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Abstract. We describe a new class of computationally efficient algo-
rithms designed to solve incomplete-data problems frequently encoun-
tered in image processing and computer vision. The basis of this frame-
work is the marriage of the expectation-maximization (EM) procedure
with two powerful methodologies. In particular, we have incorporated
optimal multiscale estimators into the EM procedure to compute esti-
mates and error statistics efficiently. In addition, mean-field theory (MFT)
from statistical mechanics is incorporated into the EM procedure to help
solve the computational problems that arise from our use of Markov
random-field (MRF) modeling of the hidden data in the EM formulation.
We have applied this algorithmic framework and shown that it is effective
in solving a wide variety of image-processing and computer-vision prob-
lems. We demonstrate the application of our algorithmic framework to
solve the problem of simultaneous anomaly detection, segmentation,
and object profile estimation for noisy and speckled laser radar range
images. © 2001 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1385168]
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1 Introduction

Estimation problems for 2-D random fields arise in conte
ranging from image processing to remote sensing. In so
special cases—most notably spatially stationary statis
over a rectangular grid with regularly space
measurements—very efficient algorithms based on the
Fourier transform~FFT! can be used to obtain optimal e
timates and error statistics. However, when one strays f
these cases, the complexity of optimal solutions for ma
popular classes of stochastic models can become pro
tive with computational loads that do not scale well w
problem size.

One approach that overcomes many of these probl
involves the use of multiscale stochastic models1,2 and as-
sociated multiscale estimation algorithms. These algorith
do not require stationarity, regularly shaped domains,
regularly spaced measurements. Moreover, these mo
have been shown to capture a rich class of random-fi
statistical behavior, making them useful for a number
important applications.

In this paper we extend the applicability of this mul
scale framework by marrying it with two other comput
tionally powerful techniques, namely the expectatio
maximization ~EM! algorithm and mean-field theor
~MFT!. The result is a methodology that can be applied
a greatly expanded range of applications, including text
segmentation, simultaneous classification and gain cor
tion of magnetic resonance imaging~MRI! brain scans,3
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and a relaxed version of the Mumford-Shah variational
proach to image segmentation. A number of these appl
tions are described in some detail in Ref. 4, and Fig
depicts an example of the application to a texture segm
tation problem.

In particular, as described in Ref. 5, each of the in
vidual textures shown in Fig. 1 can be well modeled w
multiscale models, allowing us to apply efficient multisca
estimation procedures to problems such as restoring no
corrupted versions of any one of these textures. Howe
the multiresolution algorithm by itself cannot solve th
problem of restoring the image shown in Fig. 1, as it co
sists of severaldifferent textures, nor can it directly solve
the problem of segmentation of such an image. Howev
by employing the EM concept ofhidden data~in this case,
the segmentation map indicating which of the two wo
textures is visible in each pixel!, we can indeed employ
multiscale estimation as a core component of an algorit
that produced the results~restoration, segmentation, and a
sociated error variances! shown in Fig. 1.

Figure 2 depicts the conceptual structure of our meth
ology. Viewing the EM algorithm as the central structure
an iterative procedure, we use multiscale estimation
solve the so-called M step of the procedure and MFT
provide an efficient approximation to the E step. In the n
section we briefly describe the background topics that fo
the components of the triad in Fig. 2. In Secs. 3 and 4
then develop our algorithm in the context of an importa
1287© 2001 Society of Photo-Optical Instrumentation Engineers
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application, namely laser radar~ladar! image processing,
target segmentation, and range profiling. We have cho
this application for several reasons. First, as we will s
the employment of our framework in this context involve
more than just segmentation, and, as a result, using it
vehicle illustrates both the breadth of problems to which
can be applied and how it is applied. Secondly, this parti
lar application is of significant current interest, and, inde
our results represent a substantial extension of previ
work on ladar anomaly rejection and background ran
plane profiling. Following the development of our a
proach, we present results in Sec. 5 demonstrating its
cacy in simultaneously rejecting anomalies, profiling no
planar backgrounds, detecting and segmenting targets,
providing range profiles of those targets. The paper th
closes with a brief discussion and conclusion.

2 Background

As we have indicated, our framework involves the synth
sis of three distinct methodologies for statistical inferen
and in this section we provide concise summaries of e
of these. More complete description of these topics can
found in some of the references~e.g., Refs. 1,2, and 5–8!.

2.1 The EM Procedure

The EM procedure is a powerful iterative technique suit
for calculating the maximum-likelihood estimates~MLEs!

Fig. 1 Motivational example: texture image segmentation and esti-
mation.

Fig. 2 Conceptual representation of the algorithmic framework.
1288 Optical Engineering, Vol. 40 No. 7, July 2001
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in problems where the observation can be viewed as inc
plete data. The MLE ofX, denoted asX̂ML , based on the
incomplete observed dataY, is defined as

X̂ML5arg max
X

$ log p~YuX!%, ~1!

where logp(YuX) is the log likelihood ofY given X. In
many applications, calculating the MLE is difficult becau
the log-likelihood function is highly nonlinear and not ea
ily maximized. To overcome these difficulties, the EM a
gorithm introduces an auxiliary functionQ ~along with
some auxiliary random variables! that has the same behav
ior as the log-likelihood function~in that when the log-
likelihood function increases, so does the auxiliary fun
tion! but is much easier to maximize.

Central to the EM method is the judicious introductio
of an auxiliary random quantityW with log likelihood
log p(WuX). The dataW is referred to as thecomplete data
because it is more informative thanY. The complete dataW
is not observed directly, but indirectly throughY via the
relationshipY5G(W), whereG is a many-to-one mapping
function. Those unobserved variables are referred to in
EM formulation as thehidden dataand denoted byH. The
EM approach calculatesX̂ML through an iterative procedur
in which the next iteration’s estimate ofX is chosen to
maximize theexpectationof log p(WuX) given the incom-
plete dataY and the current iteration’s estimate ofX. The
iteration consists of two steps:

• The E step computes the auxiliary function

Q~XuX[k]!5^log p~WuX!uY,X[k]&, ~2!

where^•& represents expectation, andX[k] is the esti-
mate ofX from thek’th iteration. Often, this step re
duces to calculating the expected value ofH given Y
andX[k] .

• The M step findsX[k11] such that

X[k11]5arg max
X

$Q~XuX[k]!%.

The maximization here is with respect toX, the first
argument of the functionQ. Intuitively, the M step is
designed to use the expected value of the hidden d
H found in the E step as if it were measured data
order to obtain the ML estimate ofX. The EM algo-
rithm can easily be extended to a maximuma poste-
riori ~MAP! estimator by imposing a prior mode
p(X), on the estimated quantityX during this step.
With this modification, the M step finds theX[k11]

such that

X[k11]5arg max
X

$Q~XuX[k]!1log p~X!%. ~3!

