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Abstract. We describe a new class of computationally efficient algo-
rithms designed to solve incomplete-data problems frequently encoun-
tered in image processing and computer vision. The basis of this frame-
work is the marriage of the expectation-maximization (EM) procedure
with two powerful methodologies. In particular, we have incorporated
optimal multiscale estimators into the EM procedure to compute esti-
mates and error statistics efficiently. In addition, mean-field theory (MFT)
from statistical mechanics is incorporated into the EM procedure to help
solve the computational problems that arise from our use of Markov
random-field (MRF) modeling of the hidden data in the EM formulation.
We have applied this algorithmic framework and shown that it is effective
in solving a wide variety of image-processing and computer-vision prob-
lems. We demonstrate the application of our algorithmic framework to
solve the problem of simultaneous anomaly detection, segmentation,
and object profile estimation for noisy and speckled laser radar range
images. © 2001 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction and a relaxed version of the Mumford-Shah variational ap-
Estimation problems for 2-D random fields arise in contexts Proach to image segmentation. A number of these applica-

ranging from image processing to remote sensing. In somelions are described in some detail in Ref. 4, and Fig. 1
special cases—most notably spatially stationary statistics 9€PICts an example of the application to a texture segmen-
over a rectangular grid with regularly spaced tation problem. _ _ o
measurements—very efficient algorithms based on the fast _ In particular, as described in Ref. 5, each of the indi-
Fourier transform(FFT) can be used to obtain optimal es- wdugl textures shown in Fig. 1 can be We_ll_modeleql with
timates and error statistics. However, when one strays from Multiscale models, allowing us to apply efficient multiscale
these cases, the complexity of optimal solutions for many €Stimation procedures to problems such as restoring noise
popular classes of stochastic models can become prohibi-corrupted versions of any one of these textures. However,
tive with computational loads that do not scale well with the multiresolution algorithm by itself cannot solve the
problem size. problem of restoring the image shown in Fig. 1, as it con-

One approach that overcomes many of these problemssists of severatiifferenttextures, nor can it directly solve
involves the use of multiscale stochastic motiélsnd as-  the problem of segmentation of such an image. However,
sociated multiscale estimation algorithms. These algorithms by employing the EM concept dfidden data(in this case,
do not require stationarity, regularly shaped domains, or the segmentation map indicating which of the two wood
regularly spaced measurements. Moreover, these modelgextures is visible in each piXelwe can indeed employ
have been shown to capture a rich class of random-field multiscale estimation as a core component of an algorithm
statistical behavior, making them useful for a number of that produced the resul(gestoration, segmentation, and as-
important applications. sociated error varianceshown in Fig. 1.

In this paper we extend the applicability of this multi- Figure 2 depicts the conceptual structure of our method-
scale framework by marrying it with two other computa- ology. Viewing the EM algorithm as the central structure of
tionally powerful techniques, namely the expectation- an iterative procedure, we use multiscale estimation to
maximization (EM) algorithm and mean-field theory solve the so-called M step of the procedure and MFT to
(MFT). The result is a methodology that can be applied to provide an efficient approximation to the E step. In the next
a greatly expanded range of applications, including texture section we briefly describe the background topics that form
segmentation, simultaneous classification and gain correc-the components of the triad in Fig. 2. In Secs. 3 and 4 we
tion of magnetic resonance imaginylRI) brain scans, then develop our algorithm in the context of an important
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Fig. 1 Motivational example: texture image segmentation and esti-
mation.

application, namely laser raddlada) image processing,

n-maximization algorithms . . .

in problems where the observation can be viewed as incom-

plete data. The MLE oK, denoted a¥y, , based on the
incomplete observed da¥ is defined as

Xy = arg maxlog p(Y|X)}, (1)
X

where logp(Y|X) is the log likelihood ofY given X. In
many applications, calculating the MLE is difficult because
the log-likelihood function is highly nonlinear and not eas-
ily maximized. To overcome these difficulties, the EM al-
gorithm introduces an auxiliary functio® (along with
some auxiliary random variablethat has the same behav-
ior as the log-likelihood functior(in that when the log-
likelihood function increases, so does the auxiliary func-
tion) but is much easier to maximize.

Central to the EM method is the judicious introduction
of an auxiliary random quantityV with log likelihood
log p(WX). The dataw is referred to as theomplete data
because it is more informative thah The complete date/
is not observed directly, but indirectly throughvia the

target segmentation, and range profiling. We have chosenrejationshipY = G(W), whereg is a many-to-one mapping

this application for several reasons. First, as we will see,
the employment of our framework in this context involves

more than just segmentation, and, as a result, using it as

vehicle illustrates both the breadth of problems to which it
can be applied and how it is applied. Secondly, this particu-
lar application is of significant current interest, and, indeed,
our results represent a substantial extension of previou
work on ladar anomaly rejection and background rang
plane profiling. Following the development of our ap-
proach, we present results in Sec. 5 demonstrating its effi-
cacy in simultaneously rejecting anomalies, profiling non-

planar backgrounds, detecting and segmenting targets, and

providing range profiles of those targets. The paper then
closes with a brief discussion and conclusion.

2 Background

As we have indicated, our framework involves the synthe-
sis of three distinct methodologies for statistical inference,
and in this section we provide concise summaries of each
of these. More complete description of these topics can be
found in some of the referencés.g., Refs. 1,2, and 53-8

2.1 The EM Procedure

The EM procedure is a powerful iterative technique suited
for calculating the maximum-likelihood estimaté@dLESs)

Multiscale Estimator
N g
. /\\ 7

Expectation-Maximization Procedure

Fig. 2 Conceptual representation of the algorithmic framework.
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function. Those unobserved variables are referred to in the
EM formulation as thénidden dataand denoted byi. The

EMm approach calculate$,, through an iterative procedure

in which the next iteration’s estimate of is chosen to
maximize theexpectationof log p(W|X) given the incom-

gPlete dataY and the current iteration’s estimate Xf The
e iteration consists of two steps:

» The E step computes the auxiliary function

QXX)=(log p(WIX)| Y, X™), )
where(-) represents expectation, aX#! is the esti-
mate ofX from thek’th iteration. Often, this step re-
duces to calculating the expected valuetbgiven'Y
and X4,

