IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 2, FEBRUARY 2003

411

A Generalized Levinson Algorithm for Covariance
Extension With Application to Multiscale
Autoregressive Modeling

Austin B. Frakt, Hanoch Lev-AriSenior Member, IEEEand Alan S. Willsky Fellow, IEEE

Abstract—Efficient computation of extensions of banded,
partially known covariance matrices is provided by the classical
Levinson algorithm. One contribution of this paper is the intro-
duction of a generalization of this algorithm that is applicable to
a substantially broader class of extension problems. This gener-
alized algorithm can compute unknown covariance elements in
any order that satisfies certain graph-theoretic properties, which
we describe. This flexibility, which isnot provided by the classical
Levinson algorithm, is then harnessed in a second contribution
of this paper, the identification of a multiscale autoregressive
(MAR) model for the maximum-entropy (ME) extension of a
banded, partially known covariance matrix. The computational
complexity of MAR model identification is an order of magnitude
below that of explicitly computing a full covariance extension and
is comparable to that required to build a standard autoregressive
(AR) model using the classical Levinson algorithm.

Index Terms—Chordal graphs, covariance completion, co-
variance extension, Levinson's algorithm, maximum entropy,
multiscale autoregressive (MAR) models, reflection coefficients.

I. INTRODUCTION

using the Levinson recursion. One contribution of this paper is
a generalization of Levinson’s algorithm that is applicable to a
substantially broader class of extension problems.

Among all possible extensions of a partially known covari-
ance matrix is thenaximum-entropfME) extension, the study
of which has received a great deal of attention. In particular,
much has been written about its applications in spectral esti-
mation [2], [3], [32], [46], [51] and very large scale integration
(VLSI) modeling [12], its connection with autoregressive (AR)
(all-pole) models [1], [24], [29], [41], [51], and its link to lattice
structures for finite impulse response filters [20], [26], [39]. A
well-known fact about the ME extension of a partially known,
banded covariance matrix is that itwerseis a banded matrix
with the same bandwidth [25], [41]. This fact and the correspon-
dence between inverse-covariance zeros and conditional decor-
relation [11], [50] implies that the ME extension of a banded,
partially known covariance matrix is wide-sense Markaf
order given by the bandwidth.

It is well known that an AR time-series model for the

OVARIANCE extension is a classical and importanME extension of a banded, partially known covariance matrix
problem in statistics. Perhaps the simplest instantiati&@n be computed efficiently using Levinson’s algorithm [1],

is the problem of inferring or characterizing unknown autd26], [51]. Such a model is ammplicit and compactly pa-
correlation values from a finite number of consecutive knowi@meterized characterization of the extension. As mentioned,
ones [2]. That is, given knowledge only of the diagonal band€vinson’s algorithm can also be used to compute the ME
of a covariance matrix,what are all possible valid values foreéxtensionexplicitly. In doing so, Levinson’s algorithm deter-
the unknown elements? Moreover, how can these elemefitiéies unknown covariance elements one diagonal band at a
be computed efficiently? Answers to these questions dfge, working outward from the main diagonal. An important
given by the classical Levinson algorithm [1], [26], [51]. Allopen question is: what are the other possible orders in which
possible extensions are parameterized by so-ca#ifidction covariance elements may be computed with the same effi-

coefficientsand any extension can be computed efficientigiency as Levinson’s algorithm? This question is not merely
an academic one as our original motivation for studying it is

the problem of multiscale autoregressive (MAR) model [4],

_ identification from incomplete covariance information.
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Fig. 2. A dyadic tree. The root node is indexeddy 0. The parent of node
s is denoteds7y. The children of node are labeled from left to right bya,
S0,
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information. Although we restrict our attention to one-dimen-
sional processes, the MAR framework is applicable in the

Fig. 1. Black indicates the entries needed for building a MAR model for th@umdlmenSlonal case as well. MAR models, first introduced

ME extension of 428 x 128, tri-diagonal, partially known covariance matrix. IN [4], [5], provide multiscale representations of a random
phenomenon. Each such model is a collection of random

vectors{z(s)}, calledstates,indexed by the nodes of a tree

Suppose instead that the information available is a bandgske Fig. 2) with dynamics given by
partially known covariance matrix, so that its ME extension
is Markov. As shown in [43], any Markov process has a z(s) = A(s)z(s7) + w(s) 1)
MAR representation. This immediately leads to the question
of computing MAR model parameters directly from the partiabheres is a node of a treesy is its parent,A(s) is a matrix
covariance matrix, much as the Levinson algorithm computesappropriate dimension, and(s) has covarianc€)(s), is un-
the parameters of an AR time series model for this sangerrelated from node to node, and is uncorrelated w(th, the
Markov process. However, as we review in Section Il, whileyot-node state which initializes the dynamics. For future refer-
constructing this MAR model requires explicit calculation oénce, we also note thaty; andsa, are the left and right chil-
only O(N) elements of the fullv x N ME extension (the same dren, respectively, of node as indicated in Fig. 2.
complexity as for the AR model for a nonstationary Markov A MAR process can be used to model a finite-length, one-
process), the location of those elements in the ME extensigimensional random signal in the following way. We start with
is highly nonstandard; some appear in bands arbitrarily farvector-valued, zero-meanpne-dimensional random signal
from the main diagonal. For instance, to build a MAR modet = {f(i); 1 < i < N} of length N, with covarianceP =
for the ME extension of a28 x 128, tri-diagonal, partially E{ff7}. We then construct a dyadic tree in which the random
known covariance matrix requires determining only the elementsriables{ f(i)} are represented at the leaf nodes of the tree so
shown in black in Fig. 1. In principle, one could use Levinson'ghat
algorithm to compute a full extension and then simply extract the
required elements. However, this is computationally wasteful f ={z(s)|s is aleaf nodé. &)
since onlyO(N) out of the total of N2 covariance elements
are needed. Using our generalized Levinson algorithm, we wilfe then construct a MAR model fgiby defining coarse-scale
show how to computenlythe O(N) that are required for MAR states. These coarse-scale states are “hidden” in the sense that,
model identification. A consequence is that the computationahlike the leaf-node states, their statistics are not kreyiori.
complexity of building a MAR model is comparable to that Determining the coarse-scale state statistics and, using these,
which is obtained by the classical Levinson algorithm idetermining the MAR model dynamics is vastly simplified by
designing an AR time-series model. considering so-callethternal models [18], [19]. Internal MAR

The remainder of this paper is organized as follows. Our mmodels have the additional property that each coarse scale state
tivating application—building MAR models from incompletez(s) is a linear function of the fine-scale procegsThat is,
second-order characterizations of random processes—is intigs) = L, f for all nodess and some set of matricdd.. }.
duced in Section ll. Some background concepts upon which weinternal MAR models are useful for theoretical and prac-
will rely are provided in Section Ill. Our generalized Levinsonical reasons. As explained in great depth in [18], [19], internal
algorithm is presented in Section IV, and its application to MAhodels guarantee model consistency. Internal models are also
model identification is made in Section V. Closing remarks aigseful in data fusion applications [8] because they permit the
made in Section VI. consistent inclusion of nonlocal linear functionsfoft coarser
scale nodes. This allows the optimal fusion of multiresolution
measurements using the efficient MAR estimation algorithm

20 40 60 80 100 120

Il. MOTIVATING APPLICATION

[4].
In this section, we review the aspects of MAR models

that are of reIevance to th'_s paper and introduce the PrOblem\Ne assume, without loss of generality, that all processes considered are zero-
of MAR model identification from incomplete covariancemean.
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x(0) Since the MAR states for a first-order Markov process consist of
four endpoints, thd., matrices are sparsé¢x N selection ma-
tricess Consequently, the covariances,y and P, ;) (sv) are
both4 x 4, and each contains only a small number (independent
of N) of correlations between fine-scale variables. Note that the
MAR model based on thede, matrices is internal by construc-
tion (further elaboration on this point and a formal description of
the necessary and sufficient conditions for internality are found
in [18], [19)]).

