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Tree-Based Reparameterization Framework for
Analysis of Sum-Product and Related Algorithms

Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willskgllow, IEEE

Abstract—We present a tree-based reparameterization (TRP) I. INTRODUCTION
framework that provides a new conceptual view of a large class . . L
of algorithms for computing approximate marginals in graphs ROBABILITY distributions defined by graphs arise in a
with cycles. This class includes thebelief propagation (BP) or variety of fields, including coding theory, e.qg., [5], [6], arti-

sum-productalgorithm as well as variations and extensions of ficial intelligence, e.g., [1], [7], statistical physics [8], as well as
BP. Algorithms in this class can be formulated as a sequence of image processing and computer vision, e.g., [9]. Given a graph-

reparameterization updates, each of which entails refactorizing a ; . : . . o
portion of the distribution corresponding to an acyclic subgraph ical model, one important problem is computing marginal dis

(i.e., a tree, or more generally, a hypertree). The ultimate goal is to tributions of variables at each node of the graph. For acyclic
obtain an alternative but equivalent factorization using functions graphs (i.e., trees), standard and highly efficient algorithms exist
that represent (exact or approximate) marginal distributions on  for this task. In contrast, exact solutions are prohibitively com-
cliques of the graph. Our framework highlights an important  plex for more general graphs of any substantial size [10]. As a

property of the sum-product algorithm and the larger class of : . .
reparameterization algorithms: the original distribution on the result, there has been considerable interest and effort aimed at

graph with cycles is not changed. The perspective of tree-basedd‘?velc’p'ng approximate inference algorithms for large graphs
updates gives rise to a simple and intuitive characterization of with cycles.

the fixed points in terms of tree consistency. We develop inter-  The belief propagation(BP) algorithm [11], [3], [1], also
pretations of these results in terms of information geometry. The known as thesum-product algorithme.g., [12], [13], [2], [6],

invariance of the distribution, in conjunction with the fixed-point . . . " :
characterization, enables us to derive an exact expression for is one important method for computing approximate marginals.

the difference between the true marginals on an arbitrary graph 1€ interest in this algorithm has been fueled in part by its
with cycles, and the approximations provided by belief propa- use in fields such as artificial intelligence and computer vision,
gation. More broadly, our analysis applies to any algorithm that e.g., [14], [9], and also by the success of turbo codes and other
minimizes the Bethe free energy. We also develop bounds on thegraphical codes, for which the decoding algorithm is a partic-

approximation error, which illuminate the conditions that govern . . . . .
their accuracy. Finally, we show how the reparameterization ular instantiation of belief propagation, €.9., [5], [2], [6]. While

perspective extends naturally to generalizations of BP (e.g., there are various equivalent forms for belief propagation [1],
Kikuchi approximations and variants) via the notion of hypertree ~ the best known formulation, which we refer to here as the BP

reparameterization. algorithm, entails the exchange of statistical information among
Index Terms—Approximate inference, belief propagation Neighboring nodesvia message passing. Ifthe graphis atree, the
(BP), Bethe/Kikuchi free energies, convex duality, factor graphs, resulting algorithm can be shown to produce exact solutions in
graphical models, hypergraphs, information geometry, iterative a finite number of iterations. The message-passing formulation
decoding, junction tree, Markov random fields, sum-product s thys equivalent to other techniques for optimal inference on
algorithm. trees, some of which involve more global and efficient compu-
tational procedures. On the other hand, if the graph contains cy-
cles, then it is the local message-passing algorithm that is most
generally applicable. It is well known that the resulting algo-
rithm may not converge; moreover, when it does converge, the

. . . _ q(uality of the resulting approximations varies substantially.
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distribution? which inspired other researchers (e.g., [22], [23¥ure of belief propagation and related algorithms. In particular, a
to develop more sophisticated algorithms for minimizing thiact highlighted by reparameterization, yet not obvious from the
Bethe free energy. Yedidit al.also proposed extensions to BRraditional message-passing viewpoint, is that the overall distri-
based on cluster variational methods [24]; in subsequent wobkition on the graph with cycles is never altered by such algo-
various researchers, e.g., [25], [4] have studied and explom@tims. Thus, from the perspective of tree-based updates arises
such extensions. Tatikonda and Jordan [26] derived conditicmsimple and intuitive characterization of BP fixed points, and
for convergence of BP based on the unwrapped computatimore broadly, any constrained minimum of the Bethe free en-
tree and links to Gibbs measures in statistical physics. Thesgy, as dree-consistent reparameterizatiofithe original dis-
advances notwithstanding, much remains to be understdaflution. This characterization of the fixed points allows us to
about the behavior of this algorithm, and more generally abaanalyze the approximation error for an arbitrary graph with cy-
other (perhaps superior) approximation algorithms. cles.

This important area constitutes the focus of this paper. Inin the next section, we introduce the background and nota-
particular, the framework presented in this paper providestian that underlies our development. In the process, we illustrate
new conceptual view of a large class of iterative algorithms, ihow distributions over trees (i.e., cycle-free subgraphs) can be
cluding BP, as well as variations and extensions. A key ideafieparameterized in terms of local marginal distributions. In Sec-
graphical models is the representation of a probability distribtien 11I, we introduce the notion of TRP for graphs with cycles.
tion as a product of factors, each of which involves variablés this context, it is convenient to represent distributions in an
only at a subset of nodes corresponding to a clique of the grapRponential form using an overcomplete basis. Our choice of
Such factorized representations are far from unique, which sugr overcomplete basis, though unorthodox, makes the idea of
gests the goal of seekingeparameterizationf the distribution reparameterization more transparent, and easily stated. In this
consisting of factors that correspond, either exactly or approsiection, we also show an equivalent formulation of BP as a se-
mately, to the desired marginal distributions. If the graph is cyctpience of local reparameterizations. Moreover, we present some
free (e.g., atree), then there exists a unique reparameterizatgperimental results illustrating the benefits of more global tree-
specified by exact marginal distributions over cliques. Indeedased updates, which include a greater range of problems for
such a parameterization is the cornerstone of the junction trghich convergence is obtained, as well as typically faster con-
representation (e.g., [27], [28]). vergence.

For a graph with cycles, on the other hand, exact factoriza-Section IV contains analysis of geometry of reparameteri-
tions exposing these marginals do not generally exist. Neveation updates, as well as the nature of the fixed points. We
theless, it is always possible to reparameterize cepaitions begin by formalizing the defining characteristic of all reparam-
of any factorized representation—namely, any subset of fact@terization algorithms—namely, they do not change the distri-
corresponding to a cycle-free subgraph of the original graph. Wetion on the graph with cycles, but simply yield an alterna-
are thus led to consider iterative reparameterization of differetivte factorization. Geometrically, this invariance means that suc-
subsets, each corresponding to an acyclic subgraph. As we wiksive iterates are confined to an affine subspace of exponen-
show, the synchronous form of BP can be interpreted in exactigl parameters (i.e., anflat manifold in terms of information
this manner, in which each reparameterization takes place ogeometry (e.g., [30], [31]). We then show how each TRP up-
the extremely simple tree consisting of a pair of neighborindate can be viewed as a projection ontorarflat manifold
nodes. This interpretation also applies to a broader class of égrmed by the constraints associated with each tree. We prove
dates, in which reparameterization is performed over arbitratyat a Pythagorean-type result holds for successive TRP iter-
cycle-free subgraphs. As a vehicle for studying the conceptates under a cost functiog that is an approximation to the
reparameterization, the bulk of this paper will focus on updat&sillback—Leibler (KL) divergence. This result establishes inter-
over spanning treeswhich we refer to as tree-based reparamesting links between TRP and successive projection algorithms
eterization (or TRP). However, the class of reparameterizatifor constrained minimization of Bregman distances (e.g., [32]).
algorithms is broad, including not only synchronous BP, TRFPhe Pythagorean result enables us to show that fixed points of
and other variants thereof, but also various generalizationstbé TRP algorithm satisfy the necessary conditions to be a con-
BP (e.g., [33]). As a demonstration of this generality, we discusgained local minimum of, thereby enabling us to make con-
in Section VI how reparameterization can also be performed tact with the work of Yedidiaet al. [3], [33]. In particular, the
hypertreef a graph, thereby making connections with genecost functiong, while not the same as the Bethe free energy
alized belief propagation [33]. [33]in general, does agree with it on the relevant constraint set.

At one level, just as BP message passing can be reformulatdds fact allows us to establish that TRP fixed points coincide
as a particular sequence of reparameterization updates, the matle points satisfying the Lagrangian stationary conditions as-
global updates of TRP are equivalent to a schedule for messageiated with the Bethe problem (i.e., with the fixed points of
passing based on spanning trees. We find that tree-based updaBs An important benefit of our formulation is a new and in-
often lead to faster convergence, and can converge on problénitsve characterization of these fixed points: in particular, any
for which synchronous BP fails. At another level, the repararfixed point of BP/TRP must be consistent, in a suitable sense to
eterization perspective provides conceptual insight into the rize defined, with respect to any singly connected subgraph; and

at least one such fixed point of this type is guaranteed to exist.

1Several researchers have investigated the utility of Bethe tree approximatigﬂbé adaptln.g the invariance and 'f|xed-p0|nt CharaCte”Z_at'on to
for graphical models; we refer the reader to, e.g., [20], [21]. the Gaussian (as opposed to discrete) case, we obtain a short
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and elementary proof of the exactness of the means when BP or
TRP converges.

Next, we turn to analysis of the approximation error arising
from application of BP and other algorithms that perform repa-
rameterization. Previous results on this error have been obtained B
in certain special cases. For a single cycle, Weiss [11] derived 1 C
a relation between the exact marginals and the BP approxima-
tions, and for a binary processes showed how local correctidfig 1. lllustration of the relation between conditional independence and graph
could be applied to compute the exact marginals. In the contggparation. Here the set of nodéseparatesi andC’, so thatr | andzc»

. ) ) L re conditionally independent.

of turbo decoding, Richardson [13] provided a heuristic anal-
ysis of the associated error. Despite these encouraging results,
a deep and broadly applicable understanding of the approxinfa- Basics of Graphical Models

tion error remains a challenging and important problem. Our An undirected grapti¥ = (V, E) consists of a set of nodes or
characterization of the BP fixed points, in conjunction with thgerticesV’ = {1, ..., N} that are joined by a set of edgBs A
invariance property, allows us to contribute to this goal by agycleis a sequence of distinct edges forming a path from a node
alyzing the approxmat,on error for arbltrary graphs. In Paft_lfback to itself. Atreeis a connected graph without any cycles.
ular, our development in Section V begins with the derivatiom order to define an (undirected) graphical model, we place at
of an exact relation between the correct marginals and the @ach nodes € V a random variable, taking values in some
proximate marginals computed by TRP or BP. More generalipace. For the bulk of this paper, we focus on random variables
our analysis applies to the error in any approximation given hiyat take values in the discrete alphaiet= {0, ..., m — 1}.
minimizing the Bethe free energy. We then exploit this exagh this case, the vectar = {x, | s € V'} takes values in the set
relation to derive both upper and lower bounds on the approx-V of all V-vectors overn symbols.
imation error. The interpret_ation of these bounds provides anof interest are distributions(z) that are constrained by the
understanding of the conditions that govern the performancegdfiph structure, where the constraints correspond to a set of
approximation techniques based on the Bethe approach.  Markov properties associated with the undirected graphAL et

In Section VI, we demonstrate how the notion of reparames, and C' be subsets of the vertex sét We say that the set
terization also applies to generalizations of BP that operate oygkeparatest andC if in the modified graph with3 removed,
higher order clusters of nodes [33], [25], [4]. In particular, Wehere are no paths between nodes in the4eisdC (see Fig. 1).
consider analogs of TRP updates that perform reparameterigiother words,3 is a cutset in the grap@i.
tion over hypertrees of the graph, and show how our tree-based et x| ; represent the collection of random variablesAin

analysis for BP extends in a natural way to these more genegghditioned on those if8. The notion of graph separation is at
hypertree-based updates. The paper concludes in Section tHH core of the following definition.

with a summary.
y Definition 1—Markov Random FieldA random vecto is

Markovwith respect to the grapf¥ if z 4,5 andz¢|p are con-
ditionally independent whenevét separatest andC.

This section provides background necessary for subseque
developments. We begin with the basics of graphical models, in

cluding the necessary preliminaries on graph theory. (See [3%,

[35] for more background on graph theory.) As for graphiczﬁ ”aunts, we ;ngodl;cettf;?notllpn of_a graplmule_f\(\t/hlch Its any
models, there are a variety of different formalisms, includin% y connected Ssubset ot a clique 1S maximalitit IS not prop-
directed Bayesian networks [1], factor graphs [6], and Marka ly cor_1ta|n§d within any (J)&her C|Iﬂue.¢bmpatlbl|lty function
random fields [36]. With some caveatshese different repre- on a clique is a magc: £ — R* that depends only on the

sentations are essentially equivalent. In this paper, we will ma%bvectomc = {z.|s € C}. The Hammersley—Clifford the-

use of the formalism ofMarkov random fieldswhich are de- orem [38], [36] then guarantees that the distribution of a Markov

fined by undirected graphs. More details on graphical moddj§Pcess on a graph can be e>_<pres§ed as a product of such com-
can be found in the books [37], [28], [7]. Next we discuss th‘()—:";‘t'b'“ty functions over the cliques:

problem of inference in graphical models, which (for this paper) Theorem 1—Hammersley—Clifford:et G' be a graph with
refers to computing marginal distributions. We discuss methogdsset of clique<C. Suppose that a distribution is formed as a
for exact inference on trees, including the message-passing nprmalized product of compatibility functions over the cliques
dates of belief propagation. We also show how exact inference
on trees can be interpreted as reparameter.ization, which moti- p(z) = 1 H e (zc) 1)
vates our subsequent analysis for graphs with cycles. A

Il. BACKGROUND

n . L
,& graph strongly constrains the distributiop(z) of a vector
that respects its Markov properties. To express these con-

cec
whereZ 2 > = Llcec Ye(z) is the partition function. Then,
the underlying process is Markov with respect to the graph.

2For example, although any directed graph can be converted to an undirecte®Btrictly speakingp is a probability mass function for discrete random vari-
graph [1], some structure may be lost in the process. ables; however, we will use distribution to mean the same thing.
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Conversely, the distributiop of any Markov random field over
G that s strictly positive (i.ep(z) > 0 forallz € XV) can be
represented in this factorized form.

For the bulkk of this paper, we shall assume that the max-
imal cliques of our graph have cardinality two, an assumption
which is implicit in the standard message-passing form of BP, as
presented in Section 11-B2. Given only singleton and pairwise
cligues, the clique index set ranges over all edges) € F,
as well as the singleton cliquds}. In this case, the compati-
bility functions s andi,, denote real-valued functions of
and(z,, =), respectively. With a minor abuse of notation, we
will often use the same notation to refer to vectors and matrices,
respectively. In particular, for am-state discrete process, the
quantity,; can be also thought of as an x m matrix, where
the (4, k) elementy,;. jx is equal to the function value af,;
for {z, = j, z+ = k}. Similarly, the single-node functions,
can be thought of as an-vector, where thg¢th componenty,, ;
equals the value ap; for {zs = j}.

