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Abstract. This paper proposes a new iterative algorithm for simultaneously computing an approximation to the

covariance matrix of a random vector and drawing a sample from that approximation. The algorithm is especially

suited to cases for which the elements of the random vector are samples of a stochastic process or random field.

The proposed algorithm has close connections to the conjugate gradient method for solving linear systems of

equations. A comparison is made between our algorithm’s structure and complexity and other methods for

simulation and covariance matrix approximation, including those based on FFTs and Lanczos methods. The

convergence of our iterative algorithm is analyzed both analytically and empirically, and a preconditioning

technique for accelerating convergence is explored. The numerical examples include a fractional Brownian

motion and a random field with the spherical covariance used in geostatistics.

Key Words: simulation, covariance matrix approximation, Krylov subspace, conjugate gradient, Lanczos, matrix

square root

1. Introduction

This paper addresses the dual problems of simulation and covariance matrix approxima-

tion. Specifically, one is given the covariance Lx of an l-dimensional zero-mean random

vector x. For all of the examples in this paper, the components of the random vector x are

samples of a stochastic process or random field. Given the covariance Lx, one is interested

in computing two quantities. The first is the generation of a zero-mean random vector xV
whose covariance LxVmatches the given covariance Lx, either exactly or approximately.

The second quantity of interest is a low-rank approximation to the covariance. That is, one

is interested in computing a reasonably small number of vectors, a1, . . . , ar such that

Xr

i¼1

aia
T
i cLx: ð1Þ
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For performing both sets of computations, one would like an algorithm that is as

computationally efficient as possible since l may be large, especially in the case of 2-D

random fields.

Needs for efficient generation of samples of random processes and fields and low-rank

approximations to their covariances can be found in many disciplines, including remote

sensing applications (which served as the source of our motivation for this investigation). In

particular, because of the huge size of the random fields often arising in such applications,

compact covariance approximations are essential, as the computation and even the storage

of full covariance matrices are prohibitive. Moreover, in space-time applications, in which

uncertainty must be propagated over time, these problems are even more severe [23], [24],

and the methods described in this paper offer two alternatives for applications such as these.

The first is simply in the direct, low-rank approximation of the covariance of large random

fields. An alternative, however, involves the generation of samples of large fields as a

component of Monte Carlo methods for such space-time problems. Although directly

approximating the covariance is one approach to space and space-time dimensionality

problems, Monte Carlo methods are also used [5, and references therein]. In particular,

ensemble Kalman filtering is a Monte Carlo method in which a number of samples of the

random phenomenon of interest are generated [2], [8], [13], [17]. These samples are then

individually propagated through the complex dynamical equations governing the phenom-

enon in order to estimate how uncertainty propagates over time. Such Monte Carlo

techniques require an efficient simulation algorithm such as that described in this paper.

The algorithm developed in this paper for simulation and covariance matrix approx-

imation is derived by exploiting a close connection between simulation and linear least-

squares estimation. In particular, the proposed algorithm is based on a recently developed

Krylov subspace algorithm for estimation [22]. That algorithm is a modification of the

standard conjugate gradient algorithm for solving linear equations that allows for the

simultaneous computation of estimates and error variances. The algorithm proposed in this

paper holds a similar relationship with respect to conjugate gradient. Specifically, the

proposed algorithm is a modification of the standard conjugate gradient algorithm that

computes, instead of an estimate, a sample path. Moreover, the algorithm simulta-

neously computes a low-rank approximation to the given covariance matrix.

Other approaches to simulation and covariance matrix approximation include some

variants on the Lanczos algorithm for computing eigendecompositions [10, Chapter 9]. In

particular, Xu, Kailath, et al. investigated using a Lanczos algorithm for forming a low-rank

approximation to a covariance matrix in the context of subspace tracking [26], [27], [28],

[29]. The Lanczos algorithm has also been used to approximate matrix square roots, which

can be used for simulation [3], [6], [25] (see Section 3.1). These algorithms, like ours,

recursively tridiagonalize a matrix as an intermediate step. The Lanczos methods, then,

perform eigendecompositions on the tridiagonal matrices in the process of computing final

approximations. Instead, our method makes use of Cholesky factorizations. Thus, our

algorithm is more recursive in nature and closer to conjugate gradient than the Lanczos

methods. The advantages of our algorithm over Lanczos approaches include a natural

stopping criteria, the ability to precondition the problem to accelerate convergence, and a

slight efficiency gain. These advantages are expounded upon in subsequent sections.
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The remainder of the paper is organized as follows. Section 2 presents our Krylov

subspace method for simulation and covariance matrix approximation. The computational

complexity of our method is compared against other algorithms in Section 3. The

convergence of our method and preconditioning techniques for accelerating it are

discussed in Section 4. Section 5 contains numerical examples.

2. A Krylov Subspace Method for Simulation and Covariance

Matrix Approximation

Our approach to simulation and covariance matrix approximation is based on the con-

nection between simulation and linear least-squares estimation. In particular, let p1
Tx, . . . ,

pk
Tx be unit variance linear functionals of x that whiten x, i.e. Cov( pi

Tx, pj
Tx) ¼ dij. The best

linear estimate of x given p1
Tx, . . . , pk

Tx is then

x̂kðxÞ ¼
Xk
i¼1

ðbiÞð pTi xÞ; ð2Þ

where bi ¼ Lxpi. Since the pi
Tx are white and unit variance, one can replace them with any

other sequence of white unit variance random variables w1, w2, . . . , wk to generate another

random vector with the same second-order statistics, yielding, as in (2):

xkV ¼
Xk
i¼1

biwi: ð3Þ

The covariance of xkVis

LxkV ¼
Xk
i¼1

bib
T
i : ð4Þ

The matrix LxkV is an approximation to Lx, and the vector xkVis a sample drawn from a

distribution with covariance LxkV.