Since the EM algorithm is iterative, initial condition
must be given to start it. As it is guaranteed to conve
only to a local maximum of the likelihood function, choo
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ing initial conditions requires some care. The E and the
steps are evaluated repeatedly until convergence, typic
specified as wheniX[k11]2X[k] i,d for some small
d>0.

2.2 Mean-Field Theory

MFT, which provides a computationally efficient procedu
for approximate calculation of expectations of large M
kov random fields~MRFs!, has its origins in statistical me
chanics and is concerned with finding the mean field ene
of an MRF. In particular, letL denote a two-dimensiona
rectangular lattice. Letu5$ui ,i PL% be a MRF taking on
the well-known Gibbs distribution~see, e.g., Ref. 8! given
by

p~u!5
exp@2zU~u!#

G
.

The constantz>0 is used to adjust the strength of th
energy functionU(u) defined as

U~u!5(
clq

Vclq~u!

where theVclq(u) are the clique potentials used to captu
the interactions between pixels. The normalization cons
G is defined as

G5(
ũ

exp@2zU~ ũ!#.

For simplicity of exposition, pixel interactions are assum
to be at most pairwise. The energy function can now
written as

U~u!5(
i PL FVclq~ui !1

1

2 (
l PNi

Vclq~ui ,ul !G , ~4!

where the singleton cliqueVclq(•) and the doubleton clique
Vclq(•,•) are the clique potentials for a single site and
pair of neighboring sites~horizontal or vertical!, respec-
tively. Finally, as a result of our simplifying assumptio
Ni denotes the set of first-order neighbors of pixeli.

MFT is used to compute an approximation to the me
of the fieldu, i.e., to find

^ui&5(
u

uip~u!5(
ui

ui(L\ i
p~u!

5(
ui

ui

(L\ i exp@2zU~u!#

G
~5!

for eachi PL ~whereL\ i denotes the set of all pixels ex
cluding i ). It is clear from~5! that a large number of con
figurations associated with the energy function need to
evaluated in order to calculate this expectation, thus m
ing its precise calculation both complex and computati
ally impractical. To overcome this, MFT approximates t
weight on each possible value ofui in the rightmost expres
t

sion of Eq.~5!. In particular, for each sitei and each pos-
sible value ofui , we approximate this weight by replacin
the values of each of theuj , j Þ i , by its mean value. Tha
is, we define the mean field energy at sitei as

Ui
mf~ui !5U~u!uuj 5^uj &, j Þ i5Ui

mf8~ui !1Ri
mf8~^uL\ i&!, ~6!

whereUi
mf8(ui) includes all the clique potentials involvin

the value at sitei and is given by

Ui
mf8~ui !5Vclq~ui !1 (

l PNi

Vclq~ui ,^ul&!, ~7!

andRi
mf8(^uL\ i&) consists of terms involving only means

sites other thani. Further we use the mean-field approx
mation for the mean at each site:

^uj&'(
uj

uj

exp@2zU j
mf8~uj !#

G j
mf8

,

~8!

G j
mf85(

ũ j

exp@2zU j
mf8~ ũ j !#.

The MFT formulation supposes that for a particul
pixel i PL, the influence of the energy field from othe
pixels can be approximated by that of their statistic
means. Random fluctuations from the other pixels are
glected. Note that sinceUi

mf(ui) depends on the mean
^uj&, j Þ i , the approximations tôui& in Eq. ~8! depends
on the means at other pixels. Thus the set of equati
corresponding to Eq.~8! for all i PL represents a set o
simultaneous algebraic equations for all of the^ui&. Itera-
tive algorithms can then be used to find the solution to t
set of equations.

2.3 Multiscale Stochastic Models and Optimal
Estimation

In this subsection, we briefly review the multiscale statis
cal framework for modeling and estimating 2-D rando
fields.1,2,5 Multiscale stochastic models for image proces
ing are defined on a pyramidal data structure such as
quadtree shown in Fig. 3. Each level of the tree correspo

Fig. 3 An example of a multiscale quadtree.
1289Optical Engineering, Vol. 40 No. 7, July 2001
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to a different scale of resolution in the representation of
random field of interest. Define the indexs to specify the
nodes on the tree,sḡ to represent the parent of nodes, and
sa i to denote theq offspring of nodes with i 51, . . . ,q
(q54 for a quadtree!. The scale of nodes is denoted as
m(s) and is numbered sequentially from coarse to fi
resolution. A multiscale model with stateX(s)PRn is
specified by a recursion of the form

X~s!5A~s!X~sḡ !1B~s!W~s! ~9!

with X(0);N(0,Po), W(s);N(0,I ), and W(s)PR m.
@The notationN(m,L) represents a Gaussian random ve
tor x with meanm and varianceL.# The matricesA(s) and
B(s) are the parameters of the tree model, appropria
chosen to represent the random field of interest. The
node of the treeX(0) with prior covariancePo provides the
initial condition for starting the coarse-to-fine recursio
The driving white noiseW(s) is independent of the initia
conditionX(0). Thestates at a given scale can be thoug
of as information about the process at that level of the tr
As X(s) evolves from coarse to fine scale, the te

A(s)X(sḡ) predicts the states of the process for the ne
finer scale while the termB(s)W(s) adds new details to
these states.

The measurement model associated with this multisc
stochastic model is

Y~s!5C~s!X~s!1V~s! ~10!

with V(s);N(0,R(s)), R(s) the covariance ofV(s), and
C(s) the measurement matrix used to describe the natur
the measurement process. The general multiscale est
tion framework allows easy and direct fusion of measu
ments at all scales~see, for example, Ref. 9!. For the ap-
plication on which we focus here, all measurements will
scalar observations at the finest scale, representing p
measurements of the random field of interest.

The algorithm for optimal multiscale estimation consis
of two steps: a fine-to-coarse sweep~which resembles the
time-series Kalman filtering algorithm! followed by a
coarse-to-fine sweep~which is analogous to the Rauch
Tung-Striebel smoothing algorithm!. Among the most im-
portant properties of this algorithm is that it produces b
optimal estimates and the covariance of the errors in th
estimates with total complexity that isO(k3n), wheren is
the number of fine-scale pixels andk is the dimension of
the stateX(s). Thus the computation load for this algo
rithm grows linearly with problem size. This should be co
trasted with the complexity of other estimation approac
~e.g., those based on MRF models!, which have complexity
that is O(na) for values of a.1 for calculation of the
estimates, and typically even greater complexity~often pro-
hibitively high! for the computation of error covariance
Of course, the utility of the multiscale approach also d
pends on having models with modest state dimensionk.
Demonstration that such models do exist for a wide vari
of random fields can be found in Refs. 5,10,11. Of spec
relevance to this paper are the multiscale models develo
1290 Optical Engineering, Vol. 40 No. 7, July 2001
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in Ref. 10 corresponding to so-called thin-plate and th
membrane random surfaces. A brief summary of the
models is presented in Sec. 7.1.