B. Estimation in Graphical Models

(b)
given instead are noisy observatiopsof x, at some (or all) Fig. 2. A simple example of a tree-structured graphical model. (a) Original

In many applications, the random vectois not observed,;

rameterization of distribution as in (1). (b) Alternative parameterization in

of the nodes, on which basis one would like to draw inferenc ms of marginal distribution®, and P, as in (2).

aboutz. For example, in the context of error-correcting codes

(€.g., [2]), the collectiony = {y. | s € V'} represents the bits 1 ¢ efficient implementation of these algorithms follows
received from the noisy channel, whereas the veetoepre- ' .
a two-pass form, first sweeping upwards from the leaves to

sents the transmitted codeword. Similarly, in image processing, - 1o designated as the root, and then downwards from the

or comp_uter vision [8], the vectqy represents noisy ObserVa"root to leaves, with an overall computational complexity of
tions of image pixels or features. 9

One standard inference problem, and that of central interg)s%m ).
L : pro ' . T t is worth noting that tree inference algorithms can, in prin-
in this paper, is the computation of the marginal dlstnbutloncsi le_be applied to anv aranh by clustering nodes so as to form a
p(zs | y) for each node. This task, which in this paper will be p'e, PP y graph by 9

) Lo . L . so-callediunction tree(e.qg., [27], [28]). This junction tree pro-
ﬁarlgeiﬁztser;iL?rit;?s;IS?nsg;\r/‘if:reenxcef)r:r;tr:f:;tlﬁbrlr?a[r%()]t,esrlnqge Acedure is discussed in more detail in Section VI-B. However,
indigated reviously, for tree-st%uctﬂred ra| {15 thz:/re exis;t I i_many cases of interest, the aggregated nodes of the junction

P Y, grapns, ree have exponentially large state cardinalities, meaning that

rect algorithms for optimal estimation. For graphs with cycles, lying tree algorithms is prohibitively complex. This explo-

suboptimal algorithms (such as BP) are used in an attemptSI n in the state cardinality is another demonstration of the in-

Egnm%;ee?;?g?;t';n:::%'Z)Sﬂ]t%]}?ﬁeigst'ge?c?arg'nals' In this Sfinsic complexity of exact computations for graphs with cycles.
' pICS. An important observation that arises from the junction

A remark before proceeding: Note that each individual noq%e perspective (e.g., [27], [28]) is that any exact algorithm

_formsasmg!eton cllque,_so_that some of the factors in (1) Mar optimal inference on trees actually computes marginal
involve functions of each individual variable. As aCOoNSeqUENCe b oo for pairgs, £) of neighboring nodes. In doing so

Bayes rgle implies that the faffect of mclud.mg t_he.se rT‘easurf?_produces an alternative factorization of the distributi¢m),
ments—i.e., the transformation from the prior distributigm) namely

to the conditional distributiop(z | y)—is simply to modify the
singleton factors of (1). As a result, throughout this paper, we Pyy(xs, 1)

suppress explicit mention of measurements, since the problem p(z) = H Py(xs) H Py(25)Py(2¢) @

of computing marginals for eitherz | y) or p(z) are of iden-

tical structure and complexity. where P, (z,) is the marginal distribution of the variable,,

1) Exact Inference on Trees as Reparameterizatih: and p,,(x,, z,) is the joint marginal over;, andz;. As an
gorithms for optimal inference on trees have appeared jijstration, Fig. 2(a) shows a simple example of a tree-struc-
the literature of various fields, including coding theory [6lired distribution, specified in terms of compatibility functions
artificial intelligence [1], and system theory [39]. In broad, andy,,, as in the factorization of (1). Fig. 2(b) shows this
overview, such algorithms consist of a recursive series @ime tree-structured distribution, noeparameterizeéh terms
updates, in which “messages” are passed from node to nogehe |ocal marginal distribution®, and P.,. The representa-

4In Section VI, we shall consider more general Markov random fields tion of (2)_ Can. be deduced from a more general factorization
may include higher order cliques. result on junction trees (e.g., [28], [27]). More concretely, (2)

s€V (s,t)EE
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can be seen as a symmetrized generalization of the well-known O—O——Cr
factorization(s) of Markov chains. For example, the variables
at the three nodefl, 2, 4} in Fig. 2(b) form a simple Markov C\ A A
chain, meaning that the joint distribution can be written as O
Pragy = Py(Pa)1)(Py2) O O O
:Pl(PIZ/Pl)(P24/P2)
= Py Py Py(P12/ Py Py)(Pas/ P> Py) O O O
where the last equality is precisely the form of (2). Note that the (@

final line removes the asymmetry present in the preceding lines
(which resulted from beginning the factorization from node 1,
as opposed to node 2 or 4).
We thus arrive at an alternative interpretation of exact infer-
ence on trees: it entails computing a reparameterized factoriza-
tion of the distributionp(z) that explicitly exposes the local
marginal distributions; and also does not require any additional
normalization (i.e., with partition functiod = 1).
2) Belief Propagation for Graphs With Cycle#is we have
indicated, the message-passing form of BP, in addition to being (b)
exact in application to trees, yields an iterative message-passr%ga A graph with cycles has a (typically large) number of spanning trees.

algorithm for graphs with cycles. In this subsection, we sung) original graph is a nearest neighbor grid. Panel (b) shows one of the 100 352
marize for future reference the equations governing the BP dpanning trees of the graph in (a).

namics. The message passed from nede nodet, denoted
by M., is anm-vector in which element/;. ;. gives its value the graphG. Then, for anyi € {0, ..., L —1}, the distribution
whenz, = k. LetT'(s) = {t € V| (s, t) € E} be the set of p(x) can be factored as

neighbors of in G. With this notation, the message at iteration

(n + 1) is updated based on the messages at the previous itera- p@) =p'@)r'(e) )
tion n as follows: wherepi (:z:)‘includes the factors in (1) corresponding to cliques
m—1 of 7°, andr’(z) absorbs the remaining terms, corresponding to

M =5 tapte; [ e (3) edges inZ\E' removed to fornT". o o
=0 uel(s)/t Because/™ is a tree, the reparameterization operation in (2)

o ) ] can be applied to the tree-structured distributiéfx) in order
where denotes a normalization constanf\t any iteration, o optain an alternative factorization of the distributigit).
t_he “bellefs”_—that is, approximations to the marginal distribupin reference to the full grapty and distributionp(z), this
tions—are given by operation simply specifies an alternative choice of compatibility
B . = k. H n o 4) functions that give ri_se to _the same distributp(m:). In a sub- _
5id s J sequent update, using this new set of functions and choosing
a differenttree 77, we can writep(z) = p’(z)r?(zx), where
7’ (z) includes compatibility functions over cliques #. We
lll. TREE-BASED REPARAMETERIZATION FRAMEWORK can then perform reparameterization fé(zx), and repeat the

In this section, we introduce the class of TRP updates. KQ{/OCGSS’ choosing one of tfie at each step of the iteration.

to TRP is the concept of a tree-structured subgraph of an ar_'I'he basic steps of this procedure are illustrated for a simple

bitrary graphG' with cycles—i.e., a tree formed by removinggraph in Fig. 4. Fig. 4(a) shows the original parameterization of

. - - in terms of compatibility functiong, and;, as in (1).
edges from the graph. 8panning treas an acyclic subgraph p(x) in ) . . -
that connects all the vertices of the original graph. Fig. 3 illué sEannlr)g It:r_eeé,l fgr.mﬁd t_>y removing eddds5) and(5, 6),
trates these definitions: Fig. 3(a) shows a nearest neighborgﬁd? own in Fig.4(b); that is,
whereas Fig.3 (b) illustrates a spanning tree. Of course, Fig.3 r(x) = P54, 5) Vs6(T5, 6)
(b) is just one example of a spanning tree embedded in the orig-

inal graph (a). Indeed, a graph generally has a (large) numijethis case. The tree distributigri(z), corresponding to the

of spanning trees and we exploit this fact in our work. Specif_product of all the other compatibility functions, is reparameter-

ically, suppose thaf™®, ..., 7%~ (with corresponding edge ized in terms of marginal$; and7,; computed from the tree

setskE, ..., EL=1 C E)is a given set of spanning trees for? » & shown in panel (c). Note that the quantit{ds, 7.}

are exact marginals for the tree, but represent approximations to

5Throughout this paper, we will useto refer to an arbitrary normalization the true marginal§ P, Ps:} of the full graph with cycles. The

constant, the definition of which may change from line to line. In all cases, it j - . .
easy to determine by local calculations. raph compatibility functions after this first update are shown

8In general, the number of spanning trees can be computed by the matrix-ﬂ.@epanel_ (d) Ina Subseque_nt u_pdate, a different tree is chosen
theorem (e.g., [34]). over which reparameterization is to be performed.

uer(s)
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¥ ¢ ‘1/1 .¢ ¥ .w 'w d(h) =1 0 6b
" * s ’ R ? thos s (6) = log Z exp Z wa(z)p | . (6b)
O —(Q) O O O zEXN o
1 2 3 1 r2 3 _ » . :
" s b Ys s s Here,® is thelog partition functionthat serves to normalize the
1 distribution. As the exponential parameteranges oveR*(?)
L4 > 6/ 4 > e whered(d) = |A|, (6) specifies a family of distributions asso-
O O O O D) ' X :
Ya5 P56 ciated with the given graph.
Ve .1/’5 .1/’6 ¥ ¢’ ‘% The log partition functionb has a number of useful proper-
b ties that we will exploit in subsequent analysis. In particular, by
@ ®) straightforward calculations, we obtain
T .T .T T * .T .T oo
I oA A& 5 () =Eloa] (7a)
1 T2 57 1 2 3 92d
ok % |k 1h % |5k 99, 99, 0 =covelda, da}
4 5 6 4 5 6 A
O ® O 7 O O =Eo[¢a ¢s] — EsldalEo[¢s]  (7b)
45 56
Ty T; Ts Ty T; Ts whereE, denotes the expectation taken owewith respect to
[ (] o o

(©

(d)

the distributionp(z; 0); that is,Es[¢a] = >, p(x; 6)da(x).

We note that the quantit;/ in (7b) is an element of the Fisher in-
9° log p(z; 6)

Fig. 4. lllustration of a TRP update. (a) Original parameterization in terms d@rmation matrix(—Eq{ =542~ }). Therefore, the Hessian
compatibility functionsy>, and,.. (b) Isolate terms corresponding to a treey;2¢ jg positive semidefinite, so thétis a convex function of.

7. (c) Reparameterize the tree-structured compopint) of the distribution
in terms of the tree marginald’,, T, }. (d) New parameterization of the full

distribution after a single iteration.

In addition, the exponential parameterization of (6) induces
a certain form for the KL divergence [43] that will be useful in

the sequel. Given two parameter vectends*, we denote by

At one level, the sequence of updates just described is equi\l/%l(-a 16%) tr:e KL.d|v<_argence between the_dlstrl|but|qv(a:; 9).

lent to a particular tree-based schedule for BP message pas aHd.p(z; 6*). This divergence can be written in the following
p gep .

In particular, each tree update consists of fixing all messages
on edges not in the tree, and updating messages on the trégd || 0*) = Z E¢lpa(z)] (00 — 07) + 2(6%) — 2(6). (8)
edges until convergence. However, thinking about reparameteri- o
zation instead of message passing highlights an important prRste that this definition entails a minor abuse of notation, since
erty: each step of the algorithirentails specifying an alternative the givergence applies to distributiopgr; 6) andp(z; 6%),
factorization of the distributiop(z), and therefore, leaves theang not the parametefisandé* themselves.

full distribution intact. To formalize this basic idea, in this sec- |t remains to specify a choice of functiogs = {$.}. Let

tion, we introduce a particular parameterization of distributiorgs7 t € V be indexes parameterizing the nodes of the graph, and
p(z; ), such that iterations of the type just deslcnbed can & the indexeg, & run over then possible states of the discrete
represented as explicit functional updatés— 6" *' on these random variables. We then take the index.4db be the set of
parameters. We glso show that s_ynghronous BP can be '”_E%i‘rs(s; 4) or 4-tuples(st; jk), and choose the potentiajs,
preted as performing reparameterization updates over especiglyingicator functions fos to take on the indicated value (or

simple (nonspanning) trees, and we present experimental resyg@es) at the indicated node (or pair of nodes). That is,
illustrating the potential advantages of tree-based updates over
¢a(x) :6s;j(xs)7 (93_)

synchronous BP.
‘ba(x) = 65; j(xs)ét; k(xt)-/ (9b)

Here, the indicator functio, ;(z,) is equal tol when node

Central to our work are exponential representations of distg—s takes the state value and0 otherwise. With this choice of
butions, which have been studied extensively in statistics agdthe length off is given by

applied probability theory (e.g., [31], [40], [30], [41], [42]).
Given an index set, we consider a collection of potential func-

tions¢ = {¢a | € A} associated with the graphi. We let ypore| 17 s the number of edges ifi. Moreover, note that the
0 = {0 | € A} denote a vector of parameters, and then Cogs,,nential representation is related to the compatibility func-
sider following distribution: tions (as in, e.g., (1)) via the relation

05; j¢s; ](Is) = 10g1/1s(17s = ])

with a similar relation fo,;, ;» and.;.
It is typical to choose a linearly independent collection of
"Here we have described an unrelaxed form of the updates; in the sequel,fH/QCt'onS' WhICh.glveS risetoa so-callenh_lmalrepresentatlpn
present and analyze a suitably relaxed formulation. (e.g., [40]). In this context, the exponential parameterization of

for a = (5 j)
for a = (st; jk).
A. Exponential Families of Distributions

d(0) = mN + m?|E| (10)

p(x; 0) = exp {Z Oatpa(®) — ‘I’(9)} (62)
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(9) is unorthodox because itasercompletéi.e., there are affine implies global consistency for trees—is the essence of the
relations among the functiogs = {¢,}). As an example, for junction tree theorem (see, e.g., [28]).
any edgqs, t) € E, we have the linear dependence For a graphG with cycles, in contrast, there exist elements
of TREE(G) that cannot be realized as the marginals of any
Z Bs; ()8 1(24) = 64 k(2e), forallk =0,....m—1. " gisyinution (see [45]), so thatt ARG(G) is strictly contained
I within TREE(G). This strict containment reflects the fact that
An important consequence of overcompleteness is the existefwrea graph with cycles, local consistency is no longer sufficient
of distinct parameter vectofs# §* that induce the same distri- to guarantee the existence of a globally consistent distribution.
bution (i.e.,p(z; ) = p(z, 6*)). This many-to-one correspon- For a general graph with cycles, of course, the computation
dence between parameters and distributions is of paramount 8fiA (6) in (11) is very difficult. Indeed, algorithms like BP and
portance to our analysis because it permits reparameterizafit®P can be formulated as iteratively generating approximations
operations that leave the overall distribution unchanged.  to A(#). To make a sharp distinction from exact marginal vectors
) P € MARG(G) Cc TREE(G), we use the symbdI to denote
B. Basic Operators such pseudomarginalsMoreover, when the grap8' is clear
Given a distributiorp(z; 6) defined by a grapldZ, the quan- from the context, we will simply writél ARG and TREE to
tities that we wish to compute are elements of d@)-dimen- denoteMARG(G) andTREE(G), respectively.
sional marginal probability vectorP = {P,|a € A}. The We also make use of the following mapping that is defined
elements of this marginal probability vector are given by ~ for any7 € (0, 1)4®):

P, j =p(zs = j; 0), forseV,jeX [O(T)]a
Py ik =ples=j,z,=k; 0), for(s,t)eE, jkeX log T, j, if a=(s; j)€A

corresponding to the single-node and joint pairwise marginals, | og Lot jr . if a=(st; jk)€A.
respectively. We usd’; to denote them-vector of values —

{Ps.j, j =1,...,m}, and define then?-vector P, in an Z Tst; jk (Z Tst; jk

analogous way. Such vectors can be viewed as an alternative J k

set of parameters for a graphical distribution. More precisely, (13)

the quantities? and# are a dual set of parameters, related via ) . )
the Legendre transform applied to the log partition functioh® quantityd(T’) can be viewed as an exponential parameter
(see [41], [44], [45]). vector that indexes a distributigiz; ©(T')) on the graphG.