The MAR model just discussed can be generalized to any
length+V, order% Markov process. Roughly speaking, to adapt
Fig. 3. MAR model for 16 samples of a first-order Markov process. Eadf® preceding approach to a genetalsimply replace every
ellipse includes the samples for a MAR state. sample (dote) in Fig. 3 with k£ consecutive samples corre-

sponding to selection matric€, } that aretk x N. Let us de-

For internal models, the parameterd(-), Q(-), and P, note byr(s) the index set characterizing the elements selected
are easy to determine frofi.,} andP. To see this, notice that PY s and stored in the MAR state(s). Thatis, foralli € 7(s),
the MAR dynamics of (1) imply that the linear least squardfere is some row ok, whoseith entry is one (all other entries
(LLS) estimate ofxz(s) from z(sy) is A(s)z(s7), and that are zero). Also, let
w(s) = z(s) — A(s)z(s7) is the corresponding estimation C, = n(s) Un(s7). (6)
error. Therefore,

A more explicit description of)(s) andCs is provided in the
A(s) = Pys)a(s9) Pm‘(im (3a) Appendix, as is a proof of the following proposition which char-
-1 pT acterizes exactly which elements Bfare required for MAR
Q(8) = Pu(s) = Puoyo(s) Pogsmy Pr(syesyy  (30) y q

model identification.

where P, (. is the covariance matrix for the staigs), and  proposition 1: Let C, be as defined in (6). Then, there are
Pu(s)z(s7) 1S the cross-covariance matrix between the child stag ;') elements ofP that are needed to compute the model
x(s) and the parent staie{ 7). For an internal MAR model, the parameters and these elements are precisely those found in the
state covariances and child—parent cross covariances are giygRcipal submatrix of? whose rows and columns are indexed

by by U,z Cs- O
Pys) =L,PLY (4a) We introduce in Section IV a generalized Levinson algo-

rithm, which can be used to determine these requivédN

Pu(s)a(s3) = Ls PLL. (4b) quiverN)

covariance elements at a computational cos?(¥> N). Then,

We now turn to the MAR models for Markov processed! Section V, we apply this generalized Levinson algorithm to
discussed in [43]. As an illustration, consider a MAR moddhe following problem. Given only knowledge of the diagonal
for a first-order Markov procesg. The MAR model depicted bands of a covariance matrix, we compute a MAR completion
in Fig. 3 is anendpointmodel for this Markov process (theer it of the form describeq i_n this se_ction and illustrated in
tree branches from(0) to z(0c;) andz(0a,) are indicated as Fig. 3, such that 'Fhe restriction of FhIS MAR process to the
dashed lines for the purposes of a subsequent discussion). E&aMes of the tree is an ME completion of the partially known

state consists of four endpoints corresponding to two intervaf@variance matrix. Note that, due to the special construction
For instance, of this MAR process (as illustrated in Fig. 3 and discussed

previously), the resulting MAR process is internal.

I1l. B ACKGROUND

[F(0) £(7) f8) f(15)]" (52)
[F(0) £(3) f(4) f(DIT (5b)
w(0az) 2[£(8) f(11) f(12) f(15)]T  (5¢c)

and the other states are similarly defined as indicated in Fig.

The covariance extension problem addressed in this paper can
be conveniently described in graph-theoretic terms. In this sec-
t[g)n, we first review some relevant aspects of graph theory and
Notice that(0) consists of endpoints of the intervals 7] relate It(hem to covlarlance.e.xtensmhn. Frcl)llowmg_thgt, we review
and[8, 15]. Therefore, conditioned om(0), the sets of sam- some known results pertaining to the characterization and com-

ples{ (i) }ie (o, 7 and{ /(i) }ic(s. 15 are uncorrelated. It follows PUtation of extensions.
thatz(0a1 ) andz(0a2) are uncorrelated when conditioned o
x(0). Hence, the statistical relationships amar(@), z(0«a1), )
andz(0a2) can be captureexactlyby a MAR process. A sim- Lt {z(t)|t € V'} be a zero-mean random process indexed
ilar argument applies to the other states of Fig. 3 and to the stdi¥dhe set” where|V| = N. Letzy denote the column vector

of any MAR model for a first-order Markov process of length  ©f random variables indexed biye V', and letP = Elzy 27]
be the covariance matrix for this random vector. THeis a
4We use the notatio, to denote the covariance matrix for random vector
x andP,, to denote the cross-covariance matrix for random veetasdy. 5Each row of a selection matrix has a single nonzero entry, which equals one.

. Graph Theory and Existence of Covariance Extensions



414 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 2, FEBRUARY 2003

symmetric and positive-definite matrix (here and throughout we It is worth emphasizing that whe@' is not chordal, there
exclude the singular case). may exist completions for partial covariance matriédgs >
0 for specificchoices of the entrie®x (4, j) but not for other
valid choices of these entries. However, Proposition 2 tells us
that completions exist faall valid choices of the entries exactly
A o whend is chordal.
Pe=A{pi;l (i, j) € B} @) As is well known, when a completion exists, it is not unique
[25], [41]. One way to select a particular completion is by re-
quiring that the determinant of the completed covariance ma-
trix is maximal. This yields the ME completion, denoted here
We shall refer to the sef as thesupportof the partial by P**, which maximizes the entropy of the probability den-
covariancePs. In order to avoid ill-posed extension problemsity p(z1, - - ., zar), subject to the constraints of zero mean and
(especially in the context of the ME extension), we shall assurdgdartially specified covariancg [25], [41].¢ The ME com-
that (i, i) € E for all 4, namely, thatPz contains all diagonal pletion of P can be characterized by the pattern of zeros in
elements. its inverse. In particular, ii°™F is the ME completion ofPg
We can capture the structure and sparsitPpfoy asupport then (PM®)=1(i, j) = 0 for (i, j) ¢ E. This fact follows
graph G = (V, E), where we assign a vertex to everye from the well-known solution to the problem of finding the en-
V and an edge to evergi, j) € E. SinceE is symmetric, tropy-maximizing probability density function with given mo-
all edges are bidirectional and the graph is undirected. Thisments [7], [41]. In the case of a partially specified covariance,
equivalent to assuming (as we will) that ;) is an unordered the entropy-maximizing density has the functional form
pair, i.e.,(i, j) = (4, 7). Also, since(i, i) € E, every vertex
has a self-loop. A completely specified matrix gives rise to a
complete graph, i.eE =V x V. pup(z1, o, 2n) =Cexpd > A jziz (8)
Every principal submatrix of a (nonsingular) covariance ma- (i, 5)€E
trix is positive definite. Therefore, the same condition is inher- ) o o
ited by a partial covariance. The condition that every principAn€reC is a normalization constants (i, j) = cov(zi, z;)

submatrix contained i’ is positive definite will be denoted @€ the given moments, and the Lagrange multipligrs are
by Pz > 0. selected so thatye(-) matches the given partial covariance.

h The density of (8) is Gaussian and clearly indicates that
(PMEY=L(3, §) = 0 for (i, j) ¢ E. The pattern of zeros in

is equivalently characterized by the statement that a
random process on the gragh = (V, E) with covariance
matrix PMF is a Markov random field o6/ [11], [50]. This is
probably the most important property of the ME completion.

fied valid covariance matri® > 0 that agrees wittPs on the | View of Proposition 2, we restrict our attention to par-
support sef. Note thatPy, > 0 is a necessary condition for thetial covariances associated with chordal graphs. It turns out that

existence of (nondegenerate) extensions and completions. HGRRrdality also ensures the existence of ME completions.
ever, as we discuss (and as is well known), it is not a sufficientproposition 3 [25]: If G = (V, E) is chordal, then every

condition. valid partial covariancé’s has a (unique) ME completion]
A key concept in examining questions concerning extensions

and completions is the notion of a chordal graph, which we i, One-Element Extensions and Chordal Sequences
troduce next.