3 Probabilistic Models for Laser Radar Range
Profiling and Segmentation

As illustrated in Fig. 4, and as described in detail in Re
12,13, raster-scanned and range-resolved ladar ima
provides the capability for producing 3-D images
ground-based objects from airborne platforms using
down-looking geometry. Utilization of such images@e.g.,
for automatic target recognition~ATR!# involves several
basic functions. First, of course, is dealing with the unc
tainties and sources of error in the ladar measurements
described in Ref. 12, these errors consist of relatively sm
perturbations due to noise and occasional large anoma
due to deep speckle fades. Since the frequency of ano
lies can be significant, taking account of them is a serio
issue. Second, accurate localization and profiling of a
target present in a ladar range image requires estimatio
the unknown and spatially varying range of the groun
Detection and profiling of the target then requires segme
ing out the region over which the range measureme
stand out from the background, indicating the presence
the target.

As a first-generation preprocessor for an ATR syste
Green and Shapiro12 developed an algorithm that estimate
the background range profile for a ladar range image c
rupted by range anomalies. Only the problem of estimat
the background range profile is addressed in their al
rithm. The idea is that pixels that do not belong to th
background are grouped together as either range anom
or target range measurements. Their algorithm is based
an idealized single-pixel statistical model for the lad
range measurements together with the assumption tha
background range profile is a plane parameterized by
elevation and azimuth range slopes and by the range in
cept. The EM procedure is employed in Green and S
piro’s algorithm. The E step localizes and suppresses
range anomalies; the M step finds the ML estimate of
three parameters that characterize the planar backgro
range profile. Simulation studies have confirmed that Gre
and Shapiro’s technique is computationally simple w
good range anomaly suppression capabilities.

The application of our EM–multiscale-MFT estimatio
framework to the ladar range imaging problem exten
Green and Shapiro’s work in several fundamental and pr

Fig. 4 Down-looking geometry for collecting 3-D images of ground-
based scenes.
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tically significant ways. First, rather than modeling t
background surface as planar, we allow smooth spa
variation of the background, using a multiresolution surfa
model analogous to the so-called thin-membrane sur
model~see Sec. 7.1!. Employing this multiresolution mode
allows us to use the very fast estimation procedure
scribed in the previous section. In addition to estimating
background range profile, the approach we describe sim
taneously performs two other significant functions, nam
target segmentation and target range profile estimation
accomplish this, we use a second multiscale model, in
case one corresponding to a so-called thin-plate prior
model the target range profile within the image, toget
with several important sets of hidden variables. The fi
two of these sets, namely, the sets of pixels that corresp
to anomalous background and target range measurem
are analogous to those used in Ref. 12. The other hid
variable, namely, the set of pixels segmenting the tar
and background regions and explicitly identifying the li
of pixels corresponding to ground attachment~i.e., where
the target meets the ground!, allows us to perform targe
segmentation and profiling.

A uniformly spaced raster scan is used to collect a ra
image consisting ofn pixels. We denote the 2-D lattic
consisting of thesen pixels asL. Let y5$yi ,i PL% denote
the measured ladar range values, whose background r
profile is denoted asxbg5$xbgi

,i PL% and whose targe

range profile is denoted asxtg5$xtgi
,i PL%. Note that it is

convenient~with no approximation! to think of both the
background and the target as being defined over the e
image domain. The background obviously is, although i
occluded by the target over the~unknown! region in which
the target resides. Thus, while the algorithm we desc
produces estimation of background and target fields o
the entire image domain, the target field estimate is o
meaningful over the estimated target region, while over t
same region the background estimate can be thought o
an optimal interpolation of the occluded portion of th
background. For notational simplicity, lety, xbg, and xtg
denote lexicographically ordered vectors of the measu
ment, background, and target fields, respectively. We n
present the several elements of our models for these q
tities, including the specification of the hidden variabl
employed in our EM-based procedure.

3.1 Prior Models for xbg and xtg

The random fieldsxtg andxbg are modeled as independen
zero-mean Gaussian random fields to represent the smo
ness constraints on the random fields. Specifically,xbg is
modeled as the finest-scale field in a multiscale th
membrane model, andxtg as the finest-scale field in a mu
tiscale thin-plate model~see Sec. 7.1 and Ref. 10!.

In principle, then, the prior model forxbg has the form
p(xbg)5G(xbg;0,Lbg), where

G~x;m,L!5~2p!2 n/2uLu2 1/2

3exp@2 1
2 ~x2m!TL21~x2m!#,

and whereLxbg
is then3n covariance matrix for the back

ground range profilexbg. Likewise, the prior model for the
l

-

d
s,
n
t

e

e

r

s

-
t
-

-

target range profilextg is p(xtg)5G(xtg ;0,L tg), whereLxtg

is the n3n covariance matrix for the target range profi
xtg . While we never need to explicitly calculateLxbg

and

Lxtg
or their inverses, it is convenient for our discussion

introduce these explicit models. Also for ease of notati
the two range profiles are stacked together to form
range profile vectorX, i.e.,X5@xbg xtg#

T. We consider the
two range profiles to be statistically independent of o
another, so that the prior model forX becomes

p~X!5G~X;0,LX!, LX5FLxbg 0

0 Lxtg

G . ~11!

3.2 Definition of the Hidden Variables

The hidden variables we introduce partition the observ
image domainL into five regions. A convenient way in
which to express this partitioning is through the introdu
tion of five sets of indicator functions~taking only values 0
and 1) overL, one for each region type. The simplest
these are the two sets of variableshatg5$hatgi

,i PL% and

habg5$habgi
,i PL%, indicating the presence of rang

anomalies over the target and background portions of
image, respectively. The reason for separating th
anomalies into two fields is simple: we want to interpola
the target~background! range profile for anomalous pixel
within the target~background! region.

The next two sets of hidden variables,hbg5$hbgi
,i

PL% andhtg5$htgi
,i PL%, designate those portions of th

observed range measurements that are~unambiguously!
measurements of the background or target, respectiv
The final set of hidden variables indicates the line of pix
along which the target and background profiles intersec
i.e., the ground attachment line of the target, specified
hga5$hgai

,i PL%. Together, the five sets of hidden var
ables indicate mutually exclusive sets of pixels partitioni
L. That is, if we define

Hi5@hbgi
htgi

hgai
habgi

hatgi
#T ; i PL, ~12!

then eachHi takes on only the valuesek , k51, . . . ,5,
whereek is a binary column vector with 1 in thek’th com-
ponent and 0 everywhere else. As an example,Hi5e2 in-
dicates pixeli as belonging to image class 2, i.e., the set
pixels corresponding unambiguously to target range m
surements.

