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This paper reviews a significant component of the rich field
of statistical multiresolution (MR) modeling and processing. These
MR methods have found application and permeated the literature
of a widely scattered set of disciplines, and one of our principal ob-
jectives is to present a single, coherent picture of this framework. A
second goal is to describe how this topic fits into the even larger
field of MR methods and concepts—in particular, making ties to
topics such as wavelets and multigrid methods. A third goal is to
provide several alternate viewpoints for this body of work, as the
methods and concepts we describe intersect with a number of other
fields.

The principle focus of our presentation is the class of MR Markov
processes defined on pyramidally organized trees. The attractive-
ness of these models stems from both the very efficient algorithms
they admit and their expressive power and broad applicability. We
show how a variety of methods and models relate to this framework
including models for self-similar and1=f processes. We also illus-
trate how these methods have been used in practice.

We discuss the construction of MR models on trees and show
how questions that arise in this context make contact with wavelets,
state space modeling of time series, system and parameter identifi-
cation, and hidden Markov models. We also discuss the limitations
of tree-based models and algorithms and the artifacts that they can
introduce. We describe when these are of concern and ways in which
they can be overcome. This leads to a discussion of MR models on
more general graphs and ties to well-known and emerging methods
for inference on graphical models.
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NOMENCLATURE

Graph.
Node or vertex set of a tree or
graph.
Set of nodes in the subtree rooted
at node (i.e., node and all its
descendents).
Edge set of a graph.
Subsets of nodes in a graph.
Clique in a graph.
Set of all cliques of a graph.
Nodes on trees and graphs.
Children of node on a tree.
Parent of node on a tree.
Closest common ancestor to
nodes and on a tree.
Index for scale in a MR represen-
tation.
Scale of node in a tree.
Matrices used to define MR
models on trees.
Random variables or vectors at
node in a tree or graph.
Collection or vector of the vari-
ables .
Collection or vectors of variables
over an entire tree or graph.
Prior covariance of in an MR
model.
Smoothed estimate of in an
MR model.
Covariance of the error in the es-
timate .
Estimate of based on data in

.
Covariance of the error in the es-
timate .
Estimate of based on all of
the data in except the measure-
ments at node s.
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Covariance of the error in the es-
timate .
Estimate of based on data in

.
Covariance of the error in the es-
timate .
Prior covariance of the vector.
Optimal estimate of .
Covariance of the error in the es-
timate .
Spatial variable in two or three
dimensions.
Two-dimensional planar region.
Height of a surface over the 2-D
region .
Gradient of the surface .

I. INTRODUCTION

Multiresolution (MR) concepts and methods for the statis-
tical analysis of phenomena and data have been and remain
topics of tremendous interest in a wide variety of disciplines
(see, for example, two special issues devoted to this subject
[87] and [194] as well as the book [304]). The reasons for the
intensity of activity and the dizzying variety of methods that
have been developed are myriad, and it is not the intent of this
paper to put this entire subject into one simple and coherent
picture. Rather, our objective is to provide an introduction to
one significant component of this vast field that has provided
fertile ground for both theory and application. Moreover, we
have personally found that the perspective that this frame-
work yields provides a very useful platform for organizing
one’s understanding of the broader field of MR analysis and
processing.

One of the distinguishing characteristics of the framework
we describe is that it does not start withalgorithms for
processing or analyzing phenomena at multiple resolu-
tions—e.g., as in the use of wavelet transforms to produce
decompositions of signals at multiple resolutions—but
rather begins with themodelingof phenomena at multiple
resolutions. Much as in the development of methodologies
for modeling time series or random fields, the intent is
to construct statistical models that: 1) are rich enough to
capture large and important classes of phenomena of broad
interest; 2) possess structure that can be exploited both to
gain insight into these phenomena and to design powerful
classes of algorithms; and 3) provide statistical tools for
analyzing with precision both when these models are appro-
priate and how well the resulting algorithms perform.

A. What is it That is MR?

A principle objective of this modeling framework is cap-
turing the several important ways in which a data analysis or
signal processing problem can have MR characteristics. The
first is that thephenomenonthat is to be modeled can exhibit
distinctive behavior over a range of scales or resolutions. For
example, many physical processes—e.g., geophysical fields
such as atmospheric or oceanographic phenomena—possess
behavior over vast ranges of spatial or spatio–temporal

scales [31], [112], [198], [219], [220], [352], [354]. Studies
of large classes of natural imagery also show characteristic
variability at multiple scales [46], [47], [140], [157], [218],
[243], [250], [261], [268], [281], [297]–[300], [333], as do
mathematical models of self-similar or fractal processes
[288] such as fractional Brownian motion (fBm) [30],
[83], [116], [232], [313], motivating examinations of the
properties of the wavelet transforms of such signals and
images [69], [83], [102], [114], [117], [154], [176], [191],
[235], [273], [293], [320], [346]–[350], [359].