Definition 1 (Partial Covariance Matrix): A partial covari-
ance matrixPg is a symmetric subset d?, i.e.,

whereE C V x V. Symmetry means thdt, j) € E if and
onlyif (j, i) € E.

Given a partial covariance matriXz and a grapliV, F') wit
E C F, thecovariance extensioproblem is to find another
partial covariance matri¥r so thatPr agrees withPg on the
support sel. A partial covariance matrikr that satisfies these
criteria is called arextensiorof Pg. A covariance completion
is a covariance extension with = V' x V, i.e., a fully speci-

Propositions 2 and 3 tell us when completions exist, but do

Definition 2 (Cycle and Chord):A cycleof a graphG = not characterize them or indicate how to compute their elements.
(V, E) is asequence of distinct vertices, v1, ..., v,] Where Also, nothing has been said yet about the extension of a partial
(vi1,v;) € Eforalli € {1,2,3,...,n} and, addition- covariancePg to a larger partial covariancEr, as opposed
ally, (v,, vo) € E. The length of a cycle is the number ofto a completion. Since the construction of a MAR model for
its vertices (i.e.n + 1). A cycle [vg, v1, ..., v,] is said to a (kth-order) Markov process involves an extension in whith
have achordif (vj, v;) € E for1 < |k — j| < n, where is sparse (in particuld¥’| = O(k|V|)), we have a particular
k,je{0,1,2,...,n}. O interest in extension problems in which bdthi| and |F| are

Definition 3 (Chordal Graph):A graph G = (V, B) is SMall compared 6V x V| = |V|*. For this reason, we shal

calledchordalif every cycle of length greater than three has ?CUS in the sequel on extensions (and completions) of partial

chord O covariances with’| < [V[%.

We have the following well-known result.

i . _ ; SNote that we have assumed the individual variances, i.e., the diagonal el-
Proposition 2[25]: Givenagraplt: = (V’ E)’ completions ements ofPx are specified, which is a necessary condition for entropy to be

exist for all valid partial covariance matric&s; > 0ifand only bounded and®MP to exist.
if G is a chordal graph. O "Here we assume thé contains the diagonal, as stated earlier.
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The only characterization d?™* we have so far is tion coefficient By choosing values for reflection coefficients
ME/ - o o and applying the Levinson algorithm the elements of any com-
P¥E(i, j) = Pe(i, j),  for(i,j) € E g) Pletion (or extension) can be obtained [51].
(PME)*l (i, j) = 0, for (i, j) ¢ E. ©) It is even less well known that a modified version of

the Levinson algorithm still applies to non-Toeplitz covari-

This implicit characterization was used [41] to construct ances [40]. In this more general case, the associated AR
generalized AR (Markov) model, which makes it possiblmodel is time-variant, resulting i®(|V]) sets of generalized
to determine the missing covariance elements one by on&ule—Walker equations. In order to extend a banded partial
Since this procedure involves solving a sef Bf generalized covariancePg, with £ as in (10), one has first to determine
Yule—-Walker equations, its overall cost @¥(|E|*) computa- the coefficients of the corresponding time-variant AR model
tions. This should be compared with the cost of the “MAXof order k), at a cost ofO(k?|V|) computations, and then
DET” procedure of [21], which determines ME completiondéind the missing covariance elements one by one, at a cost of
regardless of chordalityThe MAX DET procedure involves k computations per element. Since there @¢V|?) missing
an (infinite) sequence of iterations, with a cost @f|V|*) covariance elementsthe overall cost of a completion is dom-
computationser iteration This is much higher than the costinated by the cost of finding the missing covariance elements,
of the procedure in [41], especially wheh| < |V|?. which is O(k|V'|?). This is significantly less than the cost of

A more efficient alternative was described in [6], [33]. It usethe procedure in [6], which require@(%) = O(k*|V]?)
the sparsity of the generalized AR model to decompose the segefmputations, or the procedure in [41], which has a cost of

generalized Yule-Walker equations into a sequence of smaligf|£|*) = O(k?|V|?). We use here the fact that for a banded
sets of equations. This results in a reduction of the overall copartial covariance
putational cost by (approximately) a factor|&f|, namely, from

O(|E|®) to O(%). The resulting decomposed procedure con- |E| = (2k+1)|V|—k(k+1)=O0(k|V])
sists of a sequence of one-element extensions: in each step, one
solves a small set of equations in order to determine a single §@-that the assumptidit| < [V'|? translates intd: < |V| and,
known covariance element. consequentiy k| ~ (2k + 1)|[V].
o ] There are several ways to consider generalizing the classical
Definition 4 (One-Element Extension)-et G = (V, E) and | gyinson results, each leading to important questions. First,
H = (V, F)be graphs such thdt = FUewithe ¢ F, thatis,

! i © consider the case in which the partial covariance matrnots
the graph is the graphtz with one additional edge. Let Pr panded but has entries corresponding to an arbitrary chordal
be the extension of the partial covariareg, that is,Pr is Pg

- » 7 graph. In this case, in what order may the elements of a
with one additional element, corresponding to the new edge.ompletion be computed? Second, whether the given partial

Then, P is called aone-element extensiai Pr. covariance is banded or not, what if we are interested in an

The key result of [6], [33], which we describe below irextension rather than a completion: under what conditions
some detail, is that every extension (and, therefore, also evEgp we compute just the entries of interest? Third, for either
completion) of a given partial covariance can be obtained @4 these cases, is there a convenient parameterization of all
an appropriately selected sequence of one-element extensi@f§sible extensions? Finally, do efficient algorithms exist for
Moreover, the global ME completion is obtained by selectiriiese more general extension problems? Answers to the first
the local ME extension in each step of this sequence. two questions are provided by other authors and reviewed in

In Section IV, we present a generalized Levinson algorith#is section. Answers to the last two are provided in Section IV.
which results in a further reduction in cost. Our derivation is mo- In particular, we presentin Section IV a generalized Levinson
tivated by the classical Levinson algorithm [1], [26], [51], whict®lgorithm that can be used to extend arbitrary (chordal) partial
provides a very efficient solution to the problem of extending @ovariances. Our goalis a covariance extension procedure with a
banded partial Toeplitz covariance matrix. In this very speci@®st thatis comparable to the banded case(2@gi|V'|*) where,

case,Px(i, 7) is a function ofi — j, and so in general, we define the bandwithas a measure of sparsity,
viz,
E={(j); lt—jl <k 10
{Gi, 5); li —jl <k} (10) /_1<|E| ) a
where the parametek is known as the bandwidth of the 2 V] '

(banded) partial covariance.