The linear functionals that we use form bases for a type of nested subspaces known as

Krylov subspaces. A Krylov subspace of dimension k generated by a matrix Lx and vector

s is given by

spanðs;Lxs; . . . ;L
k�1
x sÞ ð5Þ

and is denoted by KðLx; s; kÞ. The advantages of using Krylov subspaces are twofold. The

first is computational. Since

spanðp1; . . . ; pkÞ ¼ spanðs;Lxs; . . . ;L
k�1
x sÞ; ð6Þ
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determining pkþ1 given p1, . . . , pk is not much more difficult than multiplying Lx by a

vector (more details are provided subsequently). Moreover, computing the product can

often be done efficiently using FFTs, wavelets [14], or some other fast transform. The

second reason for using Krylov subspaces is that as long as the starting vector is not an

eigenvector of Lx (or more generally that it does not reside in a proper invariant subspace),

the sequence of Krylov subspaces capture more and more of the dominant modes of Lx

with increasing k [19], [22]. In particular, the algorithm will find a good low-rank

approximation to Lx as the dimension of the Krylov subspace increases.

To see how the structure of Krylov subspaces leads to computational advantages,

consider the following approach to reducing a matrix Lx to upper Hessenberg form [4,

Section 6.6.1]. Note that a matrix is upper Hessenberg if the only non-zero elements are on

the subdiagonal and upper triangle, as in

* * * * *

* * * * *

0 * * * *

0 0 * * *

0 0 0 * *

0
BBBBBBB@

1
CCCCCCCA
: ð7Þ

One can use the Krylov subspace KðLx; s; kÞ to perform the reduction, as follows. Let A be

the matrix whose columns are products of s and Lx, i.e.

A ¼ s Lxs : : : L
l�1
x s

� 	
: ð8Þ

If s does not reside in a proper invariant subspace of Lx, then A is invertible; so, one can

write c ¼ �A�1Lx
l�1s. Then,

LxA ¼ A e2 e3 : : : el �cð Þ ð9Þ

where ei is the ith canonical vector (zero accept for a 1 at the ith position). Hence,

LxA ¼ A

0 0 : : : 0 �c1

1 0 : : : 0 �c2

0 1 : : : 0 �c3

] ] ] ] ]

0 0 : : : 0 �cl

0
BBBBBBB@

1
CCCCCCCA

ð10Þ

which is upper Hessenberg. Let H denote this matrix. When Lx is symmetric (as it is in this

paper), it can be further manipulated to yield a tridiagonal matrix. Specifically, one can
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perform the QR-decomposition on A to yield A ¼ QR. Then,

A�1LxA ¼ R�1QTLxQR ¼ H ; ð11Þ

so,

QTLxQ ¼ RH R�1: ð12Þ

R is upper triangular, and H is upper Hessenberg; hence, RH R�1 is also upper Hessenberg.

Furthermore, Lx being symmetric and positive definite implies

QTLxQ ¼ T ð13Þ

where T is tridiagonal and positive definite. The reduction in (13) is useful since T can be

easily decomposed by Cholesky factorization. The resulting factors can be used to solve,

among other things, the realization problem addressed in this paper (the details follow).

One approach to computing the tridiagonalization in (13) is to use a Lanczos iteration

[10, Section 9.1]. The Lanczos iteration is derived by noting that (13) implies

LxQ ¼ QT : ð14Þ

Writing

T ¼

�1 �2

�2 �2 �3

O O O
O O �l

�l �l

0
BBBBBBB@

1
CCCCCCCA
; ð15Þ

one can rewrite (14), in terms of the columns qk of Q, as the recursion

�k ¼ qTkLxqk ð16Þ

hk ¼ Lxqk � �kqk � �kqk�1 ð17Þ

�kþ1 ¼ jjhk jj ð18Þ

qkþ1 ¼
hk

�kþ1

ð19Þ

which is initialized by setting q1 equal to a starting vector s, q0 ¼ 0, and �1 ¼ 0. For k < l,

the vectors q1, . . . , qk are orthonormal and tridiagonalize Lx. Moreover, they form a basis

for the Krylov subspace KðLx; s; kÞ.
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In this paper, we are interested in another basis for this Krylov subspace. Specifically,

denote the k � k tridiagonal submatrix of T by Tk and its lower bi-diagonal Cholesky factor

by Lk. Then, define the vectors pi by

½ p1 p2 : : : pk 
 ¼ ½q1 q2 : : : qk 
L�T
k : ð20Þ

Since Lk is lower bi-diagonal, the pi can be efficiently computed from the qi using a

two-step recursion. These pi are Lx-conjugate (i.e. they whiten x) and form a basis for

KðLx; s; kÞ. Note also that the vectors pi are the conjugate search directions generated by

the conjugate gradient method [4, Section 6.6] for solving a linear system of the form

Lxu ¼ �: ð21Þ

The method is iterative and, at each iteration k, generates a vector uk* that minimizes

jjLxuk � �jjL�1
x

ð22Þ

over all uk in KðLx; s; kÞ. In terms of the pi, there is a simple recursion for uk*: ukþ1* ¼
uk*þ pkp

T
k �. The simple form of the recursion follows from the conjugacy of the pi, the

same reason why the realization approximation in (3) and (4) has a simple form.

For the realization algorithm proposed in this paper, the linear functionals used are

precisely these pi associated with the conjugate gradient algorithm. As already mentioned,

they can be efficiently computed using the Lanczos iteration combined with a two-step

recursion to solve (20). Note also that the vectors bi ¼ Lxpi in (3) and (4) can also be easily

computed from Lxqi, which are computed as part of the Lanczos iteration.