The M step findsX!®*l such that

XU =arg maxQ(X|XM)}.
X

The maximization here is with respect ¥ the first
argument of the functio®. Intuitively, the M step is
designed to use the expected value of the hidden data
H found in the E step as if it were measured data in
order to obtain the ML estimate of. The EM algo-
rithm can easily be extended to a maximanposte-

riori (MAP) estimator by imposing a prior model,
p(X), on the estimated quantit{ during this step.
With this modification, the M step finds thel<*1]
such that

Xt 1= arg maxQ(X|X)+log p(X)}. ®
X

Since the EM algorithm is iterative, initial conditions
must be given to start it. As it is guaranteed to converge
only to a local maximum of the likelihood function, choos-



Tsai, Zhang, and Willsky: Expectation-maximization algorithms . . .

ing initial conditions requires some care. The E and the M —
steps are evaluated repeatedly until convergence, typically ~ SelemeV=0

T
specified as when|XK*U-XxI|<s for some small
/AN

/ L A )
\

2.2 Mean-Field Theory Seale m(sy=1
MFT, which provides a computationally efficient procedure s/ \

Wi

for approximate calculation of expectations of large Mar-

kov random field{MRFs), has its origins in statistical me-

chanics and is concerned with finding the mean field energy

of an MRF. In particular, letC denote a two-dimensional Scale m(se,)=2
rectangular lattice. Leti={u;,i € £} be a MRF taking on
the well-known Gibbs distributiofisee, e.g., Ref.)8given
by Fig. 3 An example of a multiscale quadtree.

_exg —JU(u)]
p(u)= T . sion of Eq.(5). In particular, for each siteand each pos-
sible value ofu; , we approximate this weight by replacing
The constantZ=0 is used to adjust the strength of the the values of each of the,, j#i, by its mean value. That
energy functionU (u) defined as is, we define the mean field energy at Sit@s

U=, Ve UT(u) = U W]y =gy, 1= U ()R (uga)), (6)

WhereU{“f'(ui) includes all the clique potentials involving
where theV,(u) are the clique potentials used to capture the value at sité and is given by
the interactions between pixels. The normalization constant

I' is defined as f!
U (ui>=vc|q<ui>+|2M V(Ui (up)), @)

r=2 exd—¢U(u]. o _ N
u andR™ ((up,)) consists of terms involving only means at
sites other than. Further we use the mean-field approxi-

For simplicity of exposition, pixel interactions are assumed mation for the mean at each site:

to be at most pairwise. The energy function can now be

written as mf’
) w-3 u exr{—zu:/fwj)]’
Ui rm
U= 2, | Vaq)+3 2 Voolui u)|, @ ! 1 ®

where the singleton cligué(-) and the doubleton clique I =2 exd — U™ (Up]:
Veg(+,-) are the clique potentials for a single site and a 4
pair of neighboring siteghorizontal or vertical respec-
tively. Finally, as a result of our simplifying assumption,
N, denotes the set of first-order neighbors of piixel

MFT is used to compute an approximation to the mean
of the fieldu, i.e., to find

The MFT formulation supposes that for a particular
pixel i e £, the influence of the energy field from other
pixels can be approximated by that of their statistical
means. Random fluctuations from the other pixels are ne-
glected. Note that sincel{“f(ui) depends on the means
(uj), j#i, the approximations tgu;) in Eq. (8) depends
(ui>=2 up(u)=>, u;>, p(u) on the means at other pixels. Thus the set of equations

u u o AN corresponding to Eq(8) for all i € £ represents a set of
simultaneous algebraic equations for all of thg). Itera-
-3 u_Eﬂ\i exd —{U(u)] ®) tive algorithms can then be used to find the solution to this
o r set of equations.

for eachi e £ (where£\i denotes the set of all pixels ex- 2.3 Multiscale Stochastic Models and Optimal

cludingi). It is clear from(5) that a large number of con- Estimation

figurations associated with the energy function need to be In this subsection, we briefly review the multiscale statisti-
evaluated in order to calculate this expectation, thus mak- cal framework for modeling and estimating 2-D random
ing its precise calculation both complex and computation- fields?® Multiscale stochastic models for image process-
ally impractical. To overcome this, MFT approximates the ing are defined on a pyramidal data structure such as the
weight on each possible value @fin the rightmost expres-  quadtree shown in Fig. 3. Each level of the tree corresponds
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to a different scale of resolution in the representation of the
random field of interest. Define the indexo specify the
nodes on the treesy to represent the parent of nodeand

Sa; to denote theg offspring of nodes with i=1,...q
(g=4 for a quadtree The scale of node is denoted as
m(s) and is numbered sequentially from coarse to fine . ‘

resolution. A multiscale model with staté(s) e R" is a1 , g ol
specified by a recursion of the form T . MV, L A

X(s)=A(s)X(sy) + B(s)W(s) 9
Fig. 4 Down-looking geometry for collecting 3-D images of ground-
based scenes.

with X(0)~N(0,P,), W(s)~N(0,l), and W(s)eR™.
[The notationN(u«,A) represents a Gaussian random vec-
tor x with meanx and variance\..] The matricesA(s) and in Ref. 10 corresponding to so-called thin-plate and thin-

B(s) are the parameters of the tree model, appropriately memprane random surfaces. A brief summary of these
chosen to represent the random field of interest. The root gdels is presented in Sec. 7.1.

node of the treeX(0) with prior covariancé®, provides the

initial (_:o_ndltlon_ for §tart|ng j[h? coarse-to-fine Fecursion. 3 propabilistic Models for Laser Radar Range

The driving white noisé\/(s) is independent of the initial

condition X(0). Thestates at a given scale can be thought

of as information about the process at that level of the tree.12 13 raster-scanned and range-resolved ladar imaain

As X(s) evolves from coarse to fine scale, the term —<:=2: fasters C ge-resolv idar imaging
_ provides the capability for producing 3-D images of

A(s)X(sy) predicts the states of the process for the next- ground-based objects from airborne platforms using a
finer scale while the ternS(s)\(s) adds new details to  down-looking geometry. Utilization of such imaggs.g.,

Profiling and Segmentation
As illustrated in Fig. 4, and as described in detail in Refs.