The Levinson algorithm is often presented as computing &9ain, our earlier assumptiofl?| < [V|* implies thats <
AR model corresponding to the ME extension in a very effi/ |- With this assumption, our definition ¢f coincides, for
cient manner. However, as is perhaps less commonly knowgnded partial covariances, with the notion of bandwidttom
the Levinson algorithm also provides a characterizatioallof (10).
completions of a banded, partial covariance matrix. In partic- In the remainder of this section we introduce graph-theoretic
ular, there is a one-to-one correspondence between each elerf@Rgepts that are needed both for the discussion of the results

of anycomp|eti0n (notjust the ME One) and a so-calteflec- of [6], [33] and for the derivation of our genel’allzed Levinson
algorithm.
8As stated earlier, we assume here and in the sequel that the Graph
(V, E) associated with the partial covarianBe is chordal. 9As stated earlier, we assume here and in the sequdlfag |V]2.
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Definition 5 [(Complete) Chordal Sequencelet G =
(V, E%) be a chordal graph fof € {0,1,...,n}. Then
[G°, G*, ...G"] is achordal sequencéd E = E‘~1 U {e'}
with ¢! ¢ E‘~1 ie., if E' includes only one additional edge
beyond those iki~. If, in addition, G" is the complete graph
then[G°, G*, ...G"] is acomplete chordal sequence [

Definition 6 (Induced Subgraph)tet G = (V, E) be a
graph. IfU CV then byGy = (U, Ey) we denote the subgraph

of G induced by where Fig. 4. Maximal cliqu&? is the union of cliqué’ and{«, b}.U, is the union
of U with {a} andU, is the union ofl7 with {b}. For visual clarity, we have
Ey ={(u,v) € E|lu,ve U} =EN(U xU). (12)  drawn one line between andZ’ and also betweeh and U althougha andb

0 are connected by edges to all of the elements of

Definition 7 [(Maximal) Clique]: A cliqueis a set of vertices 2)G" = (V, E™) is chordal, and 3F° C E". Proposition 5

.U. that induces a complete subgragh; , A clique ismaximal does not address the problem of finding a chordal sequence be-
ifitis not a proper subset of another clique. = tweenG° andG™. However, for the special case in whi€lt is

As mentioned earlier, the key result [6, Theorem 7.2.7], [38)e complete graph, there exists an algorithm with complexity
discussion in proof of Theorem 2], [33, Theorem 6] states th@(|V'| + |£|) for finding one [25], [47]. This is significantly
elements of completions (and extensions) can be computed tg&s than the complexity of finding the missing covariance el-
by one if the order of one-element extensions correspondseents, which cannot be less thax|V||E|) = O(k|V]?),
a chordal sequence, and that local ME choices results in @gdiscussed in Section IlI-B. More generally, one may always
unique global ME completion. construct a chordal sequence recursively: gign?, we form

. n G' by searching oves™ — E*~! for an edge that preserves

Proposition 4 [6], [33]: Let ‘[007 G, ---, G"] be a com- chordality. For each candidate edgéin-E~!, the complexity

plete chordal sequence wher = (V, E*) andE™* =V x V.

) _ . of checking chordality is no larger tha»(|V |+ |E¢|) [52].
Then the elements of any compleﬂon_RgO can be obtained via Proposition 4 states that the elements of every extension (or
a sequence of one-element extensipBs:, Pg2, ..., Pg=].

, : completion) may be computed sequentially by following a com-
The edge added in the step fra—! to G* completes exactly pletion) may bu quentiaty By Wing

. . e . lete chordal sequence but it does not provide an algorithm to
one maximal clique i7", corresponding to a newly completeoﬁ

) . 0 so. In the next section, v provide a Levinson-type algo-
submatrn\glgf]_DE’ Wh_'Ch we denot_e bﬁ)‘ The global ME COM" Yithm, based on the notion of order-recursive linear prediction
pletion P™* is obtained by maximizing the determinant®f

; Fth ¢ | ons] and generalized reflection (or partial correlation (PARCOR))
In every step of the sequence of one-element extension coefficients. In particular, the ME extension is obtained by set-

Proposition 4 means that there is a maximal cliqué&inhat ting these coefficients to zero along the chordal sequence.
is not a clique inG*~!. The maximal cliques of graphs in a
chordal sequence have a special property described by the fol- V. GENERALIZED REFLECTION COEFFICIENTS AND A
lowing lemma. GENERALIZED LEVINSON ALGORITHM

Lemma 1 [25]: Let G* = (V, E') be a chordal sequence. N this section, we consider the extension of a given partial
Denote bye’ the edge that is added in the stép~! — i, covariance matrix’s with chordal support to a larger chordal

namely, B = Ei=1 U ¢l If ¢ = (a, b), then the unique SUPPOItF > E, such thatPr agrees withPr on the support
maximal clique ofG? containinga andb is of the form@Q = SetE. According to Propositions 4 and 5, this can be accom-
{a, b} U U whereU is a clique ofGi 1. ] plished by a sequence of one-element extensions, following a

) . , ) ] chordal sequence frori to F'. Our approach to obtaining a

We will call the endpoints. andb of e* the active vertices ¢omputationally efficient extension procedure is based on an
of the maximal clique). An illustration of the relationships order-recursive linear prediction interpretation of the one-ele-
amonga, b, U, and(Q is provided in Fig. 4, along with some ment extension step. This leads us to introduce a generalized
other notation to be defined in the sequel. Levinson algorithm, which we use to compute the linear pre-

Terminating a complete chordal sequence prior to arriving @iction parameters needed to determine a single unspecified co-
the complete graph results in an extension rather than a cafariance element. We show that the flexibility in selecting the
pletion. It turns out that one can always associate a chordal §gtues for the unspecified elements is completely characterized
quence with every extension (or completion) problem that g terms of a sequence of generalized reflection coefficients, one
specified in terms of chordal graphs. for each single-element extension step. These coefficients, as

Proposition 5 [6]: If (V, E) and (V, F) are chordal tht_air name su_ggests,_ are general_izations_ of the reﬂe_ction cpef—
graphs withE C F then there exists a chordal sequenc@c'ents associated with the classical Levinson algorithm, with

[G°, GY, ..., G"] such thaG®= (V, E) andG" = (V, F). O vaIu_es bounded by unity. In parucular, the_ r_nammum—_entropy
choice corresponds to selecting all unspecified reflection coef-

Therefore, the elements of an extensign. of a partial co- ficients equal to zero. Under certain graph-theoretic conditions,
variance matrix’ro may be determined without computing anywhich we discuss below, our generalized Levinson recursion be-
elements not in the extension if §° = (V, E°) is chordal, comes particularly efficient.
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These principal submatrices, as well as some of the other no-
tation to be used in this section, are illustrated in Fig. 5. The
matrix P> contains all but the last row and columni- and

("‘“ is indicated in the upper left of Fig. 3,2 contains all but the

!
!
i U ) T X
- firstrow and column of’,- and is indicated in the lower right of
|
!
!
|
4

Py

—

v

A
™
o
|

3
|
|

Fig. 5; andP;» contains all but the first and last row and column

of Pge (it is the intersection of: andPUg), and is indicated

in the center of Fig. 5. The only unknown covariance element
PUE Pa,» OCCUpies the upper right and lower left cornerdigk .
- The range of valid values gf, ; is constrained only by the
fact that P5- must be positive definite, a property that can be
captured in several different ways, e.g., by checking the leading
principal submatrices. Instead, we choose a characterization that
Fig. 5. The maximal principa_ll submatri,> contains principal SLfbnl]atrices relies on the notions of linear prediction and PARCOR coeffi-
Puz (upper left), P2 (lower right), andP,» (center). The vectors;”” and  jents The relation between one-element extensions and linear
¢ and the element,. , are also indicated. prediction motivates us to develop an order-recursive algorithm,

akin to the classical Levinson algorithm, that allows efficient

A. One-Element Extensions, Linear Prediction, and Normal calculation of the unknown covariance elements.
Equations The concepts of linear prediction and generalized reflection