Second, whether the phenomenon displays MR behavior
or not, it may be the case that theavailable data are
at multiple resolutions. While this might be the simple
result of transforming the data—e.g., using wavelet trans-
forms—there are also many problems in which the collected
data directly measure the quantities of interest at multiple
resolutions. For example, large-scale data assimilation
problems in the geosciences quite frequently involve the
fusion of several distinct sources of data, representing not
only very different measurement phenomenologies but also
probing a geophysical medium at very different resolutions.
One example is the fusion of satellite measurements [112],
[113], [354] of oceanographic variables with measurements
made from surface ships [162], [227], [242], [331] and per-
haps also data from oceanacoustic tomographic collections
[241], [253]. Similar examples can be found in a variety
of other problems involving remotely sensed or probed
data including the fusion of synthetic aperture radar (SAR)
imagery [77] and geophysical inversion and data fusion [84],
[139], [198], [247]. In addition, advances in biomedical
sensing [317] require the development of new methods
for fusing data sets with very different characteristics
(e.g., positron emission tomography (PET) and magnetic
resonance imaging (MRI) images).

Third, whether or not the phenomenon or the data are MR,
it may be the case that theobjectivesof the user or users
may be at multiple resolutions. This is certainly the case in
large-scale geophysical mapping in which different scien-
tific studies focus on behavior over different ranges of scales
so that the variability of concern to one scientist is simply
“noise” to another. In addition, in many contexts other than
those of pure scientific inquiry, the objective of data assimi-
lation can be stated at very high levels: the mapping of an oil
reservoir to assess production rates and total yield or the char-
acterization of the threat of subsurface contaminants to pop-
ulated areas. One also finds this in military applications in
which maps of both environmental and situational variables
(e.g., maps of terrain elevation and vegetation for the former
and of the disposition of friendly and unfriendly forces for
the latter) are required by multiple users: typically large-scale
maps at comparatively coarse scales by strategic planners and
much more localized finer-scale maps by tactical forces.

Finally, whether or not the phenomenon, the data, or the
objectives are naturally described at multiple resolutions,
there may still be compelling reasons to consider developing
algorithmsat multiple resolutions. In particular, MR algo-
rithms offer the promise of computational efficiency. This
can be seen in a variety of methods for the solution of large
systems of equations [e.g., representing discretizations of
partial differential equations (PDEs)]. Multigrid methods
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[44], [45], [109], [190], [319] represent one class of exam-
ples in which coarser (and hence computationally simpler)
versions of a problem are used to guide (and thus accelerate)
the solution of finer versions, with finer versions used in turn
to correct for coarsening or aliasing errors in the coarser ver-
sions. Multipole algorithms [115], [256], [280] approximate
the effects of distant parts of a random field with coarser
aggregate values, providing substantial computational gains
for many problems. Similarly, wavelet-based methods [37],
[38], [89], [95], [215], [228], [247], [264], [276], [286],
[329], [335], [361] provide potentially significant speed-ups
for a variety of computationally intensive problems.

B. Our Starting Point

A key characteristic of MR methods or models is that they
introduce a one-dimensional (1-D) quantity, namely scale or
resolution, that can be exploited to define recursions or dy-
namics much as time is used for temporal phenomena. The
point of departure for this paper, and for our exploitation of
recursions in scale, is the investigation of statistical models
defined on MR trees. Two examples of such trees are de-
picted in Fig. 1. The dyadic tree in Fig. 1(a) is a prototyp-
ical structure used in MR representations of 1-D signals and
processes, i.e., of signals that are functions of a single inde-
pendent variable. Here, each level in the tree corresponds to
a distinct resolution of representation with finer representa-
tions at the lower levels of the tree. Similarly, the quadtree
in Fig. 1(b) is one example of tree structures used in the MR
representation of two-dimensional (2-D) signals, images, or
phenomena. While these two figures represent the structures
that are most widely used, much of what we describe here
does not require such regular tree structure and could, for
example, work equally well on trees in which the number of
branches descending from each node was different from ei-
ther two [as in Fig. 1(a)] or four [Fig. 1(b)] and, in fact, might
vary from node to node and resolution to resolution.

In the models we describe, each nodehas associated
with it a random variable or random vector . Roughly
speaking, each such variable represents some set of informa-
tion relevant to the phenomenon or available data at the res-
olution and location corresponding to that node. However,
what these variables actually are and how they are related
to the signals, images, phenomena, or data of interest varies
considerably from application to application. For example,
in some situations, all of the fundamental, physical variables,
i.e., both the signals that are observed and the variables that
we wish to estimate or about which we wish to reason, re-
side at the finest scale only. The coarser scale variables in
such a case might simply represent decompositions of the
finest scale variables into coarser scale components, e.g., as
in the use of wavelet decompositions or Laplacian pyramid
[6], [47] representations of images. In other problems, some
of these coarser scale variables may be measured directly, as
occurs in problems in which we wish to fuse data sets col-
lected at differing resolutions. More generally, the coarser
scale variables may or may not be directly observed and may
or may not be deterministic functions of the finest scale vari-
ables, and their inclusion in the representation may serve pur-
poses such as exposing the statistical structure of the phe-