3.3 Measurement and Pseudomeasurement Models

The observed ladar image data are noise- and anom
corrupted measurements of either the target or backgro
The explicit dependence of these measurements onX andH
is given by the following measurement model:

yi5Fhbgi
1

hgai

2
htgi

1
hgai

2
GF xbgi

xtgi

G
1@htgi

1hbgi
1hgai

habgi
1hatgi

#F vdRi

vDRi

G , ~13!
1291Optical Engineering, Vol. 40 No. 7, July 2001
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Tsai, Zhang, and Willsky: Expectation-maximization algorithms . . .
where we have adopted some of the notation from R
12,13 to describe the noise and anomalous measure
distributions. In particular,vdR ; N( 0 ,dR2 I ) represents
the noise in a nonanomalous range measurement, withdR
corresponding to the range resolution of the ladar syst
while vDR;U(Rmin1 DR/2 , @(DR)2/12# I ) corresponds to
the uncertainty in an anomalous measurement, modele
uniformly distributed over the full unambiguous range i
terval of the ladar, i.e.,DR5Rmax2Rmin . @The notation
U(m,L) represents a uniform random vector with meanm
and varianceL.# For the results here, we use the sam
ladar system parameters and statistics as in Ref.
namely, dR52 range bins,Rmax51524 range bins, and
Rmin50 range bins, so thatDR51524 range bins. Each
range bin translates to a physical distance of 1.1 m, w
lower bin numbers indicating closer range.

Intuitively, the first term on the right of Eq.~13! deter-
mines the type of each range measurementyi , while the
second term indicates the type of noise associated
each range measurement. It is instructive to examine
eral specific examples to understand how the hidden v
ables influence the model of the observed data. For
ample, suppose that pixeli corresponds to a backgroun
measurement~so thathbgi

51 and all other hidden variable
are zero!. Then

yi5@1 0#F xbgi

xtgi

G1@1 0#F vdRi

vDRi

G5xbgi
1vdRi

.

This equation says thatyi is equal to the background rang
profile xbgi

plus some measurement noise, which we mo
as additive Gaussian noise. Suppose, as another exam
pixel i corresponds to a range anomaly lying within t
target region (hatgi

51). Equation~13! then gives

yi5@0 0#F xbgi

xtgi

G1@0 1#F vdRi

vDRi

G5vDRi
,

which is consistent with our modeling of a range anoma
As a final example, suppose pixeli corresponds to a groun
attachment measurement (hgai

51). This means thatxbgi

andxtgi
are implicitly equal, and from Eq.~13! we have

yi5
xbgi

1xtgi

2
1vdRi

,

which binds the ground attachment measurement to b
xbgi

andxtgi
.

Note that whenhgai
51, we would like to ensure thatxbgi

and xtgi
are approximately equal~since the target attache

to the ground at these points!. There are two equivalen
ways in which to accomplish this. The first is as part of t
prior model forxbg andxtg , providing a nonlinear coupling
between these two fields. The second approach, w
leads to a far simpler estimation algorithm, involves inc
porating this constraint as an additional set of pseudom
1292 Optical Engineering, Vol. 40 No. 7, July 2001
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surements: For those pixels for whichhgai
51, we observe a

measurement value of 0 for the differencexbgi
2xtgi

, where
the additive noise on this measurement has very small v
ancee2. That is, at each pixel we have the additional me
surement

05@hgai
2hgai

#F xbgi

xtgi

G1hgai
ve i

; i PL, ~14!

whereve ; N(0,e2 I ). In this setup, the parametere con-
trols the tightness of the coupling between the two MR
Note that ifhgai

50 this equation correctly indicates that w

are not specifying any additional constraint onxbgi
2xtgi

.

However, if hgai
51, this pseudomeasurement introduce

strong coupling between theestimatesof xbgi
andxtgi

.
Putting this all together, at each pixeli we now have a

2-vector of measurements

Yi5Fyi

0 G5C~Hi !Xi1F~Hi !Vi ~15!

with Vi
T5@vdRi

ve i
vDRi

#, and

C~Hi !5F hbgi
1

hgai

2
htgi

1
hgai

2

hgai
2hgai

G ,

F~Hi !5Fhbgi
1htgi

1hgai
0 habgi

1hatgi

0 hgai
0

G .

Equation~15!, then, gives us the second needed part of
probabilistic model, namely,

p~YuX,H !5)
i PL

p~Yi uXi ,Hi !

5)
i PL

Hi
T3

G~yi ;xbgi
,dR2!

G~yi ;xtgi
,dR2!

GS yi ;
xbgi

1xtgi

2
,dR2DG~xbgi

;xtgi
,e2!

1/DR

1/DR

4 .

~16!

~We ignore the digitization that is found in typical lada
systems, and treatY as a continuous random variable.! The
role of Hi is simply to select one of the five densities ind
cated on the right-hand side of Eq.~16!.

3.4 Probabilistic Model for the Hidden Variables

The remaining part of the probabilistic model is that for t
hidden variables,H. In particular, as we see in the ne
section, the quantity that is needed for the EM procedur
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p(HuX). In our model we make the simplifying assumptio
that H andX are statistically independent, so

p~HuX!5p~H !. ~17!

Note that for the variableshatg andhabg modeling the pres-
ence of ladar anomalies, this independence assumptio
completely justified. However, for the others it represent
clear simplification. For example the conditionhgai

51

~ground attachment! implies xbgi
'xtgi

, indicating a very
strong dependence betweenH andX. However, as we have
already indicated, we can capture this dependence thro
the pseudomeasurement~14! rather than through the prior
Note that there also is a dependence between@hbgi

,htgi
#

~indicating observation of background or target in pixeli )
and@xbgi

,xtgi
#: In particular, if the target is present in pixe

i (htgi
51), then obviously the target occludes the bac

ground, implying thatxtgi
,xbgi

. While we could introduce
another pseudomeasurement to capture this relationsh
well, for simplicity we have not done so, and thus o
model indeed neglects this dependence. In principle
implies that the resulting estimates we produce could h
target and background estimates that are inconsistentĥtgi

51 but x̂tgi
. x̂bgi

), but, as we illustrate using real lada
data, employing this simplification does not in fact intr
duce such inconsistencies.