_ ) ) ) ) coefficients are both defined in terms of certain random vari-
Since covariance extensions can be obtained via a sequegisRs associated with the submatrix

of one-element extensions, we need only consider a single step

b
&5

/
—

%__.__
8
o

I

r
|

. . . T
in such a sequence. In each step, we determine a single new Zq Zq
covariance element, using other previously determined covari- Py =E zu | | 2u
ance elements. In thih step, the partial covariand@g:-: is 2b 2

extended taPg:, with the new covariance element being repre-
sented by the new edgé, so thatE" = Ei~1 U ¢'. Proposition Referring to Figs. 4 and 5, of particular interest to us are
4 and Lemma 1 tell us that’ = (V, E’) contains exactly one estimates and associated estimation errors corresponding to
maximal clique that was not i6F"~! = (V, E‘~1). Because estimatingz, and z, based onzy. Let
all other cliques were already included @ ~*, and because A . A .
maximal principal submatrices d?z: correspond to maximal Za =20 — Blza | 20] = 20 — 24 (14a)
cliques ofG?, it follows that we need only be concerned with 5 22— Blz | 2u] 2= (14b)
the positivity of the new submatrix. In other words, assuming .
that we hadPgi—1 > 0, thenPg: > 0 if and only if the max- WhereE[z | ] is the LLS estimate of based ory. Define the
imal principal submatris,. is positive definite, wher€ is as  generalized reflection coefficiepf; * as
defined in Lemma 1 an@? = Q x Q.

To be more specific, recall that the new covariance element s = =
corresponds to an edgé = (a, b), and that the “new subma- var(Zq) var(z)

trix” corresponds to a subset of vertidés {a, b}. The (known) namely, the correlation coefficient 6f andz,. It is also known
covariance elements that determine the range of values of fRehe PARCOR coefficient of, andz, given 2. The coeffi-
new elemenp,,; are described in Fig. 5. The new Smeat”’éientp”{j ® provides a simple and efficient characterization both

. . . T T . H H
is the covariance matrix of the random vectof 2, #]"  of the ME choice fop,, ,» and the range of all valid choices for
where we use the notatiorp to denote the column vector of

random variables (i.e., random vector) indexed by an arbitrar;’ '

subsetD of Q. If D is a singleton set, e.gl) = {a}, we will Proppsition 6. (PARCOR Qharac_terization.of One-EIement
typically write this asz, rather thanz(,,. The bottom left (as Extensions): Using the notation defined previously, there is a
well as the top right) element of this matrix is the yet to be déne-to-one correspondence between the PARCOR coefficient
terminedp,, ,. The rest of the elements in this matrix are knowdy and the covariance elemept . Moreover,Pg: > 0 if

b A cov(Za, 2p) (15)

from Ppi :. and only if|p{;°| < 1. The choice op};” = 0 maximizes the

In order to facilitate our discussion we need to introduce sedfeterminant of’- and, thereby, provides the global ME value
eral notational shortcuts as follows: of pa, b. O]
A A The proof of Proposition 6, provided later in this section, re-
U, ={a}UU, Uy ={b}uU (13a) lies on several results derived from the orthogonality principle
Q={a,b}uU=U,UU, (13b) of LLS estimation.
. . - b
Pyz ={pi;|(i,§) €U x U = U?} (13c) To relate the generalized reflection coefficigfit” to the un-
2 = i,j s =

s ) known covariance element, , and, thereby, perform a one-
Pyz ={pi,;|(i,7) € Us x U, = Uy} (13d) element covariance extension, requires solving sets of normal
Pyz ={pi;|(i,7) € Up x Uy = UZY. (13e) equations associated with the residuals of (14). These equations
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follow from the orthogonality principle, namely, — 2, and has the unity element on the left, whi®?, = [-L% 1] has
zp — Zp are both orthogonal te;. Sincez, is a linear combina- the unity element on the right. By augmentidg with a zero
tion of the elements of the random vecter, we can write itin - element and expanding;- by one row and column, we have
the form

[Af 0]Pg:=[ey 0 - 0 &p°] (19a)
2y = LZIJJZU (l6a) where
where L!, is a row vector of deterministic coefficients. 5{1)],(1%%1% [b],a (19b)
Consequently
. and whereg’}a denotes another subcolumn Bf., again in-
Z=[-LY 1] Lﬂ cludingp,,» (see Fig. 5). Specifically
N . ~ . ba A Zq Da,b
and cross correlating; with [*”] we obtain the normal U ZE{[ ]Zb} = [ } (19¢c)
e . b zZU E[ZUZ(,]
quations
. . Our proof of Proposition 6 relies on three lemmas, which
[0 - 0 eyl=[-Ly 1]Pp (16b)  relate the generalized reflection coefficiesft” to the inner
B, productég”’ (Lemma 4) and through it tp, , (Lemma 3).

Lemma 2: §;7 " ands?; * of (17b) and (19b), respectively, are
equal.
Proof: Using (19a) and the fact that

where (cf., (14))?, 2 var (%) is the LLS estimation error vari-
ance and3}; is as defined in (16b).

Our next step is to extend the normal equations (16b) in such
a way thatp,_, is introduced. By augmenting?; with a zero [0 BY=[0 —L% 1]

and expandingDsz by one row and column we have h
we have

0 BY]Pg=[6%" 0 .. 0 & 17a
[0 BylFo: =[5 v (7e) (A% 0]Pg:[0 BY]" =83 (20a)
where

On the other hand, using (17a) and the fact that

a, A a,
S B o) [Af 0] =[1 ~LE 0]
and where({j’b denotes a particular subcolumn of elements Qfe ave
Pg- that includes, ; (see Fig. 5). Specifically

[0 BYPge[Ay 0]F =60". (20b)

(" 2E { [ZU} za} = [E[ZUZG]} : (17c
b Pa,b From (20a) and (20b) it follows thaf; * = 5. “. O

The au_gmented no}rmal 'equ.ations (17a) serve three PUIPOSE$:emma 3: Using the notation defined previously
i) they introduces;;”, which is central to the solution of the \
one-element extension problem; ii) they are used in proving 6t = —L{; Elzuza] + Pa,b (21a)
Proposition 6; and iii) they are key to the construction of a gen- =—L{ Elzu2s) + Pab- (21b)
eralized Levinson algorithm.