these states. for automatic target recognitiofATR)] involves several
The measurement model associated with this multiscale basic functions. First, of course, is dealing with the uncer-
stochastic model is tainties and sources of error in the ladar measurements. As
described in Ref. 12, these errors consist of relatively small
W(s)=C(s) X(S)+(s) (10) perturbations due to noise and occasional large anomalies

due to deep speckle fades. Since the frequency of anoma-

. . lies can be significant, taking account of them is a serious
with 1(s) ~N(0,R(s)), R(s) the covariance oi(s), and  jsq,e “Second, accurate localization and profiling of any

C(s) the measurement matrix used to descrlbe_ the nature Oftarget present in a ladar range image requires estimation of
the measurement process. The g_eneral r_nultlscale estimathe unknown and spatially varying range of the ground.
tion framework allows easy and direct fusion of measure- petection and profiling of the target then requires segment-
ments at all scale¢see, for example, Ref)9For the ap-  ing out the region over which the range measurements
plication on which we focus here, all measurements will be gtand out from the background, indicating the presence of
scalar observations at the finest sca[e, representing poingne target.
measurements of the random field of interest. , As a first-generation preprocessor for an ATR system,
The algonthm_for optimal multlscale_ estimation consists Green and Shapitd developed an algorithm that estimates
of two steps: a fine-to-coarse swephich resembles the  he packground range profile for a ladar range image cor-
time-series Kalman filtering algorithmfollowed by a  rypted by range anomalies. Only the problem of estimating
coarse-to-fine sweefwhich is analogous to the Rauch- ihe packground range profile is addressed in their algo-
Tung-Striebel smoothing algorithmAmong the most im-  ithm The idea is that pixels that do not belong to the
portant properties of this algorithm is that it produces both background are grouped together as either range anomalies
optimal estimates and the covariance of the errors in theseg, target range measurements. Their algorithm is based on
estimates with total complexity that §(k°n), wherenis  an idealized single-pixel statistical model for the ladar
the number of fine-scale pixels amds the dimension of  range measurements together with the assumption that the
the stateX(s). Thus the computation load for this algo- background range profile is a plane parameterized by the
rithm grows linearly with problem size. This should be con- elevation and azimuth range slopes and by the range inter-
trasted with the complexity of other estimation approaches cept. The EM procedure is employed in Green and Sha-
(e.g., those based on MRF modelshich have complexity  piro’s algorithm. The E step localizes and suppresses the
that is O(n*) for values of «>1 for calculation of the range anomalies; the M step finds the ML estimate of the
estimates, and typically even greater completdtfgen pro- three parameters that characterize the planar background
hibitively high) for the computation of error covariances. range profile. Simulation studies have confirmed that Green
Of course, the utility of the multiscale approach also de- and Shapiro’s technique is computationally simple with
pends on having models with modest state dimengion good range anomaly suppression capabilities.
Demonstration that such models do exist for a wide variety = The application of our EM—multiscale-MFT estimation
of random fields can be found in Refs. 5,10,11. Of specific framework to the ladar range imaging problem extends
relevance to this paper are the multiscale models developedGreen and Shapiro’s work in several fundamental and prac-
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tically significant ways. First, rather than modeling the target range profiley is P(Xig) = G(Xig;0,A¢g), WhereA,
background surface as planar, we allow smooth spatial is the nxXn covariance matrix for the target range prtg)file
variation of the background, using a multiresolution surface : .

model analogous to the so-called thin-membrane surface™w- While we never need to explicitly CaICUIamng and

model(see Sec. 7)LEmploying this multiresolution model Axtg or their inverses, it is convenient for our discussion to
allows us to use the very fast estimation procedure de- jntroduce these explicit models. Also for ease of notation,
scribed in the previous section. In addition to estimating the the two range profiles are stacked together to form the
background range profile, the approach we describe simul-range profile vectoX, i.e., X=[xu X]". We consider the

taneously performs two other significant functions, namely o range profiles to be statistically independent of one

target segmentation and target range profile estimation. Tognother, so that the prior model fXrbecomes
accomplish this, we use a second multiscale model, in this

case one corresponding to a so-called thin-plate prior, to Ay 0
model the target range profile within the image, together p(x)=G(X:0Ay), Ax= b9 (11)
with several important sets of hidden variables. The first 0 Axtg

two of these sets, namely, the sets of pixels that correspond . . .

to anomalous backgrour)(d and targetprange measurer’rﬁ)ents'?'2 Definition of the Hidden Variables

are analogous to those used in Ref. 12. The other hiddenThe hidden variables we introduce partition the observed
variable, namely, the set of pixels segmenting the targetimage domainl into five regions. A convenient way in
and background regions and explicitly identifying the line which to express this partitioning is through the introduc-
of pixels corresponding to ground attachméig., where  tjon of five sets of indicator functiongaking only values 0
the target meets the groundhllows us to perform target gpg 1) overf, one for each region type. The simplest of

segmentation and profiling. _ these are the two sets of variablegy={ha ,i € £} and
A uniformly spaced raster scan is used to collect a range i

image consisting oh pixels. We denote the 2-D lattice habg:{r_‘abq JieL}, indicating the presence Qf range
consisting of these pixels asC. Lety={y,i e £} denote  anomalies over the target and background portions of the
the measured ladar range values, whose background rangémnage, respectively. The reason for separating these
profile is denoted aS(bg:{ng Jiel} and whose target anomalies into two fields is simple: we want to interpolate

o . - the target(background range profile for anomalous pixels
range profile is denoted ag,={Xy ,i € £}. Note that it is within tghet(targegt(bacl?grou?lw Pegion. P

convenient(with no approximatioh to think of both the The next two sets of hidden variablely,={hp, i
background and the target as being defined over the entire 9 G

image domain. The background obviously is, although itis £ @ndhg=1hy i€ L}, designate those portions of the
occluded by the target over tlienknown region in which ~ observed range measurements that aneambiguously

the target resides. Thus, while the algorithm we describe measurements of the background or target, respectively.
produces estimation of background and target fields over The final set of hidden variables indicates the line of pixels
the entire image domain, the target field estimate is only along which the target and background profiles intersect—
meaningful over the estimated target region, while over that i-e., the ground attachment line of the target, specified by
same region the background estimate can be thought of adiga={hgq .i € £}. Together, the five sets of hidden vari-