The Lanczos iteration and conjugate gradient methods are known to have numerical

problems that can affect the degree of conjugacy among the pi. These numerical issues can

be addressed by using the Lanczos iteration combined with any of a variety of

reorthogonalization schemes to ensure Lx-conjugacy among the pi. The simplest of these

is full orthogonalization [4, Section 7.4]. This just recomputes each hk as

hk w hk � ½q1 : : : qk 
 ½q1 : : : qk 
Thk ð23Þ

between steps (17) and (18). One can also use more complicated reorthogonalization

schemes that are more computationally efficient such as selective orthogonalization [16].

A discussion of the details of selective orthogonalization relevant for simulation can be

found in [21, Appendix B]. We have found that the quality of simulation is not

significantly affected by the type of orthogonalization used.

The presentation of the simulation and covariance matrix approximation algorithm, thus

far, has included neither a choice of starting vector s nor a stopping criterion. For the

former, we choose s as a sample of a zero-mean Gaussian random vector with identity

covariance (thereby guaranteeing, with probability 1, that this initial choice will not be

confined to a proper invariant subspace of Lx). Although one might expect performance to
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be significantly affected by the particular random sample used for s (for example, one

could think of s lying almost in a proper invariant subspace), the result presented later in

Theorem 4.1 indicates that the convergence rate is independent of the particular random

sample used for s. Moreover, this fact has been observed in practice. For a stopping

criterion, we consider those used for the Krylov subspace estimation algorithm referenced

in the introduction. In particular, the criterion in [22, Section 2.1] can be modified for use

with the simulation and covariance matrix approximation algorithm. Specifically, consider

1

l

Xl

i¼1

ðLr;kÞii ð24Þ

where

Lr;k ¼ Lx � LxkV: ð25Þ

This measures the total difference in the variances between the given random vector x and

the approximate simulation xkV. It is a useful measure of the quality of approximation of xkV
and is easy to update at each iteration. Hence, it can be used as a basis for a stopping

criterion of our Krylov subspace algorithm. The complete algorithm for simulation and

covariance matrix approximation is summarized, as follows.

Algorithm 2.1 Krylov Subspace Method for Simulation and Covariance Matrix

Approximation.

1. Initialize x0V¼ 0, (Lr,k)ii ¼ (Lx)ii for i ¼ 1, . . . , l.

2. Generate a zero mean Gaussian random vector s with identity covariance to initialize

the Krylov subspace.

3. Perform the following operations for each step k until

1

l

Xl

i¼1

ðLr;kÞii

falls below a threshold �:
(a) Compute the conjugate search direction pk and filtered backprojection bk ¼ Lxpk

using a reorthogonalized Lanczos iteration, (16)–(19).

(b) Generate an independent random number wk and update the simulation

xkV ¼ xk�1V þ bkwk ð26Þ

and the errors in approximating the variances

ðLr;kÞii ¼ ðLr;k�1Þii � ððbkÞiÞ
2

for i ¼ 1; . . . ; l: ð27Þ
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3. Comparison of Simulation and Covariance Approximation Algorithms

This section compares our Krylov subspace simulation and covariance approximation algo-

rithm to three other approaches. The focus is on a comparison with the Lanczos algorithms

for matrix and matrix square root approximation [25]; however, approaches using Karhu-

nen-Loève bases and FFT methods are also examined. The comparison centers on computa-

tional complexity issues.

3.1. Krylov Subspace Simulation and Covariance Approximation vs.

Lanczos Matrix Approximation

Our Krylov subspace algorithm and the Lanczos algorithm for matrix approximation yield

results that would be almost the same in exact arithmetic. Specifically, the covariance

matrix approximation generated at step k by our Krylov subspace algorithm is

LxQkT
�1
k QT

kLx ð28Þ

where

Qk ¼ q1 : : : qkð Þ ð29Þ

and qi and Tk are as in Section 2. The Lanczos algorithm for matrix approximation, on the

other hand, generates the following approximation at step k:

QkTkQ
T
k : ð30Þ

To see that these approximations are very similar, consider running the Lanczos tri-

diagonalization to completion (l steps). For any k, then, one can write

Lx ¼ Qk Q?
k

� 	 Tk ET
k

Ek T?
k

0
@

1
A Qk Q?

k

� 	T ð31Þ

where the columns of Qk
? are the Lanczos vectors generated after step k, Tk

? is

tridiagonal, and Ek is of the form

Ek ¼

0 : : : 0 *

0 : : : 0 0

] ] ] ]

0 : : : 0 0

0
BBBB@

1
CCCCA
: ð32Þ

Thus,

LxQkT
�1
k QT

kLx ¼ QkTkQ
T
k þ Q?

k EkQ
T
k þ QkE

T
k Q?

k

� 	T þ Q?
k EkT

�1
k ET

k Q?
k

� 	T :
ð33Þ
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So, the difference between our Krylov subspace algorithm approximation in (28) and the

Lanczos iteration approximation in (30) is at most rank 3 since Ek is rank one.

The primary advantage of our Krylov subspace algorithm is that it allows for one to

recursively update the synthesis and approximation error at each step. In contrast, Lanczos

algorithms for matrix or matrix square root approximation typically perform an eigende-

composition of the Tk to form the syntheses and estimate approximation [6], [25], [27].

The eigenvalues of Tk are used to estimate the approximation error, and the square root of

Lx is approximated by performing a full eigendecomposition of Tk and taking square roots

of the eigenvalues.