We will frequently need to consider mappings between thelfefact, consider a marginal vectdt € MARG(G). If G is a
two parameterizations. In particular, the computation of tHEe: then notonly is the computation of (11) simple, but we are

marginals can be expressed compactly as a map acting on@f9 guarantee®(r”) indexes the same graphical distribution
parameter vectof as that corresponding to the marginal veditthat is,

P = A(). (11) AB(P)) = P. (14)

Note that the range af is a highly constrained set. Its ele-This equality is simply a restatement of the factorization of (2)
ments correspond tealizablemarginal vectors, so that we use©r any tree-structured distribution in terms of its single-node
MARG(G) to denote the range of. First of all, any realizable @nd joint pairwise marginals. However, @ has cycles, then,
marginal vector must belong to the unit hypercibe1]d(®. in general, the marginal distributions pfz; ©(F)) need not
Second, there are normalization constraints (single-node €€ With the original marginalg (i.e., the equality of (14)
joint marginal probabilities must sum to one); and marginaﬂoes not hqld). In fact, determm_lng the ex_ponen_tlgl parameters
ization constraints (pairwise joint distributions, when marginaorresponding t@ for a graph with cycles is as difficult as the
ized, must be consistent with the single node marginals). Ti@MPutation of\(¢) in (11). Thus, the composition of operators
is, MARG(G) is contained within the constraint SEREE(G), A © ©, mapping one marginal vector to another, is the identity

defined as follows: for trees but not for general graphs.
Alternatively, we can consider composittyy and A in the
TREE(G) other order
= T € [0 1]d(9) Z Ts;j = 17 Z Tlst; jk — Ts;j . R(Q) = (6 o A) (9> (15)
! (12) which defines a mapping from one exponential parameter vector

to another. For a general graph, the oper&owill alter the
Our choice of notation is motivated by the fact that for distribution (that isp(z; 6) # p(z; R(6))). For a tree-struc-
tree-structured graplti = 7, we have the equivalencetured graph, whiléR is not the identity mapping, it does leave
MARG(7T) = TREE(T). More specifically, given some the probability distribution unchanged; indeed, applyRigor-
elementT of TREE(T), the local constraints imposed dh responds to shifting from the original parameterization of the
are sufficient to guarantee the existence of a unique distributivee distribution in terms of to a new exponential parameter
p(z; 6) such thatl’ = A(#). This fact—that local consistency R () that corresponds directly to the factorization of (2). As a
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result, in application to trees, the opera®is idempotent (i.e., {#"} by successive application of these opera@ts The se-
RoR =TR). guence is initializetlatd° using the original set of compatibility
functions{«;} and{v} as follows:

C. TRP Updates 40 {10g1/)s; i if o= (s j)

The basic idea of TRP is to perform reparameterization up- log Yst; jk,  if a = (st; jk).
dates on a_set of spanning trees in succession. Wg assum_eAIn@iach iterationn, we choose some spanning tree index)
each edge in the graph belongs to at least on spanning tree infibgn {0, ..., L — 1}, and then update using the operator on
coIIectjon{Tﬂ ..., Tt=1}. The update on any given spanningpanning treq
tree7" involves only a subset grtt = Qitn) (gm). (19)
A" ={(s; J), (st; jk)[s €V, (s, 1) € E'} In the sequel, we also consider a relaxed iteration, involving a

step size\"™ € (0, 1] for each iteration
of all the elements of. To move back and forth between pa- P (0, 1]

rameter vectors on the full graph and those on spanningttee 0"t = A" QU(67) + (1 — A™)8" (20)
The only restriction that we impose on the set of spanning

I1(0) = {00 | € A} ‘ (162) trees is that each edge of the full graphis included in at
THIT(6) = Oos ifae A 16b least one spanning tree (i.e;,A° = A). It is also necessary
(I(6)) = 0. if o ¢ A (16b) to specify an order in which to apply the spanning trees—that

o ‘ is, how to choose the indexn). A natural choice is theyclic
We letA*, ©°, andR* denote operators analogous to those iBrdering in which we seti(n) = n(mod L). More generally,

(11), (13), and (15), respectively, but as definedfor any ordering—possibly random—in which each spanning tree
Each TRP update acts on the full-dimensional vedtor occurs infinitely often is acceptable. A variety of possible order-
but changes only the lower dimensional subvediofd) = ings for successive projection algorithms are discussed in [32].

{0 |a € A'}. For this reason, it is convenient to use the In certain applications (e.g., graphical codes), some of the
underbar notation to define operators of the following type: compatibility functions may include zeroes that reflect deter-

. L ministic constraints (e.g., parity checks). In this case, we can ei-
Ef(g) :If(R'L(Hll(H))) (178)  ther think of the reparameterization updates as taking place over
A(9) =T (A (IT°(H))). (17b) exponential paramete#s, in the extended rea® U {—oo}, or

) ; ) _ more naturally, as operating directly on the compatibility func-
For instance A" projects the exponential parameter vedor tjons {45, s} themselves.

onto spanning tred?, computes the corresponding marginal
vector for the dlStrlbUtlorp(Z, H7(0)) induced on the tree, D. Belief Propagation as Reparameterization
and then injects back to the higher dimensional space by in-

serting zeroes for elements of edges naTin(i.e., for indexes In this subsection, we show how to reformulate synchronous

o € A\A%). Moreover, analogous tREE, we define a con- BPin message-fre_e manner as a sequence of Ioc_al rather than

. i . R . lobal reparameterization operations. Specifically, in each step,
straint sefTREE* by imposing marginalization constraints only?]e compatibility functions are determined by performing exact
for edges in the spanning tree (i.e., as in (12) witheplaced ca;,c\:l Iat'opnsloI Ie)r/eu trelmel simple (nolns agnpn )tretlasgfo;(med
by E%). Note thaffTREE* D TREE, and since every edge is in- uatl ver ex y simp panning

cluded in at least one spanning tree, we havethaREE’ = of two nodes and ghe corresponding edge joining them.
TREE. We denote by, them-vector corresponding to the chosen

. . . . . initialization of the messages. This choice is often the vector of
Using this notation, the operation of performing tree repa- R . . .

o . ; : all ones, but any initialization with strictly positive components
rameterization on spanning tréé can be written compactly as.

. , . is permissible. The message-free version of BP iteratively up-
transforming a parameter vectbmto the new vector given by dates approximations to the collection of exact margials

Qi(e) :Ri(e) n [[ _Tio Hi] () (18a) {Ps, Py} Initial values of the pseudomargindls= {7, T.:}
N are determined from the initial messag#s, and the original

=0+ [E (6) - Z'(II (9))] (18b) compatibility functions of the graphical model as follows:
where [ is the identity operator. The two terms in (18a) par- T - = ks, ; | | MO . (21a)
L . s; 7 S5 us; j
allel the decomposition of (5): namely, the oper&dperforms wEl(s)

reparameterization of the distributigi(z), whereas the oper- , 0 0
ator[I — T* o II*] corresponds to leaving the residual terifr) Tt jie = sts 1P 3901 b H M j H Mt
unchanged. Thus, (18a) is a precise statement of a spanning tree uel()\e uel(®)\s
update (as illustrated in Fig. 4), specified in terms of the expo- (21b)
nential parametef. wherex denotes a normalization factor.
Given a parameter vectdy computingQi(6) is straightfor- 8 o _
Other initializations are also possible. More generalfycan be chosen as

ward, since it oply involves operations on the spanningTree ,y exponential parameter that induces the same distribution as the original
The TRP algorithm generates a sequence of parameter vecterigatibility functions{+.} and{#..}.
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ﬁ%’m updating schedules are u_sed in certain applications of BP like

a 2 turbo decoding [2], for which there are natural choices of trees

7 T over which to perform updates. In this subsection, we provide
1 9 experimental evidence supporting the claim that tree-based up-
i 2 dates can have superior convergence properties for other prob-

lems. An interesting but open question raised by these exper-
iments is how to optimize the choice of trees (not necessarily

£ 3 spanning) over which to perform the updates.
2 & 1) Convergence Ratedn this subsection, we report the re-
o ® sults of experiments on the convergence rates of TRP and BP
@ (b) on three graphs: a single cycle with 15 nodeg,a 7 nearest

Fig. 5. (@) Singl | h () T de t df dat neighbor grid, and a largef x 40 grid. At first sight, the more
19. o. a, Ingle cycle grapn. WO-noae trees use or updates . . . .
message-free version of belief propagation. Computations are perforn&ﬂ@bal nature of TRP m'ght suggest that each TRP |.terat|on. IS
exactly on each two-node tree formed by a single edge and the two associar@re complex computationally than the corresponding BP it-
?bservation pogen_tialgzas in (22b). The node marginals from each two-nasigation. In fact, the opposite statement is true. Each TRP up-
ree are merged via (222). date corresponds to solve a tree problem exactly, and therefore
. . . requiresO(m?(N — 1)) operations. In contrast, each itera-
At |terat|omz, these _pseudomargmals are updated accordlﬁgn of synchronous BP required(m?|E|) operations, where
to the following recursions: 1 |E| > N — 1is the number of edges in the graph. In order to
7 — =1 1 -1 29 make comparisons fair in terms of actual computation required,
sig = Flsj 1 Z st; jk (22a) . - i _
+eI(s) 35 = the iteration numbers that we report are rescaled in terms of rel
ative cost (i.e., for each graph, TRP iterations are rescaled by the

n—1

T T3 i " T .. (22b) ratio(N —1)/|E| < 1). In all cases, we used unrelaxed updates
stk mot N\ fmmt SR for both BP and TRP.
]go Lot j <,§0 Tt; i For each graph, we performed simulations under three con-

The update in (22b) is especially noteworthy: it correspongétl.onS: e_dge potentials that arep_uIS|ve(|.e., tha.‘t encourage
. ; N : neighboring nodes to take opposite valuadfractive (that en-
to performing optimal estimation on the very simple two-node

tree formed by edgés, ). As an illustration, Fig. 5(b) shows courage neighbors to take the same value);raixéd(in which

- . . ome potentials are attractive, while others are repulsive). For
the decomposition of a single-cycle graph into such two-nodée . o .
o o : each of these experimental conditions, each run involved a
trees. This simple reparameterization algorithm operates by pér- . - .
random selection of the initial parameter vectdr defining

forming optimal estimation on this set of nonspanning tree o 00 :
one for each edge in the graph, as in (22b). The single-notz?ee distributionp(x; ). In all experiments reported here,

. ! we generated the single-node parametgrs as followsio
marginals from each such tree are merged via (22a). ) 9
) . 2 A for each nodes € V, samplea; ~ N(0, (0.25)%), and set
We now claim that this reparameterization algorithm is equ

iV; .
. ) - fs.0 0s.1] = [as —as]. TO generate the edge potential com-
alent to belief propagation, summarizing the result as fouow%onents%t;jk, we began by samplink,, ~ A’(0, 1) for each

Proposition 1: The reparameterization algorithm specifiegdge (s, t), With §;;, denoting the Kronecker delta for, ,
by (21) and (22) is equivalent to the message-passing form of B set the edge potential components in one of three ways
givenin (3) and (4). In particular, for each iteratiorr= 0, 1, ... depending on the experimental condition. For teeulsive
and initial message vectar?,, we have the following relations: condition we setlyy, jr = —(26,r — 1)|bs|; for theattractive
nooq omzlo condition fs. ;. = (26, — 1)|bst|; whereas for themixed
n+1 0 7 .
My =M [ = D0 Thogi V(s )EE (238)  condition O, i = (2655 — 1)ba.
i=0 "tk =0 For each experimental condition, we performed a total of 500

B ;=T ;, VseV (23b) trials for each of the single cycle arfdx 7 grid, comparing
wherex denotes a normalization factor. the performance of TRP to BP. On any given run, an algo-

Proof: These equations can be established by induction gthm was deemed to converge when the mgauifference be-
iterationn, using the BP equations (3) and (4), and the reparattveen successive node elemefftsy, ||§7! —§7(|?) reached
eterization equations (21) and (22). O athreshold of = 1 x 1071¢. A run in which a given algorithm

failed to reach this threshold within 3000 iterations was clas-
E. Empirical Comparisons of Local Versus Tree-Based  sified as a failure to converge. In each condition, we report the
Updates total number of convergent trials (out of 500); and also the mean

Given that a spanning tree reaches every node of the grapmber of iterations required to converge, rescaled by the ratio
one might expect tree-based updates, such as those of TRRo— 1)/|£| and based only on trials where both TRP and BP
have convergence properties superior to those of local updagesverged.
suchas synghronous B-P' As stated preViOUSIy' a single_T_RP uFS)’I_-iere we are using the fact that a tree problem can be solved efficiently by a
date on a given spanning tre_e can be perform_ed by fIXIng 0-pass sweep, where exactly two messages are passed along each edge of the
the messages on edges not in tree, and updating messagegph.

edges in the tree until convergence. Such tree-based messafehe notationV'(0, o) denotes a zero-mean Gaussian with variarice
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TABLE |
COMPARISON OFCONVERGENCEBEHAVIOR OF TRP VERSUSBP FOR A SINGLE CYCLE OF 15 NODES AND A 7 X 7 GRID. POTENTIALS WERE CHOSEN RANDOMLY
IN EACH OF THE THREE CONDITIONS: REPULSIVE POTENTIALS ( R), ATTRACTIVE POTENTIALS (A ), MIXED POTENTIALS (Af). FIRST AND SECOND NUMBERS IN
EAacH Box DENOTE THENUMBER OF CONVERGENT RUNS OUT OF 500; AND THE MEAN NUMBER OF I TERATIONS (RESCALED BY RELATIVE COST AND
CoMPUTED USING ONLY RUNS WHERE BOTH TRP AND BP CONVERGED)

