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Abstract—Efficient computation of extensions of banded,
partially known covariance matrices is provided by the classical
Levinson algorithm. One contribution of this paper is the intro-
duction of a generalization of this algorithm that is applicable to
a substantially broader class of extension problems. This gener-
alized algorithm can compute unknown covariance elements in
any order that satisfies certain graph-theoretic properties, which
we describe. This flexibility, which isnot provided by the classical
Levinson algorithm, is then harnessed in a second contribution
of this paper, the identification of a multiscale autoregressive
(MAR) model for the maximum-entropy (ME) extension of a
banded, partially known covariance matrix. The computational
complexity of MAR model identification is an order of magnitude
below that of explicitly computing a full covariance extension and
is comparable to that required to build a standard autoregressive
(AR) model using the classical Levinson algorithm.

Index Terms—Chordal graphs, covariance completion, co-
variance extension, Levinson’s algorithm, maximum entropy,
multiscale autoregressive (MAR) models, reflection coefficients.

I. INTRODUCTION

COVARIANCE extension is a classical and important
problem in statistics. Perhaps the simplest instantiation

is the problem of inferring or characterizing unknown auto-
correlation values from a finite number of consecutive known
ones [2]. That is, given knowledge only of the diagonal bands
of a covariance matrix,1 what are all possible valid values for
the unknown elements? Moreover, how can these elements
be computed efficiently? Answers to these questions are
given by the classical Levinson algorithm [1], [26], [51]. All
possible extensions are parameterized by so-calledreflection
coefficientsand any extension can be computed efficiently
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1It is assumed that the known bands are adjacent to and include the main
diagonal.

using the Levinson recursion. One contribution of this paper is
a generalization of Levinson’s algorithm that is applicable to a
substantially broader class of extension problems.

Among all possible extensions of a partially known covari-
ance matrix is themaximum-entropy(ME) extension, the study
of which has received a great deal of attention. In particular,
much has been written about its applications in spectral esti-
mation [2], [3], [32], [46], [51] and very large scale integration
(VLSI) modeling [12], its connection with autoregressive (AR)
(all-pole) models [1], [24], [29], [41], [51], and its link to lattice
structures for finite impulse response filters [20], [26], [39]. A
well-known fact about the ME extension of a partially known,
banded covariance matrix is that itsinverseis a banded matrix
with the same bandwidth [25], [41]. This fact and the correspon-
dence between inverse-covariance zeros and conditional decor-
relation [11], [50] implies that the ME extension of a banded,
partially known covariance matrix is wide-sense Markov2 of
order given by the bandwidth.

It is well known that an AR time-series model for the
ME extension of a banded, partially known covariance matrix
can be computed efficiently using Levinson’s algorithm [1],
[26], [51]. Such a model is animplicit and compactly pa-
rameterized characterization of the extension. As mentioned,
Levinson’s algorithm can also be used to compute the ME
extensionexplicitly. In doing so, Levinson’s algorithm deter-
mines unknown covariance elements one diagonal band at a
time, working outward from the main diagonal. An important
open question is: what are the other possible orders in which
covariance elements may be computed with the same effi-
ciency as Levinson’s algorithm? This question is not merely
an academic one as our original motivation for studying it is
the problem of multiscale autoregressive (MAR) model [4],
[5] identification from incomplete covariance information.

MAR models generalize state-space models of time series,
evolving inscalerather than in time. They have been effectively
applied to a wide variety of signal and image processing prob-
lems [8], [9], [13]–[17], [27], [30], [34]–[38], [42], [48], [49]
and their success stems, in part, from the efficiency of the sta-
tistical inference algorithms to which they lead [4], [44]. Re-
cent approaches to the MAR model identification problem [10],
[18], [19], [31] rely oncompleteknowledge of the second-order
statistics of the process to be modeled. This represents a sig-
nificant limitation because, for large, real-world problems, such
complete knowledge is unlikely and impractical.

2Hereafter, wide-sense is assumed.
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Fig. 1. Black indicates the entries needed for building a MAR model for the
ME extension of a128� 128, tri-diagonal, partially known covariance matrix.

Suppose instead that the information available is a banded,
partially known covariance matrix, so that its ME extension
is Markov. As shown in [43], any Markov process has a
MAR representation. This immediately leads to the question
of computing MAR model parameters directly from the partial
covariance matrix, much as the Levinson algorithm computes
the parameters of an AR time series model for this same
Markov process. However, as we review in Section II, while
constructing this MAR model requires explicit calculation of
only elements of the full ME extension (the same
complexity as for the AR model for a nonstationary Markov
process), the location of those elements in the ME extension
is highly nonstandard; some appear in bands arbitrarily far
from the main diagonal. For instance, to build a MAR model
for the ME extension of a , tri-diagonal, partially
known covariancematrix requires determining only the elements
shown in black in Fig. 1. In principle, one could use Levinson’s
algorithm to compute a full extension and then simply extract the
required elements. However, this is computationally wasteful
since only out of the total of covariance elements
are needed. Using our generalized Levinson algorithm, we will
show how to computeonly the that are required for MAR
model identification. A consequence is that the computational
complexity of building a MAR model is comparable to that
which is obtained by the classical Levinson algorithm in
designing an AR time-series model.

The remainder of this paper is organized as follows. Our mo-
tivating application—building MAR models from incomplete
second-order characterizations of random processes—is intro-
duced in Section II. Some background concepts upon which we
will rely are provided in Section III. Our generalized Levinson
algorithm is presented in Section IV, and its application to MAR
model identification is made in Section V. Closing remarks are
made in Section VI.