(a)

(b)

Fig. 1. Examples of MR trees, organized into resolutions. (a) A
dyadic tree, typically used for the MR representation of 1-D signals,
including notation for nodes on the tree that is used in this and
subsequent sections of the paper. (b) A quadtree, frequently used
for MR representations of 2-D imagery and random fields. Here,
we have used a pictorial representation that emphasizes that each
node on the tree represents a “pixel” or spatial region of spatial
resolution and at a spatial location corresponding to that node. The
shading of the two fine-scale pixels in this figure is associated with
a discussion in Section VI-B1.

nomenon under study and/or capturing more global quan-
tities whose estimation is desired. For example, in analogy
with stochastic realization theory [8], [9], [214] and the con-
cept of state for dynamic systems, such variables may simply
play the role of capturing the intrinsic memory in the sig-
nals that are observed or of primary interest. The models
we describe also have close ties to hidden Markov models
(HMMs) [80], [222], [261], [265], [272], [281], [302], in
which the hidden variables may represent higher level de-
scriptors which we wish to estimate, as in speech analysis,
image segmentation, and higher level vision problems [42],
[53], [59], [175], [179], [180], [183], [199], [283], [323].

Whatever the nature of the variables defined on such a tree,
there is one critical property that they must satisfy, namely,
that collectively they define a Markov process on the tree, a
concept we discuss in more detail in subsequent sections. As
we will see, MR processes possessing such a Markov prop-
erty make contact with standard Markov processes in time,
with Markov random fields (MRFs) and with the large class
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of Bayes’ nets, belief networks, and graphical models [35],
[36], [89], [108], [123], [128], [143], [168]–[170], [197],
[204], [236], [267], [294], [295], [302], [337], [339], [357].
It is the exploitation of this Markovian property that leads to
the efficient algorithms that we describe.

C. Getting Oriented

A fair question to ask is: for whom is this paper written?
A reply that is only partially frivolous is: for the author.
The reason is not self-promotion (although the author pleads
guilty to frequently resorting to notation and examples from
work with which he is most familiar) but rather an ambitious
set of personal goals for this paper. In particular, the field
of MR analysis is sufficiently involved and interconnected
(forming something much more complex than the singly-
connected graphical structures in Fig. 1) and makes contact
with so many other disciplines that the writing of this paper
has provided an opportunity for the author to sort some of
this for himself from a particular point of reference (namely
MR models on trees). The result is this paper, which is in-
tended to reach several overlapping but distinct audiences:
scientists and engineers interested in applying these methods
for problems of complex data analysis; researchers in signal
and image processing who are interested in understanding
the current state of this active area of research as well as its
relationship to others; and researchers in other fields who
may find the connections to their specialties of intellectual
interest.

To meet this rather ambitious objective, our presentation
makes several detours along the way in order to touch on
topics ranging from graphical models to stochastic realiza-
tion theory to solution methods for large systems of linear
equations. On several occasions, we also step back and pro-
vide additional “navigation tools” for the reader, in particular
by explaining how the methods we describe relate to other
MR frameworks, most notably wavelets, multigrid/renormal-
ization methods, and MR methods for inverse problems. In
addition, throughout the paper, we provide pointers to areas
of current research and pointers, both forward and backward,
to relationships among the concepts we describe that cannot
be accommodated within the severe constraints of linearly
ordered text. As a result, the path followed in this paper is
not optimized for any of the audiences we have in mind, but
we hope that each finds the detours, pointers, and navigation
aids interesting, or at least minimally distracting, diversions.

In the next section, we begin by providing an initial look
at a sampling of applications that provide context, motiva-
tion, and vehicles for illustrating the methods that we de-
scribe in later sections of the paper. In Section III, we then
introduce the class of MR models on which we focus, pro-
vide a few initial simple examples of processes described by
such models, and take a first look at ties to graphical models,
MRFs, factoring sparse matrices, and recursive modeling of
time series. As is the case in much of the paper, our discus-
sion focuses in most detail (but not exclusively) on linear and
often linear/Gaussian models. Our reasons for doing this in-
clude: the importance of these models in many applications;
the simple and explicit form of many computations that allow
certain points to be made more clearly; and the relationships
that this setting provides to fields such as linear state space

modeling of time series and linear algebra. Of course, not
everything that we describe for the linear case extends quite
so nicely to more general nonlinear models, and we have at-
tempted to make clear what concepts/algorithms extend di-
rectly to more general models and what, if any, other issues
arise in such cases.