The recursive structure of our algorithm also results in a modest computational gain. The

amount of reduction can be quantified, as follows, by counting the number of floating

point operations (flops). Only terms cubic in either k and l are considered. Suppose each

Lx-vector product requires a number of flops that grows linearly with l. Suppose further

that the algorithm is run for k iterations. Then, the computational load of the Krylov

subspace simulation and covariance approximation algorithm is dominated by the 2lk2

flops required to perform reorthogonalization. The standard Lanczos methods must also

perform reorthogonalization and compute eigendecompositions of Tk. Computing eigen-

values at step i to check the approximation quality requires about 30i2 flops if symmetric

QR is used [10, pp. 420-1]. By step k, this has required 15k3 flops. Computing a full

eigendecomposition at step k to generate a matrix square root requires 6k3 flops. The totals

are provided in Table 1. Thus, our Krylov subspace algorithm achieves a modest

computational gain of 21k3 over standard Lanczos algorithms.

3.2. Karhunen Loève Bases

In terms of mean-squared error, the optimal approach to generating a low-rank approx-

imation to a covariance matrix Lx and an associated simulation is to perform a Karhunen-

Loève decomposition of Lx. However, any implementation of a simulation and covariance

matrix approximation algorithm using Karhunen-Loève bases requires a numerical routine

for the approximate computation of partial eigendecompositions. One of the most popular

iterative routines is also based on the Lanczos algorithm [10, Chapter 9], described

previously in Section 2. At step k the Lanczos algorithm will have computed a basis for the

Krylov subspace KðLx; s; kÞ , from which one computes approximate eigenvectors by

selecting appropriate vectors. Note that while exact Karhunen-Loeve approximation is

mean-square optimal, the approximate procedure just described is always inferior in mean-

square error (for the same computational effort) to the method described in this paper. This

follows from the fact that at iteration k, our approach will project the covariance Lx onto

the entire Krylov subspace KðLx; s; kÞ whereas the approximate Karhunen-Loève

approach projects Lx onto a proper subspace of KðLx; s; kÞ.

3.3. FFT Methods

One may be able to utilize FFT’s for simulation and covariance approximation if the

covariance is that of equally spaced samples of a stationary stochastic process or random
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field. The covariance matrix for such a process is Toeplitz [10, Section 4.7]. A Toeplitz

matrix is a matrix in which each row (column) is a shifted version of the previous row

(column). Since covariance matrices are also symmetric, a Toeplitz covariance matrix will

have the form

Lx ¼

K½0
 K½1
 K½2
 : : : K½l � 1

K½1
 K½0
 K½1
 : : : K½l � 2

] ] ] ]

K½l � 1
 K½l � 2
 K½l � 3
 : : : K½0


0
BBBBB@

1
CCCCCA

ð34Þ

where K is the covariance function. FFT’s can be used to simulate such a stochastic

process when one can embed the covariance matrix in a larger, circulant, positive-definite

matrix. A circulant matrix is a Toeplitz matrix in which each row (column) is a circular

shift of the previous row (column) [10, Section 4.7.7]. Thus, a circulant covariance matrix

has the following form (when l is even)

Lx ¼

K½0
 K½1
 : : : K l
2
� 1


 �
K l

2


 �
K l

2
� 1


 �
: : : K½1


K½1
 K½0
 : : : K l
2
� 2


 �
K l

2
� 1


 �
K l

2


 �
: : : K½2


] ] ] ] ] ]

K½1
 K½2
 : : : K l
2
� 1


 �
K l

2


 �
K l

2
� 1


 �
: : : K½0


0
BBBBB@

1
CCCCCA
: ð35Þ

The details of the FFT computation are given in Appendix A along with a discussion of

how FFT’s can be used for simulating certain nonstationary processes that have stationary

increments, such as fractional Brownian motion.

Unlike approaches for simulation and covariance approximation using Karhunen Loève

bases, FFT methods may be computationally competitive with our Krylov subspace

algorithm for certain covariance matrices Lx. Specifically, when FFT’s can be and are used

for simulation, the computation is dominated by the FFT. This can be implemented by an

algorithm that is O(l log l ) where l is the dimension of the random vector. Whether this is

competitive or not with our Krylov subspace algorithm depends on the problem.

Specifically, consider two different asymptotic scenarios. In each case, suppose the

given covariance is that of a set of equally-spaced samples of a random field defined over a

compact subset of Rd . In the first case, let the size of the subset grow but keep the

sampling density fixed. Then, as l increases, consider the behavior of our Krylov subspace

Table 1. Flops Required for Simulation and Covariance Approximation.

Method Flops

Krylov Subspace Simulation and Covariance Approximation 2lk2

Standard Lanczos 2lk2þ21k3
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algorithm. The number of linear functionals of the process, k, needed to meet a desired

level of accuracy should grow linearly with l. This is a consequence of the need to use

more linear functionals of the process to capture its behavior over the larger region. Since

our Krylov subspace algorithm has complexity O(lk2), and the FFT method, O(l log l ), the

FFT method will become more competitive as the region size grows.

Now consider the case where the region size is fixed, but the sampling density increases.

Then, as l increases, the number k of linear functionals will remain constant. Instead, one

needs different linear functionals that capture the behavior on the refined grid. Our Krylov

subspace algorithm will compute the appropriate linear functionals for the grid size. In this

case, our Krylov subspace algorithm will be less computationally intensive than the FFT

method for large l. The problem sizes at which one method becomes less intensive than the

other depend on the specific problem and implementations.

4. Convergence and Preconditionings

Whether the Krylov subspace algorithm for simulation and covariance matrix approx-

imation is applicable for a particular problem depends on how the algorithm converges.

In this section, the convergence rate is bounded, and preconditioning strategies for

accelerating that rate are discussed.