II. M OTIVATING APPLICATION

In this section, we review the aspects of MAR models
that are of relevance to this paper and introduce the problem
of MAR model identification from incomplete covariance

Fig. 2. A dyadic tree. The root node is indexed bys = 0. The parent of node
s is denoteds
. The children of nodes are labeled from left to right bys� ,
s� .

information. Although we restrict our attention to one-dimen-
sional processes, the MAR framework is applicable in the
multidimensional case as well. MAR models, first introduced
in [4], [5], provide multiscale representations of a random
phenomenon. Each such model is a collection of random
vectors , calledstates,indexed by the nodes of a tree
(see Fig. 2) with dynamics given by

(1)

where is a node of a tree, is its parent, is a matrix
of appropriate dimension, and has covariance , is un-
correlated from node to node, and is uncorrelated with, the
root-node state which initializes the dynamics. For future refer-
ence, we also note that and are the left and right chil-
dren, respectively, of node, as indicated in Fig. 2.

A MAR process can be used to model a finite-length, one-
dimensional random signal in the following way. We start with
a vector-valued, zero-mean,3 one-dimensional random signal

of length , with covariance
. We then construct a dyadic tree in which the random

variables are represented at the leaf nodes of the tree so
that

is a leaf node (2)

We then construct a MAR model forby defining coarse-scale
states. These coarse-scale states are “hidden” in the sense that,
unlike the leaf-node states, their statistics are not knowna priori.

Determining the coarse-scale state statistics and, using these,
determining the MAR model dynamics is vastly simplified by
considering so-calledinternalmodels [18], [19]. Internal MAR
models have the additional property that each coarse scale state

is a linear function of the fine-scale process. That is,
for all nodes and some set of matrices .

Internal MAR models are useful for theoretical and prac-
tical reasons. As explained in great depth in [18], [19], internal
models guarantee model consistency. Internal models are also
useful in data fusion applications [8] because they permit the
consistent inclusion of nonlocal linear functions ofat coarser
scale nodes. This allows the optimal fusion of multiresolution
measurements using the efficient MAR estimation algorithm
[4].

3We assume, without loss of generality, that all processes considered are zero-
mean.
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Fig. 3. MAR model for 16 samples of a first-order Markov process. Each
ellipse includes the samples for a MAR state.

For internal models, the parameters4 , , and
are easy to determine from and . To see this, notice that
the MAR dynamics of (1) imply that the linear least squares
(LLS) estimate of from is , and that

is the corresponding estimation
error. Therefore,

(3a)

(3b)

where is the covariance matrix for the state , and
is the cross-covariance matrix between the child state

and the parent state . For an internal MAR model, the
state covariances and child–parent cross covariances are given
by

(4a)

(4b)

We now turn to the MAR models for Markov processes
discussed in [43]. As an illustration, consider a MAR model
for a first-order Markov process. The MAR model depicted
in Fig. 3 is anendpointmodel for this Markov process (the
tree branches from to and are indicated as
dashed lines for the purposes of a subsequent discussion). Each
state consists of four endpoints corresponding to two intervals.
For instance,

(5a)

(5b)

(5c)

and the other states are similarly defined as indicated in Fig. 3.
Notice that consists of endpoints of the intervals
and . Therefore, conditioned on , the sets of sam-
ples and are uncorrelated. It follows
that and are uncorrelated when conditioned on

. Hence, the statistical relationships among , ,
and can be capturedexactlyby a MAR process. A sim-
ilar argument applies to the other states of Fig. 3 and to the states
of any MAR model for a first-order Markov process of length.

4We use the notationP to denote the covariance matrix for random vector
x andP to denote the cross-covariance matrix for random vectorsx andy.

Since the MAR states for a first-order Markov process consist of
four endpoints, the matrices are sparse, selection ma-
trices.5 Consequently, the covariances and are
both , and each contains only a small number (independent
of ) of correlations between fine-scale variables. Note that the
MAR model based on these matrices is internal by construc-
tion (further elaboration on this point and a formal description of
the necessary and sufficient conditions for internality are found
in [18], [19]).

The MAR model just discussed can be generalized to any
length- , order- Markov process. Roughly speaking, to adapt
the preceding approach to a general, simply replace every
sample (dot, ) in Fig. 3 with consecutive samples corre-
sponding to selection matrices that are . Let us de-
note by the index set characterizing the elements selected
by and stored in the MAR state . That is, for all ,
there is some row of whose th entry is one (all other entries
are zero). Also, let

(6)

A more explicit description of and is provided in the
Appendix, as is a proof of the following proposition which char-
acterizes exactly which elements of are required for MAR
model identification.

Proposition 1: Let be as defined in (6). Then, there are
elements of that are needed to compute the model

parameters and these elements are precisely those found in the
principal submatrix of whose rows and columns are indexed
by .

We introduce in Section IV a generalized Levinson algo-
rithm, which can be used to determine these required
covariance elements at a computational cost of . Then,
in Section V, we apply this generalized Levinson algorithm to
the following problem. Given only knowledge of the diagonal
bands of a covariance matrix, we compute a MAR completion
for it of the form described in this section and illustrated in
Fig. 3, such that the restriction of this MAR process to the
leaves of the tree is an ME completion of the partially known
covariance matrix. Note that, due to the special construction
of this MAR process (as illustrated in Fig. 3 and discussed
previously), the resulting MAR process is internal.

III. B ACKGROUND

The covariance extension problem addressed in this paper can
be conveniently described in graph-theoretic terms. In this sec-
tion, we first review some relevant aspects of graph theory and
relate them to covariance extension. Following that, we review
some known results pertaining to the characterization and com-
putation of extensions.

A. Graph Theory and Existence of Covariance Extensions

Let be a zero-mean random process indexed
by the set where . Let denote the column vector
of random variables indexed by , and let
be the covariance matrix for this random vector. Thenis a

5Each row of a selection matrix has a single nonzero entry, which equals one.



414 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 2, FEBRUARY 2003

symmetric and positive-definite matrix (here and throughout we
exclude the singular case).

Definition 1 (Partial Covariance Matrix):A partial covari-
ance matrix is a symmetric subset of , i.e.,

(7)

where . Symmetry means that if and
only if .