In Section IV, we describe the structure and illustrate the
application of the very efficient inference algorithms that
these MR models admit. We also take a detour to examine in
a bit more detail why these models do admit such powerful
algorithms, making contact again with graphical models and
with the solution of large, sparse linear systems of equations.
In Section V, we take a step back and examine the question of
how the models and methods of Sections III and IV relate to
wavelet-based methods and multigrid algorithms and in the
process also describe relationships with research in inverse
problems and image reconstruction. Our intent in so doing
is not to provide reviews or tutorials for these very impor-
tant and substantial lines of research but rather to make clear
where these methods intersect with those on which we focus
and where, how, and why they diverge.

One of the principal conclusions from Section IV is that
if a problem can be modeled within the MR framework of
Section III, then a very efficient solution can be constructed.
That, of course, begs the question of whatcan be modeled
effectively within this MR framework and how such models
can be constructed. Examination of that question in Sec-
tion VI uncovers further connections with a number of topics
including state-space realization theory, HMMs, graphical
models, wavelets, maximum entropy modeling, and algo-
rithms for constructing sample paths of processes that have
found use in both the theory of stochastic processes and in
fractal generation.

As with any useful modeling framework, this one has a
nontrivial and extensive domain of applicability, and we re-
turn on several occasions to the applications introduced in
Section II in order to provide insight into the classes of pro-
cesses that can be effectively modeled with MR models and
also to illustrate the power of these methods and how they
can be used in practice. In addition, as must also be the case
for any truly useful modeling framework, its utility is not uni-
versal, and, in Sections IV and VI, we provide insights into
some of these limitations. In Section VII, we then take a brief
look at one of the characteristics that, not surprisingly, is crit-
ical both to the power of these models and to their limitations,
and, by making ties to the richer class of graphical models not
restricted to trees, we provide a brief glimpse into recent and
emerging extensions of our framework that expand its do-
main of applicability. Section VIII concludes our paper with
some perspective on this framework and some prospective
thoughts.

II. A SAMPLING OF APPLICATIONS

The methods we describe in this paper have been em-
ployed in a wide variety of applications, including: low-level
computer vision and image processing problems (image
denoising [59], [67], [80], [261], [281], deblurring [19],
edge detection [292], optical flow estimation [10], [223],
surface reconstruction [111], texture classification [225],
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and image segmentation [42], [58], [199], [212], [324], to
name a few); higher level recognition and vision problems
[183], [323]; photon-limited imaging [188], [261], [263],
[322]; network traffic modeling [279]; oceanographic,
atmospheric, and geophysical remote sensing, data assim-
ilation, and data fusion [112], [113], [158], [184], [242],
[255], [326]; speech [42], [162], [175], [241], [249], [331];
multisensor fusion for hydrology applications [84], [139],
[198]; process control [18], [196], [306], [327]; synthetic
aperture radar image analysis and fusion [77], [119], [160],
[185], [309]; geographic systems [93], [189]; medical image
analysis [290]; models of neural responses in human vision
[274]; and mathematical physics [15], [94], [136]. In this
section, we introduce several of these applications which
serve to provide context, motivation, and illustrations for the
development that follows, as well as to indicate the breadth
of problems to which these methods can be applied.

A. Ocean Height Estimation

A first application, described in detail in [112] and [113]
is to the problem of mapping variations in sea level based on
satellite altimetry measurements (from one or several satel-
lites). Fig. 2 (from [112]) shows an example of a region of
the Pacific Ocean and the tracks over which the TOPEX/PO-
SEIDON satellite provides measurements to be used to esti-
mate sea-level variations.1 The challenges in this as well as
in other oceanographic data assimilation problems [227] are
several. First, the dimensionality of such mapping problems
can be enormous, involving estimates on grids of 10–10
points. Second, as Fig. 2 illustrates, the data that are col-
lected have an irregular sampling pattern. Third, there are
substantial nonstationarities both in sea-level variations and
in the fidelity of the measurements derived from the altimetry
data. For example, the statistical structure of sea-level vari-
ations in regions of strong currents, such as the Gulf Stream
or Kuroshio Current in the Pacific, are quite different than
they are in other ocean regions. Also, since the quantity to
be estimated is actually the variation of sea level relative to
the geoid (the equipotential surface of the Earth’s gravita-
tional field), the raw satellite data must be adjusted to ac-
count for spatial variations in the geoid. Since the geoid is
not known with certainty and, in fact, can have significant
errors near large features such as the Hawaiian Islands and
extended subsurface sea mounts and trenches, the resulting
adjusted altimetry measurements have errors with spatially
varying uncertainties. Fourth, there is a need to compute not
only estimates of sea-level variations but also the statistical
quality of these estimates (e.g., error variances), as such sta-
tistics are needed to fuse these estimates with other infor-
mation (e.g., ocean circulation models) and to identify sta-
tistically significant anomalies. Finally, oceans display vari-
ations over an extremely large range of scales—indeed, the

1What is actually estimated is sea height, relative to the geoid, with ad-
ditional corrections to remove effects such as tidal variations and, quite fre-
quently, the overall temporally averaged ocean circulation pattern (see [353]
and [354]).