Graph Single 15-cycle 7 x 7 grid
R [ A M R | A [ M

BP || 500 23.2 500 23.4 500 23.6 455 62.3 457 65.8 267 310.1
TRP || 500 8.1 500 8.0 500 8.2 500 30.5 500 30.8 282 103.2

Table | shows some summary statistics for the two graphsed; however, it remains an open question how to choose trees
used in these experiments. For the single cycle, we implemengedas to maximize the rate of convergence. In this context, one
TRP with two spanning trees, whereas we used four spanncmuld imagine a hybrid algorithm in which pure synchronous
trees for the grid. Although both algorithms converged on &P iterations are interspersed with iterations over more global
trials for the single cycle, the rate of TRP convergence was sigjructures like trees (not necessarily spanning). The exploration
nificantly (roughly three times) faster. For the grid, algorithnof such issues remains for future research.
behavior depends more on the experimental condition. The re2) Domain of ConvergenceWWe have also found that tree-
pulsive and attractive conditions are relatively egsthough based updates can converge for a wider range of potentials than
still difficult enough for BP that it failed to converge on roughlysynchronous BP. The simple five-node graph shown in Fig. 7(a)
10% of the trials, in contrast to the perfect convergence peserves to illustrate this phenomenon. We simulated a binary
centage of TRP. In terms of mean convergence rates, TRP cprocess over a range of potential strengtianging from—0.3
verged more than twice as quickly as BP. The mixed condb —1.0. Explicitly, for each value of:, we made a determin-
tion is difficult for suitably strong edge potentials on a grid: inistic assignment of the potential for each edget) of the graph
this case both algorithms failed to converge on almost half thef,;. ;1 = (26, — 1)u. For each potential strength, we con-
trials, although TRP converged more frequently than BP. Morducted 100 trials, where on each trial the single-node potentials
over, on runs where both algorithms converged, the TRP meaare set randomly by sampling ~ A/(0, (0.25)%) and setting
rate of convergence was roughly three times faster than BP. M;. o 0,. 1] = [as —a,]. On any given trial, the convergence
though mean convergence rates were faster, we did find indf-a given algorithm was assessed as in Section IlI-E1. Plotted
vidual problems on the grid for which the version of TRP witlin Fig. 7(b) is the percentage of successfully converged trials
four trees converged more slowly than BP. However, one possérsus potential strength for TRP and BP. Both algorithms ex-
bility (which we did not take advantage of here) is to optimizhibit a type of threshold behavior, in which they converge with
the choice of trees in an adaptive manner. 100% success up to a certain potential strength, after which their

We also examined convergence behavior fordive 40 grid  performance degrades rapidly. However, the tree-based updates
with 1600 nodes, using a version of TRP updates over two spaxtend the effective range of convergest&o be fair, recently
ning trees. Fig. 6 provides an illustration of the convergence h@oposed alternatives to BP for minimizing the Bethe free en-
havior of the two algorithms. Plotted on a log scale iskRalis- ergy (e.qg., [23], [22]), though they entail greater computational
tance between the single-node element®'cindf* at each it- cost than the updates considered here, are guaranteed to con-
eration, wher@* is a fixed point common to BP and TRP, versuserge to a stationary point.
the iteration number. Again, the TRP iteration are rescaled by

their cost relative to BP iteratior{§ N — 1) /| E|), which for this IV. ANALYSIS OF GEOMETRY AND FIXED POINTS

large grid is very close t6.5. Fig. 6 () illustrates a case with In thi . t ber of its related to th
repulsive potentials, for which the TRP updates converge quite n this section, we present a number of results related fo the

a bit faster than BP updates. Examples in the attractive con\% 2ometry and fixed points of reparameterization algorithms like

tion show similar convergence behavior. Fig. 6 (b) and (c) ShoﬁgP and BP. The defining characteristic of a reparameterization

two different examples, each with a mixed set of potentials. T orithm is that the original distribution is never altered. Ac-
mixed condition on the grid is especially difficult due to th&ordingly, we begin in Section IV-A with a formal statement of

possibility of conflicting or frustrated interactions between th@ls.pro.perty_lr_l terms of exponential parameters, and then es-
nodes. For the problem in Fig. 6 (b), the two spanning trees u lish its validity for the more general class of relaxed updates.

for this particular version of TRP are a good choice, and aga e also develop the geomet_ric interpretation of this resul_t: all
lead to faster convergence. The potentials for the problem"ﬁrates are confined to an affine subspace of the exponential pa-

Fig. 6 (c), in contrast, cause difficulties for this pair of spanninr meters (|.e., apiat 'f“a”'fo'd |n_|nfqrmat|on geometry [30],
trees; note the erratic convergence behavior of TRP. 0]). Motivated by this geometric view, we show that a TRP

Each TRP update ignores some local interactions Corg}é:_r?ate can be viewed as a projection onto the tree constraint set

sponding to the edges removed to form the spanning tr _EE . This projection is defined by a particular cost function,

These edges are covered by other spanning trees in the set
12This result is not dependent on the symmetry of the problem induced by our
11in fact, on a bipartite graph like the nearest neighbor grid, the repulsive aclbice of edge potentials; for instance, the results are similar if edge potentials
attractive conditions are equivalent. are perturbed from their nominal strengths by small random quantities.
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Fig. 6. Convergence rates for TRP versus BP dfi & 40 grid. Plotted on a log scale is thig’ distance(}., . |67, ; — 6% ;|?) from current iterat@™ to fixed

pointé* versus iteration number. In all cases, both BP and TRP converge to the same fixed §0iif&) Repuisivé'p;otentials. (b) Mixed potentials. (c) Particular
choice of mixed potentials that causes difficulty for TRP.

defined in Section 1V-B, that arises as an approximation to tlggaph with cycles. In this section, we formalize this notion of in-
KL divergence and agrees with the Bethe free energy [3] eariance, and show that it also holds for the more general class of
the constraint set. In Section IV-C, we show that successikgaxed updates in (20). On the basis of this invariance, we pro-
TRP iterates satisfy a Pythagorean relation with respect to thide an illustration of the TRP updates in terms of information
cost function. This result is of independent interest becausagy@gometry [41], [31], [46]. This geometric perspective provides
establishes links to successive projection techniques for camkuition and guides our subsequent analysis of reparameteriza-
strained minimization of Bregman distances (e.g., [32]). In Setion algorithms and their fixed points.

tion IV-D, we use this Pythagorean relation to prove that fixed From the perspective of reparameterization, a crucial feature
points of the TRP algorithm satisfy necessary conditions to bé the exponential parameterization defined in (9) is its over-
a constrained minimum of this cost function. By combining ourompleteness. For this reason, given a fixed exponential param-
results with those of Yedidiat al. [3], we conclude that fixed eterd, it is interesting to consider the following subsefR¥®):
points of the TRP algorithm coincide with those of BP. The N ~

Pythagorean result also allows us to formulate a set of sufficient M(0) = {0 € R" | p(z; 0) = p(x; 0)} (24)

conditions for convergence of TRP in the case of two spannin ered(6) denotes the length df as defined in (10). This set

trees, which we briefly discuss in Section IV-E. In Section IV- . &) —i .
we provide an elementary proof of the result originally deveF—an be seen to be a closed submanifol®6f’—in particular,
note that it is the inverse image of the pafntinder the contin-

oped in [19], [18] concerning the behavior of BP for jointly :
Gaussian distributions uous mapping - p(z; 6). 5
' In order to further understand the structure\d{¢), we need

to link the overcomplete parameterization to a minimal param-
eterization, specified by a linearly independent collection of
Highlighted by our informal setup in Section Il is an im-functions. To illustrate the basic intuition, we begin with the
portant property of reparameterization algorithms like TRP asgecial case of binary-valued nodes = 2). In this case, the
BP—namely, they do not change the original distribution on thedicator functions of thé-representation can be expressed as

A. Geometry and Invariance of TRP Updates
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Lemma 1: The setM(f) of (24) is an affine subspace-lat
submanifold) oR4®) of dimensiond(#) — d(v). It has the form
{6 € RY9) | 40 = 7}, where A is an appropriately defined
d(vy) x d(#) matrix of constraints.

Proof: See Appendix A. O

Based on this lemma, we can provide a geometric statement
and proof of the invariance of TRP updates, as well as message-
passing algorithms.

(€Y Theorem 2—Invariance of Distribution:
100 ‘ ' T o TRP 1 a) Any sequence of TRP iterat¢g™}, whether relaxed or
—— BP unrelaxed, specifies a sequence of reparameterizations of the
80 original distribution on the graph with cycles. More specifically,
? for anyn € N, the iterate?™ belongs to the set
g 60t M(8°) = {8 € RY® | p(x; 0) = p(x; 6°)}.
g 40l b) Similarly, any form of BP message passing, when suitably
§ reformulated (see Section IlI-D), specifies a sequence of repa-
rameterizations.
20 Proof:
a) As previously described, the unrelaxed TRP update of
% 025 05 075 1 125 " 15 (19) does indeed leave the distribution unchanged, so that
Potential strength Qi(#) € M(#) for all §. The relaxed update of (20) is nothing
(b) more than a convex combination of two exponential vectors

Fig. 7. (a) Simple five-node graph. (b) Comparison of BP and TREP™ and Q'(")(#™)) that parameterize the same distribution, so

_COfZV;Efgsncedpelfcentiges bverSUS function of pOt?“tial St_felngth Onh grghht by recourse to Lemma 1, the proof of the first statement

n (a). otte along the abscissa as a measure o potentla strengt IS . 0\ ; .

multi-information D(p(z: 8) || [T~ p(x.; #)). Both TRP and BP exhibit a @%omplete. _As_ not_ed earliei(6) is a closed submanifold,

threshold phenomenon, with TRP converging for a wider range of potentialsSO that any limit point of the sequen¢é™} must also belong
to M(6°).

linear combinations of the functions andz,z;. For example,  b) Given a message-passing algorithm, the mess&ges-

we haveds, o(z5)d. 1(z:) = (1 — z5)z. Thus, in the binary {M?”} atiterationn define a set of pseudomarginals as follows:

case, a minimal parameterization is given by

T:’; 7 = K’L/]S; 7 H M:s; 7 (27a)
p(®; v) = exp Z VsTs + Z Ystxsxy — P(y) p . (25) u€l'(s)
s s 1B Th ok =rtber s ek [ Mis; 1 o k-
Such a model is known as the Ising model in statistical physics u€l(s)\t u€l(t)\s
(e.g., [8]). (27b)

These ideas are extended readily to discrete processes with
m > 2 states. In general, for a graph with pairwise cliques, ti¢ote that from these definitions, it follows that for any
following collection of functions constitute a minimal represeredge (s, t), the ratio 77, ;. /[Ts: ;7}!,] is proportional to

tation: Vst; ju/[Myy, ;M. ). Using this observation, we see that the
R(s) 2z la=1, ..., m—1}, VseV (26a) Product

R(s, t) 2{z%"|a, b=1,....,m—1}, V(s t). (26b) M 10 T,

As in the binary case illustrated above, we-die a parameter v ! (s,t)EE il

vector of weights on these functions. _ _ _ _
In contrast to the overcomplete case, the minimal represégproportional to the following expression:
tation induces a one-to-one correspondence between parameter

vectorsy and distributiong(z; +). Therefore, associated with . Vit ik
the distributiorp(z; 6) is a unique vecto such thap(z; 6) = H Ve; j H My, ; H Mr M
p(z; 7). The dimension of the exponential family (see [30]) is s€V u€l(s) (s,)€Bp Itk

given by the length ofy, which we denote byi(~). From (26),

we see that this dimension is Now for any edggw, v), consider the message”

e - Note
) that it appears once in the numerator (in the defin’itjioerj,
d(y) = [(m = 1)N + (m — 1)7| E] and once in the denominator (in the, v) edge term). There-
where|E| is the number of edges in the graph. On the basis fafre, all messages cancel out in the product, and we are left with
these equivalent representations, the/me(té) can be charac- the assertion that the pseudomarginals specify a reparameteriza-

terized as follows. tion of the original distribution. O
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building blocks for defining the full cost function, we define
functions for each node and edg€ s, t) as follows:

O(TREE?)
gst (T@t , 9st>

Qi(n)(an)
Tst; jk
O(TREE™) - Z Tst; i |log = Ost; jk
i,
” <Z T, jk) (Z Tst; jk)
7 k
G,(T,; 0,) = Ts. i |logTs. + — 0. ;]| 28
Fig. 8. Geometry of tree-reparameterization updates in the exponentials( ) Z S’J[ & Lsid S’J] ( )
domain. Iterates are confined to the linear manifdld(6°). Curved lines J
within M(6°) correspond to the intersectigd’(TREE?) N M(6°), for a . .
particular spanning tree constraint &TREE"). Each update entails moving We then define the cost function as
along the line betweed” and the pointQ:(*)(6™) on O(TREE ™). Any
fixed point#* belongs to the intersection &y(TREE) = N,;0O(TREE?)
with M(6°). ( ) ( g(T; 0) = Z Gs(Ts: 0s) + Z Gst(Tst; Ost)
seV (s,t)EE
Theorem 2a) and Lemma 1 together lead to a geometric un- = Z Tq [G(T) - a]a' (29)
acA

derstanding of the TRP updates in the exponential domain (i.e.,

in terms of the parameter vect). In order to describe this ge- s ¢ost function is equivalent to the Bethe free energy [3]
ometry, consider the image of the constraintBREE under the when7' belongs to the constraint S8IREE, but distinct for

mapping®; it is a subset of the exponential domain, which Wge tors T that do not satisfy the marginalization constraints
denote byo(TREE). Any vectorf € ©(TREE) must satisfy defining membership iTREE.

certain nonlinear convex constraints (elgg[zj exp(fs; ;)] = To see howg is related to the KL divergence, as defined in

0 for all s € Vi andlog[3_; exp(flst: ji +0s; )] = 0 forall gy “consider the analogous function defined on spanning tree
(s, t) € E). For each spanning tree constraint $®EE", we 7 for 3 vectorl’ € TREE?

also define the imag®(TREE') in an analogous manner. Note
that for any¢, the updatedQ’(6) is guaranteed to belong g (11 (T); 11°(9)) = Z Gu(Ty; 0,) + Z Got(Tar; O4t)
O©(TREE'). Moreover, the setup of the algorithm ensures that ’ = T (s e R
O(TREE) = N;0(TREE"). PO

Fig. 8 illustrates the geometry of TRP updates. The sequence Z Ta [9 (I(T)) - 9] o (30)
of iterates{#"} remains within the linear manifoldv(6°). acA!