We shall refer to the set as thesupport of the partial
covariance . In order to avoid ill-posed extension problems
(especially in the context of the ME extension), we shall assume
that for all , namely, that contains all diagonal
elements.

We can capture the structure and sparsity ofby asupport
graph , where we assign a vertex to every

and an edge to every . Since is symmetric,
all edges are bidirectional and the graph is undirected. This is
equivalent to assuming (as we will) that is an unordered
pair, i.e., . Also, since , every vertex
has a self-loop. A completely specified matrix gives rise to a
complete graph, i.e., .

Every principal submatrix of a (nonsingular) covariance ma-
trix is positive definite. Therefore, the same condition is inher-
ited by a partial covariance. The condition that every principal
submatrix contained in is positive definite will be denoted
by .

Given a partial covariance matrix and a graph with
, the covariance extensionproblem is to find another

partial covariance matrix so that agrees with on the
support set . A partial covariance matrix that satisfies these
criteria is called anextensionof . A covariance completion
is a covariance extension with , i.e., a fully speci-
fied valid covariance matrix that agrees with on the
support set . Note that is a necessary condition for the
existence of (nondegenerate) extensions and completions. How-
ever, as we discuss (and as is well known), it is not a sufficient
condition.

A key concept in examining questions concerning extensions
and completions is the notion of a chordal graph, which we in-
troduce next.

Definition 2 (Cycle and Chord):A cycle of a graph
is a sequence of distinct vertices where

for all and, addition-
ally, . The length of a cycle is the number of
its vertices (i.e., ). A cycle is said to
have achord if for , where

.

Definition 3 (Chordal Graph): A graph is
calledchordal if every cycle of length greater than three has a
chord.

We have the following well-known result.

Proposition 2 [25]: Given a graph , completions
exist for all valid partial covariance matrices if and only
if is a chordal graph.

It is worth emphasizing that when is not chordal, there
may exist completions for partial covariance matrices

for specificchoices of the entries but not for other
valid choices of these entries. However, Proposition 2 tells us
that completions exist forall valid choices of the entries exactly
when is chordal.

As is well known, when a completion exists, it is not unique
[25], [41]. One way to select a particular completion is by re-
quiring that the determinant of the completed covariance ma-
trix is maximal. This yields the ME completion, denoted here
by , which maximizes the entropy of the probability den-
sity , subject to the constraints of zero mean and
a partially specified covariance [25], [41].6 The ME com-
pletion of can be characterized by the pattern of zeros in
its inverse. In particular, if is the ME completion of
then for . This fact follows
from the well-known solution to the problem of finding the en-
tropy-maximizing probability density function with given mo-
ments [7], [41]. In the case of a partially specified covariance,
the entropy-maximizing density has the functional form

(8)

where is a normalization constant,
are the given moments, and the Lagrange multipliers are
selected so that matches the given partial covariance.
The density of (8) is Gaussian and clearly indicates that

for . The pattern of zeros in
is equivalently characterized by the statement that a

random process on the graph with covariance
matrix is a Markov random field on [11], [50]. This is
probably the most important property of the ME completion.

In view of Proposition 2, we restrict our attention to par-
tial covariances associated with chordal graphs. It turns out that
chordality also ensures the existence of ME completions.7

Proposition 3 [25]: If is chordal, then every
valid partial covariance has a (unique) ME completion.

B. One-Element Extensions and Chordal Sequences

Propositions 2 and 3 tell us when completions exist, but do
not characterize them or indicate how to compute their elements.
Also, nothing has been said yet about the extension of a partial
covariance to a larger partial covariance , as opposed
to a completion. Since the construction of a MAR model for
a ( th-order) Markov process involves an extension in which
is sparse (in particular ), we have a particular
interest in extension problems in which both and are
small compared to . For this reason, we shall
focus in the sequel on extensions (and completions) of partial
covariances with .

6Note that we have assumed the individual variances, i.e., the diagonal el-
ements ofP are specified, which is a necessary condition for entropy to be
bounded andP to exist.

7Here we assume thatE contains the diagonal, as stated earlier.



FRAKT et al.: A GENERALIZED LEVINSON ALGORITHM FOR COVARIANCE EXTENSION 415

The only characterization of we have so far is

for

for .
(9)

This implicit characterization was used [41] to construct a
generalized AR (Markov) model, which makes it possible
to determine the missing covariance elements one by one.8

Since this procedure involves solving a set of generalized
Yule–Walker equations, its overall cost is computa-
tions. This should be compared with the cost of the “MAX
DET” procedure of [21], which determines ME completions
regardless of chordality. The MAX DET procedure involves
an (infinite) sequence of iterations, with a cost of
computationsper iteration. This is much higher than the cost
of the procedure in [41], especially when .

A more efficient alternative was described in [6], [33]. It uses
the sparsity of the generalized AR model to decompose the set of
generalized Yule–Walker equations into a sequence of smaller
sets of equations. This results in a reduction of the overall com-
putational cost by (approximately) a factor of , namely, from

to . The resulting decomposed procedure con-
sists of a sequence of one-element extensions: in each step, one
solves a small set of equations in order to determine a single un-
known covariance element.

Definition 4 (One-Element Extension):Let and
be graphs such that with , that is,

the graph is the graph with one additional edge. Let
be the extension of the partial covariance, that is, is
with one additional element, corresponding to the new edge.
Then, is called aone-element extensionof .

The key result of [6], [33], which we describe below in
some detail, is that every extension (and, therefore, also every
completion) of a given partial covariance can be obtained via
an appropriately selected sequence of one-element extensions.
Moreover, the global ME completion is obtained by selecting
the local ME extension in each step of this sequence.

In Section IV, we present a generalized Levinson algorithm
which results in a further reduction in cost. Our derivation is mo-
tivated by the classical Levinson algorithm [1], [26], [51], which
provides a very efficient solution to the problem of extending a
banded partial Toeplitz covariance matrix. In this very special
case, is a function of , and so

(10)

where the parameter is known as the bandwidth of the
(banded) partial covariance.

