within , in which case we
write ; ii) conversely, when the hyperedgeis contained
within , we write ; iii) finally, if neither containment
relation holds, then and are incomparable. We say that a
hyperedge ismaximal if it is not contained within any other

hyperedge. Given any hyperedge, we define the sets of its
descendantsandancestorsin the following way:

(45a)

(45b)

With these definitions, an ordinary graph is a special case of
a hypergraph, in which each maximal hyperedge consists of a
pair of vertices (i.e., an ordinary edge of the graph). Note that for
hypergraphs (unlike graphs), the set of hyperedges may include
(a subset of) the individual vertices.

A convenient graphical representation of a hypergraph is in
terms of a diagram of its hyperedges, with (directed) edges rep-
resenting the inclusion relations. Diagrams of this nature have
been used by Yedidiaet al. [3], who refer to them as region
graphs; other researchers [4], [25] have adopted the term Hasse
diagram from poset terminology. Fig. 13 provides some simple
graphical illustrations of hypergraphs. As a special case, any or-
dinary graph can be drawn as a hypergraph; in particular, Fig.
13(a) shows the hypergraph representation of a single cycle on
four nodes. Shown in Fig. 13(b) is a more complex hypergraph
that does not correspond to an ordinary graph.
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(a) (b)

Fig. 13. Graphical representations of hypergraphs. Subsets of nodes
corresponding to hyperedges are shown in rectangles, whereas the arrows
represent inclusion relations among hyperedges. (a) An ordinary single-cycle
graph represented as a hypergraph. (b) A more complex hypergraph that does
not correspond to an ordinary graph.

B. Hypertrees

Of particular importance are acyclic hypergraphs, which are
also known as hypertrees. In order to define these objects, we
require the notions of tree decomposition and running intersec-
tion, which are well known in the context of junction trees (see
[57], [37]). Given a hypergraph , a tree decompositionis
an acyclic graph in which the nodes are formed by the maximal
hyperedges of . Any intersection of two maximal hy-
peredges that are adjacent in the tree is known as aseparator set.
The tree decomposition has therunning intersection propertyif
for any two nodes and in the tree, all nodes on the unique
path joining them contain the intersection ; such a tree de-
composition is known as ajunction tree. A hypergraph isacyclic
if it possesses a tree decomposition with the running intersec-
tion property. Thewidth of an acyclic hypergraph is the size of
the largest hyperedge minus one; we use the term-hypertree
to mean a singly connected acyclic hypergraph of width.

A simple illustration is provided by any tree of an ordinary
graph: it is a -hypertree, because its maximal hyperedges (i.e.,
ordinary edges) all have size two. As a second example, the hy-
pergraph of Fig. 14(a) has maximal hyperedges of size three.
This hypergraph is acyclic with width two, since it is in di-
rect correspondence with the junction tree formed by the three
maximal hyperedges, and using the separator set (23) twice.
Fig. 14(b) shows another hypertree with three maximal hyper-
edges of size four. The junction tree in this case is formed of
these three maximal hyperedges, using the two hyperedges of
size two as separator sets. In this case, including the extra hyper-
edge (5) in the hypergraph diagram turns out to be superfluous.

C. Hypertree Factorization

At the heart of the TRP updates is the factorization of any
tree-structured distribution in terms of its marginals, as specified
in (2). In fact, this representation is a special case of a more
general junction tree representation (e.g., [37])

(46)

In this equation, denotes the set of maximal hyperedges,
denotes the set of separator sets in a tree decomposition,

(a) (b)

Fig. 14. Two examples of acyclic hypergraphs or hypertrees. (a) A hypertree
of width two. The hyperedge (23) will appear twice as a separator set in any
tree decomposition. (b) A hypertree of width3. Hyperedges (25) and (45) are
separator sets, and node 5 plays no role in the tree decomposition.

and denotes the number of maximal hyperedges that con-
tain the separator set.