Fig. 2. A set of TOPEX/POSEIDON measurement tracks in the
north Pacific Ocean. (Reprinted from [112].)

typical wavenumber spectral models for sea-level variations
have fractal, spectra [130], [354].2

The dimensionality of the sea-level estimation problem
and our desire to compute error variances as well as estimates
present a daunting computational task, precluding brute force
solution methods. Further, because of the nonstationarity of
the phenomenon, the varying quality of the data, and the
sampling pattern of measurements, efficient methods, such
as those based on the fast Fourier transform (FFT), are not
applicable. However, as we will see in Section IV, by taking
advantage of the fractal character of sea-level variations, a
surprisingly simple MR model yields an effective solution.

B. Surface Reconstruction

A second closely related problem is one that has been
widely studied in the field of computer vision, namely that
of reconstructing surfaces from regular or irregularly sam-
pled measurements of surface height and/or of the normal to
the surface (as in the shape-from-shading problem [34], [53],
[152]). One well-known approach to reconstruction prob-
lems such as this involves the use of avariational formu-
lation. In particular, let denote the 2-D planar region over
which the surface is defined, and let

(1)

denote the gradient of the surface. Similarly, let denote
measurements of the surface and denote
measurements of the gradient.3 Given that these measure-
ments are likely to be noisy and may also be available only
at irregular locations (or have spatially varying quality), we

2As these references indicate, the power law exponent,
, can and gener-
ally does vary with frequency and spatially (i.e., the statistics of ocean height
variation are only locally stationary in space).

3More generally, we might have a measurement of the dot product of this
normal with a known vector, a situation that requires only a minor variation
in the variational formulation.
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take as our estimate of the surface and its gradient the quan-
tities and , that minimize the following func-
tional:

(2)

The nonnegative coefficients and in the first two
terms in (2) allow us to control how closely we wish the re-
construction to follow the measurements,4 while the third
and fourth terms in (2) representsmoothness penaltieson the
reconstructed surface. In particular, the first of these terms is
often referred to as athin membranepenalty, as it penalizes
nonzero surface gradients, while the last term is referred to
as athin platepenalty, as it penalizes curvature or bending
of the surface. By adjusting and , we can adjust
the relative strengths of these penalties.

mentOne further complication is the integrability con-
straint, namely, that is, in fact, the gradient of a
surface. In particular, from (1), it is clear that we must have
that

(3)

Minimizing (2) with the constraint (3) or variations of this
problem, where, for example, the hard constraint (3) is re-
laxed and replaced by a quadratic penalty on the difference
between the two sides of this equation, is a classic variational
problem [152].

Alternatively, as discussed in [111], [223], and [312] (see
also Section VI-B1), optimization problems such as this can
also be interpreted as estimation problems with “fractal”
priors. Computing the optimal estimates for such problems
involves solving PDEs [152], a computationally intensive
but not overwhelming task in itself. However, the compu-
tation of the statistics of the errors in these estimatesis a
daunting task. As we discuss and illustrate in Section VI-B1,
(and as is developed in much greater detail in [111]), an
alternative is to replace the smoothness penalties in (2),
which correspond to a prior model on the surface to be
reconstructed, with a different MR prior model which has
the same qualitative fractal characteristics but which leads
to very efficient algorithms for the computation of estimates
anderror statistics.

C. Image Denoising

The problem of removing additive noise from images is
one that has been the subject of a vast number of studies.
Linear methods such as Wiener filters (for spatially sta-
tionary models) or those based on Gaussian MRF models
have a long history (see, e.g., [13], [163], [343], and [345]).
However, such methods, which generally aim to minimize

4For example, if we do not have measurements of one type or the other
over subregions ofIII , we simply set� (rrr) or � (rrr) to be zero over those
subregions.

mean-squared estimation error using only second-order
statistics of the images to be restored, have serious limi-
tations for many applications in which the image or field
to be restored has edges or areas of substantial high-fre-
quency/high contrast behavior. In particular, the generally
low-pass nature of linear methods implies that they will
reduce noise at the expense of blurring or distorting such
important features. For example, Fig. 3(b) depicts a noisy
image of a scene [shown without noise in Fig. 3(a)] with a
great deal of edge-like, high-frequency behavior. As can be
seen in Fig. 3(c) and (d), performing linear Wiener filtering
offers a comparatively poor tradeoff in the amount of noise
rejection versus the amount of blurring of features.