The Levinson algorithm is often presented as computing an
AR model corresponding to the ME extension in a very effi-
cient manner. However, as is perhaps less commonly known,
the Levinson algorithm also provides a characterization ofall
completions of a banded, partial covariance matrix. In partic-
ular, there is a one-to-one correspondence between each element
of anycompletion (not just the ME one) and a so-calledreflec-

8As stated earlier, we assume here and in the sequel that the graphG =
(V; E) associated with the partial covarianceP is chordal.

tion coefficient. By choosing values for reflection coefficients
and applying the Levinson algorithm the elements of any com-
pletion (or extension) can be obtained [51].

It is even less well known that a modified version of
the Levinson algorithm still applies to non-Toeplitz covari-
ances [40]. In this more general case, the associated AR
model is time-variant, resulting in sets of generalized
Yule–Walker equations. In order to extend a banded partial
covariance , with as in (10), one has first to determine
the coefficients of the corresponding time-variant AR model
(of order ), at a cost of computations, and then
find the missing covariance elements one by one, at a cost of

computations per element. Since there are missing
covariance elements,9 the overall cost of a completion is dom-
inated by the cost of finding the missing covariance elements,
which is . This is significantly less than the cost of
the procedure in [6], which requires
computations, or the procedure in [41], which has a cost of

. We use here the fact that for a banded
partial covariance

so that the assumption translates into and,
consequently, .

There are several ways to consider generalizing the classical
Levinson results, each leading to important questions. First,
consider the case in which the partial covariance matrix isnot
banded but has entries corresponding to an arbitrary chordal
graph. In this case, in what order may the elements of a
completion be computed? Second, whether the given partial
covariance is banded or not, what if we are interested in an
extension rather than a completion: under what conditions
can we compute just the entries of interest? Third, for either
of these cases, is there a convenient parameterization of all
possible extensions? Finally, do efficient algorithms exist for
these more general extension problems? Answers to the first
two questions are provided by other authors and reviewed in
this section. Answers to the last two are provided in Section IV.

In particular, we present in Section IV a generalized Levinson
algorithm that can be used to extend arbitrary (chordal) partial
covariances. Our goal is a covariance extension procedure with a
cost that is comparable to the banded case, i.e., where,
in general, we define the bandwithas a measure of sparsity,
viz.,

(11)

Again, our earlier assumption implies that
. With this assumption, our definition of coincides, for

banded partial covariances, with the notion of bandwidthfrom
(10).

In the remainder of this section we introduce graph-theoretic
concepts that are needed both for the discussion of the results
of [6], [33] and for the derivation of our generalized Levinson
algorithm.

9As stated earlier, we assume here and in the sequel thatjEj � jV j .
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Definition 5 [(Complete) Chordal Sequence]:Let
be a chordal graph for . Then

is a chordal sequenceif
with , i.e., if includes only one additional edge
beyond those in . If, in addition, is the complete graph
then is acomplete chordal sequence.

Definition 6 (Induced Subgraph):Let be a
graph. If then by we denote the subgraph
of induced by where

(12)

Definition 7 [(Maximal) Clique]: A cliqueis a set of vertices
that induces a complete subgraph, . A clique ismaximal

if it is not a proper subset of another clique.

As mentioned earlier, the key result [6, Theorem 7.2.7], [33,
discussion in proof of Theorem 2], [33, Theorem 6] states that
elements of completions (and extensions) can be computed one
by one if the order of one-element extensions corresponds to
a chordal sequence, and that local ME choices results in the
unique global ME completion.

Proposition 4 [6], [33]: Let be a com-
plete chordal sequence where and .
Then the elements of any completion of can be obtained via
a sequence of one-element extensions .
The edge added in the step from to completes exactly
one maximal clique in , corresponding to a newly completed
submatrix of which we denote by . The global ME com-
pletion is obtained by maximizing the determinant of
in every step of the sequence of one-element extensions.

Proposition 4 means that there is a maximal clique inthat
is not a clique in . The maximal cliques of graphs in a
chordal sequence have a special property described by the fol-
lowing lemma.

Lemma 1 [25]: Let be a chordal sequence.
Denote by the edge that is added in the step ,
namely, . If , then the unique
maximal clique of containing and is of the form

where is a clique of .

We will call the endpoints and of the active vertices
of the maximal clique . An illustration of the relationships
among , , , and is provided in Fig. 4, along with some
other notation to be defined in the sequel.

Terminating a complete chordal sequence prior to arriving at
the complete graph results in an extension rather than a com-
pletion. It turns out that one can always associate a chordal se-
quence with every extension (or completion) problem that is
specified in terms of chordal graphs.

Proposition 5 [6]: If and are chordal
graphs with then there exists a chordal sequence

such that and .

Therefore, the elements of an extension of a partial co-
variance matrix may be determined without computing any
elements not in the extension if 1) is chordal,

Fig. 4. Maximal cliqueQ is the union of cliqueU andfa; bg.U is the union
of U with fag andU is the union ofU with fbg. For visual clarity, we have
drawn one line betweena andU and also betweenb andU althougha andb
are connected by edges to all of the elements ofU .

2) is chordal, and 3) . Proposition 5
does not address the problem of finding a chordal sequence be-
tween and . However, for the special case in which is
the complete graph, there exists an algorithm with complexity

for finding one [25], [47]. This is significantly
less than the complexity of finding the missing covariance el-
ements, which cannot be less than ,
as discussed in Section III-B. More generally, one may always
construct a chordal sequence recursively: given , we form

by searching over for an edge that preserves
chordality. For each candidate edge in , the complexity
of checking chordality is no larger than [52].