Instead of this junction tree form, it is convenient for our
purposes to use an alternative but equivalent factorization, one
which is based directly on the hypertree structure. To state this
factorization, we first define, for each hyperedge , the
following function:

(47)

This definition is closely tied to the Möbius function associated
with a partially ordered set (see [56]). With this notation, the fac-
torization of a hypertree-structured distribution is very simple

(48)

Note that the product is taken over all hyperedges (not just max-
imal ones) in the hypertree.

To illustrate (48), suppose first that the hypertree is an ordi-
nary tree, in which case the hyperedge set consists of the union
of the vertex set with the (ordinary) edge set. For any vertex,
we have , whereas we have

for any edge . Therefore, in this special case, (48) reduces
to the tree factorization in (2). As a second illustration, con-
sider the hypertree shown in Fig. 14(a), which has maximal
hyperedges . By explicit computation, it
can be verified that the factorization of (48) reduces, after can-
celing terms and simplifying, to . Here
we have omitted the dependence onfor notational simplicity.
This finding agrees with the junction tree representation in (46)
when applied to the appropriate tree decomposition. A third ex-
ample is provided by the hypertree of Fig. 14(b). We first calcu-
late as follows:

Similarly, we compute (with an analogous
expression for ), (with an analogous ex-
pression for ), and . Finally, taking the product

yields the familiar junction tree factorization for this
particular case—viz. .
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D. Reparameterization Over Hypertrees

With this setup, we are now ready to describe the extension of
reparameterization to hypertrees. Our starting point is a distri-
bution formed as a product of compatibility functions asso-
ciated with the hyperedges of some (hyper)graph . Rather
than performing inference directly on this hypergraph, we may
wish to perform some clustering (e.g., as in Kikuchi methods)
so as to form an augmented hypergraph . As emphasized
by Yedidiaet al.[33], it is important to choose the hyperedges in
the augmented hypergraph with care, so as to ensure that every
compatibility function in the original hypergraph is counted ex-
actly once; in other words, the single counting criteria must be
satisfied. As an illustration, suppose that our original hyperedge

is the two-dimensional nearest neighbor grid shown in
Fig. 15(a) (i.e., simply an ordinary graph). Illustrated in Fig.
15(b) is a particular grouping of the nodes, known as Kikuchi
-plaque clustering in statistical physics [3]. Fig. 15(c) shows

one possible choice of augmented hypergraph that sat-
isfies the single counting conditions, obtained by Kikuchi clus-
tering [33].

We will take as given a hypergraph that satisfies the
single counting criteria, and such that there is an upper bound

on the size of the maximal hyperedges. The implicit as-
sumption is that is sufficiently small so that exact inference
can be performed for hypertrees of this width. The idea is to per-
form a sequence of reparameterization updates, entirely analo-
gous to those of TRP updates, except over a collection of hyper-
trees of width embedded within the hypergraph. The updates
involve a collection of pseudomarginals
on hyperedges of the hypergraph. At any iteration, the collec-
tion specifies a particular parameterization of the
original distribution , analogous to the hypertree factoriza-
tion of (48). (See Appendix E for more details on this parame-
terization.) Given any hypertree, the distribution can be
decomposed into a product of two terms and , where

includes those factors corresponding to the hyperedges in
the hypertree, while absorbs the remaining terms, corre-
sponding to hyperedges removed to form the hypertree. Now the
hypertree distribution can be reparameterized in terms of
a collection of pseudomarginals on its hyperedges, as in (48).
As with ordinary tree reparameterization, this operation simply
specifies an alternative but equivalent choice for the compati-
bility functions corresponding to those hyperedges in the hy-
pertree. A subsequent update entails choosing adifferenthyper-
tree , and performing reparameterization for it. As before,
we iterate over a set of hypertrees that covers all hyperedges
in the hypergraph. With specific choices of hypergraphs, it can
be shown that fixed points of hypertree reparameterization are
equivalent to fixed points of various forms of GBP [3], [33].