Numerous approaches have been developed to combat
such problems—in essence, attempting to remove noise in
regions of images away from such features while preserving
those features with minimal distortion. Included in the
literature are methods based on explicit modeling of edges
and other boundary-like features (see, for example, [132]
and [234]), approaches that use non-Gaussian models in
order to better capture the “heavy tail” nature of imagery (for
example, the generalized Gaussian models studied in depth
in [41]) and an array of procedures using wavelet transforms
(e.g., [2], [57]–[59], [68], [80], [104], [192], [193], [261],
[281], [301], [330], and [333]). For this latter set of methods,
the general idea is to exploit the localization properties of
wavelets to allow much easier and more transparent adaptive
processing in order to minimize distortion of important
image features while removing noise. As we will see, some
of these methods explicitly involve the modeling framework
developed in this paper, while many others have close ties
to it.

D. Texture Discrimination

Another problem of importance in computer vision and
in other image processing applications is that of texture
discrimination. One well-known class of statistical texture
models is that based on MRFs [50], [71], [178], [233]. For
example, Fig. 4 shows two synthetic MRF textures, one
modeling pigskin and one sand. The problem of discrimi-
nating textures such as these given noisy measurements is a
standard hypothesis testing problem whose solution hinges
on the computation of the likelihood ratio for the two tex-
tures based on the observed imagery. However, calculating
these likelihoods can be a prohibitively complex operation
if the data correspond to irregularly spaced samples, if the
region over which the data are available has an irregular
shape, or if the data have spatially varying statistics (so that
FFT methods are not applicable).

As we discuss in Section IV, likelihood calculations for
the class of MR models on trees are far simpler and remain
tractable even for very high-dimensional image processing
problems. Further, as we describe in Section VI, it is pos-
sible to develop MR models that capture the statistical vari-
ability of textures such as in Fig. 4. These alternate models
arenot identical to the MRF models used to generate these
examples, but they are sufficiently close so that they repre-
sent equally valid mathematical models for real textures, at
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(a) (b)

(c) (d)

Fig. 3. (a) A noise-free image. (b) Noisy version of the image. (c) Restored version of this image
using optimal Wiener filtering over 3� 3 image blocks. (d) Restored version using Wiener filtering
over 7� 7 image blocks. (Reprinted from [282].)

least for the task of discrimination for which they admit very
efficient solutions.

E. Image Segmentation

Another image processing and low-level computer vision
problem that arises in many applications is that of segmenta-
tion. Segmentation of images such as the multispectral image
or document page shown in Fig. 5 is a challenging and com-
putationally intensive task, as it involves both accounting
for image variability within each class as well as the poten-
tially combinatorially explosive set of candidate segmenta-
tions that must be considered. For example, MRF models
such as those described in [132] and [234] include discrete
hidden label variables whose estimation corresponds to the
specification of a segmentation. However, the search for the
optimal estimates for such models is computationally de-
manding, requiring methods such as simulated annealing for

their solution or leading to suboptimal methods such as iter-
ated conditional mode (ICM) [36]. These problems have led
a variety of authors to consider MR algorithms and models
[14], [40], [42], [48], [53], [58], [59], [135], [144], [179],
[180]. We describe how some of these methods fall directly
into the framework on which we focus and how others relate
to it.

F. Multisensor Fusion for Groundwater Hydrology

As we mentioned in Section I, one of the motivations for
using MR methods comes from applications in which the
available measurements are at multiple resolutions and/or in
which the variables to be estimated may also represent aggre-
gate, coarser-scale variables. One application in which this
has been examined is in the field of groundwater hydrology
[84].
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(a)

(b)

Fig. 4. Illustration of two textures based on Markov random field
models. (a) Pigskin. (b) Sand. (Reprinted from [225].)

The objective in this application is to estimate (and
characterize the estimation errors for) the travel time of
solutes (e.g., contaminants) traveling in groundwater. This
travel time is highly uncertain because of the considerable
uncertainty, large dynamic range, and spatial variability in
hydraulic conductivity, which controls the spatially varying
transport behavior of a groundwater system (see [84]).
Specifically, let denote the log-conductivity field5 as
a function of spatial location. Then, the basic governing
equation is

(4)

where is the potential field known ashydraulic headand
is the so-calledrecharge rate, which is often (and,

5Because of the large dynamic range of conductivity, it is common to use
log-conductivity as the fundamental variable.

in particular, in [84]) assumed to be known.6 Further, the
local groundwater velocity is a function of conductivity
and head, and, in particular, is proportional to the product of
conductivity and the gradient of the potential field

(5)

The data that are available generally come from a sparse
and irregularly spaced set of wells in which both log-conduc-
tivity and hydraulic head are measured. From these measure-
ments, we wish to estimate the travel time between two spec-
ified points (e.g., a point representing a central contaminant
source location and a point on the boundary of a containment
region). That travel time is in turn determined by the velocity
field in (5).