We use a Gibbs prior to capture spatial dependence
the hidden variables:

p~H !5G21 exp@2zU~H !#,

whereG is the normalization constant. Defining the ener
functionU(H) requires specifying the neighborhood stru
ture on the 2-D latticeL. For our purposes it is sufficient t
use first-order neighborhoods,14 implying that cliques con-
sist only of individual pixels and pairs of pixels that a
either horizontal or vertical nearest neighbors. This impl
that U(H) can be written as

U~H !5(
i PL FVclq~Hi !1

1

2 (
l PNi

Hi
TWi l Hl G , ~18!

whereWi l is a 535 matrix whose (s,t)th component is
Vclq(Hi5es ,Hl5et). The elements within each matrixWi l
are chosen to encourage~discourage! certain types of inter-
actions among the hidden variables by decreasing~increas-
ing! the energy functionU(H). The specific choices fo
these matrices that we have used are as follows:

Wi l 5F 20.5 0.5 0 0 0

0.5 20.5 0.5 0 0

0 0 0.5 0 0

0.5 20.5 0 0 0

20.5 0.5 0 0 0

G , ~19a!

when pixell is above pixeli,
s

h

s

Wi l 5F 20.5 0.5 0 0 0

0.5 20.5 0 0 0

0 0.5 0.5 0 0

0.5 20.5 0 0 0

20.5 0.5 0 0 0

G , ~19b!

when pixell is below pixeli, and

Wi l 5F 20.5 0.5 0 0 0

0.5 20.5 0 0 0

0 0 20.5 0 0

0.5 20.5 0 0 0

20.5 0.5 0 0 0

G , ~19c!

when pixell is to the left or right of pixeli. In each of these
matrices, the entries in the first row are chosen to enco
age continuity of the background region~i.e., if a majority
of the neighbors of pixeli are labeled as background, the
pixel i is more likely to be background as well!. The entries
in the second row are chosen to encourage continuity of
target region and, in the case of Eq.~19a!, also to discour-
age target pixels from appearing below the ground atta
ment pixels. The entries in the third row are chosen
encourage the ground attachment pixels to form a thin
below the target pixels. The entries in the fourth and fi
rows are chosen to help differentiate between an anoma
pixel located in the background region and an anomal
pixel located in the target region.

In order to incorporatep(Hi), the single-pixel stationary
prior probability density functions~pdfs! for Hi , into our
Gibbs modeling ofp(H), we assign the singleton cliqu
potentialVclq(•) to be

p~Hi !5Zi
21 exp@2zVclq~Hi !#,

~20!

Zi5(
H̃i

exp@2zVclq~H̃ i !#.

Based on the work in Ref. 12, the probability of the pre
ence of range measurement anomalies is 0.05, and we
tribute this prior probability equally betweenp(Hi5e4)
and p(Hi5e5), the probabilities that a pixel measureme
is an anomaly situated inside the background region
that it is an anomaly situated inside the target region,
spectively. The prior probability that a particular pixel
the image is a ground attachment pixel is chosen to be 0
The remaining prior probability forHi (0.9) is distributed
equally betweenp(Hi5e1) and p(Hi5e2), the probabili-
ties that a pixel corresponds to the background region
to the target region, respectively.* To summarize:

*Note that the values we have chosen forp(e1), p(e2), andp(e3) reflect
relative values of pixel categories for ladar images in which we exp
targets to fill roughly half of the image area. If targets take up sign
cantly less image area, one can capture this by biasing the prior in f
of e1 . However, as the examples in Sec. 5 indicate, the results are
particularly sensitive to these values.
1293Optical Engineering, Vol. 40 No. 7, July 2001
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p~Hi !5@0.45 0.45 0.05 0.025 0.025#Hi .

Our full prior model forH then is

p~H !5G21)
i PL Fp~Hi !Zi expS 2

z

2 (
l PNi

Hi
TWi l Hl D G . ~21!

4 The Profile Estimation and Segmentation
Algorithm

The problem to be solved is the estimation ofX given Y
based on the prior modelp(X) given by Eq.~11!, the mea-
surement modelp(YuX,H) given by Eq.~16!, and the prior
model for the hidden variablesp(HuX)5p(H) given by
Eq. ~21!. In this section we describe the two steps in t
EM procedure required to compute a local maximum
log p(XuY), which we take as our estimate. This procedu
also produces an estimate ofH that is of direct use in seg
menting out the target, rejecting and compensating
anomalies, etc.

4.1 The E Step

The quantity to be calculated in the E step is

Q~XuX[k] !5^ log p~Y,HuX!uY,X[k]&,

which is a conditional expectation overH given Y and the
current estimateX[k] of the range profile. Using Bayes’
rule, Q can be rewritten as

Q~XuX[k] !5^ log p~YuX,H !uY,X[k]&1^ log p~H !uY,X[k]&.
~22!

Since the M step is a maximization ofQ(XuX[k] ) over X,
we can discard the second term in Eq.~22!, since it does
not depend onX. Using the same notation for the result, w
have that

Q~XuX[k] !5(
i PL

^Hi uY,X[k]&T

33
log G~yi ;xbgi

,dR2!

log G~yi ;xtgi
,dR2!

log GS yi ;
xbgi

1xtgi

2
,dR2D 1 log G~xbgi

;xtgi
,e2!

2 log DR

2 log DR

4 .

~23!

@Here we have also used the fact that eachHi is an indica-
tor vector in order to take the log ofp(YuX,H) in Eq. ~16!.#
Thus the core of the E step is the computation
^Hi uY,X[k]&. Using the formula for expectations, Bayes
rule, and Eqs.~16!, ~17!, and~21!, we find that

^Hi uY,X[k]&5Y21(
H

Hi )
i PL Fp~Yi uXi

[k] ,Hi !p~Hi !

3expS 2
z

( Hi
TWi l Hl D G , ~24!
2 l PNi
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where

Y5(
H̃

)
i PL Fp~Yi uXi

[k] ,H̃ i !p~H̃ i !

3expS 2
z

2 (
l PNi

H̃ i
TWi l H̃ l D G .

From this, it is obvious that a large number of configur
tions of H need to be evaluated in order to compute E
~24!. This makes its precise calculation both complex a
computationally impractical. By applying MFT, this diffi
culty is overcome, and an approximation to^Hi uY,X[k]& is
obtained by evaluating the following:

^Hi uY,X[k]&'Y i
mf21

(
Hi

FHip~Yi uXi
[k] ,Hi !p~Hi !

3expS 2z (
l PNi

Hi
TWi l ^Hl uY,X[k]& D G , ~25!

where

Y i
mf5(

Hi
˜

Fp~Yi uXI
[k] ,c̃i !p~H̃ i !

3expS 2z (
l PNi

H̃ i
TWi l ^Hl uY,X[k]& D G .