As one illustration, consider again the Kikuchi approxima-
tion of Fig. 15, and more specifically the augmented hypergraph

in Fig. 15(c). We can form an acyclic hypergraph (though
not spanning) of by removing the hyperedge . The
resulting hypertree of width three is shown in Fig. 15(d). Hy-
pertree updates entail performing reparameterization on a col-
lection of hypertrees that cover the hypergraph of Fig. 15(c). As
we show in more detail in Appendix F, doing so yields fixed

(a) (b)

(c) (d)

Fig. 15. Kikuchi clustering on the grid. (a) Original two-dimensional grid.
(b) Clustering into groups of four. (c) Associated hypergraph with maximal
hyperedges of size four. (d) One acyclic hypergraph of width three (not
spanning) embedded within (c).

points equivalent to GBP applied to the Kikuchi approximation
associated with the hypergraph in Fig. 15(c).

Since hypertree updates are a natural generalization of TRP
updates, they inherit the important properties of TRP , including
the fact that the original distribution is not altered. Rather,
any fixed points specify an alternative parameterization such
that the pseudomarginals are consistent on every hypertree
(of width ) embedded within the graph. Based on this in-
variance and the fixed-point characterization, it is again pos-
sible to derive an exact expression, as well as bounds, for the
difference between the exact marginals and the approximate
marginals computed by any hypertree reparameterization algo-
rithm. More details on the notion of reparameterization and its
properties can be found in [45].

VII. D ISCUSSION

This paper introduced a new conceptual framework for un-
derstanding sum-product and related algorithms, based on their
interpretation as performing a sequence of reparameterization
updates. Each step of reparameterization entails specifying a
new set of compatibility functions for an acyclic subgraph (i.e.,
a (hyper)tree) of the full graph. The key property of these al-
gorithms is that the original distribution is never changed, but
simply reparameterized. The ultimate goal is to obtain a new
factorization in which the functions on cliques are required to
satisfy certain local consistency conditions, and represent ap-
proximations to the exact marginals. In particular, the pseu-
domarginals computed by a tree-reparameterization algorithm
must be consistent on every tree embedded within the graph with
cycles, which strongly constrains the nature of the approxima-
tion.

One important consequence of the reparameterization view
is the insight that it provides into the nature of the approxima-
tion error associated with BP, and more broadly, with any al-
gorithm that minimizes the Bethe free energy. In particular, the
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error arises from the reparameterized functions sitting on those
edges that must be removed in order to form a spanning tree.
Based on this intuition, we derived an exact expression for the
approximation error for an arbitrary graph with cycles. We also
developed upper and lower bounds on this approximation error,
and provided illustrations of their behavior. Computing these
bounds for large problems requires an upper bound on the log
partition function (e.g., [52], [53], [45]).

Overall, the class of algorithms that can be interpreted as per-
forming reparameterization is large, including not only BP, but
also various extensions to BP, among them generalized belief
propagation [33]. For any algorithm that has this reparameteri-
zation interpretation, the same basic intuition is applicable, and
there exist results (analogous to those of this paper) about their
fixed points and the approximation error [45]. Finally, we note
that a related concept of reparameterization also gives insight
into the behavior of the closely related max-product algorithm
[58].

APPENDIX A
PROOF OFLEMMA 1

We begin by expressing the delta function as a linear
combination of the monomials in the set defined in (26a)
as follows:

(49)

This decomposition is extended readily to pairwise delta func-
tions, which are defined by products ; in par-
ticular, they can be written as linear combinations of elements in
the sets and , as defined in (26a) and (26b), respec-
tively. Now suppose that , so that

for all . By construction, both the left-hand
side (LHS) and right-hand side (RHS) are linear combination
of the elements and . Equating the coefficients of
these terms yields a set of
linear equations. We write these equations compactly in matrix
form as .

This establishes the necessity of the affine manifold con-
straints. To establish their sufficiency, we need only check that
the linear constraints ensure the constant terms in
and are also equal. This is a straightforward verifi-
cation.

APPENDIX B
PROOF OFPROPOSITION2

We begin with some preliminary definitions and lemmas. For
a closed and convex set, we say that is analgebraic inte-
rior point [32] if for all in there exists , and

such that . Otherwise, is an
exterior point. The following lemma characterizes the nature of
a constrained local minimum over.