The complexity of this problem should be evident. As
discussed in [84], while our measurements of log-conduc-
tivity represent point measurements of the random field

at the well locations, the measurements of hydraulic
head are related to in a much more complicated and
nonlocal manner through (4). In Section VI, we will see how
the MR framework we describe can be used to capture both
the statistical structure of as well as the nonlocal head
measurements. We will also see that the MR methodology
provides two alternative methods for the fusion of these
measurements for the estimation of travel time. In the first
of these, we simply model travel time as another nonlocal
quantity included explicitly in the MR model and thus
estimated directly by the MR estimation methodology de-
scribed in Section IV. An alternative approach involves the
widely used geostatistical concept ofconditional simulation
[171]–[173], in which samples of the entire log-conduc-
tivity field are drawn from the distribution for the field
conditioned on the available measurements. As we will
see, drawing samples from MR models is also extremely
efficient—comparable in complexity to generating sample
outputs of a time-series model driven by white noise and
much more efficient than corresponding methods for many
other random field models.

G. Image Reconstruction and Inverse Problems

In the preceding section, we described an application in
which the data to be fused included both local measurements
of the quantities of interest and nonlocal measurements re-
sulting from indirect probing of the medium or field to be
imaged. Data of this latter type are the rule rather than the
exception in many applications, including tomographic re-
construction and deblurring or deconvolution problems. In
the former, the observed data correspond to projections or
sets of line integrals through the field of interest. In the latter,
the field to be estimated or reconstructed is blurred by the
measurement process. Such image reconstruction or inverse
problems present challenges for a variety of reasons. One
such reason is purely computational: Performing a recon-
struction is a nontrivial task. Another is the ill-posedness of
many such problems. For example, operations that involve
integration or smoothing (as both tomography and convolu-
tion do) can significantly attenuate high-frequency features,

6See [84] for a discussion of the boundary conditions that accompany (4).
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(a) (b)

Fig. 5. (a) Remotely sensed multispectral SPOT image (from [42]). (b) Document page
(reprinted from [58]).

and, as a result, some operators of this type may not be in-
vertible or their inverses may have very undesirable proper-
ties (in particular, amplification of high-frequency noise). As
a result, regularization methods, often interpretable as speci-
fying a prior statistical model on the field to be estimated (as
in Section II-B), are often employed. In Section V, we will
see an example of such a reconstruction algorithm based on
an MR model of the type on which we focus in this paper.

III. MR M ODELS ONTREES

A. Basic Model Structure

The general class of models of interest to us are Markov
processes defined on trees organized into levels or resolu-
tions, such as in Fig. 1. In Section III-C, we review the con-
cept of Markovianity for more general graphs, but it suffices
here to point out that the Markov property for trees is par-
ticularly simple. If we condition on the value of the process
at any node on the tree other than a leaf node (e.g., other
than one of the nodes at the finest scale in Fig. 1), the sets
of values of the process on each of the disconnected compo-
nents formed by removing nodeare mutually independent.

One way in which to specify the complete probabilistic de-
scription of such a process is the following generalization of
the specification of a temporal Markov process in terms of
an initial distribution and its transition probabilities. Specifi-
cally, let 0 denote theroot node, namely the single node at the

“top” of the tree, i.e., at the coarsest resolution. For this node,
we specify a marginal distribution .7 For each node

on the tree other than 0, let denote its parent (i.e., the
node to which it is connected at the next coarser scale—see
Fig. 1), and we then specify the one-step coarse-to-fine tran-
sition probability . The initial distribution to-
gether and the full set of these transition probabilities at all
nodes other than 0 completely together specify the joint prob-
ability distribution for over the entire MR tree.

One such class of MR models, which we will use to il-
lustrate many of the concepts in this paper, is the class of
linear-Gaussian models in which is a Gaussian random
vector and the values of the process at finer scale nodes are
specified via coarse-to-fine linear stochastic dynamics as fol-
lows:

(6)

where is a matrix, specified at each node other than 0
and possibly varying from node-to-node, and where is
a Gaussian white noise process, i.e., a set of mutually inde-
pendent Gaussian random vectors defined at each node other
than 0. Such a model is a simple generalization of the usual
linear state space model for temporal processes and systems.8

7Here,p(:) denotes a probability density function ifx(0) is a continuous
variable, a discrete probability mass function ifx(0) takes on only a discrete
set of values, and a combination of the two ifx(0) is a hybrid continuous-
discrete quantity.
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In an analogous manner, one can define other classes of
processes such as the generalization of finite-state Markov
chains to trees [42], [80], [199], [261]. On numerous occa-
sions, we will find the comparison with temporal Marko-
vianity useful both to interpret results and to identify places
in which the extension to trees introduces issues not encoun-
tered for time series.

B. A First Few Examples

To help gain some initial intuition about these models and
about their breadth and variability, we present a few initial
examples.