As Eq. ~25! indicates, to find the mean field̂HuY,X[k]& at
i, one needs the mean field^HuY,X[k]& at the neighbors of
i. Thus, Eq.~25! for all i PL represents a set of simulta
neous algebraic equations, which can be solved by emb
ding it within the E step of the overall EM procedure.
principle we can perform multiple Jacobi iterations to sol
these equations within each E step. However, obtaining
accurate estimate of^HuY,X[k]& in each E step may not b
necessary, sincêHuY,X[k]& is merely used to guide the
estimate ofX in each M step. Empirically, we have foun
that it is sufficient and, moreover, computationally efficie
to approximate Eq.~25! by performing onlyone Jacobi
iteration in each E step. ThêHuY,X[k21]& calculated from
the previous EM cycle serves as the initial guess for t
single Jacobi’s iteration. This approximation scheme h
the natural notion of refining the estimate of^HuY,X[k]& as
the number of EM cycles increases~because successive e
timates of^HuY,X[k]& used for the Jacobi iterate in the
step are more accurate!. Also, since the calculation o
^HuY,X[k]& can be decomposed into local computations,
solution can be implemented in a parallel fashion to yiel
fast and simple approximation.

4.2 The M Step

The M step calculates theX[k11] in Eq. ~3!. It is straight-
forward to check that the quantity to be maximized in E
~3! is quadratic inX and that the maximum is given by

~LX
211M! X[k11]5Py, ~26!
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whereLX is the block-diagonal prior covariance matrix
Eq. ~11!, andM andP are given by

M5FD1 D3

D3 D2
G , P5FD4

D5
G , ~27!

whereD1 , . . . , D5 are diagonal matrices given by

~D1! i i 5
^hbgi

uY,X[k]&1^hgai
uY,X[k]&/4

dR2

1
^hgai

uY,X[k]&

e2
; i PL, ~28a!

~D2! i i 5
^htgi

uY,X[k]&1^hgai
uY,X[k]&/4

dR2

1
^hgai

uY,X[k]&

e2
; i PL, ~28b!

~D3! i i 5^hgai
uY,X[k]&S 1

4 dR2
2

1

e2D ; i PL, ~28c!

~D4! i i 5
^hbgi

uY,X[k]&1^hgai
uY,X[k]&/2

dR2
; i PL, ~28d!

~D5! i i 5
^htgi

uY,X[k]&1^hgai
uY,X[k]&/2

dR2
; i PL. ~28e!

The quantityX[k11] can be viewed as the MAP estima
of X based on the prior model specified byp(X) and a
measurement model p(datauX) specified implicitly by
Q(XuX[k] ). @More precisely, logp(datauX)5Q(XuX[k] )
1terms not depending onX.# The prior onX is reflected in
the block-diagonal matrixLX

21 in Eq. ~26!, while M andP
reflect the measurement model. Specifically, by collect
measurementsy in Eq. ~13! and pseudomeasurements~all
with value 0! in Eq. ~14! into vectors, we can write

S y

0D 5C~H !X1F~H !V, ~29!

whereV is a vector containing all of the noise sourcesvdRi
,

vDRi
, ve i

at all pixels with covariance matrixR. What the E

step in essence does is to replaceC(H) andF(H) by ex-
pected values~or approximations of these using MFT!,
yielding an effective measurement model of the form

S y

0D 5C[k]X1F [k]V. ~30!

Using this notation,

M5C[k]
T @F [k]RF[k]

T #21C[k] , ~31a!
Py5C[k]
T @F [k]RF[k]

T #21S y

0D , ~31b!

so that Eq.~26! is precisely the set of linear equations f
the optimal estimate ofX based on the measurement mod
~30!. Moreover, the corresponding estimation error cova
ance is given by

Le5~LX
211M!21. ~32!

While the prior models for target and background a
independent~as reflected in the block-diagonal structure
LX), their estimates are coupled. For example, the E s
replaces the varioush’s in Eq. ~13! by their expectations.
Thus while each pixel measurement is either target, ba
ground, or anomaly, the model~30! will in general charac-
terize each measurement as a weighted average of t
possibilities, using the expected values of the varioush’s as
calculated in the E step. However, this coupling occurs i
pixel-by-pixel fashion, as reflected in the fact thatD1 , . . . ,
D5 are diagonal. Indeed, by reordering the elements oX
and y, we can view our problem as that of estimating
vector random field~consisting of the 2-D vector of targe
and background at each pixel! based on pixelwise measure
ments that are independent from pixel to pixel.

Finally, it is important to realize that despite all of th
structure, Eq.~26! represents a huge set of equations to
solved (2n2 for an n3n image!, and the error covariance
~32! is of the same very large size. However, by using
multiresolution thin-membrane and -plate priors mention
previously and summarized in Sec. 7.1, the solution of
~26! and the computation of the diagonal elements ofLe
~i.e., the pixelwise error covariances! can all be accom-
plished with total per-pixel complexity that is independe
of image domain size. This makes the EM procedure
only feasible but, in fact, quite efficient.

5 Experimental Results

In this section, we present two examples to illustrate
performance of the algorithm we have just described. T
ladar range images we use are provided by MIT Linco
Laboratory. These range images are formed by an airbo
coherent CO2-ladar system operating in pulsed-imag
mode. The images are 433126-pixel gray-scale range im
ages.

In our first example, the range image is of a C50 ta
positioned against a sloping featureless terrain as show
Fig. 5~a!. This range image was taken under conditions
high carrier-to-noise ratio~CNR!, so that it has relatively
little noise, with almost no anomalies present. We use
image as the ground truth to test the performance our a
rithm. To simulate realistic range images that resemble
ones obtained under battlefield conditions~i.e., low-CNR
conditions!, a local-range-accuracy Gaussian noise with
standard deviation ofdR52 bins is artificially added to
each pixel in the image. In addition, a Bernoulli process
used to randomly select 5% of the pixels in the image
anomalous pixels. For each such anomalous pixel, a
dom range value, chosen from a uniform distribution ov
1295Optical Engineering, Vol. 40 No. 7, July 2001
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the range uncertainty intervalDR51524 bins, is assigned
The resulting ‘‘observed’’ ladar range image, shown in F
5~b!, very much resembles the ones obtained on the ba
field. The parameters used to obtain this simulated la
image came from Ref. 12.