Lemma 3: Let be a function, where is a
closed, convex, and nonempty set. Suppose thatis a local
minimum of over . Then

for all . Moreover, if is an algebraic interior point,
then for all .

Proof: See Bertsekas [47] for a proof of the first statement.
To prove the second statement, assume thatis an algebraic
interior point, so that for an arbitrary we can write

for some and . Then

Since , this establishes that ,
and hence, also .

Lemma 4: Let be arbitrary. Then for anysuch
that is bounded

(50)

Proof: We established in Section IV-B that the point
is the minimizing argument of the function de-

fined in (30) over the linear and hence convex set . This
point will be an exterior point only if some element is equal to
zero or one, a possibility that is prevented by the assumption
that is bounded. Therefore,

is an algebraic interior point, meaning that we can
apply Lemma 3 to conclude that for all , we have

(51)

It remains to calculate the necessary partial derivatives of.
We begin with the decomposition

where and are defined in (28). We then calculate

for

for .

We evaluate these partial derivatives at , and use
the notation for each . Substituting the
results into equation (51), we conclude that the sum

(52)
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is equal to zero. Now, since both and belong to ,
we have

for all

and

for all

As a result, the constantsor in (52) vanish in the sums over
or , and we are left with the desired statement in (50).

Equipped with these lemmas, we first establish (32).
For a given , let denote the pseudomarginal such that

. (Of particular importance is the fact that
for all .) We then write

where we used the definition

for all

for all .

Now is bounded by assumption. Moreover, by construc-
tion, we have for all . Thus, we can
apply Lemma 4 to conclude that

(53)

thereby establishing (32) with the identifications ,
, and .

For use in the proof of Theorem 3, it is convenient to extend
this result to the relaxed updates of (20), in which the step size

. In order to do so, use the definition of given
in (20) to write the difference as

where we have obtained the final line using (53). We have thus
established

(54)

APPENDIX C
PROOF OFTHEOREM 3

a) See the text following Theorem 3 for discussion of how to
construct the unique pseudomarginal associated
with any exponential parameter fixed point. Now let

be arbitrary. By applying (54) repeatedly,
we obtain

(55)

where

We then apply (55) with (i.e., the pseudomarginal
corresponding to ). By construction, we have ,
so that (55) yields . Substituting this
result back into (55), we find that

(56)

for all . To prove that satisfies the necessary
conditions to be a local minimum, we note that (56) is equivalent
to the statement

(57)

where we have used a sequence of steps similar to the proof
of Proposition 2. Since the cost functionis bounded below
and the constraint set is nonempty, the problem has at least one
minimum, which must satisfy these first-order stationarity con-
ditions.

To establish equivalence with BP fixed points, recall that
the cost function agrees with the Bethe free energy on this
constraint set. Yedidiaet al.[3] have shown that BP fixed points
correspond to points that satisfy the Lagrangian conditions for
an extremum of the Bethe free energy over . Moreover,
because the constraint sets are linear, the existence of Lagrange
multipliers is guaranteed for any local minimum [47]. By
recourse to Farkas’ lemma [47], these Lagrangian conditions
are equivalent to the first-order condition (57). Therefore, TRP
fixed points coincide with those of BP.

b) By definition, the elements of any pseudomarginal vector
satisfy local normalization , and

marginalization constraints. Given some
tree , consider the subcollection of pseu-
domarginals

By the junction tree theorem [37], the local consistency condi-
tions are sufficient to guarantee global consistency for the sub-
collection . In particular, they are the exact single-node
and pairwise marginal distributions of the tree-structured distri-
bution formed as in (33).

APPENDIX D
PROOF OFLEMMA 2

Consider the function
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By interpreting as the log-partition function corresponding
to the distribution , we see
that it is a convex function of. For any parameter vectorsand
, this convexity allows to write

(58)

We take derivatives of with respect to to find

We also observe the relation . Sub-
stituting these relations into (58), rearranging, and taking expo-
nentials yields the bound of (41).