4.1. Bound on the Convergence Rate

The convergence analysis focuses on two quantities. The first is the initial vector, s. Recall

that the initial vector is chosen randomly, according to a Gaussian distribution with zero

mean and a covariance proportional to the identity. Note that the initial vector affects the

convergence of the method by implicitly determining the linear combination of eigenvec-

tors of Lx used to start the generation of the Krylov subspaces. The question addressed by

the subsequent bound is whether the convergence rate depends on the initial vector when

that vector is chosen randomly. The second quantity on which the convergence analysis

focuses is the relative separation of the eigenvalues �x,i of Lx. The relative separation is

measured by the minimum of (�x,i � �x,iþ1)=(�x,iþ1 � �x,l) over i. One would expect that

the Krylov subspaces will do a better job of capturing the dominant eigenspaces when the

relative separation is larger. In particular, we assume that there exists a constant �sep > 0

such that

�x;i � �x;iþ1

�x;iþ1 � �x;l
� �sep > 0: ð36Þ

Given this assumption, one can state the following bound on the total difference between

the variances of the given random vector and those of the approximation generated by our

Krylov subspace algorithm. The bound is stated without proof since it is a special case of

Theorem 3.1 in [22].
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THEOREM 4.1: If there exists a constant �sep such that (36) holds,

Xl

j¼1

ðLx � Lx;kÞjj 
jjsjj2�jjLxjj

1� 1
�2

� 
1� 1ffiffi

�
p

�  ��k=2 þ
Xl�1

i¼k

ði� k þ 4Þ�
x; i

4b c ð37Þ

where � is given by

� ¼� 1þ 2 �sep þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sep þ �2

sep

q� 
ð38Þ

and � is a random variable whose statistics depend only on �sep.

Note that the bound in Theorem 4.1 consists of two terms. The second term primarily

relates to how good an approximation to Lx one obtains by retaining only the first k

eigenvectors. The first term primarily relates to how well the first k eigenvectors are

approximated by the k-dimensional Krylov subspace generated by Lx and s. Note that the

rate of decay of this term, �, is independent of the starting vector, s. However, the rate is

highly dependent on the relative separation of the eigenvalues as measured by �sep. The
more separated the eigenvalues are, the faster this term in the bound decays.

4.2. Preconditioning

The bound in Theorem 4.1 suggests preconditioning as a method for accelerating

convergence. The idea behind preconditioning for simulation and covariance matrix

approximation is to pre- and post-multiply the matrix generating the Krylov subspace by

B and BT, respectively, so as to increase the separation of the eigenvalues and, in turn, �.
Essentially, this alters our algorithm in that at step k, instead of computing the best linear

estimate of x based on p1
Tx, . . . , pk

Tx as in (2)–(4), the preconditioned version of our

algorithm computes the best linear estimate of x given p1
T(Bx), . . . , pk

T(Bx). The precon-

ditioned form of the algorithm is not significantly more involved computationally than

the standard version. Moreover, the preconditioning can be implemented in a manner that

only requires one to know, and have a routine for multiplying vectors by, BTB, instead of

both B and BT. The algorithmic details of preconditioning for the Krylov subspace method

for simulation and covariance matrix approximation are very similar to those for Krylov

subspace estimation [22, Section 4.1] and, thus, are not explicitly given here.

Constructing good preconditioning matrices, BTB, for covariance approximation and

approximate simulation is an ongoing area of research, and a thorough discussion is

beyond the scope of this paper. One could potentially adapt existing methods for

preconditioning eigendecomposition computations [20, Chapter 8] or utilize techniques

from spectral analysis [7], [18]. However, one may also be able to use simple strategies

such as preconditioners of the form

UDUT ð39Þ
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where U is an approximation to the eigenvectors of Lx, and D is a diagonal matrix whose

diagonal elements (D)ii are given by �i þ 1 for some constants 0 <  < 1 and � >> 1.

The motivation for a preconditioner of this form is as follows. If U were the exact

eigenvectors of Lx, the eigenvalues of the product of the preconditioner and Lx would be

given by (�i þ 1)�x,i. The geometric decay induced by i for small i would increase the

separation of those eigenvalues of the preconditioned system. Since the eigenvectors of Lx

are not known exactly, 1 is added to the geometric decay to ensure that no eigenvalue is

attenuated too much. An example of such a preconditioner is given in Section 5.3.

5. Numerical Examples

The performance of our Krylov subspace algorithm is illustrated in this section with three

examples. For each example, three sets of results are provided. First, a high quality sample

path generated by the Krylov subspace algorithm is plotted along with a sample path

whose statistics exactly match the given covariance. Second, the difference between the

true variances and those of the Krylov subspace algorithm’s approximation are plotted.

Since the difference between the exact and approximate covariances is always positive

semi-definite for our method, the variances provide a good measure of the quality of the

approximation. Lastly, a plot is presented of the fraction of total mean-squared error

reduction

TrðLr;kÞ
TrðLxÞ

; ð40Þ

versus approximation rank k, where Lr,k is given by (25). For comparison, the error

reduction obtained by the exact Karhunen-Loève approach is also plotted. All results were

generated using MATLAB on a Sun workstation with a floating point precision of

approximately 2 � 10�16.

5.1. Fractional Brownian Motion

The first example consists of simulating and approximating the covariance matrix of 1024

samples of a fractional Brownian motion (fBm) with a Hurst parameter H ¼ 3=4 [15]. The

covariance of fBm is given by

Kxxðs; tÞ ¼
1

2
jtj2H þ jsj2H � jt � sj2H

� 
: ð41Þ

Note that fBms have stationary increments, and one can synthesize this fBm exactly with

2048-point FFTs and also generate good finite-rank approximations to the covariance

matrix, as discussed in Appendix A. As a result, there is not necessarily a need to use a

Krylov subspace method to simulate and approximate the covariance of this fBm.
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However, the problem of simulating and approximating the covariance of a fBm provides

a good example of how our Krylov subspace algorithm could be used to simulate a non-

stationary process. The example also illustrates the algorithm’s power in obtaining near-

optimal low-rank covariance approximations.