In terms of information geometry [30], this manifold dsflat, i ; .
since itis linear in the exponential parameters. NoteTHaEE wherelI*(§) andII*(T) are exponential parameter vectors and

and eacH'REE’ are defined by linear constraints in terms Ofnargmal vectors, r especnvely, deflnt_ed @n. With the expo-
the (pseudo)margindl, and so aren-flat manifolds. Each set nential parameterization of (9.) applied to a7ny tree, we have
O(TREE') is a curved manifold in the space of exponentiacﬁl - [EQ“H“,L.T))[% ()] for all indexesa € A". As a resylt,
parameters. Therefore, the intersecti®fiTREE") N M (¢°) the functionG® is related to the KL divergence as follows:
forms a curved line, as illustrated in Fig. 8. Each update consists_ . . i i i ;
of moving along the straight line between the current itef&te D(e"(II(T)) 1 11°(8)) = ¢*(II'(T); T'(6)) + (1L (9)():'31)
and the poinQ“(™ (™) obtained by applying the tree reparame-
terizatio[r)1 Opgrato(Qi(a)z). By const?ucggr{ tr?e Vect@i(n)p(en) In estab!i_shing thi§ equivalence, we ha}ve l_Jsed the facF that
belongs to the constraint s&(TREE!™). The ultimate goal the partition function gf the factqr!zanon in (2) is un|t'y,
of a reparameterization algorithm is to obtain a péinin the S° tt.‘at ithe corresponding log partition function is zero (i.e.,
intersectiom; ©(TREE?) of all the tree constraint sets. ©(0°(I(1))) = 0). Therefore, aside from an additive constant
®(I1*(F)) independent ofl’, the quantityG*(I1*(T"); II*(9)),

when viewed as a function di*(T), is equivalent to the KL
divergence.

Based on the geometric view illustrated in Fig. 8, an unre- Now consider the problem of minimizing the KL divergence
laxed TRP update corresponds to moving fréfnto the point as a function ofl’, subject to the constraifft € TREE'. The
Qi (™) in the constraint se®(TREE' ™). We now show KL divergence in (31) assumes its minimum value of zero at the
that this operation shares certain properties of a projectigactor of correct marginals on the spanning tree—namely
operation—that is, it can be formulated as finding a point in

B. Approximation to the KL Divergence

TREE™ that is closest t&™ in a certain sense. The cost P = A'(IT(A)) € TREE",
function G, central to our analysis, arises as an approximation
to the KL divergence [43], one which is exact for a tree. By the equivalence shown in (31), minimizing the function

Let T e (0, 1)X®) be a pseudomarginal vector, and et G*(II*(T); II'(4)) overT € TREE' will also yield the same
be a parameter vector for the original gra@twith cycles. As minimizing argumentP?.
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is not equivalent to the KL divergence. The argument leading
up to (31) cannot be applied becaus@® (7)) # T for a gen- :
eral graph with cycles. Nevertheless, this cost function lies at the TREE’
core of our analysis of TRP. Indeed, we show in Section IV-C

how the TRP algorithm shares certain properties of a successive

projection technique for constrained minimization of the cost Tn+1 U
functiong, in which the reparameterization update on spanning
tree 7! as in (19) corresponds to a projection onto constraint
setTREE'. Moreover, sinc&j agrees with the Bethe free en—ig. 9. Illustration of the geometry of Proposition 2. The pseudomarginal
ergy [3] on the constraint sBtREE, this allows us to establish vector T™ is projected onto the linear constraint SEREE’. This yields

equwalence of TRP fixed points with those of BP. t%e_:{EpglntT that minimizes the cost functio@® over the constraint set

For the original graph with cycles, the cost functi@of (29) ?

C. Tree Reparameterization Updates as Projections ) o ) . .
vides a similar picture in terms of the exponential parameters.

Given a linear subspace C R" and a vectoy € R, itiS  ne nonlinear mapping transforms this constraint SEREE’

well kngwn [47] that the projectiom under the Euclidean norm ) its analog@(TREEi) in the exponential domain. As a conse-
(e, & = arg mingc || — yl|) is characterized by an orthog-quence of the nonlinearity, the S@$TREE") in Fig. 8 are rep-
onality condition, or equivalently a Pythagorean relation. Thesented by curved lines in exponential coordinates. In Fig. 9, a
main result of this subsection is to show that a similar geometggle TRP update corresponds to moving along the straight line
picture holds for TRP updates with respect to the cost functighexponential parameters betwe#h= ©(7™) and the point

G. In stating the result, we Iéf"‘+1 denote a pseudomarginalgi(») (gn) that belongs inO(TREE?) N M(#"). Conversely,
vector3 such tha® (7" +1) = Q'™ (6™). in Fig. 9, this same update is represented by moving along the

Proposition 2—Pythagorean RelatiorAssume that the se- CUrved line betweef™ and7™**.
quence{§™} generated by (19) remains bounded. Let i(n)

be the tree index used at iterationThen, for alll € TREE® D. Characterization of Fixed Points

Returning to the Euclidean projection example at the start of
G(U; 6™) = G(U; ™) +g(T™t; 6m). (32) Section IV-C, consider again the problem of projecting R™
onto the linear constraint sét ¢ R™. Suppose that constraint
Proof: See Appendix C. O setl canbe decomposed as the intersectloa N, £. Whereas
A result analogous to (32) holds for the minimum of étmay b.e difficylt t_o compute directly the projectiein.e L,
erforming projections onto the larger linear constraint géts

Bregman distance over a linear constraint set (e.g., [3% ‘often easier. In this scenario, one possible strategy for findin
Well-known examples of Bregman distances include the I;E#] ) ' P gy 9

clidean norm, as well as the KL divergence. Choosing the e_optlmal p_rOJe_zctlorm € Listostart f"w’ and t_hen perfor_m a
; : . . Series of projections onto the constraint et} in succession.
divergence as the Bregman distance leads to the I-projection In R :
) . n fact, such a sequence of projections is guaranteed [32] to
information geometry (e.qg., [41]), [31], [46]. . o
) . . onverge to the optimal approximatigne L.
Even when the distance is not the Euclidean norm, result ) )
ore generally, a wide class of algorithms can be formulated

of the form in (32) are still called Pythagorean, because the : N ) S
. . as successive projection technigues for minimizing a Bregman
function G plays the role (in a loose sense) of the squared EU- ! . ; .
. g : L ST istance over a set formed by an intersection of linear constraints
clidean distance. This geometric interpretation is illustrated

Fig. 9. For the unrelaxed updates, we USé to denote the f§2]_ An_example th_at involves a_Bregman_dlstange other t_han
. S . . . theEuclidean norm is the generalized iterative scaling algorithm

pseudomarginal satisfying" = ©(7™). The three pointd™, 48], used to compute projections involving the KL divergence

T"*1, andU are analogous to the vertices of a right triangle, ' pute proj 9 9 '

drawn in Fig. 9. We project the poifit” onto the constraint set Pythggorean relation analogous to (32). Is instrumental in es
i . . tablishing the convergence of such techniques [46], [32].
TREE’, where the functio;* serves as the distance measure: ; S : .
The problem of interest here is similar, since we are interested

. . . ; i1 v
This projection yields the poirif € TREE', and we have in finding a point belonging to a constraint set formed as an

dep|_cted its rela_tlon toan "’.“b'”a.@’ also m_TREE o intersection of linear constraint sets (ilfEREE = N; TREE").
It is worthwhile comparing Fig. 9 to Fig. 8, which repre-, . . . :
. . . However, the functiorg is certainly not a Bregman distance
sent the same geometry in the two different coordinate systems. . . . i
: . a - . since, for instance, it can assume negative values; moreover, the
Fig. 9 gives a picture of a single TRP update in terms of ps

>“TRP update at iteratiomminimizesg‘(™) , as opposed to the full

domarginal vectord’; in this coordinate system, the constramg Nonetheless, the Pythagorean result in Proposition 2 allows
setTREE" is affine and hence illustrated as a plane. Fig. 8 pro- ' 9 b

us to show that any bounded fixed pdiritof the TRP algorithm
13For an arbitrary exponential parameter, this will not always be possible. satisfies the necessary conditions for it to be a local minimum

For instance, observe that the image of the open unit hypetoulig(®) under ¢ Q(T' 90) over the constraint sS&tREE.

the map® is not all ofR*(?), since, for example, given any pseudomargifiat ’

(0, 1)), we havel®(T)]., ; = log T, ; < 0. Nonetheless, for unrelaxed  Theorem 3—Characterization of Fixed Points:
updates producing iteraté$, it can be seen that the inverse image of a point

6™ under® will be nonempty as soon as each edge has been updated at Iea_ts"fl) Fixed points of the TR_P Upda_-tes in (20) _eXiSt' and coin-
once, in which case we can construct the desfred . cide with those of BP. Any fixed poirt* of TRP is associated
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with a unique pseudomarginal vectt ¢ TREE that satis- o o ®
fies the necessary first-order condition to be a local minimum Iy T 1y 75 13
of G(T'; 6°) over the constraint s&EREE: that is, we have ;. | LT
50
ag * 0 * * * *
Z(‘?T (T§6)[U_T]a:0 T3 15 T3
acA OO Ty T} T; Ty T; Tg
for all U in the constraint sefREE. <\4 r\5 6,)
b) The pseudomarginal vectst specified by any fixed point 7 T Y T
of TRP or, more generally, any algorithm that solves the Bethe T ;T3 T 3T s
variational problem, ifree consisterfor every tree of the graph. 4 ® ® 5 ® 6
Specifically, givenatre& = (V(7), E(7T)), the subcollection
of pseudomarginals @
o
UH(T*) = {T7, s € V(T)} U{T%. (s, t) € B(T)} Iy T3, T o1 |Ts
: o LT LIy
are the correct marginals for the tree-structured distribution de- 1 5 3\)
fined as follows: , . "
T14 T25 T@G
T ey . T (zs, Tp) Ty ;T3 3 Tg
p(z T7) = H TS (xs) H W 4 5 6
3 (@) T ()
seV(T) (s, t)EE(T) () )
(33)
Proof: See Appendix C. O
P Tj 7; 7;
A few remarks about Theorem 3 are in order. First, with ref- [ ) o
erence to statement a), the unique pseudomarginal véttor (b)

aSSOCi_ated Witlﬁ* Can_ be ConStru,Cted explicitly o fOHOWSj. I:orFig. 10. [llustration of fixed-point consistency condition. (a) Fixed p@int=
an arbitrary index, pick a spanning treg" such thatx € A". [T, T} that reparameterizes the original distribution on the full graph with
Then defineT = [A*(IT'(0*))].; that is, T is the value of Cyclg)S-%)AtreéT Withd_edge sef(7) forfgeéi_ bxger;g:/(ing erg)E{S,fé) ani_iJI

H ; _ I H ; H gy, . e corresponding tree-structure Istribut; x; 1) Is forme
thIS (3'”9!6 nOd_e_ or palrWIie) marginal fOI_’ the tree d_lsmb"&)y removing the reparameterized functidfig /(T; Ts) and T2, /(T5 T ).
tion on7* specified byII'(6*). Note that this is a consistentThe subset of pseudomargindlg” |s € V} U {77 | (s, t) € E(T)} are
definition of T, because the condition of part a) means thatconsistent set of marginals for this tree-structured distribytioqw; T*)
[A*(IT'(9*))]. is the same for all spanning tree indexess ~ constructed asin (33).
{0, ..., L — 1} such thaix € A". Moreover, this construction ) S _
ensures thal* € TREE, since it must satisfy the normaliza- Overall, Theorems 2 and 3 in conjunction provide an alterna-
tion and marginalization constraints associated with every no¢ and very intuitive view of BP, TRP , and more generally, any
and edge. With reference to any message-passing algorithm, @lgprithm for solving the Bethe variational problem (e.g., [23],
fixed point M* = {Mz} can be used to construct the uniqué22]). This class of algorithms can be understood as seeking a
pseudomarginal vect&* of Theorem 3 via (27a) and (27b). reparameterization of the distribution on a graph with cycles (as

Fig. 10 provides a graphical illustration of the tree-consié? Theorem 2) that is consistent with respect to every tree of the
tency statement of Theorem 3b). Shown in Fig. 10 (a) is an é¢2ph (as in Theorem 3b)). Since these algorithms have fixed
ample of a grapl& with cycles, parameterized according to th&0ints, one consequence of our results is that any positive dis-
approximate marginal?, and7’*. Fig. 10 (b) shows the tree tribution onany graph can be reparameterized in terms of a set of
obtained by removing edgés, 5) and (5, 6) from the graph PSeudomarginalg™ that satisfy the tree-based consistency con-
in Fig. 10 (a). Consider the associated tree-structured distriliion of Theorem 3b). Although the existence of such a repa-
tion p7 (z; T*)—that is, formed by removing the functionsfameterization is well known for trees [37], it is by no means
Ty ) TyT: and Ty, /T2 T; from the original distributionp(z). obvious for an arbitrary graph with cycles.
The consistency condition of Theorem 3b) guarantees that all

the single-node pseudomargind$, and all of the pairwise o » )
pseudomarginal§™;, except for the nontree edgés, 5) and E. Sufficient Conditions for Convergence for Two Spanning

(5, 6), areexactmarginals for this tree-structured distribution.T"€€S

For this reason, we say that the pseudomarginal veéttois Proposition 2 can also be used to derive a set of conditions that
tree consistent with respect to the tfEeln the context of the are sufficient to guarantee the convergence in the case of two
TRP algorithm, it is clear from definition of the updates (sespanning trees. To convey the intuition underlying the result,
Fig. 4) that this tree consistency must hold for any tree includsedppose that it were possible to interpret the cost fundias
inthe set{7°, ..., TL=1}. In fact, tree consistency holds fora distance function. Moreover, suppdsavere an arbitrary el-
any acyclic substructure embedded within the full graph witement of TREE = N; TREE?, so that we could apply Proposi-
cycles—not just the spanning trees used to implement the algion 2 for each index. Then (32) would show that the “distance”
rithm. betweerf™ and an arbitrary elemefif € TREE, as measured
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by G, decreases at each iteration. As with proofs on the cdNete that the pseudomarginal vec{dr,, T.; } need not be con-
vergence of successive projection techniques for Bregman disstent so that, for exampl&};_.s(zs) need not equdl’(xs).
tances (e.qg., [32]), [46], this property would allow us to establighowever, suppose that TRP (or BP) converges so that these
convergence of the algorithm. quantities are equal, which, in particular, implies that =

Of course, there are two problems with the usg @fs a type vy, 1 for all (s, ¢) such that € I'(s). In words, the means pa-
of distance: it is not necessarily nonnegative, and it is possilslameterizing the edge functions must agree with the means at
thatG(A*(Q'(#)); #) = 0 for somed # Q(#). With respect the node marginals. In this case, (34) and (35) are two alterna-
to the first issue, we are able to show in general that an &jwe representations of the same quadratic form, so that we must
propriate choice of step size will ensure the nonnegativity baveji, = i, for each node € V. Therefore, the means com-
G(A1(Q1(#)); ). We can then derive sufficient conditions (inputed by TRP or BP must be exact. In contrast to the means,
cluding assuming that the second problem does not arise aldhgre is no reason to expect that the error covariances in a graph
TRP trajectories) for convergence in the case of two spannimith cycles need be exact. O
trees. A detailed statement and proof of this result can be foun

in the thesis [45]. qt is worth remarking that there exist highly efficient tech-

nigues from numerical linear algebra (e.g., conjugate gradient)
F. Implications for Continuous Variables for computing the means of a linear Gaussian problem on a
raph. Therefore, although algorithms like BP compute the cor-

Sct means (if they converge), there is little reason to apply them

taking discrete values, the idea of reparameterization can §py o tice. There remains, however, the interesting problem of
plied to continuous variables as well. In particular, by extensi

we treat the case of scalar Gaussian random variables at each

node (though the ideas extend easily to the vector case). Inthe V. ANALYSIS OF THE APPROXIMATION ERROR
scalar Gaussian case, the pseudomardin@t,) at each node
s € V is parameterized by a meapand variance2. Similarly,
the joint pseudomargindls.(zs, x:) can be parameterized by
a mean vector,, 2 [vst.1 Vst 2]’ and a covariance matrix.