APPENDIX E
HYPERGRAPHPARAMETERIZATION

This appendix gives details of the hypergraph parameteriza-
tion. Suppose that we are given a pseudomarginalfor each
hyperedge of the hypergraph (not just the maximal ones).
Given the pseudomarginal and any hyperedgethat is con-
tained within , we define

(59)

That is, is the pseudomarginal oninduced by . At this
initial stage, we arenotassuming that the collection of pseudo-
marginals is fully consistent. For example, if we consider two
distinct hyperedges and that both contain , the pseudo-
marginal need not be equal to . Moreover, neither of
these quantities has to be equal to the pseudomarginalde-
fined independently for hyperedge. However, when the hy-
pertree reparameterization updates converge, all of these con-
sistency conditions will hold.

Now for each hyperedge with pseudomarginal , we de-
fine the following quantity:

(60)

where is defined in (45a).
This quantity should be viewed as a function

of both and the pseudomarginal . In addition, note that
for any hyperedge , it is the quantity (which need
not agree with the pseudomarginal at intermediate stages of
the algorithm) that is used in the recursive definition of (60).
With these definitions, the collection specifies an alternative
parameterization of the original distribution on the full hy-
pergraph (which need not be acyclic in general) as follows:

(61)

As one illustration, if the hypergraph arises from an ordinary
graph with pairwise maximal cliques, then hyperedges con-
sist of ordinary edges and vertices. For an ordinary edge

, we have

whereas for any vertex, we have . In this
special case, then, the parameterization of (61) is equivalent to
the parameterization that is updated by TRP/BP.

APPENDIX F
HYPERTREES FORKIKUCHI APPROXIMATION

In this appendix, we show how generalized belief propagation
[3], [33] with the Kikuchi approximation of Fig. 15(b) can be
interpreted as a type of hypertree reparameterization. The aug-
mented hypergraph in Fig. 15(c) has four maximal hyperedges,
each of size four, namely: and .
Our hyperedge set consists of these hyperedges, as well as the
(smaller) hyperedges contained within them. With a collection

of pseudomarginals over this hyperedge set, the original dis-
tribution is given the new parameterization , as
in (61).

Our ultimate goal is a reparameterization of this form in
which the hyperedge pseudomarginals are all locally consistent,
and hence (by the junction tree theorem [37]) consistent on
each hypertree. In order to find such a reparameterization, we
perform a sequence of hypertree reparameterization updates, in
which each step entails choosing some hypertree, and reparam-
eterizing the corresponding hypertree distribution .
For example, Fig. 15(d) shows the hypertree(not spanning)
obtained by removing the maximal hyperedge . On the
analytical side, we form the distribution by removing
from , as defined in (61), the term
defined in (60).

We now perform reparameterization over a set of hypertrees
that cover the hypergraph. If the updates converge, then the fixed
point will be hypertree-consistent with respect to each of
these hypertrees. Since the hypertrees cover the hypergraph, for
any pair , we are guaranteed the consistency condition

, where is defined in (59).
Suppose that we have a hypertree-consistent reparameteriza-

tion for the particular Kikuchi approximation of Fig. 15. When
the hyperedge consistency conditions are satisfied, there is no
longer any need to distinguish between and . Accord-
ingly, the reparameterization of (61) can be expanded
and simplified in the following way. Omitting explicit depen-
dence on , we first compute

We can compute analogous expressions for the other maximal
hyperedges. Next, we have , with analogous
expressions for the other hyperedges of size two; and, finally,
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. We take the product over all the
hyperedges, and then simplify to obtain

The final line follows after some algebra, in which terms that
are common to both the numerator and denominator cancel each
other out. In canceling terms, we have used the consistency con-
ditions satisfied by , as described earlier. Finally, suppose
that we take the logarithm of this factorization, and then take
expectations with respect to the local pseudomarginals. It
can be seen that the resulting approximation to the entropy en-
tropy agrees with the associated Kikuchi approximation for this
problem, as discussed by Yedidiaet al.[33]. Moreover, it can be
shown that any local optimum of the associated Kikuchi varia-
tional problem is a hypertree-consistent reparameterization of
this form.
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