an optimal interpolation of the occluded portion of the ables indicate mutually exclusive sets of pixels partitioning

background. For notational simplicity, 1§t Xy, and X L. That is, if we define
denote lexicographically ordered vectors of the measure-
ment, background, and target fields, respectively. We nextH;=[hpg hy hgs Napg hatgi]T VielL, (12

present the several elements of our models for these quan-
tities, including the specification of the hidden variables inen eachH; takes on only the values,, k=1,...,5

employed in our EM-based procedure. whereg, is a binary column vector with 1 in theth com-
3.1 Prior Models for X,y and xig ponent and O everywhere else. As an examiies e, in-

dicates pixel as belonging to image class 2, i.e., the set of

The random fields andx,q are modeled as independent, ixels corresponding unambiguously to target range mea-
zero-mean Gaussian random fields to represent the smoothg;rements.

ness constraints on the random fields. Specificady,is
modeled as the finest-scale field in a multiscale thin- 3-3 Measurement and Pseudomeasurement Models

membrane model, anxi, as the finest-scale field in a mul- The observed ladar image data are noise- and anomaly-

tiscale thin-plate modelsee Sec. 7.1 and Ref. 10 corrupted measurements of either the target or background.
In principle, then, the prior model fo,, has the form  The explicit dependence of these measurement$ amdH
P(Xpg) = G(Xng;0,Apg), Where is given by the following measurement model:
G(x;m,A)=(2m) " "A|~ 12 Ngq Ngq| | Xbg
O A e
Xexp — z(x—m)TA"Y(x—m)], 9
U SR,
and Where/\ng is thenXx n covariance matrix for the back- +[htgi+ hbg+ hgq habg"’ hatgi]{ R, 1 ’ (13
ground range profile,,q. Likewise, the prior model for the VAR,

Optical Engineering, Vol. 40 No. 7, July 2001 1291



Tsai, Zhang, and Willsky: Expectation-maximization algorithms . . .

where we have adopted some of the notation from Refs. surements: For those pixels forwhibt}q:l, we observe a
12,13 to describe the noise and anomalous measuremen

distributions. In particulary sz ~ N(0,8R?1) represents . i ) i
the noise in a nonanomalous range measurement, aith the ad2d|t|ve noise on this measurement has very small vari-
corresponding to the range resolution of the ladar system,2NCe€”. Thatis, at each pixel we have the additional mea-
while v \g~U(Rmn+ AR, [(AR)2/12]1) corresponds to ~ Surement

the uncertainty in an anomalous measurement, modeled as

uniformly distributed over the full unambiguous range in- 0=[hgs —hga]
terval of the ladar, i.e. AR=R;.x—Rmin. [The notation 93 9
U(m,A) represents a uniform random vector with mgan

and varianceA.] For the results here, we use the same wherev, ~ N(0,€21). In this setup, the parametercon-
ladar system parameters and statistics as in Ref. 12rols the tightness of the coupling between the two MRFs.
namely, 6R=2 range binsRnma—=1524 range bins, and  Note that ifhg, =0 this equation correctly indicates that we

Riin=0 range bins, so thahR=1524 range bins. Each  5re 1ot specifying any additional constraint B, —x
range bin translates to a physical distance of 1.1 m, with pecifying any B~ g

|Ineasurement value of O for the differenq;a — Xig,» where

Xbg .
+ hgq v, Viel, (14

Xy

lower bin numbers indicating closer range. However, ifhngl, this pseudomeasurement introduces a
Intuitively, the first term on the right of Eq13) deter- strong coupling between thestimatesf xpg andxg.
mines the type of each range measuremgntwhile the Putting this all together, at each pixeve now have a

second term indicates the type of noise associated with2.yector of measurements
each range measurement. It is instructive to examine sev-
eral specific examples to understand how the hidden vari-
ables influence the model of the observed data. For ex-Y;=
ample, suppose that pixélcorresponds to a background
measuremernso thalhbgf 1 and all other hidden variables

are zerg. Then

o | =CHOX+F(H)V, (15

with ViT:[UzSRi UEi UARi]y and

h h

93 93
hog+ = hig + —
:ngi+v5Ri' C(H|): bq 2 Ig| 2 ,

h —h

Xp UsR,

yi=[1 0]

i O][

Xig

: VAR,

93 93
This equation says that is equal to the background range

profile Xbg plus some measurement noise, which we model F(H)—
as additive Gaussian noise. Suppose, as another example, "
pixel i corresponds to a range anomaly lying within the
target region i, = 1). Equation(13) then gives Equation(15), then, gives us the second needed part of our
probabilistic model, namely,

Npg+hig+hga 0 hapg+hayg

0 hgq 0

Xpg U sR;
yi=[0 0] +[0 1] VAR, p(YIX,H) =TT p(YilX; ,H))
Xig, VAR ier
. 2 ]
which is consistent with our modeling of a range anomaly. GYi%og, R0
As a final example, suppose piXetorresponds to a ground G(y; ;xtgi,éRz)
attachment measuremerihgg=1). This means thaqu N
b tg;
andx, are implicitly equal, and from Eq13) we have -1l HT G(yi ;%,mz)e(qu;xt%,ez) :
1/AR
ng-I—thi
Yi:T"‘UﬁRi, L 1/AR |

(16)
which binds the ground attachment measurement to both . . . . .
Xpg ANd X . (We ignore the digitization Fhat is found in typlcal ladar
4 9 ) systems, and treat as a continuous random variabl&he
Note that wherhg, =1, we would like to ensure that,, role of H; is simply to select one of the five densities indi-
and Xig, are approximately equakince the target attaches cated on the right-hand side of Ed.6).
to the ground at these pointsThere are two equivalent
ways in which to accomplish this. The first is as part of the o ) )
prior model forx,, andx,y, providing a nonlinear coupling 3.4 Probabilistic Model for the Hidden Variables
between these two fields. The second approach, whichThe remaining part of the probabilistic model is that for the
leads to a far simpler estimation algorithm, involves incor- hidden variablesH. In particular, as we see in the next
porating this constraint as an additional set of pseudomea-section, the quantity that is needed for the EM procedure is