An important but very difficult problem is analysis of the
error in the BP approximation—that is, the difference between
the exact marginals and the BP approximate marginals. As dis-
X X , 1 ; , cussed in Section I, results on this error have been obtained for
At any iteration, associated with the edge ¢) is the quotient the special cases of single cycle graphs [11], and for turbo codes
Tt /[Tst—sTsr—1], where [13]. A more general understanding of this error is desirable in

00 assessing the accuracy of the BP approximation. In this section,
Tst—s(ms) = / Tst(ws, w1) dmy we make a contribution to this problem by deriving an exact ex-
pression for the error in the BP approximation for an arbitrary
is the marginal distribution over, induced byI’,;. This edge graph, as well as upper and lower bounds.
function is parameterized by the mean veatgr, and a2 x 2 Our analysis of the BP approximation error is based on two
matrix Q ;. With this setup, we have the following propositionkey properties of a fixed poirt*. First, by the invariance stated

Proposition 3: Consider the Gaussian analog of BP, and su%n— Theorem 2, the distributiop(z; ¢") induced by the fixed

pose that it converges. Then the computed means are ex O{nt 6% is equivalent to the original distributiop(z; 6°).

c . .
whereas in general the error covariances are incorrect. S egr?:i(rj{ pt?ét‘;) t?]fe -;?solﬁr:ojedécléﬁe; that ffr larT Ta*rbnrary
Proof: The original parameterization on the graph with? 9 ' 9 B, ; = logT,

cveles is of the form correspond to exact marginal distributions on the spanning tree.
4 Consequently, the quantitids’ = {17, ;|j € X'} have two
“logp(z) = 1/2(x — TP~ Yz — ) + C. (34) distinct interpretations:

a) as the BP approximations to the exact marginals on the
Here,P~!isthe inverse covarianc€,is a constant independent graph with cycles:
of z, andji is the exact mean vector on the graph with cycles. p) as the exact single-node marginals of a distribution de-

We begin by noting that the Gaussian analog of Theorem 2 fined by the spanning treg.

guarantees t_hat_the distribution will remain |nvar|ar_1t un(_JIer the.l-he basic intuition is captured in Fig. 10. Fig. 10(a) shows
reparameterization updates of TRP (or BP). At any iteration, t
quantity — log p(z) is reparameterized in terms @f and the
edge functions as follows:

J —oo

lﬂ‘?e original distribution on the graph with cycles, now reparam-
eterized in an alternative but equivalent manner by the set of
pseudomarginal&* = {T=, T }. As a consequence, if it were

1 possible to perform exact computations for the distribution il-
. / ; . . .
) Z (s, w0) = vat Qut(ws, 1) — vt} lustrated in Fig. 10(a), the result would be the desired exact
(s, t)EE marginals P, of the original distribution. On the other hand,

+1 Z (25 — ps)2/0 + C. (35) given a tree7 like that shovyn ip Fig. 10(b), suppose that we
2 = form a tree-structured distributiop? (z; 7*), as in (33), by
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removing the functiond7, /(77T;") on non-tree edges. Then,pression for the errdtrr,, ; = log 73, ; — log P, ; in the log

the tree-consistency condition of Theorem 3 ensures that thamain shown in (39) at the bottom of the page. In deriving this
quantitiesT* are a consistent set of single-node marginals fexpression, we have used the fact thatl? (%)) = 0 for any
pT(z; T*). Therefore, the exact marginald on the graph tree7 . Equation (39) is an exact expression for the efrar;. ;
with cycles are related to the approximatidiisby a relatively in terms of an expectations involving the tree-structured distri-
simply perturbation—namely, removing functions on edges tationp(z; 117 (9*)). Note that (39) holds for any spanning tree
form a spanning tree. In the analysis that follows, we make tHis

basic intuition more precise.
B. Error bounds

A. Exact Expression It is important to observe that (39), though concep-

Our treatment begins at a slightly more general level, befongally interesting, will typically be difficult to compute.
specializing to the case of marginal distributions and the BP afe- major obstacle arises from the presence of the term
proximations. Consider a functigh X~ — R, and two distri- exp{Xaeaar) Fada(®)} in the denominator. For most
butionsp(z; #) andp(z; ). Suppose that we wish to expresproblems, this computation will not be tractable, since it
the expectatior;[f(z)] in terms of an expectation under thenvolves all the potential functions on edges removed to form
distribution p(z; 6). Using the exponential representation opanning tree7. Indeed, if the computation of (39) were

(6), itis straightforward to re-expre&s,[f(z)] as follows: easy for a particular graph, this would imply that we could
compute theexactmarginals, thereby obviating the need for an

i _&(A approximate algorithm such as BP/TRP.
Ee [eXp {20: (0o = ba)ga(2) + 2(6) @(0)} f(z)] ‘ This intractability motivates the idea of bounding the approx-

(36) imation error. In order to do so, we begin by considering the fol-
Note that this is a change of measure formula, where the exp@wing problem: given distributiong(z; ¢) andp(z; 6), and a
nentiated quantity can be viewed as the Radon—Nikodym derifnctionf: X% — R, give abound for the expectati&)[ f (z)]
tive. in terms of quantities computed using the distributiém; 0).
We will use (36) to derive an expression for marginals on thene linearity of expectation allows us to assume without loss of
graph with cycles in terms of an expectation over a tree-strugenerality thatf(z) € [0, 1] for all z € X™. If g is another
tured distribution. In particular, we denote the true single-nodenction, the covariance of andg underp(z; ) is defined as

i |:1:S:";60 h h with lesb
marginalp(. = s %) ont egza)p wiih eyeles by cove{ £(), 9(2)} = Eolf (@)g(z)] — Eslf (@)]Eolo(z)]. (40)

=B [6s: ()] B7) " With these definitions, we have the following result.

To assoert equalitya), we have used the invariar_me property (i.e., Lemma 2: Let § and# be two arbitrary parameter vectors,
p(z; 6°) = p(z; 6*)) of Theorem 2, as applied to the fixed-and letf be a function fromt'™ to the nonnegative reals. Then

Py, 2 Ego [68; j(175)

point 6. we have the lower bound
Given an arbitrary spanning trée= (V, E(7)), let
A(T) = {(s; §), (st; k) |s €V, (s, ) € B(T)} Eslf(2)] 2 Bolf(@)] exp {-DW 16)

be the set of tree indexes, and 1€t (0*) = {6 |a € A(7)} 1 _

be the projection of* onto these tree indexes. By Theorem +m Z (0o — Oa)cove{f(z), galz)} p. (41)

3b), any fixed point* is associated with a tree-consistent pseu- a€A

domarginal vectofl™. More specifically, the tree cons_istency Proof: See Appendix D. 0

guarantees that the single-node element§ ofcan be inter-

preted as the following expectation: The bound in Lemma 2 is first order, based on the convexity

of a (tilted) log-partition function; we note that tighter bounds

T i EY [EHT(Q*)[(SS; (). (38) of this nature can be derived by including higher order terms

} (see, e.g., [51]). We now use Lemma 2 to develop bounds on
We now make the assignmerts= 6*, § = 7 (¢*), and the approximation error in the single-node marginals. In order
f(x) = 6, j(x5) in (36) and rearrange to obtain the exact exo state these bounds, it is convenient to define a quantity that,

Enz o) [0s; j(25)]

En7 (o) [(exp{ > H;qﬁa(x)} - @(9*)) 8 j(ws)]

Q€ AVA(T)

log (39)
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for each spanning treég€, measures the difference between the graph with cycles. It will be small when the distribution

exact node margindPs, ; (corresponding te(z; 6*)) and the p(z; 0*) is well approximated by a tree. The presence of
approximatioril;, ; (corresponding to the tree-structured distri- this term reflects the empirical finding that BP performs
butionp(z; M7 (6*))). Consider the sefp, |a € A\A(T)}, well on graphs that are approximately tree-like (e.g.,
corresponding to the set of potentials that must be removed from  graphs with fairly long cycles).
the full graph( in order to form the spanning tre€. Associ-  On the practical side, there is a caveat associated with the
ated with this tree, we define a quantity, ; as a sum over the computation of the upper and lower bounds in Theorem 4. On
removed potentials the one hand, the summations appearing in (43a) and (43b) are
tractable. In particular, each of the covariances can be calculated
A;[;j 2 Z 05coviT (9+y10s; j(75), da(®)}.  (42) by taking expectations over tree-structured distributions, and
a€A\A(T) their weighted summation is even simpler. On the other hand,

o o . within the KL divergenceD (117 (6*) || 6*) lurks a log-partition
With this definition, we have the following error bounds on thenction &(6*) associated with the graph with cycles. In gen-

approximation error. eral, computing this quantity is as costly as performing infer-

Theorem 4—Error BoundsLet 6* be a fixed point of €nce onthe original graph. Whatis required, in order to compute
TRP/BP, giving rise to approximate single-node marginal§€ expressions in Theorem 4, are upper bounds on the log-par-
T* ;, and letP,, ; be the true marginal distributions on theltion function. A class of upper bounds are available for the
CHV EH . .
graph with cycles. For any spanning tréeof the graph, the !Sing model [52]; in related work [S3], [45], we have developed
error i, jé log T7: ;—log P, ; is bounded above and below? te_chnlque f_or upper bou_ndmg the log partition function of an
as follows: ’ arbitrary undirected graphical model. Such methods allow upper

bounds on the expressions in Theorem 4 to be computed.
T -
Brr ; < DT () [|67) = (43a) c. Illustrative Examples of Bounds
837

Er,,,; > log 17, — T;fj (43b) Thg tightness of the bounds giyen in. Theorem 4 varies, de-
pending on a number of factors, including the choice of span-
where ning tree, the graph topology, as well as the strength and type of
cligue potentials. In this subsection, we provide some examples
N to illustrate the role of these factors.
T, ;= log ll - (1= Ts*; j) For the purposes of illustration, it is more convenient to dis-
play bounds on the differencE; ; — Ps; ; = Diff,, ;. Using
Theorem 4, it is straightforward to derive the following bounds

AT .
xexp{—D<H’f<e*>||e*>— }

1-T7 on this difference:
. . . .~ AT .
Proof: We first make the identification& = 6* andé = Diff,. ; < {1 —exp _D(HT(Q*) |6*) + %
117 (9*), and then sef(z) = 65, ;(z5), a choice which satis- si 4
fies the assumptions of Lemma 2. Equation (43a) then follows X [T* j] (44a)

by applying Lemma 2, and then performing by some algebraic AT
manipulation. The lower bound follows via the same argumentpi . ;> {exp —D(I% (8*) || 6*) — 5 3 1
applied tof(z) = 1 — &, ;(z5), which also satisfies the hy- ’ L=Tg;

potheses of Lemma 2. g x [1=T% ] (44Db)

On the conceptual side, Theorem 4 highlights three factors . ) . .
that control the accuracy of the TRP/BP approximation. For i @ difference of marginal probabilities, the quanfidiff ;. ;
sake of concreteness, consider the upper bound of (43a).  belongs to the interval-1, 1]. It can be seen that the upper and

a) The covariance terms in the definitionmgj (see (42)) lower bounds are also confined to this interval. Since the pri-

reflect the strength of the interaction, as measured un{é?ry goal of this subsection is illustrative, the bounds displayed

e . TIT (p* ere are computed using the exact valuef*).
the tree distributiorp(=; 11" (6%)), between the delta 1) Choice of Spanning TreeNote that a bound of the form

function 6, j<x5.) and the c!|qqe potential, (). When .in Theorem 4 (or (44)) holds for any singly connected subgraph
the removed clique potential interacts only weakly with s ) .
. . . . mbedded within the graph (not just the spanning trees used to
the delta function, then this covariance term will be smal ) .
. implement the algorithm). This allows us to choosettgbtest
and so have little effect. ) . . .
. o S of all the spanning tree bounds for a given index j). Here
b) The para_lmete‘iﬂ in the definition of A, ; is the strength \ye provide a simple example demonstrating the effect of tree
of the clique potentiap,, that was removed to form the -hoice on the quality of the bounds.
spanning tree. Using a binary distributiop(z; 6*) on the complete graph
c) The KL divergence D(IT” (#*)||#*) measures the Ky with N = 9 nodes, we chose spanning trees according to
discrepancy between the tree-structured distributighe following heuristic. For a given (overcomplete) exponen-

p(z; TI7(#*)) and the distributionp(z; #*) on the tial paramete*, we first computed the minimal exponential
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Fig. 11. Effect of spanning tree choice on the bounds of Theorem 4. Each panel shows tifi&.greerl’;, , versus node number for the complete gréphon
nine nodes. (a) Upper and lower bounds on the error computed using the maximum-weight spanning tree. (b) Error bousdsi®ptioblencomputed using
the minimum-weight spanning tree. Note the difference in vertical scales between parts (a) and (b).

parametery*, as in (25). Using~X,| as the weight on edge very large graphs, the upper and lower bounds in (44) may tend
(s, t), we then computed the maximum- and minimum-weighibward+1 and—1, respectively, in which case the bounds would
spanning trees using Kruskal's algorithm (e.qg., [54]). Fig. 11(ap longer provide useful quantitative information. Nonetheless,
and (b) shows the upper and lower bounds on the &@ffor—  the error analysis itself can still be useful. First, one direction to
P, ; obtained from (44a) and (44b), using the maximum- arekplore is the possibility of using our exact error analysis to de-
minimum-weight spanning trees, respectively. The disparity beve correction terms to the BP approximation. For instance, the
tween the two sets of bounds is striking: bounds on the errarm AZ]- defined in (42) is a computable first-order correc-
from the maximum-weight spanning tree (Fig.11 (a)) are vetion term to the BP approximation. Understanding when such
tight, whereas bounds from the minimum-weight tree are quiterrections are useful is an interesting open problem. Second,
loose (Fig. 11(b)). Further work should examine principled teclur error analysis can be applied to the problem of assessing the
nigues for optimizing the choice of spanning tree so as to obta#lative accuracy of different approximations. As we discuss in
the tightest possible error bounds at a particular node. Section VI, various extensions to BP (e.qg., [33], [29], [25], [4])

2) Varying Potentials: Second, for a fixed graph, the bound€an be analyzed from a reparameterization perspective, and a
depend on both the strength and type of potentials. Here, similar error analysis is applicable. Since the (intractable) parti-
examine the behavior of the bounds for binary variables witlon function of the original model is the same regardless of the
attractive, repulsive, and mixed potentials; see Section IlI-Epproximation, it plays no role in the relative error between the
for the relevant definitions. Fig. 12 illustrates the behavior faccuracy of different approximations. Therefore, these bounds
a binary-valued process ori& x 10 grid under various condi- could be useful in assessing when a more structured approxima-
tions. Each panel shows the ertbf, , — P, o for a randomly tion, like generalized BP [33], yields more accurate results.
chosen subset of 20 nodes, as well as the lower and upper bounds
on this error in (44). Fig.12(a) corresponds to a problem with
very weak mixed potentials, for which both the BP approxi- v/|. ExTENSIONS OFTREE-BASED REPARAMETERIZATION
mation and the corresponding bounds are very tight. In con-
trast, Fig.12(b) shows a case with strong repulsive potentials A number of researchers have proposed and studied exten-
for which the BP approximation is poor. The error bounds astons to BP that involve operating over higher order clusters of
correspondingly weaker, but nonetheless track the general trenadies (e.g., [33], [4], [25], [29]). In this section, we describe
of the error. Fig. 12(c) and (d) shows two cases with attrabhew such extensions of BP can also be interpreted as performing
tive potentials: medium strength in Fig.12(c), and very strong ireparameterization.