Proposition 4 states that the elements of every extension (or
completion) may be computed sequentially by following a com-
plete chordal sequence but it does not provide an algorithm to
do so. In the next section, wedoprovide a Levinson-type algo-
rithm, based on the notion of order-recursive linear prediction
and generalized reflection (or partial correlation (PARCOR))
coefficients. In particular, the ME extension is obtained by set-
ting these coefficients to zero along the chordal sequence.

IV. GENERALIZED REFLECTION COEFFICIENTS AND A

GENERALIZED LEVINSON ALGORITHM

In this section, we consider the extension of a given partial
covariance matrix with chordal support to a larger chordal
support , such that agrees with on the support
set . According to Propositions 4 and 5, this can be accom-
plished by a sequence of one-element extensions, following a
chordal sequence from to . Our approach to obtaining a
computationally efficient extension procedure is based on an
order-recursive linear prediction interpretation of the one-ele-
ment extension step. This leads us to introduce a generalized
Levinson algorithm, which we use to compute the linear pre-
diction parameters needed to determine a single unspecified co-
variance element. We show that the flexibility in selecting the
values for the unspecified elements is completely characterized
in terms of a sequence of generalized reflection coefficients, one
for each single-element extension step. These coefficients, as
their name suggests, are generalizations of the reflection coef-
ficients associated with the classical Levinson algorithm, with
values bounded by unity. In particular, the maximum-entropy
choice corresponds to selecting all unspecified reflection coef-
ficients equal to zero. Under certain graph-theoretic conditions,
which we discuss below, our generalized Levinson recursion be-
comes particularly efficient.
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Fig. 5. The maximal principal submatrixP contains principal submatrices
P (upper left),P (lower right), andP (center). The vectors� and

� and the elementp are also indicated.

A. One-Element Extensions, Linear Prediction, and Normal
Equations

Since covariance extensions can be obtained via a sequence
of one-element extensions, we need only consider a single step
in such a sequence. In each step, we determine a single new
covariance element, using other previously determined covari-
ance elements. In theth step, the partial covariance is
extended to , with the new covariance element being repre-
sented by the new edge, so that . Proposition
4 and Lemma 1 tell us that contains exactly one
maximal clique that was not in . Because
all other cliques were already included in , and because
maximal principal submatrices of correspond to maximal
cliques of , it follows that we need only be concerned with
the positivity of the new submatrix. In other words, assuming
that we had , then if and only if the max-
imal principal submatrix is positive definite, where is as
defined in Lemma 1 and .

To be more specific, recall that the new covariance element
corresponds to an edge , and that the “new subma-
trix” corresponds to a subset of vertices . The (known)
covariance elements that determine the range of values of the
new element are described in Fig. 5. The new submatrix
is the covariance matrix of the random vector
where we use the notation to denote the column vector of
random variables (i.e., random vector) indexed by an arbitrary
subset of . If is a singleton set, e.g., , we will
typically write this as rather than . The bottom left (as
well as the top right) element of this matrix is the yet to be de-
termined . The rest of the elements in this matrix are known
from .

In order to facilitate our discussion we need to introduce sev-
eral notational shortcuts as follows:

(13a)

(13b)

(13c)

(13d)

(13e)

These principal submatrices, as well as some of the other no-
tation to be used in this section, are illustrated in Fig. 5. The
matrix contains all but the last row and column of and
is indicated in the upper left of Fig. 5; contains all but the
first row and column of and is indicated in the lower right of
Fig. 5; and contains all but the first and last row and column
of (it is the intersection of and ), and is indicated
in the center of Fig. 5. The only unknown covariance element

occupies the upper right and lower left corners of .
The range of valid values of is constrained only by the

fact that must be positive definite, a property that can be
captured in several different ways, e.g., by checking the leading
principal submatrices. Instead, we choose a characterization that
relies on the notions of linear prediction and PARCOR coeffi-
cients. The relation between one-element extensions and linear
prediction motivates us to develop an order-recursive algorithm,
akin to the classical Levinson algorithm, that allows efficient
calculation of the unknown covariance elements.

The concepts of linear prediction and generalized reflection
coefficients are both defined in terms of certain random vari-
ables associated with the submatrix

Referring to Figs. 4 and 5, of particular interest to us are
estimates and associated estimation errors corresponding to
estimating and based on . Let

(14a)

(14b)

where is the LLS estimate of based on . Define the
generalized reflection coefficient as

(15)

namely, the correlation coefficient of and . It is also known
as the PARCOR coefficient of and given . The coeffi-
cient provides a simple and efficient characterization both
of the ME choice for and the range of all valid choices for

.

Proposition 6 (PARCOR Characterization of One-Element
Extensions):Using the notation defined previously, there is a
one-to-one correspondence between the PARCOR coefficient

and the covariance element . Moreover, if
and only if . The choice of maximizes the
determinant of and, thereby, provides the global ME value
of .

The proof of Proposition 6, provided later in this section, re-
lies on several results derived from the orthogonality principle
of LLS estimation.

To relate the generalized reflection coefficient to the un-
known covariance element and, thereby, perform a one-
element covariance extension, requires solving sets of normal
equations associated with the residuals of (14). These equations
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follow from the orthogonality principle, namely, and
are both orthogonal to . Since is a linear combina-

tion of the elements of the random vector, we can write it in
the form

(16a)

where is a row vector of deterministic coefficients.
Consequently

and cross correlating with we obtain the normal
equations

(16b)

where (cf., (14)) is the LLS estimation error vari-
ance and is as defined in (16b).

Our next step is to extend the normal equations (16b) in such
a way that is introduced. By augmenting with a zero
and expanding by one row and column we have

(17a)

where

(17b)

and where denotes a particular subcolumn of elements of
that includes (see Fig. 5). Specifically

(17c)

The augmented normal equations (17a) serve three purposes:
i) they introduce , which is central to the solution of the
one-element extension problem; ii) they are used in proving
Proposition 6; and iii) they are key to the construction of a gen-
eralized Levinson algorithm.