The linear estimation of a random signal sample gafrom . ) oV Wy :
other samples of the same random signal (sayis usually 10N Oof (7" given in (17c) and the definition aBy given in
known as linear prediction. For this reason, the residyas (16P) into (17b). Equation (21b) follows from Lemma 2 and by

L .. boa - . ..
known as a linear prediction residual, the coefficient vegtpr Substituting the definition of;; * given in (19¢) and the defini-

Proof: Equation (21a) follows by substituting the defini-

is known as a linear prediction vector, arfd is known as a 10N of Ay given in (18b) into (19b). =
linear prediction error variance. Lemma 4: Using the notation defined previously
Analogous to (16) and (17), we also need to consider the LLS ab
estimate of the scalar random variabjebased on the random Pt = Jii . (22)
vectorzy which we can write as €g, gz[)]
Za = Lyzu. (18a) Proof: Sincee}, = var(Z,), e¥, = var(), and using

The row vector of linear prediction coefficient§, must satisty (19). it suffices to show that

the following normal equations: 5;}& = cov(Za, %) A E[(2a — a)(25 — 2)]-

[1 —Ly]Pyz=[e; O -+ 0] (18b)  This is easily done as follows:
—_——
Ay El(za — %a)(25 — )] = E[(2a — 24)2)] (23a)
where (cf., (14)k%, £ var(Z,) is the estimation error variance, =pap — Ly E[zuz]  (23b)

and Af; is as defined in (18b). Notice thatf, = [1 —L{] = 65" (23c)
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where in (23a) we have used the fact that- Z, is orthogonal Thus, by Lemma 4, the positivity condition (26a) is equivalent
to zy and, hence, tgy; in (23b) we have taken expectations; irto

(23c) we have used Lemma 3. O
a,b
We now provide the proof of Proposition 6. Py b’ = L <1
a b
Proof (Proposition 6): Using Lemmas 3 and 4 we have Veéucu
b @ and we have now established th&t. > 0 if and only if
Dab = L}U Elzvzd] + pU’b\/E?JEsz (24a) 2 | <1 hap y
= L& Elzyz) + p?jb, [t e (24b) That the choice ofo = 0 maximizes the determinant of
P,: can be seen as follows.Using (25), (26a), and the fact
These relations establish a one-to-one correspondence betwaatBy, = [-L? 1] we have that
pa.» andp?:*. Thus, we only need to show that i °| < 1 if )
and only if Pg> > 0, and ii) o7 * = 0 is the ME value. Using det(Pg:2) = det (Py2) (EI;J _ (5;;”) 1 0 - 0]
(17a) we have ‘
0 o\T .gﬁu 0 ~-0F>.
I 0 Py I 0 Applying (26b) and using Lemma 4, we have
JE— R 2
0 B 0 B det(Pge) = det (P2 ) by [1 - (pg;b) } . @)
b
0 Hence, the choice gf;" = 0 maximizes the determinant of
i Pge. O
= PUz . . (25) . . .
¢ 0 In view of Proposition 4, the corresponding valueQf,
— o coincides with its value in the global ME completidn™F,
. by 0 - 0] ey | Proposition 6 establishes, among other things, that the choice of
K p‘;]'b = 0 provides the determinant-maximizing valuezgf .

Slnce as stated previously, determinant maximization and en-

Observe that the first (leftmost) matrix in (25) is lower triangular
ropy maximization coincide

with unity diagonal elements, because the last element of
row vectorBY; is one. Thus,.by Sylvester’s law of |nert|a [22], pi]{? A LbU Elevza] = L% Blev ) (28a)
we conclude that’y- > 0 if and only if the matrix on the

right-hand side of (25), which we have denotediyis positive is the entropy-maximizing value gf, , where we have used

definite. Since a matrn@?; ?’) > 0ifand only if F; > 0and (24). Our final expression fay, ; is
Fy— FYFTVEy, > 0, and since Py2 > 0, we conclude from \E —
the form of the matrixk (in the right-hand side of (25)) that Pa,b = Pa,b + U \/ Evtu- (28D)

Pqz > 0ifand only if The quantitiesAy;, BY,, f;, ande}, are computed using only

_ the already-known elements &%,.. The new elemeng, ; is
et — (60" U 0 -~ 0]P:M1 0 - 0]">0
U 2 then calculated via (28b) using these known elements together
(262) with the selected value of the remaining degree of freedom,
This positivity condition can be simplified by using (18b)namelyp
Doing so, we have The complete solution to a covariance extension problem
@ T consists of a sequence of one-element extensions, ordered
1=A%[1 0 --- 0] ;
. . T’ according to a chordal sequence. Each step along the chordal
=ep[1 0 -+ O]P,[1 0O - 0] sequence involves a clique associated with a set of vertices
U* c V and requires the solution of two sets of normal

S0 that (262) simplifies to equations. The size of each of these systems of equations is

a,b)? 1 given by the cardinality of the séf*. Hence, the complexity

v - (6U ) (1 0 - 0]Pg[1 0 - O] of direct solution of the normal equations(¥|U*|?) (see also
(6(1,1))2 [33, pp. 174-175)). If the extension problem is such tla&t

= el — >0 (26b) is small and does not grow with(or is bounded in size with

ey the bound being independent|&f|), then direct solution of the

normal equations is computationally feasible.
Indeed, if for each step in the chordal sequejice < K <
|[V|, then the average cost per each missing covariance element

or, using the fact that{; is positive

a,b b
(6U ) < ey
L1alternatively, the Fischer inequality [28] can also be used to establish this
10The matrixF; — FZ F, ' F, is known as a Schur complement. fact.
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is O(K?). This is already a major improvement over the (nonre-  Proof: Using the augmented normal equations (17a) and
cursive) method described in [41], which involves solving a sét9a) we have
of linear equations inE°| unknowns and using the results to

a,b
extend the partial covariance. Sinde’| = O(K|V|), the tech- [0 BY]- b7 [A% 0]} Py
nique in [41] requireé)gc‘il“g| O(K3|V|) computations per €7

missing covariance element which is much more than the cost (6”*”)2

of a direct solution implementation of our technique. =lo ... 0 &b — v ]
On the other hand, ifU*| does grow withi, then the com- v

plexity of direct solution of the normal equations may become {0 0 e (1 B ( " b)2> }

prohibitive. Under certain graph-theoretic conditions, however,

there is a way to solve the normal equatiefiiciently, namely,

with a complexity that isinear in |U?|. This efficient procedure

By comparing this expression to (29a), we conclude that

is discussed in the next subsection. 5@ b
[-Ly, 1]=[0 Byl 0]
B. Efficient Generalized Levinson Recursion T U
Uq

We have shown that all valid choices for the missing covari-
ance elemenp, ;, are characterized via (28) in terms of the —[0 BY]- pa,b’ i (A2 0]
linear prediction coefficient vectorsy;, L?, and the associated vl U \feg 0
error variancesy,, %;. The direct evaluation of these quantitiegng
(via the normal equations (16b) and (18b)) can be avoided by b ab
using the generalized Levinson recursion which uses the linear U, =cy (1 - (pU ) ) ‘

prediction coefficientd{;, ef;, L% £%; to determine the higher
order coefficientsLy, , £, , LU EUb Now the higher order Using the augmented normal equations (17a) and (19a) we have

linear prediction coefﬁmentSLU , €U ) must satisfy the higher sab
order normal equations associated with the LLS estimatg of {[A“U 0] - UT [0 B‘{]]} Pge
givenzy, = [z, 2z{]": this estimator has the form}, zy, fu
with the row vectorL’;]a satisfying the normal equations (recall (5a, b) ?
fo-lsd
Lh, 1Pe=10 - 0 ] (@%) 2
— “ :|:6‘[1/<1—(pU’)> 0 - 0]
By

WhereaU is the estimation error variance, atﬂj’, is as de- By comparing this expression with (29b), we conclude that

fined in (29a). Analogously, the higher order linear prediction . . 8 b ,
coefficients(Ly;, , e§;, ) must satisfy the normal equations asso- [1 Ly ]=T14y 0]-5-[0 Byl
ciated with LLS estimate of, givenzy, = [zf 2] this Az, v
estimator has the formg, 2, with the row vectorLy, satis- -
fying the normal equations (recall (18b)) = [48 0] - p?j" [ [0 BY]

[1 —L§, |Pge =[ef, 0 --- 0] (29b) v

~— and

A?]b a _ga[q ( s ) 0

wheres¢, is the estimation error variance, andg, is as defined U, =CU Pu '
in (29b).

Comment 1:An examination of (30a) shows that the com-
plexity of solving for Bf, (or, equivalently, forZ}, ) is linear
in the size of the vectord¢, and BY, and, thus, is linear ifi|.