Fig. 12(d). In Fig.12(c), the BP approximation is mediocre, and We begin our development with backgroundhypergraphs

the bounds are relatively loose. For the strong potentials in F{@.g., [55]), which represent a generalization of ordinary graphs
12(d), the BP approximation is heavily skewed, and the lowand provide a useful framework in which to discuss general-
bound is nearly met with equality for many nodes. ized forms of reparameterization. In this context, the natural

3) Uses of Error Analysis:The preceding examples serve t@generalization of trees are known as hypertrees (i.e., acyclic hy-
illustrate the general behavior of the bounds of Theorem 4 fopargraphs). As will be clear, the notion of a hypertree is inti-
variety of problems. We reiterate that these bounds were comately tied to that of a junction tree [37]. Equipped with this
puted using the exact value ®{6*); in general, it will be nec- background, we then describe how to perform reparameteriza-
essary to upper-bound this quantity (see, e.g., [53]), which wilbn updates over hypertrees. As a specific illustration, we show
tend to weaken the bounds. For sufficiently strong potentials bow generalized BP (GBP) updates over Kikuchi clusters on
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Fig. 12. Behavior of the bounds of Theorem 4 for various types of problenmlénal0 grid. Each panel shows the erfBf. , — P, o in the BP approximation

versus node index, for a randomly chosen subset of 20 nodes. (a) For weak potentials, the BP approximation is excellent, and the bounds aro}juite tight.
For strong repulsive potentials, the BP approximation is poor; the error bounds are considerably looser, but still track the error. (c) Megtiumtsaeive
potentials, for which the approximation is mediocre and the bounds are relatively loose. (d) For strong attractive potentials, the BP appsoxémnagioor, and

the difference between lower and upper bounds is relatively loose.

the two-dimensional grid can be understood as reparameteriagperedge. Given any hyperedfe we define the sets of its
tion over hypertrees. The reparameterization perspective allosescendantandancestorsn the following way:
much of our earlier analysis, including the geometry, charac-
terization of fixed points, and error analysis, to be extended to D(h)={g€ E|g<h} (45a)
generalizations of BP in a natural way. More details on this repa- A(h)={g e E|g> h}. (45b)
rameterization analysis are provided in [45].
With these definitions, an ordinary graph is a special case of
A. Hypergraphs a hypergraph, in which each maximal hyperedge consists of a
A hypergraphGuyp = (V, E) consists of a vertex s& =  pair of vertices (i.e., an ordinary edge of the graph). Note that for
{1, ..., N} and a set of hyperedgés, where eacthyperedge hypergraphs (unlike graphs), the set of hyperedges may include
h is a particular subset dof (i.e., an element of the power set of(a subset of) the individual vertices.
V). The set of hyperedges can be viewed as a partially ordered\ convenient graphical representation of a hypergraph is in
set, where the partial ordering is specified by inclusion. Moterms of a diagram of its hyperedges, with (directed) edges rep-
details on hypergraphs can be found in Berge [55], where@senting the inclusion relations. Diagrams of this nature have
Stanley [56] provides more information on partially ordered seteeen used by Yedidiat al. [3], who refer to them as region
(also known as posets). graphs; other researchers [4], [25] have adopted the term Hasse
Given two hyperedgeg andh, one of three possibilities candiagram from poset terminology. Fig. 13 provides some simple
hold: i) the hyperedge is contained withirh, in which case we graphical illustrations of hypergraphs. As a special case, any or-
write g < h; ii) conversely, when the hyperedges contained dinary graph can be drawn as a hypergraph; in particular, Fig.
within g, we write h < g; iii) finally, if neither containment 13(a) shows the hypergraph representation of a single cycle on
relation holds, thery and h are incomparable. We say that dour nodes. Shown in Fig. 13(b) is a more complex hypergraph
hyperedge isnaximalif it is not contained within any other that does not correspond to an ordinary graph.
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[123] [234] [ 2353]

[2356-{36]~{3467

(@) (b)

Fig. 14. Two examples of acyclic hypergraphs or hypertrees. (a) A hypertree
(b) of width two. The hyperedge (23) will appear twice as a separator set in any

Fig. 13. Graphical representations of hypergraphs. Subsets of nolf&§ decomposition. (b) A hypertree of widih Hyperedges (25) and (45) are
corresponding to hyperedges are shown in rectangles, whereas the ar@fRarator sets, and node 5 plays no role in the tree decomposition.
represent inclusion relations among hyperedges. (a) An ordinary single-cycle

ggﬁg:&"sﬁgsgﬁdﬁoﬁ dringre;ggr;%r;{. (b) A more complex hypergraph that de?ﬁad(g) denotes the number of maximal hyperedges that con-
tain the separator set
Instead of this junction tree form, it is convenient for our

B. Hypertrees purposes to use an alternative but equivalent factorization, one

Of particular importance are acyclic hypergraphs, which avghich is based directly on the hypertree structure. To state this
also known as hypertrees. In order to define these objects, f@etorization, we first define, for each hyperedges F, the
require the notions of tree decomposition and running interséolowing function:
tion, which are well known in the context of junction trees (see

[57], [37]). Given a hypergraptigyp, atree decompositiors on(z) a M_ (47)
an acyclic graph in which the nodes are formed by the maximal 1;[(’ ) Pq(Zg)
ge )

hyperedges affgyp. Any intersectiorynh of two maximal hy-

peredges that are adjacent in the tree is knowrsaparator set  This definition is closely tied to the Mébius function associated
The tree decomposition has thenning intersection property  with a partially ordered set (see [56]). With this notation, the fac-

for any two nodeg andh in the tree, all nodes on the uniqueorization of a hypertree-structured distribution is very simple
path joining them contain the intersectigm 4; such a tree de-

_co_mposition is known asjanction Fr_eeA hypergraph i_sacy_clic p(x) = H on(zn). (48)

if it possesses a tree decomposition with the running intersec- heE

tion property. Thewidth of an acyclic hypergraph is the size of . .

the largest hyperedge minus one; we use the fetmpertree Note that the product is taken over all hyperedges (not just max-

to mean a singly connected acyclic hypergraph of wigth ~ IMal ones) in the hypertree. _ _
A simple illustration is provided by any tree of an ordinary To illustrate (48), suppose first that the hypertree is an ordi-

graph: it is al-hypertree, because its maximal hyperedges (i.827Y tree, in which case the hyperedge set consists of the union

ordinary edges) all have size two. As a second example, the ﬂf/—the vertex set with the (ordinary) edge set. For any vesiex
(zs) = Ps(zs), whereas we have

pergraph of Fig. 14(a) has maximal hyperedges of size thrdi Naveys
This hypergraph is acyclic with width two, since it is in di- o N
rect correspondence with the junction tree formed by the three Pt(wa; wt) = Parla, 20)[[Pa(s) Pr(ae)]

m_aximal hyperedges, and using the _separator seF (23) tWiﬁﬁ'any edg€ s, t). Therefore, in this special case, (48) reduces
Fig. 14(b) shows another hypertree with three maximal hyp&f; ihe tree factorization in (2). As a second illustration, con-
edges of size four. The junction tree in this case is formed Qfder the hypertree shown in Fig. 14(a), which has maximal

these three maximal hyperedges, using the two hyperedge%%eredgei(l%), (234), (235)}. By explicit computation, it

size two as separator sets. In this case, including the extra hyRels pe verified that the factorization of (48) reduces, after can-

edge (5) in the hypergraph diagram turns out to be superfluoH§|ing terms and simplifying, thPio5 Pass Poss)/[PZ]. Here

we have omitted the dependencesofor notational simplicity.

This finding agrees with the junction tree representation in (46)
At the heart of the TRP updates is the factorization of arnwhen applied to the appropriate tree decomposition. A third ex-

tree-structured distribution in terms of its marginals, as specifieghple is provided by the hypertree of Fig. 14(b). We first calcu-

in (2). In fact, this representation is a special case of a mdege 1245 as follows:

general junction tree representation (e.g., [37])

C. Hypertree Factorization

P1245 _ P1245 _ P1245P5

P1245 = = P P
1 Pu(zsn) > po5pa55 %%ﬂ& Pys Pys
h€Emax ( )
I [Pg(zg)]d(g)_l. Similarly, we computep,s7s = Pys7s/ Pas (With an analogous
g€ expression fokpasse), was = Pas/Ps (with an analogous ex-
pression foryss), and s = Ps. Finally, taking the product
In this equation Ep,.x denotes the set of maximal hyperedgeq,[, . »n Yields the familiar junction tree factorization for this
E,., denotes the set of separator sets in a tree decompositiparticular case—ViZ.Pi245 Pas7s Passe)/[Pas Pos).

p(z) =
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D. Reparameterization Over Hypertrees

With this setup, we are now ready to describe the extension of
reparameterization to hypertrees. Our starting point is a distri-
butionp(z) formed as a product of compatibility functions asso-
ciated with the hyperedges of some (hyper)gréph . Rather
than performing inference directly on this hypergraph, we may
wish to perform some clustering (e.g., as in Kikuchi methods)
so as to form an augmented hypergrépiyp. As emphasized
by Yedidiaet al.[33], itis important to choose the hyperedgesin
the augmented hypergraph with care, so as to ensure that every
compatibility function in the original hypergraph is counted ex-[ 12 4 5] 2356] [1245
actly once; in other words, the single counting criteria must b
satisfied. As anillustration, suppose that our original hyperedg - .

Guyp is the two-dimensional nearest neighbor grid shown ir
Fig. 15(a) (i.e., simply an ordinary graph). lllustrated in Fig.
15(b) is a particular grouping of the nodes, known as Kikuch{4 5 7 8] 5689] [4578

4-plaque clustering in statistical physics [3]. Fig. 15(c) shows © (@

one possible choice of augmented hypergréfghyp that sat- ) ) ) ) o ) ] )
isfies the single counting conditions, obtained by Kikuchi clu EI)?.C:%S.stelrﬂ]kgu?r?tlocgjrf)tfgsn%fofr:)Ltjrr].e(c?)ni.sé?))cica)tré%lnﬁ;;gz_rﬂg;]easitlﬁnrigg{rﬁél
tering [33]. hyperedges of size four. (d) One acyclic hypergraph of width three (not

We will take as given a hypergraghiyyp that satisfies the SPanning) embedded within (c).
single counting criteria, and such that there is an upper bound . ) ) ) o
k + 1 on the size of the maximal hyperedges. The implicit ag_omts'equwa_lent to GBP applled_ to t.he Kikuchi approximation
sumption is that: is sufficiently small so that exact inference?SSociated with the hypergraph in Fig. 15(c).
can be performed for hypertrees of this width. The idea is to per->ince hypertree updates are a natural generalization of TRP
form a sequence of reparameterization updates, entirely an&|Bdates, they inherit the important properties of TRP, including
gous to those of TRP updates, except over a collection of hypEte fact that the original distributiop(z) is not altered. Rather,
trees of widthk embedded within the hypergraph. The updaté¥ fixed points spequ an alternatllve parameterization such
involve a collectionI’ = {T} |h € E} of pseudomarginals that the pseudomargingls are consistent on every hypeftrge
on hyperedges of the hypergraph. At any iteration, the colld@f width < k) embedded within the graph. Based on this in-
tion T specifies a particular parameterizatief@; T™) of the Variance and the fixed-point cha_lracterlzatlon, it is again pos-
original distributionp(z), analogous to the hypertree factorizaSi0le to derive an exact expression, as well as bounds, for the
tion of (48). (See Appendix E for more details on this paramélifference between the exact marginals and the approximate
terization.) Given any hypertreE, the distributionp(z) can be Marginals computed by any hypertree reparameterization algo-
decomposed into a product of two terpigz) andr(z), where rithm. More details on thg notion of reparameterization and its
p'(z) includes those factors corresponding to the hyperedgedfipPerties can be found in [45].
the hypertree, while’(z) absorbs the remaining terms, corre-
sponding to hyperedges removed to form the hypertree. Now the VIl DiscussioN
hypertree distributiop’ (z) can be reparameterized in terms of This paper introduced a new conceptual framework for un-
a collection?” of pseudomarginals on its hyperedges, as in (4&erstanding sum-product and related algorithms, based on their
As with ordinary tree reparameterization, this operation simpjijterpretation as performing a sequence of reparameterization
specifies an alternative but equivalent choice for the compatipdates. Each step of reparameterization entails specifying a
bility functions corresponding to those hyperedges in the hifew set of compatibility functions for an acyclic subgraph (i.e.,
pertree. A subsequent update entails choosiiferenthyper- a (hyper)tree) of the full graph. The key property of these al-
tree 77, and performing reparameterization for it. As beforeyorithms is that the original distribution is never changed, but
we iterate over a set of hypertrees that covers all hyperedgasiply reparameterized. The ultimate goal is to obtain a new
in the hypergraph. With specific choices of hypergraphs, it cagctorization in which the functions on cliques are required to
be shown that fixed points of hypertree reparameterization afgisfy certain local consistency conditions, and represent ap-
equivalent to fixed points of various forms of GBP [3], [33]. proximations to the exact marginals. In particular, the pseu-

As one illustration, consider again the Kikuchi approximadomarginals computed by a tree-reparameterization algorithm
tion of Fig. 15, and more specifically the augmented hypergraptust be consistent on every tree embedded within the graph with
Guyp in Fig. 15(c). We can form an acyclic hypergraph (thougbycles, which strongly constrains the nature of the approxima-
not spanning) of7gyp by removing the hyperedd&689). The tion.
resulting hypertree of width three is shown in Fig. 15(d). Hy- One important consequence of the reparameterization view
pertree updates entail performing reparameterization on a dslthe insight that it provides into the nature of the approxima-
lection of hypertrees that cover the hypergraph of Fig. 15(c). Aisn error associated with BP, and more broadly, with any al-
we show in more detail in Appendix F, doing so yields fixedjorithm that minimizes the Bethe free energy. In particular, the
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error arises from the reparameterized functions sitting on those.emma 3: Let f: X — R be aC"! function, whereX is a
edges that must be removed in order to form a spanning trelsed, convex, and nonempty set. Suppose #hds a local
Based on this intuition, we derived an exact expression for thanimum of f over X. Then
approximation error for an arbitrary graph with cycles. We also
developed upper and lower bounds on this approximation error, Vi) (x—2*) >0
and provided illustrations of their behavior. Computing these
bounds for large problems requires an upper bound on the 189 5| ;- ¢ X. Moreover, ifz* is an algebraic interior point,
partition function (e.g., [52], [53], [45]). thenV f(«*)T(z — «*) = O forall = € X.