1292 Optical Engineering, Vol. 40 No. 7, July 2001
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p(H|X). In our model we make the simplifying assumption - —-05 05 0 0 QO

thatH and X are statistically independent, so 05 -05 0 0 0

P(H|X)=p(H). 17 Wy=[ O 05 05 0 0, (190
, ) 05 -05 0 0 O

Note that for the variablels,; andh,,, modeling the pres-

ence of ladar anomalies, this independence assumption is L -05 05 0 0 Q

completely justified. However, for the others it represents a ) ] o

clear simplification. For example the conditidm,=1 when pixell is below pixeli, and

(ground attachmeitimplies Xpg, =~ Xtg,» indicating a very - _05 05 0

strong dependence betweldrand X. However, as we have

already indicated, we can capture this dependence through 05 -05 0

the pseudomeasuremdiitd) rather than through the prior. Wi = 0 0 —-0.5 , (190

Note that there also is a dependence betm[d%,htgi]

(indicating observation of background or target in pikel
and[xbg,xtgi]: In particular, if the target is present in pixel

i (hyg=1), then obviously the target occludes the back- \yhen pixell is to the left or right of pixel. In each of these
ground, implying thatxtgi<xbg. While we could introduce matrices,. th_e entries in the first row are ch_osen to encour-
another pseudomeasurement to capture this relationship aggde continuity of the background regiéie., if a majority
well, for simplicity we have not done so, and thus our Of the neighbors of pixel are labeled as background, then
model indeed neglects this dependence. In principle this Pixeli is more likely to be background as wellhe entries
implies that the resulting estimates we produce could have !N the second row are chosen to encourage continuity of the

. . . target region and, in the case of E49g), also to discour-
target and background estimates that are inConsisteiit (40 target pixels from appearing below the ground attach-

=1 but f(tgi>§<bq), but, as we illustrate using real ladar ment pixels. The entries in the third row are chosen to

data, employing this simplification does not in fact intro- €ncourage the ground attachment pixels to form a thin line
duce such inconsistencies. below the target pixels. The entries in the fourth and fifth

We use a Gibbs prior to capture spatial dependences in"OWs are chosen to help differentiate between an anomalous

the hidden variables: pixel located in the background region and an anomalous
pixel located in the target region.

p(H)=T"Yexg — ¢U(H)], In order to incorporat@(H;), the single-pixel stationary
prior probability density functiongpdfs) for H;, into our

wherel is the normalization constant. Defining the energy Gibbs modeling ofp(H), we assign the singleton clique

function U (H) requires specifying the neighborhood struc- PotentialVg(-) to be

ture on the 2-D lattice. For our purposes it is sufficient to

use first-order neighborhoodjmplying that cliques con-  P(H)=Z; *exd — {Vqq(Hi)1,

05 -05 0
| 05 05 0

o © O O o
o O O O g

sist only of individual pixels and pairs of pixels that are (20

either horizontal or vertical nearest neighbors. This implies ~

thatU(H) can be written as Zi:HE exf — ¢{Veg(Hi -

U(H)=2 | Vog(Hi) + > > HIWiH|, (18) Based on the work in Ref. 12, the probability of the pres-
ey 2124 ence of range measurement anomalies is 0.05, and we dis-

) ) _ tribute this prior probability equally betweep(H;=e,)
where )V, is a 5X5 matrix whose §,t)th component is  andp(H;=es), the probabilities that a pixel measurement

Vao(Hi=€s,H;=¢). The elements within each matrix;, is an anomaly situated inside the background region and
are chosen to encouraggiscouraggcertain types of inter-  that it is an anomaly situated inside the target region, re-
actions among the hidden variables by decreadimgeas-  spectively. The prior probability that a particular pixel in
ing) the energy functiorlJ(H). The specific choices for  the image is a ground attachment pixel is chosen to be 0.05.
these matrices that we have used are as follows: The remaining prior probability foH; (0.9) is distributed
_ equally betweemp(H;=e;) andp(H;=e,), the probabili-
-05 05 0 0 0 ties that a pixel corresponds to the background region and
05 —-05 05 0 O to the target region, respectivelyTo summarize:
Wy = 0 0 05 0 O0f, (199
05 —-05 0O 0 O *Note that the values we have chosenpge;), p(e,), andp(e;) reflect
: ’ relative values of pixel categories for ladar images in which we expect
~05 0.5 0O 0 O targets to fill roughly half of the image area. If targets take up signifi-
- : : - cantly less image area, one can capture this by biasing the prior in favor
. . o of e;. However, as the examples in Sec. 5 indicate, the results are not
when pixell is above pixeli, particularly sensitive to these values.
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p(H)=[0.45 0.45 0.05 0.025 0.024; .

Our full prior model forH then is
1 {
p(H)=T"[] | p(H)Z exd — 5

el
4 The Profile Estimation and Segmentation
Algorithm

The problem to be solved is the estimation>fgiven Y
based on the prior model(X) given by Eq.(11), the mea-
surement moded(Y|X,H) given by Eq.(16), and the prior
model for the hidden variableg(H|X)=p(H) given by
Eqg. (21). In this section we describe the two steps in the
EM procedure required to compute a local maximum of

>

le N

(21)

Hrwi,m”.

log p(X|Y), which we take as our estimate. This procedure (H;|Y,X)~yM" E

also produces an estimate ldfthat is of direct use in seg-

menting out the target, rejecting and compensating for

anomalies, etc.

4.1 The E Step
The quantity to be calculated in the E step is

Q(X|XIM) =(log p(Y,H|X)|Y, XK},

which is a conditional expectation over givenY and the
current estimateX!¥! of the range profile. Using Bayes's
rule, Q can be rewritten as

Q(X|XIMy = (log p(Y|X,H)|Y, XM+ (log p(H)| Y, XIM).
(22

Since the M step is a maximization Qf(X|X[X) over X,
we can discard the second term in Eg2), since it does
not depend oiX. Using the same notation for the result, we
have that

QUXIXM)=">" (H,|Y,XI4)T
iel

log G(y; ;ng,(SRZ)
log G(y; ;xlgl,ﬁRz)

Xpg + Xig, .