Proposition 7: Given(L%, %) and(LY;, €¥,) we can deter-
mine (L, , ef, ) and(LY, , €}, ) via the expressions

, , gU The same conclusion holds for the calculatiolibf;, , <;, ) via
[-Ly, 1]=[0 By]- (A7 0] (30b). Thus, the computational cost per each missing covariance
Bl U element is linear inU?| < K, as compared t®(K?), the cost

) of the direct method described in the first part of this section.
glba = <1 - (,,‘g;”) > (30a) Moreover, in the ME case, whef; b = 0, these calculations
are essentially trivial. Indeed, in this case we have

a b h b _ b
[1 _Lan]: [A?] 0]_/)?](} iII: [0 B[l}]7 BUa_ [0 B{]]7 EUa_gU (31a)
— \ v = [4% 0], &b =& (31b)
b

¢ _ a ab)? so that the only computation left is the determinatiopg"}f via
fu, T fU (1 - (”U ) (30b)  (28), again at a cost ab(|U]).
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Combining the global graph-theoretic perspective of Proposi-clique of graphGi—!. Consider the sequence of one-element
tion 4 with the local algebraic detail provided by the generalizesktensiong Pg-m+1, ..., Pg-]| based onl" where each new
Levinson recursion of Proposition 7, we conclude that a coroevariance element added with each step in the subsequence
plete solution of a covariance extension problem consists 0fBg—m+1, ..., Pgo] is predetermined (becaugg:. is given).
sequence of one-element extensions, each one using the iripudt is an efficient sequence then the complexity of thie
linear prediction coefficientéL?;, %) and(LY, €% ) to deter- extension fromPg:-1 to Pg: is no larger tharO(|U?). In the
mine a single covariance element , via (28). Each step of ME case, the complexity is a constant size, independebtigf
this recursion also determines the output linear prediction coef- O
ficients (L¢, , €f;,) and(L’;]a./ s’g]a), which are then used as the The purpose of introducing the subsequence of one-element
starting point for subsequent steps. The ordering of recursietensions|Pg-m+1, ..., Pgo] is to ensure that the normal
steps is specified by a choice of a chordal sequence. equations associated with these one-element extensions have

Some of the input (lower order) linear prediction coefficientseen solved and are, therefore, available to be used in the
that are required in the generalized Levinson recursion may éfficient computation of subsequent one-element extension
directly computable from the known partial covariance data (vieps. For example, the first such step frBm to Pg: requires
appropriate normal equations). From now on, we assume thatmal equations associated W{tRg-m+1, ..., Pgo] (in the
this initial set of linear prediction coefficients is available priosame way that (17) and (19) can be used to efficiently solve
to carrying out the generalized Levinson recursion. higher order normal equations, as shown in Proposition 7).

We consider the generalized Levinson recursfficientif i . .

. ; S . . . Proof: If our chordal sequence is efficient then the normal
the input linear prediction information required at each step is

. . . . : eguations that arise in each one-element extension can be solved
either available as output information from previous steps of the'.

recursion oris included inthe initial set of linear prediction coef>"9 Proposition 7. As discussed in Comment 1, complexity

ficients. Efficiency is clearly a property of the chordal se uencOf solution Qf the normal equations that arise in tie such
X y y aproperty quenGse isO(|U*]). Also, as has been discussed, in the ME case

associated with the recursion. That not every chordal sequenge i i required is zero padding so that the complexity of

is efficient is easily shown by a counterexample [18]. The fol- L .

: . . ._each one-element extension is a constant, independent of the
lowing graph-theoretic property provides a formal CharaCtenzgérdinalit of U 0
tion of efficient chordal sequences. (The teantive vertexused y '

in the following definition is defined in the discussion immedi-

ately following Lemma 1.) V. APPLICATION TOMAR M ODELING
Definiton 8  (Efficient Chordal Sequence)et We now return to the MAR model construction problem, de-
[G°, ..., G"] be a sequence of chordal graphs with scribed in Section I, which corresponds to the following covari-
. . . . . ance extension problem. L&¥ = (V, E°) andG™ = (V, E™)
G'=(V,E") and E'=E"" U{e'} be graphs such that
wheree! = (ai, b') ¢ EL. Let U’ be a clique ofGi~! A 3
such that the unique maximal clique 6f containinga?, b* is v N {0,1,..,N =1} (332)
{a?, b'} UU". Then this sequence of graphs is said to befan E°={(m,n) €V xV|[|m—n| <k} (33b)
ficient chordal sequendé for somgj < z‘,landk- <4i, g A U C. xC. (33c)
i) G’ has a maximal cliquda’} U U" with o’ an active s£0
vertex, and . i . .
i) G* has a maximal cliqugbi} U U with b an active whereC; is as defined in (6). To build an MAR model for the
vertex o ME completiorof Pgo, we require thextensiorf Pgo to Pgx .

We now discuss the application of our generalized Levinson
If our chordal sequence is not efficient this does not meaigorithm to the computation dPz-. For the moment, assume
that we cannot perform an extension. It simply means that ferat 1) E° ¢ E", and 2)G™ = (V, E™) is chordal. We will
some steps we must solve the normal equations directly and witlove these two facts shortly. Assuming these, there exists a
cubic rather than linear complexity. Given an arbitrary choice ehordal sequence fro@° to G™. We may, therefore, find the
two chordal graph&® = (V, E) andG™ = (V, E™) suchthat elements ofPz. using the generalized Levinson algorithm of
E° c E", itis unclear (as of this writing) whether there existSection IV by setting the unspecified generalized reflection
anefficientchordal sequence between them. coefficients to zero. We now show that doing so result3(V)
. ) computational complexity even when the chordal sequence upon
_Proposition 8: LetG* ~ (V, E7) bethe ChorSa' graph 8S50hich we base our one-element extensions is not efficient.
c_|ated with partial covariance matrREo. Let|E7| = [V +m Recall that if our chordal sequence is not efficient we must solve
(i-e., there aren edges in addition to all seff-loops). Let some (in the worst case, all) of the normal equations that arise
ra [G7m7 Gl Q0 gL Gn] (32) in _the genergl_ized Levinson algorithm explic_itly, rgther than
using Proposition 7. However, the largest maximal cliqué'®f
be a chordal sequence whet&™ has no edges other thanhas cardinalitylCs| < 8%k. Hence, at worst, each one-element
self-loops and whergz’ = (V, E') with E° = E‘~! U extension require®(k>) computations. This leads to an overall
{(a?, b%)}. Associated withl" is a sequence of new maximalcomplexity of O(N) for computing Pg.. The complexity of
cliques[Q=™%1, ..., Q"] whereQ’ = {a’, b’} UU* andU’is computing Pg~ using an efficient chordal sequence is also



422 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 2, FEBRUARY 2003

O(N) so there is no computational advantage (asymptotically) Coa;— Coay
in using an efficient sequence. In the sequel, we do not assume I |
that our chordal sequence is efficient. Note that the preceding
discussion shows that the complexity of computing an MAR
model for PME is of the same order as computing an AR model | | | I
using the classical Levinson algorithm (in the nonstationary : :
case).