Overall, the class of algorithms that can be interpreted as per- pyoof: See Bertsekas [47] for a proof of the first statement.
forming reparameterization is large, including not only BP, by, prove the second statement, assumethas an algebraic
also various extensions to BP, among them generalized be|igkyior point, so that for an arbitrany € X we can writer* =

propagation [33]. For any algorithm that has this reparametei. + (1 — \)2/ for somes’ andA € (0, 1). Then
zation interpretation, the same basic intuition is applicable, and i

there eX.IS'[ results (analogoys tq those of this pgper) about their Vi) (@ —2) = AV (@) (2 —2) > 0
fixed points and the approximation error [45]. Finally, we note T . o ,

that a related concept of reparameterization also gives insight Vi) (z—2") =1 =NV [f(z") (z —2") 2 0.
into the behavior of the closely related max-product algorithm

[58]. Since) € (0, 1), this establishes that f(z*)T (2’ — z) = 0,
and hence, als® f (z*)” (z — z*) = 0. O
Lemmad4:LetU € TREE' be arbitrary. Then for angsuch

PROOF OFLEMMA 1 o ~
_ _ _ _ > {Us = N(AT(0))a} [Bo — 6a] = 0. (50)
We begin by expressing the delta functian; (z,) as alinear aeAi
combination of the monomials in the sR{s) defined in (26a)

as follows: Proof: We established in Section IV-B that the point

A'(I1°(#)) is the minimizing argument of the functia®' de-

_ (k —x5) fined in (30) over the linear and hence convexBRIEE". This

ber () =[] =L (a9) "Ml . . : :
(k—37) point will be an exterior point only if some element is equal to
zero or one, a possibility that is prevented by the assumption

This decomposition is extended readily to pairwise delta funéiat R'(f) = I'(©"(A*(II'(F))) is bounded. Therefore,
tions, which are defined by products. ; () x(z:); in par- A'(IT'(9)) is an algebraic interior point, meaning that we can
ticular, they can be written as linear combinations of elements3®pPly Lemma 3 to conclude that for &ll € TREE', we have

the setsR(s) andR (s, t), as defined in (26a) and (26b), respec- oG

tively. Now suppose that € M(°), so thatlog p(z; 7°) = iy 9G" i _

log p(z; #) for allz € XV By construction, both the left-hand ZAZ, {Ua = A (I (9)) T, (AT (#))8) = 0. (51
side (LHS) and right-hand side (RHS) are linear combination €

of the elemen_tﬁz(s) andR(s, 7). Equating the coefficients of i o mains to calculate the necessary partial derivative'of
these terms yields a set dfy) = (m — )N + (m — 1)*|E| \yo begin with the decomposition
linear equations. We write these equations compactly in matrix
form asA6 = 7°. ;

This establishes the necessity of the affine manifold con- G{(T; 0) = Z Gt(Tot; bst) + Z Gs(Ts: 0)
straints. To establish their sufficiency, we need only check that (s, )e B! €V
the linear constraints ensure the constant ternsgjp(z; ~°)
andlog p(z; #) are also equal. This is a straightforward verifi
cation.

=y

wheregG,; andg are defined in (28). We then calculate

%" . 0)—{®(T)s;j—98;j+17 for a=(s; j)
or, O(T)st; ji—Ost; ju—1, fora=(st; jk).

APPENDIX B

We evaluate these partial derivativegat A¢(11¢(0)), and use
PROOF OFPROPOSITION2 P (11°(8))

the notatiod,, = ©'(T),, for eacha € .A’. Substituting the

We begin with some preliminary definitions and lemmas. F(SFSUHS into equation (51), we conclude that the sum

a closed and convex sdt, we say that:* is analgebraic inte- N .

rior point [32] if for all z # z* in X there exists’ € X, and Z Z [Us; i— T j] [95; i =05 +1]

A € (0, 1) such thatw* = Az + (1 — A)z’. Otherwise;z isan €V J

exterior point. The following lemma characterizes the nature oft- Z Z [Ust; jie = Tot; jic] [Bst; jie — Ot je — 1] (52)
a constrained local minimum ovéf. (s,t)EET j,k
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is equal to zero. Now, since both and 7" belong toTREE!, TREE = N, TREE' be arbitrary. By applying (54) repeatedly,

we have we obtain
Z[U ~1], =0, forallseV G(U; 0°) = G(U; 0)+ > W, (55)
F n=1
and
where

Z[USt; it — Tar. j1] = 0, forall (s, t) € E'.
As aresult, the constantor —1 in (52) vanish in the sums over

jor {4, k}, and we are left with the desired statement in (50). V€ then apply (55) witl/ = T* (i.e., the pseudomarginal
corresponding t6*). By construction, we hav@(T™*; 6*) = 0,

- - - : o that (55) yields7(T*; %) = 377, W,. Substituting this
Equipped with these lemmas, we first establish (3§f'-:-sult back into (55), we find that

For a given#, let T' denote the pseudomarginal such th
O(T) = QY(#). (Of particular importance is the fact that a0y e .. 10
T, = A(IT(A)), for all a € A'.) We then write G9(U; 67) = G(U; 97) + G(17; 67) (56)
for all U € TREE. To prove thatl™ satisfies the necessary

G(U; 0) - G(U; () - G(T 9) conditions to be a local minimum, we note that (56) is equivalent

=> [U-1],[Q0) - ba to the statement
acA oG
i %, n0 _ * _
=Y [U-T],[R0) - 0. > a7 (T U =T = 0 (57)
ac Al acA
where we used the definition where we have used a sequence of steps similar to the proof
of Proposition 2. Since the cost functighis bounded below
i 0o, forall o € A\ A’ and the constraint set is nonempty, the problem has at least one
Q' (0)a = Ri(9) forall a € A minimum, which must satisfy these first-order stationarity con-
= ' ditions.

Now R’ (4) is bounded by assumption. Moreover, by construc- To establish equivalence with BP fixed points, recall that
tion. we havel’. — A{(IT(8))., for all « € A'. Thus, we can the cost functiorg agrees with the Bethe free energy on this
appiy Lemma 4 to conclude ftyhat ' ’ constraint set. Yedidiat al.[3] have shown that BP fixed points

correspond to points that satisfy the Lagrangian conditions for
G(U; 6) — G(U; Q'(8)) — G(T; 6) =0 (53) an extremum of the Bethe free energy ot &t EE. Moreover,

’ ’ ’ because the constraint sets are linear, the existence of Lagrange
thereby establishing (32) with the identificatiofs= g7, 7 = multipliers is guaranteed for any local minimum [47]. By
T+, andi = i(n). recourse to Farkas’ lemma [47], these Lagrangian conditions

For use in the proof of Theorem 3, it is convenient to exter€ equiyalent to 'Fhe fir;t—order condition (57). Therefore, TRP
this result to the relaxed updates of (20), in which the step si#%ed points coincide with those of BP. .
A" € [0, 1]. In order to do so, use the definition @+ given b) By definition, the elements of any pseudomarginal vector

in (20) to write the differenc€(U; 6") — G(U; ™) as T* € TREE satisfy local normalizatiorozj_T; i= 1), and
marginalization)_, 77, ;, = 173, ;) constraints. Given some
S ULt -] = ST UL [ () - 67, tree7 = (V(7), E(T)), consider the subcollection of pseu-
ey oA domarginals
=X {0 ) =W QU] () = (T2 5 € VT LTS (5, ) € BT)).

=A"G(T" " 6™) . . . .

By the junction tree theorem [37], the local consistency condi-

where we have obtained the final line using (53). We have thiigns are sufficient to guarantee global consistency for the sub-
established collectionII” (7). In particular, they are the exact single-node

and pairwise marginal distributions of the tree-structured distri-
G(U; 6™) = G(U; 671 + A"g(T™: 67). (54) bution formed as in (33).

APPENDIX D
APPENDIX C PROOF OFLEMMA 2
PROOF OFTHEOREM 3 Consider the function

a) See the text following Theorem 3 for discussion of how to

construct the unique pseudomargifisl € TREE associated F(9) 2 log Z exp Z Ootba(z) p f(2)] .
with any exponential parameter fixed po#it. Now letU € zeXN o
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By interpretingF’ as the log-partition function corresponding As one illustration, if the hypergraph arises from an ordinary
to the distributiony(z; ) o< exp{}_, 0aba(x)}f(z), we see graphG with pairwise maximal cliques, then hyperedges con-
that it is a convex function df. For any parameter vectofsand  sist of ordinary edgeés, ¢) and vertices. For an ordinary edge

6, this convexity allows to write (s, t), we have
{ZTst(x's, a?t)} {ZTgt(:vS7 wé)}]

whereas for any vertex we haveps(zs; Ts) = Ts(xs). In this

. oF . (pst(x& Tt Tst)
F(0) > FO)+ ) 55| (0= 0)a (58)
“lo = Tet(xm xf)/

We take derivatives af" with respect td; to find

oF B special case, then, the parameterization of (61) is equivalent to
90,5 (0) = Bo[f(2)$s(2)]/Eolf (2)]- the {7, T.;} parameterization that is updated by TRP/BP.
We also observe the relatidn(f) = log Eq[f(z)] + ®(6). Sub- APPENDIX F
stituting these relations into (58), rearranging, and taking expo- HYPERTREES FORKIKUCHI APPROXIMATION
nentials yields the bound of (41). In this appendix, we show how generalized belief propagation
[3], [33] with the Kikuchi approximation of Fig. 15(b) can be
APPENDIX E interpreted as a type of hypertree reparameterization. The aug-
HYPERGRAPHPARAMETERIZATION mented hypergraph in Fig. 15(c) has four maximal hyperedges,

This appendix gives details of the hypergraph parameteriﬁ@Ch of size four, namely(_1245), (2356), (4578), and(5689).
tion. Suppose that we are given a pseudomargihaor each Our hyperedge set consists of these hyperedges, as well as the

hyperedgeh of the hypergraph (not just the maximal Ones)(.smaller) hyperedges contained within them. With a collection

Given the pseudomargin, and any hyperedggthat is con- T_ of pseudom_arg?nals over this hyperedgg se_t, the original dis-
tained within, we define tribution p(z) is given the new parameterizatigiiz; 7), as

in (61).
Our ultimate goal is a reparameterization of this form in
— /
Ty<n(zg) = , Z Tin(a,)- (59) which the hyperedge pseudomarginals are all locally consistent,
(@), |=;=25} and hence (by the junction tree theorem [37]) consistent on

each hypertree. In order to find such a reparameterization, we
Thatis, T <, is the pseudomarginal gninduced byT’,. Atthis  perform a sequence of hypertree reparameterization updates, in
initial stage, we ar@otassuming that the collection of pseudogyhich each step entails choosing some hypertree, and reparam-
marginals is fully consistent. For example, if we consider Weterizing the corresponding hypertree distributigte; 7).
distinct hyperedge# and f that both contairy, the pseudo- gqf example, Fig. 15(d) shows the hypert@Ednot spanning)
marginall;,<;, need not be equal tf), ;. Moreover, neither of gptained by removing the maximal hypered@és9). On the
these quantities has to be equal to the pseudomarginde-  anaytical side, we form the distributiqri(z; T) by removing

fined independently for hyperedge However, when the hy- fom p(z; T), as defined in (61), the termsgso(z; Tseso)
pertree reparameterization updates converge, all of these c@fined in (60).

sistency conditions will hold. We now perform reparameterization over a set of hypertrees

~ Now for each hyperedge with pseudomarginal,, we de- that cover the hypergraph. If the updates converge, then the fixed

fine the following quantity: point T* will be hypertree-consistent with respect to each of
these hypertrees. Since the hypertrees cover the hypergraph, for

) _ Th(zn) any pairg < h, we are guaranteed the consistency condition
on(@n; Th) = (60) e
II pg(g: Tg<n) T; (xy) = Tro)(xy), whereT?_, is defined in (59).
9€D(h) Suppose that we have a hypertree-consistent reparameteriza-

tion for the particular Kikuchi approximation of Fig. 15. When

whereD(h) is defined in (45a). the hyperedge consistency conditions are satisfied, there is no

This quantityo;,(z,; 7,) should be viewed as a functionjonger any need to distinguish betwegh and T}, . Accord-
of both Ty, and the pseudomarginml. In addition, note that |ng|y, the reparameterizatiqr(m; T*) of (61) can be expanded
for any hyperedgg < h, it is the quantityZ,,<, (which need and simplified in the following way. Omitting explicit depen-
not agree with the pseudomargirigl at intermediate stages ofdence onz, we first compute
the algorithm) that is used in the recursive definition of (60).

With these definitions, the collectidh specifies an alternative P1o0s = Tioas  _ Tioas  _ TinesT5
parameterization of the original distributipte) on the full hy- C paspasps L %T: Ty Tr

pergraph (which need not be acyclic in general) as follows: i

We can compute analogous expressions for the other maximal

plx; T) o H on(@n; Th). (61) hyperedges. Next, we have,; = 17;/17, with analogous
heE expressions for the other hyperedges of size two; and, finally,
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w5 = T5. We take the produdt], ., vn(z; T*) over all the

[20]

hyperedges, and then simplify to obtain

* * * * * * * *
T1245T5 T2356T5 T5689T5 T4578T5

(21]

* %
T25T45

* * * *
T25 T45 T56 T58 x T*
* Tk * * * * 5
T45T58 T5 T5 T5 T5
* * * * *
_ T1245T2356T5689T4578T5

15:T5s  T5e13s [22]

s Pk Pk ik

251451561 58 (23]

The final line follows after some algebra, in which terms that(24]
are common to both the numerator and denominator cancel ea
other out. In canceling terms, we have used the consistency con-
ditions satisfied byl™, as described earlier. Finally, suppose
that we take the logarithm of this factorization, and then takd?®!
expectations with respect to the local pseudomargiffiglsit
can be seen that the resulting approximation to the entropy efe’]
tropy agrees with the associated Kikuchi approximation for this
problem, as discussed by Yedidital.[33]. Moreover, it can be
shown that any local optimum of the associated Kikuchi variai28]
tional problem is a hypertree-consistent reparameterization 0&9]
this form.
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