X |ogG(yi; +IogG(qu;xtgwez) .
—logAR

—log AR

(23

[Here we have also used the fact that ekighs an indica-
tor vector in order to take the log @i Y|X,H) in Eq. (16).]
Thus the core of the E step is the computation of
(H;]Y, XMy Using the formula for expectations, Bayes’s
rule, and Eqgs(16), (17), and(21), we find that

(HilY XMy =y =13 W [] {p(vilxi[kl,Hi)p(Hi)
H iel

(24)

><exp( > IE HTW”H,”
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where

Yy=> 11

HIE

[p(le[” Hp(H)

X ex —5 > HTW”H,) .

leN

From this, it is obvious that a large number of configura-
tions of H need to be evaluated in order to compute Eq.
(24). This makes its precise calculation both complex and
computationally impractical. By applying MFT, this diffi-
culty is overcome, and an approximation(td; | Y, X[ is
obtained by evaluating the following:

{Hipmlx{”,Hi)p(Hi)

Xexp{ —gIZN HiTW”<H,|Y,X[k])”, (25)

where

Y=

Hi

p(Yi|X[M cp(H)

X ex —gIZN HiTW”<H,|Y,X[k]>”.

As Eq.(25) indicates, to find the mean fiefdH|Y, XX} at

i, one needs the mean fieféh|Y, X[} at the neighbors of

i. Thus, Eq.(25) for all i € £ represents a set of simulta-
neous algebraic equations, which can be solved by embed-
ding it within the E step of the overall EM procedure. In
principle we can perform multiple Jacobi iterations to solve
these equations within each E step. However, obtaining an
accurate estimate ¢H|Y,X!M) in each E step may not be
necessary, sincéH|Y,X¥) is merely used to guide the
estimate ofX in each M step. Empirically, we have found
that it is sufficient and, moreover, computationally efficient
to approximate Eq(25) by performing onlyone Jacobi
iteration in each E step. Thed|Y, Xt~ ) calculated from
the previous EM cycle serves as the initial guess for that
single Jacobi’s iteration. This approximation scheme has
the natural notion of refining the estimate(sf|Y, X)) as

the number of EM cycles increasésecause successive es-
timates of(H|Y,X[N) used for the Jacobi iterate in the E
step are more accurateAlso, since the calculation of
(H]Y, XMy can be decomposed into local computations, its
solution can be implemented in a parallel fashion to yield a
fast and simple approximation.

4.2 The M Step

The M step calculates thél" %l in Eq. (3). It is straight-
forward to check that the quantity to be maximized in Eq.
(3) is quadratic inX and that the maximum is given by

(A M+ M) Xk =py, (26)
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whereA  is the block-diagonal prior covariance matrix in
Eqg. (11), and M and P are given by

D; Dj D,
whereD,, ..., Dg are diagonal matrices given by
(hpg | Y, XI9) +(hgq| Y, XI9) /4
(Dy)ii= SR2
(hgq| Y, X[)
€
(hig| Y, XY+ (hg, | Y, X[H) /4
2)i = SR2
(hgg Y, XI)
— Viel, (28h)
€
(D3)ii ={hgqa| Y, XI¥) L Viel (280
s el 45R? € =
(Nog|Y XY+ (hgq [ Y, XI)2
(Daii= SR2 Viel, (280
<htgi|Y,X[k]>+(hgq|Y,X[k])/2
(D5)ii: Viel. (289

SR?

The quantityX'k* 1] can be viewed as the MAP estimate
of X based on the prior model specified pyX) and a
measurement model (gatdX) specified implicitly by
Q(X|XIMy. [More precisely, log(dataX)=Q(X|X[)
+terms not depending oX.] The prior onX is reflected in
the block-diagonal matrix y * in Eq. (26), while M andP

reflect the measurement model. Specifically, by collecting

measurementyg in Eq. (13) and pseudomeasuremeriésl
with value Q in Eqg. (14) into vectors, we can write

y
(O)=C(H)X+F(H)V, (29
whereV is a vector containing all of the noise SOUrceg ,
VAR, Ug at all pixels with covariance matriR. What the E

step in essence does is to repld@d) andF(H) by ex-
pected valueqor approximations of these using MET
yielding an effective measurement model of the form

y
Using this notation,
M:C[Tk][F[k]RF[Tk]]_lc[k] , (31a

Y
Py=Cgl FraRFiy] 1(0), (31b

so that Eq.(26) is precisely the set of linear equations for
the optimal estimate o based on the measurement model
(30). Moreover, the corresponding estimation error covari-
ance is given by

Ae=(Ax '+ M)~ L. (32

While the prior models for target and background are
independentas reflected in the block-diagonal structure of
Ay), their estimates are coupled. For example, the E step
replaces the varioul’s in Eq. (13) by their expectations.
Thus while each pixel measurement is either target, back-
ground, or anomaly, the mod€&0) will in general charac-
terize each measurement as a weighted average of these
possibilities, using the expected values of the varivgssas
calculated in the E step. However, this coupling occurs in a
pixel-by-pixel fashion, as reflected in the fact tizf, ...,

Ds are diagonal. Indeed, by reordering the elementX of

andy, we can view our problem as that of estimating a
vector random fieldconsisting of the 2-D vector of target

and background at each pixdélased on pixelwise measure-

ments that are independent from pixel to pixel.

Finally, it is important to realize that despite all of this
structure, Eq(26) represents a huge set of equations to be
solved (22 for annxn image, and the error covariance
(32) is of the same very large size. However, by using the
multiresolution thin-membrane and -plate priors mentioned
previously and summarized in Sec. 7.1, the solution of Eq.
(26) and the computation of the diagonal elements/of
(i.e., the pixelwise error covariangesan all be accom-
plished with total per-pixel complexity that is independent
of image domain size. This makes the EM procedure not
only feasible but, in fact, quite efficient.

5 Experimental Results

In this section, we present two examples to illustrate the
performance of the algorithm we have just described. The
ladar range images we use are provided by MIT Lincoln
Laboratory. These range images are formed by an airborne
coherent C&ladar system operating in pulsed-imager
mode. The images are 43.26-pixel gray-scale range im-
ages.