The linear estimation of a random signal sample (say) from
other samples of the same random signal (say) is usually
known as linear prediction. For this reason, the residualis
known as a linear prediction residual, the coefficient vector
is known as a linear prediction vector, and is known as a
linear prediction error variance.

Analogous to (16) and (17), we also need to consider the LLS
estimate of the scalar random variablebased on the random
vector which we can write as

(18a)

The row vector of linear prediction coefficients must satisfy
the following normal equations:

(18b)

where (cf., (14)) is the estimation error variance,
and is as defined in (18b). Notice that

has the unity element on the left, while has
the unity element on the right. By augmenting with a zero
element and expanding by one row and column, we have

(19a)

where

(19b)

and where denotes another subcolumn of , again in-
cluding (see Fig. 5). Specifically

(19c)

Our proof of Proposition 6 relies on three lemmas, which
relate the generalized reflection coefficient to the inner
product (Lemma 4) and through it to (Lemma 3).

Lemma 2: and of (17b) and (19b), respectively, are
equal.

Proof: Using (19a) and the fact that

we have

(20a)

On the other hand, using (17a) and the fact that

we have

(20b)

From (20a) and (20b) it follows that .

Lemma 3: Using the notation defined previously

(21a)

(21b)

Proof: Equation (21a) follows by substituting the defini-
tion of given in (17c) and the definition of given in
(16b) into (17b). Equation (21b) follows from Lemma 2 and by
substituting the definition of given in (19c) and the defini-
tion of given in (18b) into (19b).

Lemma 4: Using the notation defined previously

(22)

Proof: Since , , and using
(15), it suffices to show that

This is easily done as follows:

(23a)

(23b)

(23c)
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where in (23a) we have used the fact that is orthogonal
to and, hence, to ; in (23b) we have taken expectations; in
(23c) we have used Lemma 3.

We now provide the proof of Proposition 6.

Proof (Proposition 6): Using Lemmas 3 and 4 we have

(24a)

(24b)

These relations establish a one-to-one correspondence between
and . Thus, we only need to show that: i) if

and only if , and ii) is the ME value. Using
(17a) we have

...
...

... (25)

Observe that the first (leftmost) matrix in (25) is lower triangular
with unity diagonal elements, because the last element of the
row vector is one. Thus, by Sylvester’s law of inertia [22],
we conclude that if and only if the matrix on the
right-hand side of (25), which we have denoted by, is positive
definite. Since a matrix if and only if and

, and since10 , we conclude from
the form of the matrix (in the right-hand side of (25)) that

if and only if

(26a)
This positivity condition can be simplified by using (18b).
Doing so, we have

so that (26a) simplifies to

(26b)

or, using the fact that is positive

10The matrixF � F F F is known as a Schur complement.

Thus, by Lemma 4, the positivity condition (26a) is equivalent
to

and we have now established that if and only if
.

That the choice of maximizes the determinant of
can be seen as follows.11 Using (25), (26a), and the fact

that we have that

Applying (26b) and using Lemma 4, we have

(27)

Hence, the choice of maximizes the determinant of
.

In view of Proposition 4, the corresponding value of
coincides with its value in the global ME completion .
Proposition 6 establishes, among other things, that the choice of

provides the determinant-maximizing value of .
Since, as stated previously, determinant maximization and en-
tropy maximization coincide

(28a)

is the entropy-maximizing value of where we have used
(24). Our final expression for is

(28b)

The quantities , , , and are computed using only
the already-known elements of . The new element is
then calculated via (28b) using these known elements together
with the selected value of the remaining degree of freedom,
namely, .

The complete solution to a covariance extension problem
consists of a sequence of one-element extensions, ordered
according to a chordal sequence. Each step along the chordal
sequence involves a clique associated with a set of vertices

and requires the solution of two sets of normal
equations. The size of each of these systems of equations is
given by the cardinality of the set . Hence, the complexity
of direct solution of the normal equations is (see also
[33, pp. 174–175]). If the extension problem is such that
is small and does not grow with(or is bounded in size with
the bound being independent of ), then direct solution of the
normal equations is computationally feasible.

Indeed, if for each step in the chordal sequence
, then the average cost per each missing covariance element

11Alternatively, the Fischer inequality [28] can also be used to establish this
fact.



420 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 2, FEBRUARY 2003

is . This is already a major improvement over the (nonre-
cursive) method described in [41], which involves solving a set
of linear equations in unknowns and using the results to
extend the partial covariance. Since , the tech-
nique in [41] requires computations per
missing covariance element, which is much more than the cost
of a direct solution implementation of our technique.

On the other hand, if does grow with , then the com-
plexity of direct solution of the normal equations may become
prohibitive. Under certain graph-theoretic conditions, however,
there is a way to solve the normal equationsefficiently, namely,
with a complexity that islinear in . This efficient procedure
is discussed in the next subsection.

B. Efficient Generalized Levinson Recursion

We have shown that all valid choices for the missing covari-
ance element are characterized via (28) in terms of the
linear prediction coefficient vectors , and the associated
error variances , . The direct evaluation of these quantities
(via the normal equations (16b) and (18b)) can be avoided by
using the generalized Levinson recursion, which uses the linear
prediction coefficients to determine the higher
order coefficients . Now the higher order
linear prediction coefficients must satisfy the higher
order normal equations associated with the LLS estimate of
given : this estimator has the form
with the row vector satisfying the normal equations (recall
(16b))

(29a)

where is the estimation error variance, and is as de-
fined in (29a). Analogously, the higher order linear prediction
coefficients must satisfy the normal equations asso-
ciated with LLS estimate of given : this
estimator has the form with the row vector satis-
fying the normal equations (recall (18b))

(29b)

where is the estimation error variance, and is as defined
in (29b).