Figure 1 presents the results. Part (a) of the figure shows sample paths generated using the

exact FFT method and using 50 iterations of the Krylov subspace method. Note that the

sample path generated using the Krylov subspace method, which represents a rank-50

approximation to a 1024-sample process, looks qualitatively quite similar to the sample

path using exact fBm statistics. That this is the case is actually not surprising if we examine

part (b) of this figure which shows that the differences between the exact and approximate

variances are small. There are two other interesting features of the variance differences. One

is that, they are uniformly small. The other is that they consist mostly of high frequency

oscillations indicating that higher frequency modes (and, hence, the least important ones)

are the ones left out of the approximation. Again, this is expected since, as indicated in part

(c), the Krylov subspace approach is picking linear functionals that are almost as good as

picking the optimal ones, namely the eigenvectors. Also, note that the Krylov subspace

approach does much better than the FFT-based approach outlined in Appendix A for

approximating the covariance matrix at any specified rank.1

5.2. Windowed Cosine Covariance

For the second example, the given random vector consists of 1024 samples in the unit

interval of a stationary process whose covariance function, Kxx(�), is a Gaussian-

windowed cosine:

Kxxð�Þ ¼ e�
�2

2 cosð2��Þ: ð42Þ

This process is interesting because one can not exactly simulate it efficiently using FFTs

despite the fact that the process is stationary. As discussed in Appendix A, efficient

simulation using FFTs can only be performed when the 2048 � 2048 circulant embedding

matrix for the given 1024 � 1024 covariance matrix is positive semi-definite. However,

the circulant embedding matrix for this example has a substantial number of negative

eigenvalues, as indicated in Figure 2.

Results using our Krylov subspace algorithm are plotted in Figure 3. Sample paths are

plotted in part (a). The exact sample path is generated by forming a square root of the

covariance matrix. The approximate synthesis is generated using only 14 iterations of our

Krylov subspace algorithm, which yields a rank-14 approximation to this 1024-sample

process. At this rank, both syntheses have similar structure. This is expected because the

differences between the approximate and exact sample path variances are small, as

indicated in part (b) of the figure. Not many iterations are needed because the eigenvalues

of the covariance matrix for this process decay rapidly, and the Krylov subspace approach

is near optimal, as indicated in part (c) of the figure.
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5.3. Two-Dimensional Spherical Covariance

Lastly, consider simulating and approximating the covariance matrix of a two-dimensional

isotropic random field with radial covariance

Kxxð�Þ ¼
1� 3

2
j� j þ 1

2
j� j3 0  j� j  1

0 otherwise:

8<
: ð43Þ

This covariance function is known as the spherical covariance function in the geostatistical

community [5], [12]. Partly due to its potential practical application, and partly, its rich

 

 

Figure 1. These results are for simulating 1024 samples of a fBm with Hurst parameter H ¼ 3=4. Part (a) shows

sample paths generated with FFTs (an exact method) and with 50 iterations of our Krylov subspace (KS)

algorithm. The difference between the variances are plotted in part (b). Note that the true fBm variances are given

by t3/2 as t ranges from zero to one. The fraction of error reduction obtained by each method as a function of

approximation rank is plotted in part (c). The optimal (KL) results are plotted for comparison.
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structure, the spherical covariance has been used by several researchers to characterize

algorithms for simulation and covariance matrix approximation [5], [9], [11]. One can

consider using two-dimensional FFTs to simulate samples of a field with spherical co-

variance, as discussed in Appendix A. As in the previous example, however, the associated

two-dimensional circulant embedding matrix is not necessarily positive semi-definite. This

will happen, in particular, when the samples are taken from a square grid that does not

include the unit square. In order to demonstrate the performance of our Krylov subspace

algorithm on a two-dimensional problem for which FFT-based methods do not apply, this

section considers a problem on a 33 � 33 grid covering [0, 32=45] � [0, 32=45]. The 64 �
64 two-dimensional circulant embedding of the covariance matrix of these samples has

several negative eigenvalues as illustrated in Figure 4.

A preconditioned Krylov subspace algorithm is applied to this simulation and cova-

riance approximation problem. Recall from Section 4.2 that one strategy for precondition-

ing is to use an approximation of the eigenvectors to form a matrix that separates the

eigenvalues of Lx. Since Lx is stationary, the elements of the Fourier basis are approxi-

mate eigenvectors. Thus, one can consider a preconditioner that has the following form.

First, one zero-pads the image to create a 64 � 64 image. Then, one performs a two-

dimensional DFT, multiplies the resulting spectrum by the transfer function Gp, and then

performs an inverse DFT. Finally, one selects the portion of the result corresponding to the

original 33 � 33 image. The transfer function Gp is chosen to be

Gpð f Þ ¼ 50j f j2ð0:4Þj f j þ 1 ð44Þ

where f 2 {�31, . . . , 32} � {�31, . . . , 32} is a two-dimensional frequency vector. The

geometric decay in the first term of (44), (0.4)| f |, will spread out the eigenvalues. The

factor | f |2 prevents low-frequencies from being shaped by the geometric decay. This is

Figure 2. The plot shows the eigenvalues of the 2048-point circulant embedding for the covariance matrix of

1024 samples of a process with a windowed cosine covariance given by (42). There are both positive and negative

eigenvalues. The curve plots the magnitudes. Those plotted with a solid line are negative; those, with a dashed

line, positive.
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done because the low-frequency modes are significantly affected by the image boundaries,

and, thus, the corresponding eigenvalues cannot be effectively separated with this type of

Fourier preconditioner. The second term of (44) introduces a shift so that the precondi-

tioner doesn’t have a null space.