One of the goals of our algorithm is to estimate t
background and the target range profiles, i.e., the ra
profiles of the sloping featureless terrain and the tank
houette, based on the ‘‘observed’’ image. Figure 6 sho
our estimate of the range profiles and their associated e
statistics. The error statistics provide us with a useful m
sure of the uncertainty of our estimate of the range profi
From top to bottom, this figure shows the estimate of
background range profile, its estimation error variances,
estimate of the target range profile, and its estimation e
variances. The estimate of the background range profil
Fig. 6~a! demonstrates good anomaly suppression capa
ties. The estimated profile is smooth and free of the obvi
blocky artifacts sometimes associated with the use o
multiscale estimator.5,10 This is directly attributable to the
use of the overlapping tree surface models developed
Ref. 10 and summarized in Sec. 7.1. More interestingly,
estimate of the background is obtained over theentirefield
of view, including parts of the background range profi
that are obscured from the field of view by the tank and
range anomalies. Even without background range meas
ments at these obscured locations, the multiscale estim
still does capture the coarse features of the smooth ba
ground profile there. The lack of background range m
surements at the locations of the tank is consistent with
information conveyed in Fig. 6~b!, which shows high esti-
mation uncertainties around the region obscured by
tank.† Figure 6~c! shows the estimates of the tank’s ran
profile. Note that the estimate of the target range profile

†Note that in contrast to the estimates in Fig. 6~a!, the error variances in
Fig. 6~b! do display some of the blocky artifacts associated with mu
scale estimates, although even these are greatly reduced by using
lapped models. In fact, as discussed in Ref. 10, they can be red
further by increasing the so-called degree of overlap, which however
increases the computational complexity.

Fig. 5 Ladar range image of tank: (a) ground truth image, (b) ‘‘ob-
served’’ image.
1296 Optical Engineering, Vol. 40 No. 7, July 2001
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-
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relatively flat, which is consistent with our thin-plate mod
eling. Figure 6~d! shows the estimation error variances
the target range profile at locations where the tank appe

The other goal of our algorithm is to provide a segme
tation map of the ladar range image. By thresholdingH, we
obtain the segmentation map shown in Fig. 7. Figure 7~a!
shows the locations of the target and the ground attachm
pixels, while Fig. 7~b! shows the locations of the target an
background range anomaly pixels. It is interesting to n
that as designed, the ground attachment class constitut
thin line corresponding to the line along which the targ
attaches to the background. Taken together, the target
els and the target range anomaly pixels form the locat
map of the target of interest, which in this case is the ta
More importantly, the location map of the tank with it
accompanying range profile can yield 3-D informatio
about the target and thus plays an important role in AT

Using the estimate of the two range profiles and t
information provided by the segmentation map, we can
construct an anomaly-free and denoised image from

r-
d

Fig. 6 Multiscale tank ladar range profile estimates: (a) estimate of
background range profile, (b) estimation error variances of back-
ground range profile, (c) estimate of target range profile, (d) estima-
tion error variances of target range profile.
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raw noisy data in Fig. 5~b!. This reconstructed ladar rang
image of the tank is shown in Fig. 8. The reconstruct
image is remarkably similar to the ground-truth ladar ran
image in Fig. 5~a!.

The results shown in Figs. 6–8 were obtained withz
51 and e50.1, after running our algorithm for 14 EM
iterations. We chose 14 iterations as the stopping poin
our iterative scheme based on the results shown in Fig
The graphs in the figure show the one-norm distance m
sure of the estimatesxbg and xtg between two successiv
iterations. After 14 iterations, the estimates appear to h
stabilized, and it is at this point that we decided that t
algorithm had converged. Note, however, that the knee
both of these curves occur after only two or three iteratio
suggesting that we can obtain nearly as good reconst
tions much more quickly if total computational load is
concern.

As another demonstration of the performance of our
gorithm, we use another ladar range image, where the
get of interest is a truck. Figures 10–14 convey the sa
set of information as their counterparts in Figs. 5–9.

6 Conclusion

The ladar target segmentation and range profiling algorit
that has been described in this paper has two compone
estimation of the segmentation map and range profile e
mation. Our contribution has been to combine them in

Fig. 7 Segmentation results of tank ladar range image: (a) target
(tg) and ground attachment (ga) locations, (b) range anomaly loca-
tions inside (atg) and outside (abg) the target region.

Fig. 8 Anomaly-free and denoised reconstruction of the tank ladar
range image.
.
-

-

-

s:
-

iterative fashion that yields a powerful new estimation pr
cedure for ladar range image enhancement. Building on
previous work done by Green and Shapiro on planar ra
profiling, we derived a general algorithm for backgroun
range profile estimation that is able to deal with more co
plicated background. This extension uses a multiscale th
membrane model for the background range profile; it
much less restrictive than the surface planar model used
Green and Shapiro and is more applicable for estimat
the range profiles of natural scenes. As an added feat
we also developed our methodology using a thin-plate pr
for target segmentation and estimation and hence prov
3-D fine range information about the target required,
example, in shape-based ATR. The multiscale methodol
provides a computationally efficient and statistically op

Fig. 9 Convergence results of tank ladar range profile estimates:
(a) change in the estimate of background range profile with each
iteration, (b) change in the estimate of target range profile with each
iteration.

Fig. 10 Ladar range image of a truck: (a) ground truth image, (b)
‘‘observed’’ image.
1297Optical Engineering, Vol. 40 No. 7, July 2001
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Fig. 11 Multiscale truck ladar range profile estimates: (a) estimate
of background range profile, (b) estimation error variances of back-
ground range profile, (c) estimate of target range profile, (d) estima-
tion error variances of target range profile.

Fig. 12 Segmentation results of truck ladar range image: (a) target
(tg) and ground attachment (ga) locations, (b) range anomaly loca-
tions inside (atg) and outside (abg) the target region.
1298 Optical Engineering, Vol. 40 No. 7, July 2001
mal estimate of the two range profiles. The availability
accompanying estimation error variances provided by
multiscale framework is an attractive feature that can
used to assess the goodness of our estimates. In additio
profile estimation, our algorithm, aided by an approxim
tion scheme derived from MFT, simultaneously provides
estimate of the segmentation map which can also be u
for ATR.

More broadly, the major contributions of this paper l
in the formulation of a mathematically sound methodolo
based on the EM procedure that can be used to harnes
powers of both multiscale methods and MFT in solvin
incomplete-data problems, extending well beyond the la
range imaging application described here. For examp
ranging from texture segmentation to simultaneous tis
classification and gain correction in MRI, we refer th
reader to Refs. 3 and 4.

7 Appendix. Multiscale Thin-Plate and Thin-
Membrane Models in the Overlapping
Multiscale Tree Framework

Here we provide a brief sketch of the multiscale thin-pla
and -membrane models introduced in Ref. 10. As discus
in Sec. 2.3, multiscale models are defined on trees, wit
stateX(s) at each node on the tree and with measureme

Fig. 13 Anomaly-free reconstruction of the truck ladar range image.

Fig. 14 Convergence results on truck radar range profile estimates:
(a) change in the estimate of background range profile with each
iteration, (b) change in the estimate of target range profile with each
iteration.
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Y(s) potentially defined at every node. In modeling targ
and background fields as surfaces, the representatio
either surface resides at the finest scale of the tree, a
the real ladar range measurements and ground att
ment pseudomeasurements described in Sec. 3. Thu
role of the ‘‘hidden’’ states and some addition
pseudomeasurements at coarser scales in the tree
shape the fine-scale surface statistics to approximate t
corresponding to thin-plate and thin-membrane statist
models.