Proposition 7: Given and we can deter-
mine and via the expressions

(30a)

(30b)

Proof: Using the augmented normal equations (17a) and
(19a) we have

By comparing this expression to (29a), we conclude that

and

Using the augmented normal equations (17a) and (19a) we have

By comparing this expression with (29b), we conclude that

and

Comment 1:An examination of (30a) shows that the com-
plexity of solving for (or, equivalently, for ) is linear
in the size of the vectors and and, thus, is linear in .
The same conclusion holds for the calculation of via
(30b). Thus, the computational cost per each missing covariance
element is linear in , as compared to , the cost
of the direct method described in the first part of this section.
Moreover, in the ME case, when , these calculations
are essentially trivial. Indeed, in this case we have

(31a)

(31b)

so that the only computation left is the determination of via
(28), again at a cost of .
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Combining the global graph-theoretic perspective of Proposi-
tion 4 with the local algebraic detail provided by the generalized
Levinson recursion of Proposition 7, we conclude that a com-
plete solution of a covariance extension problem consists of a
sequence of one-element extensions, each one using the input
linear prediction coefficients and to deter-
mine a single covariance element via (28). Each step of
this recursion also determines the output linear prediction coef-
ficients and , which are then used as the
starting point for subsequent steps. The ordering of recursive
steps is specified by a choice of a chordal sequence.

Some of the input (lower order) linear prediction coefficients
that are required in the generalized Levinson recursion may be
directly computable from the known partial covariance data (via
appropriate normal equations). From now on, we assume that
this initial set of linear prediction coefficients is available prior
to carrying out the generalized Levinson recursion.

We consider the generalized Levinson recursionefficient if
the input linear prediction information required at each step is
either available as output information from previous steps of the
recursion or is included in the initial set of linear prediction coef-
ficients. Efficiency is clearly a property of the chordal sequence
associated with the recursion. That not every chordal sequence
is efficient is easily shown by a counterexample [18]. The fol-
lowing graph-theoretic property provides a formal characteriza-
tion of efficient chordal sequences. (The termactive vertexused
in the following definition is defined in the discussion immedi-
ately following Lemma 1.)

Definition 8 (Efficient Chordal Sequence):Let
be a sequence of chordal graphs with

and

where . Let be a clique of
such that the unique maximal clique of containing is

. Then this sequence of graphs is said to be anef-
ficient chordal sequenceif, for some , and ,

i) has a maximal clique with an active
vertex, and

ii) has a maximal clique with an active
vertex.

If our chordal sequence is not efficient this does not mean
that we cannot perform an extension. It simply means that for
some steps we must solve the normal equations directly and with
cubic rather than linear complexity. Given an arbitrary choice of
two chordal graphs and such that

, it is unclear (as of this writing) whether there exists
anefficientchordal sequence between them.

Proposition 8: Let be the chordal graph asso-
ciated with partial covariance matrix . Let
(i.e., there are edges in addition to all self-loops). Let

(32)

be a chordal sequence where has no edges other than
self-loops and where with

. Associated with is a sequence of new maximal
cliques where and is

a clique of graph . Consider the sequence of one-element
extensions based on where each new
covariance element added with each step in the subsequence

is predetermined (because is given).
If is an efficient sequence then the complexity of theth
extension from to is no larger than . In the
ME case, the complexity is a constant size, independent of.

The purpose of introducing the subsequence of one-element
extensions is to ensure that the normal
equations associated with these one-element extensions have
been solved and are, therefore, available to be used in the
efficient computation of subsequent one-element extension
steps. For example, the first such step from to requires
normal equations associated with (in the
same way that (17) and (19) can be used to efficiently solve
higher order normal equations, as shown in Proposition 7).

Proof: If our chordal sequence is efficient then the normal
equations that arise in each one-element extension can be solved
using Proposition 7. As discussed in Comment 1, complexity
of solution of the normal equations that arise in theth such
step is . Also, as has been discussed, in the ME case
all that is required is zero padding so that the complexity of
each one-element extension is a constant, independent of the
cardinality of .

V. APPLICATION TO MAR MODELING

We now return to the MAR model construction problem, de-
scribed in Section II, which corresponds to the following covari-
ance extension problem. Let and
be graphs such that

(33a)

(33b)

(33c)

where is as defined in (6). To build an MAR model for the
ME completionof , we require theextensionof to .

We now discuss the application of our generalized Levinson
algorithm to the computation of . For the moment, assume
that 1) , and 2) is chordal. We will
prove these two facts shortly. Assuming these, there exists a
chordal sequence from to . We may, therefore, find the
elements of using the generalized Levinson algorithm of
Section IV by setting the unspecified generalized reflection
coefficients to zero. We now show that doing so results in
computational complexity even when the chordal sequence upon
which we base our one-element extensions is not efficient.
Recall that if our chordal sequence is not efficient we must solve
some (in the worst case, all) of the normal equations that arise
in the generalized Levinson algorithm explicitly, rather than
using Proposition 7. However, the largest maximal clique of
has cardinality . Hence, at worst, each one-element
extension requires computations. This leads to an overall
complexity of for computing . The complexity of
computing using an efficient chordal sequence is also
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so there is no computational advantage (asymptotically)
in using an efficient sequence. In the sequel, we do not assume
that our chordal sequence is efficient. Note that the preceding
discussion shows that the complexity of computing an MAR
model for is of the same order as computing an AR model
using the classical Levinson algorithm (in the nonstationary
case).

The theory developed in previous sections can be applied to
this covariance extension problem if two conditions are satis-
fied: 1) and 2) the final graph is chordal. That the
original graph is chordal is both well known and clear. We
now establish that .

Proposition 9: where these are defined by (33).
Proof: The proof follows from the fact that, by construc-

tion, every interval of length is contained in one of the
sets (cf., the Appendix). This is most easily seen by consid-
ering Fig. 3 which represents an MAR model for a length-,
first-order Markov process. It is clear from this figure that every
interval of length can be found in some . The algebraic de-
tails proving this fact for a general Markov process are found in
[18].

We now show that is chordal.