Exact and approximate syntheses are pictured in parts (a) and (b) of Figure 5. The exact

synthesis is generated by computing a matrix square-root as for the windowed-cosine

covariance example. The approximate synthesis in part (a) is generated with 53 iterations

of the preconditioned Krylov subspace algorithm. Note that the rank-53 approximate

simulation of this 33 � 33 random field is much smoother than the exact one. For

moderate quality simulations, the Krylov subspace method tends to compute a very

smooth one, as long as most of the power in the field is at low frequencies. This may or

 

 

Figure 3. These results are for simulating 1024 samples of a process with a windowed cosine covariance given by

(42). Part (a) shows sample paths generated with a matrix square root computation (an exact method) and with

14 iterations of our Krylov subspace (KS) algorithm. The difference between the variances are plotted in part (b).

The true variance of the stationary process is 1. The fraction of error reduction obtained by each method as a

function of approximation rank is plotted in part (c). The optimal (KL) results are plotted for comparison.
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may not be desirable for certain applications. However, for many applications, the ability

of the Krylov subspace algorithm to pick a close to optimal mean-squared-error and,

hence, smooth simulation is desirable. Note that the differences in variances, plotted in

part (c) are, for the most part, uniformly low. They ripple in the interior, indicating high-

frequency terms have not been approximated as accurately in the simulation. The variance

differences are also high at the edges and corners, which are apparently difficult to

simulate with finite-rank approximations.

Part (d) of Figure 5 shows how the preconditioned and un-preconditioned Krylov

subspace algorithms compare to the optimal (KL) approach to low-rank covariance matrix

approximation. Note that the un-preconditioned algorithm is close to optimal but not as

close as for the other examples. At very low ranks, the preconditioner does not provide

much improvement. This is because the most important modes to capture at these ranks are

low-frequency ones that are influenced by edge effects, which are not taken into account in

the Fourier-based preconditioner. At middle and higher frequencies, the preconditioned

algorithm performs better than the un-preconditioned one. The conclusion is that one can

improve performance of the Krylov subspace algorithm by using a simple preconditioner,

and there is the potential to improve performance further with more sophisticated

preconditioners.

6. Conclusions

This paper has presented a Krylov subspace method for simulation and covariance matrix

approximation and compared it to three other methods, namely, one based on Karhunen-

Loéve expansions, another based on FFTs, and a third involving Lanczos algorithms for

Figure 4. The plot shows the eigenvalues of the circulant embedding for the covariance matrix of samples on a

33 � 33 grid of a process with a two-dimensional spherical covariance given by (43). There are both positive and

negative eigenvalues. The curve plots the magnitudes. Those plotted with a solid line are negative; those, with a

dashed line, positive.
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matrix and matrix square root approximation. Our proposed Krylov subspace algorithm

can efficiently synthesize a process and compute low-rank approximations to covariance

matrices provided that covariance matrix-vector products can be efficiently implemented.

Compared to methods using Karhunen-Loéve expansions, our method is always superior

for the same computational effort. FFT-based methods may be superior in some cases but

are either inapplicable or ineffective in others, including the examples shown in this paper.

The comparison between our algorithm and Lanczos methods for matrix and matrix square

root approximation includes no experimental results but has shown analytically that our

algorithm provides certain advantages. In particular, each step of our recursive algorithm

Figure 5. These results are for simulating samples on a 33 � 33 grid of a process with a two-dimensional

spherical covariance given by (43). Part (a) shows a sample field generated with 14 iterations of a preconditioned

Krylov subspace (PKS) algorithm, and part (b) shows a sample field generated with a matrix square root

computation (an exact method). The difference between the variances are imaged in part (c). The true variance of

the stationary process is 1. The fractions of error reduction obtained by both the preconditioned (PKS) and un-

preconditioned (KS) Krylov subspace algorithm are plotted in part (d) as a function of rank. The optimal (KL)

results are plotted for comparison.
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produces an approximation to the covariance of interest, the difference between the

variances of the approximation and the exact covariance, and a sample drawn from the

approximation. Each step iteratively refines the sample and the approximate covariance by

adding new components determined by the Krylov subspace iteration, while the compu-

tation of differences in the variances provides the basis for a simple stopping criterion. The

Krylov subspace method for simulation and covariance approximation can also be

preconditioned to accelerate convergence; although, developing a systematic methodology

for creating preconditioners is left for future research.

Appendix A

A FFT Method for Simulation and Covariance Approximation

Using FFTs for simulation of stationary stochastic processes is similar to using FFTs for

Lx-vector multiplication, i.e. convolution. First, one embeds Lx in a circulant embedding

matrix C that need be no larger than 2(l � 1) � 2(l � 1). Specifically, let

Lx ¼

K½0
 K½1
 K½2
 : : : K½l � 1

K½1
 K½0
 K½1
 : : : K½l � 2

] ] ] ]

K½l � 1
 K½l � 2
 K½l � 3
 : : : K½0


0
BBBBB@

1
CCCCCA

ð45Þ

where K is the covariance function. Then, the 2(l � 1) � 2(l � 1) circulant embedding

matrix is given by

C ¼

K½0
 K½1
 : : : K½l � 2
 K½l � 1
 K½l � 2
 : : : K½1

K½1
 K½0
 : : : K½l � 3
 K½l � 2
 K½l � 1
 : : : K½2

] ] ] ] ] ]