In our first example, the range image is of a C50 tank
positioned against a sloping featureless terrain as shown in
Fig. 5(@). This range image was taken under conditions of
high carrier-to-noise rati@CNR), so that it has relatively
little noise, with almost no anomalies present. We use this
image as the ground truth to test the performance our algo-
rithm. To simulate realistic range images that resemble the
ones obtained under battlefield conditiof®., low-CNR
conditiong, a local-range-accuracy Gaussian noise with a
standard deviation obR=2 bins is artificially added to
each pixel in the image. In addition, a Bernoulli process is
used to randomly select 5% of the pixels in the image as
anomalous pixels. For each such anomalous pixel, a ran-
dom range value, chosen from a uniform distribution over
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Fig. 5 Ladar range image of tank: (a) ground truth image, (b) “ob-
served” image.

the range uncertainty intervdlR= 1524 bins, is assigned.
The resulting “observed” ladar range image, shown in Fig.
5(b), very much resembles the ones obtained on the battle-
field. The parameters used to obtain this simulated ladar
image came from Ref. 12.

One of the goals of our algorithm is to estimate the
background and the target range profiles, i.e., the range
profiles of the sloping featureless terrain and the tank sil-
houette, based on the “observed” image. Figure 6 shows
our estimate of the range profiles and their associated error
statistics. The error statistics provide us with a useful mea-
sure of the uncertainty of our estimate of the range profiles.
From top to bottom, this figure shows the estimate of the
background range profile, its estimation error variances, the
eSti-mate of the target range profile, and its estimation QI’I’C_)I’ Fig. 6 Multiscale tank ladar range profile estimates: (a) estimate of
V‘f,’mances' The estimate of the background ran'ge profllell'n background range profile, (b) estimation error variances of back-
Fig. 6(a) demonstrates good anomaly suppression capabili- ground range profile, (c) estimate of target range profile, (d) estima-
ties. The estimated profile is smooth and free of the obvious tion error variances of target range profile.
blocky artifacts sometimes associated with the use of a
multiscale estimatotr® This is directly attributable to the

use of the overlapping tree surface models developed inrelatively flat, which is consistent with our thin-plate mod-
Ref. 10 and summarized in Sec. 7.1. More interestingly, the eling. Figure &d) shows the estimation error variances of
estimate of the background is obtained overéhgére field the target range profile at locations where the tank appears.
of view, including parts of the background range profile  The other goal of our algorithm is to provide a segmen-
that are obscured from the field of view by the tank and the tation map of the ladar range image. By thresholdihgve
range anomalies. Even without background range measurepptain the segmentation map shown in Fig. 7. Figui@ 7
ments at these obscured locations, the multiscale estimatoshows the locations of the target and the ground attachment
still does capture the coarse features of the smooth back-pixels, while Fig. Tb) shows the locations of the target and
ground profile there. The lack of background range mea- hackground range anomaly pixels. It is interesting to note
surements at the locations of the tank is consistent with thethat as designed, the ground attachment class constitutes a
information conveyed in Fig.(6), which shows high esti-  thin line corresponding to the line along which the target
mation uncertainties around the region obscured by the attaches to the background. Taken together, the target pix-
tank Figure 6c) shows the estimates of the tank’s range els and the target range anomaly pixels form the location
profile. Note that the estimate of the target range profile is map of the target of interest, which in this case is the tank.
More importantly, the location map of the tank with its
"Note that in contrast to the estimates in Figa)gthe error variances in accompanying range profile can _Y'e'd 3-D mfo_rmatlon
Fig. 6(b) do display some of the blocky artifacts associated with multi- a@bout the target and thus plays an important role in ATR.

scale estimates, although even these are greatly reduced by using over-  Using the estimate of the two range profiles and the
lapped models. In fact, as discussed in Ref. 10, they can be reduced: - - -
further by increasing the so-called degree of overlap, which however also information prowded by the segmentation map, we can re-

increases the computational complexity. construct an anomaly-free and denoised image from the
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Fig. 7 Segmentation results of tank ladar range image: (a) target (b)
(tg) and ground attachment (ga) locations, (b) range anomaly loca- . ) ) )
tions inside (atg) and outside (abg) the target region. Fig. 9 Convergence results of tank ladar range profile estimates:

(a) change in the estimate of background range profile with each
iteration, (b) change in the estimate of target range profile with each
iteration.
raw noisy data in Fig. ). This reconstructed ladar range
image of the tank is shown in Fig. 8. The reconstructed
image is remarkably similar to the ground-truth ladar range iterative fashion that yields a powerful new estimation pro-
image in Fig. %a). cedure for ladar range image enhancement. Building on the
The results shown in Figs. 6—8 were obtained wjth  previous work done by Green and Shapiro on planar range
=1 and e=0.1, after running our algorithm for 14 EM  profiling, we derived a general algorithm for background
iterations. We chose 14 iterations as the stopping point of fange profile estimation that is able to deal with more com-
our iterative scheme based on the results shown in Fig. 9.Plicated background. This extension uses a multiscale thin-
The graphs in the figure show the one-norm distance mea-membrane model for the background range profile; it is
iterations. After 14 iterations, the estimates appear to have Gr€en and Shapiro and is more applicable for estimating
stabilized, and it is at this point that we decided that the the range profiles of natural scenes. As an added feature,
algorithm had converged. Note, however, that the knees inWe @lso developed our methodology using a thin-plate prior
both of these curves occur after only two or three iterations, fOr target segmentation and estimation and hence provide
suggesting that we can obtain nearly as good reconstruc-3-D fine range information about the target required, for

tions much more quickly if total computational load is a example, in shape-based ATR. The multiscale methodology
concern. provides a computationally efficient and statistically opti-

As another demonstration of the performance of our al-
gorithm, we use another ladar range image, where the tar-
get of interest is a truck. Figures 10—14 convey the same
set of information as their counterparts in Figs. 5-9.

6 Conclusion

The ladar target segmentation and range profiling algorithm
that has been described in this paper has two components
estimation of the segmentation map and range profile esti-
mation. Our contribution has been to combine them in an

Fig. 8 Anomaly-free and denoised reconstruction of the tank ladar Fig. 10 Ladar range image of a truck: (a) ground truth image, (b)
range image. “observed” image.