7.1 Multiscale Thin-Plate and Thin-Membrane
Models

Thin-plate and -membrane models, which are frequen
used in computer vision to assert smoothness constra
correspond to particular variational problems. As discus
in Refs. 5, 10, and 15, these models can also be interpr
statistically, and they correspond to prior models for s
faces with self-similar statistics and, in particular wi
power spectral densities of the form 1/f a with a depending
on whether a thin plate (a54) or membrane (a52) model
is used. As discussed first in Ref. 5, such self-similar s
tistics can also be captured in multiscale models, albeit w
slight differences in the prior, but with all of the comput
tional advantages of multiscale models.

The basic thin-plate or -membrane multiscale model
troduced in Ref. 10 is given by the following:

F z

p

q

zp

G ~s!5F 1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

GF z

p

q

zp

G ~sḡ !

1F Bs2
2m(s)/2 0 0

0 Bg22m(s)/2 0

0 0 Bg22m(s)/2

0 0 0

G
3W~s!, ~33!

where the state at each nodes consists of the heightz of the
surface at the scale and resolution corresponding tos, thex
andy components (p andq) of the gradient of the surfac
~at the scale and location of nodes!, and the surface heigh
at the parent to nodes at the next coarser scale@i.e.,
zp(s)5z(sḡ)].

The thin-membrane model corresponds to Eq.~33!
with Bs@Bg ~to diminish the effects of the statesp andq
and decrease the contribution of the thin-plate penalty!, to
capture the fact that this 1/f 2-like model forz corresponds
to what is in essence a self-similar random walk in sca
The multiscale counterpart of the thin-plate prior cor
sponds toBg@Bs in Eq. ~33!. However, as is well known
the components of the surface gradient must sat
the so-called integrability constraints, whose strict enfor
ment increases the complexity of surface estimation con
erably. An alternative is to relax this hard constraint a
replace it by a pseudomeasurement at every node on
tree. Referring to Fig. 15, the pseudomeasurements a
f
o
-
e

to
e

l

,

d

-

e
e

four nodessi for 1< i<4 with the same parentsḡ are
given by

05@22m(si )2M ai bi 2m(si )2M#F z

p

q

zp

G ~si !1v~si !, ~34!

where the values ofai andbi for i P$1,2,3,4% are given by

a1521, a2521, a351, a451,

b151, b2521, b351, b4521.

Here 2m(si )2M@z(si)2zp(si)# represents a first-differenc
approximation to directional derivative of the surface in
direction~NW, SW, NE, SE! that depends on the particula
value of i, while aip1biq represents the approximation t
the same directional derivative implied by the values op
andq at the resolution and location corresponding to no
si . Equation ~34! then simply states that the differenc
v(si) in these two approximations to the directional deriv
tive is a zero-mean white noise with variance 0.1.

The general model~33! allows bothBs and Bg to be
nonzero, allowing us freedom in adjusting the relative i
portance of the thin-membrane and -plate smoothness
alties. In particular, to model the background field in o
ladar application, we used valuesBs530 and Bg5300,
while for the target field we setBs54 andBg50.1.

7.2 Overlapping Multiscale Trees

The application of this multiscale model based on the c
ventional multiscale quadtree and the associated estima
algorithm1,2 results in a visually distracting blockiness
the estimates. The characteristic blocky artifact is one
the limitations often associated with the multiscale a
proach. In random fields with significant levels of regula
ity or smoothness, high correlations exist between spati
close neighbors. When using a standard multiscale quad
representation such as that suggested by Fig. 3, there
nodes on the tree~e.g., the two shaded squares in Fig.!
that are spatially quite close but are much more distan
measured by the distance along the tree from one of th
nodes to the other. As a result, prohibitively hig
dimensional states are required to capture the high corr
tion between such nodes, implying that lower-dimensio

Fig. 15 Numbering scheme of nodes in the thin-plate and thin-
membrane models.
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multiresolution models~and the estimates such models ge
erate! may not adequately capture the correlation a
smoothness of the field across such boundaries.

In Ref. 11 a method to overcome this problem was
veloped using the concept of overlapping trees. Instea
adhering to the convention of the multiscale quadt
framework, where distinct nodes at a given scale of the
are assigned disjoint portions of the image domain,
overlapping multiscale quadtree allows distinct nodes a
given scale of the tree to correspond tooverlappingpor-
tions of the image domain. As a result, any pixel that wo
fall near a major tree boundary in a standard quadtree
resentation actually has several replicas in an overlap
model, essentially placing versions of that pixel on bo
sides of the tree boundary in order to capture spatial co
lations more easily.

There are several implications of this idea. The first
that at the finest scale of the tree we do indeed have sev
tree nodes corresponding to a single image pixel. As
cussed in Ref. 11, there is then a need to define two op
tors. The first, namelyestimate projection, maps the esti-
mates of the states at this set of tree nodes into the esti
of the single pixel to which they all correspond, by taking
~weighted! average. The second, namelymeasurement pro
jection, maps each measurement of an image pixel int
set of independent measurements of each of the tree n
to which it corresponds. This is accomplished simply
replicating the observed measurement value at each o
tree nodes but modeling each of these tree measuremen
being proportionately noisier, so that the total informati
content of this set of tree measurements is the same a
actual pixel measurement. For example if a pixelx corre-
sponds to two tree nodesx(s1) and x(s2), then the mea-
surementy5x1v, wherev has variances2, is mapped
into two measurementsy15x(s1)1v1 and y25x(s2)
1v2 , wherev1 , v2 are modeled as independent with va
ance 2s2 and where the measurement values used arey1

5y25y.
The second implication of overlapping is that the size

regions corresponding to tree nodes decrease bylessthan a
factor of 2 as we go from scale to scale. One conseque
of this is that overlapping trees require more scales in or
to reach the same finest partitioning of the image. T
obviously increases the computational burden, altho
that is offset somewhat by the fact that lower-dimensio
states can be used to capture the derived correlation s
ture. A second consequence is that the geometric scalin
the process noiseW(s) in Eq. ~33! must change in order to
reflect the correct self-similar scaling laws implied by t
thin-plate membrane model. In particular, if the linear
mension of the region represented by a node on an o
lapped tree decreases by a factor ofd rather than a factor o
2, then the noise gain 22m(s)/2 on the right-hand side of Eq
~33! and in Eq.~34! as well should be replaced by 2(
2 1/d)d2m(s)/2. In the results presented here, we used m
els with d527/8.
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