K½1
 K½2
 : : : K½l � 2
 K½l � 1
 K½l � 2
 : : : K½0


0
BBBBB@

1
CCCCCA
: ð46Þ

Since C is circulant, it is diagonalized by the DFT matrix F. That is, one can write

C ¼ F*GF ð47Þ

where G is a diagonal matrix, whose elements are given by computing the FFT of the first

row of C. Interpreting the product Cz as the circular convolution of z with the ‘‘impulse

response’’ corresponding to the first row of C, one can think of the diagonal elements of G

as defining the corresponding frequency response or transfer function. From (46) and (47),

one then has that

Lx ¼ SF*GFST ð48Þ
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where

S ¼ ðI 0Þ ð49Þ

selects the first l components of a vector. The factorization in (48) amounts to zero-

padding (multiplication by ST), performing a 2(l � 1) FFT (multiplication by F ),

multiplying by the transfer function G, performing an inverse FFT (multiplication by

F*), and finally selecting the first l components of the result (multiplication by S ).

It would appear that one could synthesize a process by simply multiplying SF*
ffiffiffiffi
G

p
F by

a random vector w that has identity covariance because the resulting product has

covariance

CovðSF*
ffiffiffiffi
G

p
FwÞ ¼ SF*

ffiffiffiffi
G

p
FF*

ffiffiffiffi
G

p
FS ¼ Lx; ð50Þ

as desired. However, the covariance Lx may not admit a positive semi-definite embedding,

i.e. the circulant matrix C, and hence G, may not be positive semi-definite even if Lx is, in

which case the square root of G doesn’t exist. For those processes which do admit positive

semi-definite embeddings, however, FFT-based methods are efficient. The following

theorem provides sufficient conditions for a Toeplitz covariance matrix to have a positive

semi-definite circulant embedding [5, Theorem 2]. The statement is written in terms of the

covariance function K[i ] ¼ (Lx)1(i+1).

THEOREM A.1: If the values of the covariance function of an l-point random vector,

K[0], K[1], . . . , K[l � 1], form a sequence that is convex2, decreasing, and nonnegative,

then the associated 2(l � 1) � 2(l � 1) circulant matrix is positive semi-definite.

As an example, consider the situation where the vector to be synthesized, x, consists of

the increments between regularly spaced samples of fractional Brownian motion (fBm)

[15] for Hurst parameter H 2 (1=2, 1). The increments process is stationary with co-

variance function

K½m
 ¼ �2�2H

2
jmþ 1j2H þ jm� 1j2H � 2jmj2H

� 
ð51Þ

where d is the sampling interval and r2 is a constant appearing in the definition of

fBm [1].

COROLLARY A.1: The covariance matrix of l increments of fractional Brownian motion

can be embedded in a 2(l � 1) � 2(l � 1) positive semi-definite circulant matrix.

Proof: One can verify, as follows, that the covariance of the increments, K[m], defined in

(51), satisfies the conditions of Theorem A.1, i.e. is convex, decreasing, and nonnegative.
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To verify that K[m] is nonnegative, note that

K½m
 ¼ �2�2H

2
jmþ 1j2H � jmj2H

� 
� jmj2H � jm� 1j2H
� � 

: ð52Þ

Since 2H > 1, (jm þ 1j2H � jmj2H) � (jmj2H � jm � 1j2H); so, K[m] � 0. To verify that

K[m] is convex, view m as a continuous parameter greater than zero, and note that

dK

dm
¼ �2�2H

2
2H jmþ 1j2H�1 F 2H jm� 1j2H�1 � 2ð2HÞjmj2H�1

� 

d2K

dm2
¼ �2�2H

2
2Hð2H � 1Þjmþ 1j2H�2 þ 2Hð2H � 1Þjm� 1j2H�2

�

�2ð2HÞð2H � 1Þjmj2H�2


¼ �2�2H

2
2Hð2H � 1Þjmþ 1j2H�2 þ 2Hð2H � 1Þjm� 1j2H�2

�

�2Hð2H � 1Þj21=ð2H�2Þmj2H�2

: ð53Þ

Since �1 < 2H � 2 < 0, 21=(2H�2) < 1. This implies that jm þ 1j2H�2 > j21=(2H�2)mj2H�2;

so, d2K=dm2 > 0, and K[m] is convex. That K is decreasing follows from the fact that K is

convex, nonnegative, and asymptotically approaching zero.

Finally, although not commonly done, one can also consider using FFT methods to form

low-rank approximations to covariance matrices. One method for doing this is to pick out

terms from the expansion in (48). That is, one forms a rank min(r, l) approximation

Lxc
Xr

j¼1

ð fij ST Þ
T
gijð fijST Þ ð54Þ

where gi1 � gi2 � : : : � gi2ðl�1Þ are the ordered elements of the diagonal of G and ( fijS
T) are

the corresponding Fourier vectors truncated by the selection matrix S. Hence, one can use

FFTs to compute both simulations and covariance matrix approximations. However, this

approximation, while very efficient to compute, does not correspond to the optimal

Karhunen-Loeve approximation and, in fact, may be far from it. Moreover, as illustrated in

Section 5.1 this FFT-based approximation will often be inferior (in the sense of mean-

squared error) to our Krylov subspace-based approximation of the same rank.
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Notes

1. Note that although the FFT method can be used to obtain exact simulations of the fBm process (Appendix A),

truncating this transform to keep only a finite number of terms (which is the natural approximation procedure

outlined in the Appendix) does not correspond to mean-square optimal approximations based on the exact

Karhunen-Loeve decomposition.

2. A convex sequence is one such that for any two integers m < n, �K[m] þ (1 � �)K[n] � K[i] for all � 2 [0,1]

and m  i  n.
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