The theory developed in previous sections can be applieddg. 6. The junction tred” described in the Proof of Proposition 10.
this covariance extension problem if two conditions are satis-
fied: 1) E° ¢ E™ and 2) the final grapli™ is chordal. Thatthe  proposition 12: Using the notation previously defined, there
original graphG is chordal is both well known and clear. Weexists a chordal sequence fraifl to G™ such that the edges of
now establish thak® c E". C, are added prior to those 6f for every nodes andt such that

Proposition 9: E° ¢ E™ where these are defined by (33). ¢ IS atafiner scale than O

~ Proof: The proof follows from the fact that, by construc- proposition 12 permits us to find the joint child—parent
tion, every interval of lengtit + 1 is contained in one of the statistics (and, hence, the parameters) of our MAR model
setsC; (cf., the Appendix). This is most easily seen by considscale-recursively, beginning at the finest scale and proceeding

ering Fig. 3 which represents an MAR model for a lengh- to each successive coarser scale. For example, referring to
first-order Markov process. Itis clear from this figure that everig. 3, the child—parent joint statistics

COalal_ COa1a2 COazal_ COazag

interval of length2 can be found in somé,. The algebraic de- P p B
tails proving this fact for a general Markov process are found in < . 2(s) =(s)z(s7) ) (36)
[18] O Px(s)z(sr/) PI(S"_/)

are first computed for all child—parent pairs linked by solid lines.
Then, proceeding to the next coarser scale, the joint child—parent
Proposition 10: G™ = (V, E™) is chordal wherd” and E™  statistics are computed for the pairs linked by dashed lines. We
are defined in (33). 0 refer the reader to [18] for a proof of Proposition 12 and addi-
tional details regarding this particular chordal sequence. Once
the joint child—parent statistics have been found, they are used
Definition 9 (Junction Tree):A junction treefor agraph = in (3) to compute the MAR parameters for the ME extension.
(V, E) is atreeT = (K, £) whose vertex sek is the set of This MAR model is guaranteed to be internal by construction
maximal cliques of7 and where for any € V, each induced (due to properties of the matricés described in Section Il and
subgrapi ., is connected, wher€,, consists of those maximal in [18], [19]).
cligues ofG that contairw. O

We now show tha&" is chordal.

To prove Proposition 10, we will rely on the following.

. . . VI. CONCLUSION
The following provides a connection between chordal graphs

and junction trees. This paper provides two important contributions in the area

of covariance extension. First, we have generalized the clas-

Proposition 11 [23]: G is chordal if and only if there exists sjcal Levinson algorithm to accommodate a broader range of
ajunction tree foi. U extension problems. In particular, our generalized Levinson al-
Proof (Proposition 10): By Proposition 11 it suffices to 90fithm can address any extension problem for which the known
exhibit a junction tree fo". To this end, lefl = (K, &) be a Values in the initial partial covariance matrix and the computed

graph whereC is the set of maximal cliques & That is, values in the final partial covariance matrices correspond to
o1 34 chordal graphs. We have also characterized the conditions under
= {Cslsro- (34) which our generalized Levinson algorithm is computationally
Let £ be the following set of edges between elements of efficient.
U ({(Crars Coa)} U {(Crars s Crevrens)} Our second contribution was to use our generalized Levinson

algorithm to solve efficiently (with a complexity linear in
U{(Ctays Crasay)}). (35) proble_m siz_g) the nonstandard extension problem that _arises
_ ) ) ) o ) ) in the identification of an MAR model for the ME completion
An illustration of 7" is provided in Fig. 6. The junction tree 8s-¢ 4 panded, partial covariance matrix. Like AR models for
sociated with the specific MAR model illustrated in Fig. 3 iganqard time series, the implicit covariance characterization
shown in Fig. 7. It is straightforward but notationally tedious tg, o+ mAR models provide can be exploited to achieve efficien-
ver!fy that T is & junction tr_ee foG". The formal details are cies in computation and storage. The connection between AR
omitted and may be found in [18]. = processes and ME completions is well known and is provided
While we have completed the formal description of how tby the classical Levinson algorithm. The connection to MAR
build an MAR model for the ME extension of a banded, paprocesses has, until our work, been unknown and, as we have
tial covariance matrix, there is one remaining algorithmic dehown, relies on a generalization of the classical Levinson
tail—that of finding a chordal sequence betwegh andG™. algorithm.
For the problem at hand, there is a particular chordal sequencMAR models represent signals at multiple resolutions and
with appealing scale-recursive structure. are capable of optimally fusing multiresolution data. Therefore,

t: a tree node
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0,3,4,7,8,15

0,7,8,11,12,15
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8,9,10,11,12,15

8,11,12,13,14,1

Fig. 7. The junction tree associated with the MAR model illustrated in Fig. 3. Numbers in each ellipse indicate the sample indexes associatedaxtimabhch

clique.

they is a natural framework in which to consiaeultiresolution by J,, Cs. Since|n(s)| = 4k we have tha{C;| < 8k and
covariance extensiofhe multiresolution covariance extensioriC, x C,| < 64k2. These are upper bounds because thegejs
problem is one for which in addition to the local covariance iras well as the set, x C, are not mutually exclusive, which can
formation, some coarse-scale information is also provided. Ao seen by inspection of Fig. 3. Therefore, the total number of
instance, consider a problem in which diagonal bands of a alements of? required is bounded above Byk?(2M+1 — 1),
variance matrix are provided and, in addition, covariances Wenally, sinceN = 4k2, we have that the total number of el-
tween coarse-scale averages are provided. The incorporatiogmints required is bounded aboved®kN. While this is an
this coarse-scale information leads to an extension problem witbper bound, it is of the right order and it indicates that we re-

linear constraints on the unknown covariance elements. Whgeire onlyO(kN) elements ofP.

some preliminary work has been done on this topic [45], there
are a number of challenges associated with building an MAR
model for such an extension. For example, referring to Fig. 2 andm
(1), suppose that a component of a coarser scale state variable
z(s) represents a weighted average of a window of the finest(?]
scale samples of the process being modeled. Then, there is an
implied constraint on the coarse-to-fine dynamics of (1) in order [3]
to guarantee that the coarser scale variable does indeed equ&l
the weighted average of fine-scale samples with probability one.
While this consistency problem has been addressed in another
context [18], [19], its consideration in the context of the covari- [®]
ance extension problem is an open research topic.

(6]
APPENDIX 71
DESCRIPTION OFMAR ENDPOINT MODEL AND
PROOF OFPROPOSITION1 (8l
For conveniencé? we assume tha¥V = 4k2™ for positive
integer M. A statex(s) wheres resides at thenth scale and  [©]

ith shift3 in an (M + 1)-scale MAR model for ath-order
Markov process consists of the samples of the process indexgib]

by n(s) = mi(s) Una(s) Uns(s) where

m(s) =idk2M=™ 400, k — 1] (37a) [11]
na(s) =idk2M ™ 4 4k2M ™1 L[k E—1] (37b)
ns(s) = idk2M =" 4 4k2M=" 4 [k, —1] @37¢c) 112

andc + [a, b] 2 [a+ ¢, b+ .

Proof (Proposition 1): The elements of’ required to com-
pute the parameters for an MAR model just described are char-
acterized as follows. To determine the parameters, we require,
the joint child—parent statistics (cf., (3)). A given child—parent
pair includes the samples gfindexed byC, 2 n(s) Un(sy).
Hence, for this child—parent pair, we require knowledge of thgs;
principal submatrix of” whose rows and columns are indexed
by C,. So, to build the entire model we require knowledge of the[lG]
principal submatrix ofP whose rows and columns are indexed

(23]

121t is a simple matter of bookkeeping to accommodate a process with Iengttm]
N # 4k2M [ In particular, the mapping of elements to nodes will be less regular
and some nodes will have more or fewer tHdnelements [43].

13The root node resides at scalethe next finer scale is scalg etc. For a

given scalen, the leftmost node has shift= 0, the second leftmost node has
shift: = 1, etc.

(18]

O
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