Optical Engineering, Vol. 40 No. 7, July 2001 1297



Tsai, Zhang, and Willsky: Expectation-maximization algorithms . . .

Fig. 11 Multiscale truck ladar range profile estimates: (a) estimate
of background range profile, (b) estimation error variances of back-
ground range profile, (c) estimate of target range profile, (d) estima-
tion error variances of target range profile.
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Fig. 12 Segmentation results of truck ladar range image: (a) target
(tg) and ground attachment (ga) locations, (b) range anomaly loca-
tions inside (atg) and outside (abg) the target region.
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Fig. 13 Anomaly-free reconstruction of the truck ladar range image.

mal estimate of the two range profiles. The availability of
accompanying estimation error variances provided by the
multiscale framework is an attractive feature that can be
used to assess the goodness of our estimates. In addition to
profile estimation, our algorithm, aided by an approxima-
tion scheme derived from MFT, simultaneously provides an
estimate of the segmentation map which can also be used
for ATR.

More broadly, the major contributions of this paper lie
in the formulation of a mathematically sound methodology
based on the EM procedure that can be used to harness the
powers of both multiscale methods and MFT in solving
incomplete-data problems, extending well beyond the ladar
range imaging application described here. For examples
ranging from texture segmentation to simultaneous tissue
classification and gain correction in MRI, we refer the
reader to Refs. 3 and 4.

7 Appendix. Multiscale Thin-Plate and Thin-
Membrane Models in the Overlapping
Multiscale Tree Framework

Here we provide a brief sketch of the multiscale thin-plate

and -membrane models introduced in Ref. 10. As discussed
in Sec. 2.3, multiscale models are defined on trees, with a
stateX(s) at each node on the tree and with measurements
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Fig. 14 Convergence results on truck radar range profile estimates:
(a) change in the estimate of background range profile with each
iteration, (b) change in the estimate of target range profile with each
iteration.
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M(s) potentially defined at every node. In modeling target

and background fields as surfaces, the representation of
either surface resides at the finest scale of the tree, as do
the real ladar range measurements and ground attach-
ment pseudomeasurements described in Sec. 3. Thus the
role of the “hidden” states and some additional

pseudomeasurements at coarser scales in the tree is to
shape the fine-scale surface statistics to approximate those

m(s)

e ors

corresponding to thin-plate and thin-membrane statistical
models.

7.1 Multiscale Thin-Plate and Thin-Membrane
Models

Thin-plate and -membrane models, which are frequently

Fig. 15 Numbering scheme of nodes in the thin-plate and thin-
membrane models.

four nodess; for 1<i<4 with the same parem? are

used in computer vision to assert smoothness constraintsgiven by

correspond to particular variational problems. As discussed
in Refs. 5, 10, and 15, these models can also be interpreted

statistically, and they correspond to prior models for sur-
faces with self-similar statistics and, in particular with
power spectral densities of the fornf 1Awith « depending
on whether a thin platea(=4) or membrane4=2) model
is used. As discussed first in Ref. 5, such self-similar sta-
tistics can also be captured in multiscale models, albeit with
slight differences in the prior, but with all of the computa-
tional advantages of multiscale models.

The basic thin-plate or -membrane multiscale model in-

troduced in Ref. 10 is given by the following:
z 1 0 0 0]f z
01 00 _
®=lo 0 1 0 (sy)
zp 1 0 0 0Of[lzp
B2~ M©)/2 0 0
0 By2 M2 0
+ 0 B2 M2
0 0 0
XW(s), (33

where the state at each nagleonsists of the heiglzof the
surface at the scale and resolution correspondirsy ttoe x
andy components§ andq) of the gradient of the surface
(at the scale and location of nodeand the surface height
at the parent to node at the next coarser scale.e.,
zp(s)=z(sy)].

The thin-membrane model corresponds to E§3)
with Bg>By (to diminish the effects of the stat@sandq
and decrease the contribution of the thin-plate peialty
capture the fact that this f-like model forz corresponds
to what is in essence a self-similar random walk in scale.
The multiscale counterpart of the thin-plate prior corre-
sponds taBy> B, in Eq. (33). However, as is well known,
the components of the surface gradient must satisfy
the so-called integrability constraints, whose strict enforce-

ment increases the complexity of surface estimation consid-

erably. An alternative is to relax this hard constraint and

z

0=[—2ME)"M g b 2m)~M] (s)+u(s), (39

Zp
where the values od; andb; for i €{1,2,3,4 are given by

a.]_:_l, a2:_1, a3:l, a4:1,

Here 2"s)~M[z(s,)—zp(s;)] represents a first-difference
approximation to directional derivative of the surface in a
direction(NW, SW, NE, SE that depends on the particular
value ofi, while a;p+b;q represents the approximation to
the same directional derivative implied by the valuegpof
andq at the resolution and location corresponding to node
s;. Equation(34) then simply states that the difference
v(s;) in these two approximations to the directional deriva-
tive is a zero-mean white noise with variance 0.1.

The general mode(33) allows bothBg and By to be
nonzero, allowing us freedom in adjusting the relative im-
portance of the thin-membrane and -plate smoothness pen-
alties. In particular, to model the background field in our
ladar application, we used valuds=30 andBy=300,
while for the target field we se8;=4 andBy=0.1.

7.2 Overlapping Multiscale Trees

The application of this multiscale model based on the con-
ventional multiscale quadtree and the associated estimation
algorithm"? results in a visually distracting blockiness in
the estimates. The characteristic blocky artifact is one of
the limitations often associated with the multiscale ap-
proach. In random fields with significant levels of regular-
ity or smoothness, high correlations exist between spatially
close neighbors. When using a standard multiscale quadtree
representation such as that suggested by Fig. 3, there exist
nodes on the treée.g., the two shaded squares in Fig. 3
that are spatially quite close but are much more distant as
measured by the distance along the tree from one of these
nodes to the other. As a result, prohibitively high-

replace it by a pseudomeasurement at every node on thelimensional states are required to capture the high correla-
tree. Referring to Fig. 15, the pseudomeasurements at theion between such nodes, implying that lower-dimensional
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