Proposition 10: is chordal where and
are defined in (33).

To prove Proposition 10, we will rely on the following.

Definition 9 (Junction Tree):A junction treefor a graph
is a tree whose vertex set is the set of

maximal cliques of and where for any , each induced
subgraph is connected, where consists of those maximal
cliques of that contain .

The following provides a connection between chordal graphs
and junction trees.

Proposition 11 [23]: is chordal if and only if there exists
a junction tree for .

Proof (Proposition 10): By Proposition 11 it suffices to
exhibit a junction tree for . To this end, let be a
graph where is the set of maximal cliques of . That is,

(34)

Let be the following set of edges between elements of:

(35)

An illustration of is provided in Fig. 6. The junction tree as-
sociated with the specific MAR model illustrated in Fig. 3 is
shown in Fig. 7. It is straightforward but notationally tedious to
verify that is a junction tree for . The formal details are
omitted and may be found in [18].

While we have completed the formal description of how to
build an MAR model for the ME extension of a banded, par-
tial covariance matrix, there is one remaining algorithmic de-
tail—that of finding a chordal sequence between and .
For the problem at hand, there is a particular chordal sequence
with appealing scale-recursive structure.

Fig. 6. The junction treeT described in the Proof of Proposition 10.

Proposition 12: Using the notation previously defined, there
exists a chordal sequence from to such that the edges of

are added prior to those of for every node and such that
is at a finer scale than.

Proposition 12 permits us to find the joint child–parent
statistics (and, hence, the parameters) of our MAR model
scale-recursively, beginning at the finest scale and proceeding
to each successive coarser scale. For example, referring to
Fig. 3, the child–parent joint statistics

(36)

are first computed for all child–parent pairs linked by solid lines.
Then, proceeding to the next coarser scale, the joint child–parent
statistics are computed for the pairs linked by dashed lines. We
refer the reader to [18] for a proof of Proposition 12 and addi-
tional details regarding this particular chordal sequence. Once
the joint child–parent statistics have been found, they are used
in (3) to compute the MAR parameters for the ME extension.
This MAR model is guaranteed to be internal by construction
(due to properties of the matrices described in Section II and
in [18], [19]).

VI. CONCLUSION

This paper provides two important contributions in the area
of covariance extension. First, we have generalized the clas-
sical Levinson algorithm to accommodate a broader range of
extension problems. In particular, our generalized Levinson al-
gorithm can address any extension problem for which the known
values in the initial partial covariance matrix and the computed
values in the final partial covariance matrices correspond to
chordal graphs. We have also characterized the conditions under
which our generalized Levinson algorithm is computationally
efficient.

Our second contribution was to use our generalized Levinson
algorithm to solve efficiently (with a complexity linear in
problem size) the nonstandard extension problem that arises
in the identification of an MAR model for the ME completion
of a banded, partial covariance matrix. Like AR models for
standard time series, the implicit covariance characterization
that MAR models provide can be exploited to achieve efficien-
cies in computation and storage. The connection between AR
processes and ME completions is well known and is provided
by the classical Levinson algorithm. The connection to MAR
processes has, until our work, been unknown and, as we have
shown, relies on a generalization of the classical Levinson
algorithm.

MAR models represent signals at multiple resolutions and
are capable of optimally fusing multiresolution data. Therefore,
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Fig. 7. The junction tree associated with the MAR model illustrated in Fig. 3. Numbers in each ellipse indicate the sample indexes associated with eachmaximal
clique.

they is a natural framework in which to considermultiresolution
covariance extension. The multiresolution covariance extension
problem is one for which in addition to the local covariance in-
formation, some coarse-scale information is also provided. For
instance, consider a problem in which diagonal bands of a co-
variance matrix are provided and, in addition, covariances be-
tween coarse-scale averages are provided. The incorporation of
this coarse-scale information leads to an extension problem with
linear constraints on the unknown covariance elements. While
some preliminary work has been done on this topic [45], there
are a number of challenges associated with building an MAR
model for such an extension. For example, referring to Fig. 2 and
(1), suppose that a component of a coarser scale state variable

represents a weighted average of a window of the finest
scale samples of the process being modeled. Then, there is an
implied constraint on the coarse-to-fine dynamics of (1) in order
to guarantee that the coarser scale variable does indeed equal
the weighted average of fine-scale samples with probability one.
While this consistency problem has been addressed in another
context [18], [19], its consideration in the context of the covari-
ance extension problem is an open research topic.

APPENDIX

DESCRIPTION OFMAR ENDPOINT MODEL AND

PROOF OFPROPOSITION1

For convenience,12 we assume that for positive
integer . A state where resides at the th scale and
th shift13 in an -scale MAR model for a th-order

Markov process consists of the samples of the process indexed
by where

(37a)

(37b)

(37c)

and .
Proof (Proposition 1): The elements of required to com-

pute the parameters for an MAR model just described are char-
acterized as follows. To determine the parameters, we require
the joint child–parent statistics (cf., (3)). A given child–parent
pair includes the samples ofindexed by .
Hence, for this child–parent pair, we require knowledge of the
principal submatrix of whose rows and columns are indexed
by . So, to build the entire model we require knowledge of the
principal submatrix of whose rows and columns are indexed

12It is a simple matter of bookkeeping to accommodate a process with length
N 6= 4k2 . In particular, the mapping of elements to nodes will be less regular
and some nodes will have more or fewer than4k elements [43].

13The root node resides at scale0, the next finer scale is scale1, etc. For a
given scalem, the leftmost node has shifti = 0, the second leftmost node has
shift i = 1, etc.

by . Since we have that and
. These are upper bounds because the sets

as well as the sets are not mutually exclusive, which can
be seen by inspection of Fig. 3. Therefore, the total number of
elements of required is bounded above by .
Finally, since , we have that the total number of el-
ements required is bounded above by . While this is an
upper bound, it is of the right order and it indicates that we re-
quire only elements of .
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