Example 1: Perhaps the first example of an MR model of
the form of (6) is that introduced in [67] in the context of
image denoising (see also [355]). Specifically, suppose we
are interested in modeling a 2-D random field defined over
a square region, where, for simplicity, we assume that the
number of pixels along each edge of the square is a power
of 2, allowing us to use the simple quadtree structure of
Fig. 1(b). In this case, the indexat each node can be thought
of as a 3-tuple, , where denotes the
scale of node, and the pair specifies the spatial
coordinates of the coarsened spatial region corresponding to

(note that the root node node 0 does not need spatial co-
ordinates; also, we number resolutions consecutively, with

, and with increasing scale corresponding to finer
resolutions). Let be a scalar, Gaussian random variable,
and define the entire process via the following tree recursion:

(7)

Here, is a scalar Gaussian white noise process on the
tree, and can intuitively be thought of as a coarse-scale
representation of the random field being modeled at the scale
and spatial location corresponding node.

Even this very simple model allows us to introduce some
of the concepts and issues that arise with MR models. The
first concerns the choice of the variance of . One simple
choice is a constant variance over the entire tree. Note that,
in this case, if we examine the 1-D sequence of values cor-
responding to the path in the tree from the root node to any
leaf node, we see that this sequence is a simple constant-vari-
ance Gaussian random walk. If, on the other hand, we choose
the variances of to be constant at each scale but to de-
crease geometrically from scale to scale (e.g., variances that
decrease with scale by a factor of ), the resulting process
has a rudimentary type of self-similarity or fractal character:
the variance of the variation at any scale has a power law de-
pendence on scale. We will have more to say about self-simi-
larity and fractal processes later and will also see a somewhat
different example next.

8As is also true for standard temporal models and signals, while for sim-
plicity we assume that the variables in the model (6) are Gaussian, all of the
results and concepts for these models that make use only of second-order
properties (means, covariances) hold more broadly as wide-sense concepts.
For example, if we only assume thatw(s) is uncorrelated from node to node
(i.e., is wide-sense white noise on the tree), then the estimation algorithm in
Section IV-B represents the best linear estimator.

A second observation is that (7) corresponds to perhaps the
simplest coarse-to-fine interpolation process: interpolation
consists simply of copying the value at the coarser node [the
first term on the right-hand side of (7)] and then adding inde-
pendent “detail.” This interpretation of multiscale dynamics
as coarse-to-fine interpolation combined with the addition
of new detail at each resolution clearly rings of concepts
common in other areas of multiresolution analysis, most no-
tably wavelets. We will have more to say about relationships
to wavelets later. However, as the next point makes clear, the
tie to wavelets or other ideas in interpolation requires con-
siderably more thought.

In particular, for any standard MR decomposition of a
signal or image, the values of the variables at coarser nodes
are simply functionals (i.e., weighted averages or smoothed
differences) of the values at finer scales. Indeed, that is cer-
tainly the case for wavelet analysis. However, note that for
the process defined by (7), it is certainlynot the case that

is the average of its four descendent values (since the
four white noise values added to these children are indepen-
dent). As a consequence, if our primary interest is in the
random field at the finest scale, the values at coarser scales in
this model represent true hidden variables, as they are not de-
terministic functions of that finest scale process. As in other
contexts, among the reasons for building models with such
hidden variables is that they lead to efficient algorithms. In
addition, later in this paper we will also discuss the class of
so-calledinternalMR models in which the coarser scale vari-
ables arenot hidden.

Example 2: In [224], a class of MR models is intro-
duced for 1-D Gauss–Markov processes and for 2-D Markov
random fields. The simplest example of this uses Paul Lévy’s
construction of Brownian motion via midpoint deflection
[211].9 Specifically, suppose that we wish to construct a
sample path of a Brownian motion process over a time
interval, say , of length . To begin, we
first generate samples of the 2-D Gaussian random vector

. As illustrated in Fig. 6(a), we then draw
a straight line between the generated values of our process
at these two endpoints. This represents the best estimate of
the values of the process at every point betweenand
given the values at the endpoints. Consequently, the error
in this estimate at any specific point is independent of the
values at the end points. At the midpoint of the interval,

, we then generate an independent, zero-mean
random variable with variance equal to the
error variance in the estimate of based on the
two endpoint values. If we then “deflect” the straight line
at this midpoint by adding this new random variable, we
now havethreesamples, , and ,
that have the desired joint distribution of a sample path of
Brownian motion.

The process continues, taking advantage of a critical fact.
Because Brownian motion is a Markov process, conditioned
on the value at the midpoint, the values of the Brownian
motion on the two half-intervals are mutually independent,

9See [129] for related constructions for the so-called Brownian bridge.
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(b)

Fig. 6. (a) Illustrating the midpoint deflection construction of samples of Brownian motion. (b) The
MR tree model structure corresponding to the midpoint deflection construction.

and, thus, the subsequent deflection of midpoints of each
of these half-intervals can be carried out independently.
The result is a procedure for generating denser and denser
samples of Brownian motion, which is depicted in Fig. 6(b).
As this figure suggests, the procedure we have described
corresponds to a linear-Gaussian MR model of the form in
(6): here, the three-dimensional (3-D) “state” at any
node consists of the two endpoint and midpoint values
of over the subinterval identified with node. The
coarse-to-fine dynamics are precisely the midpoint deflec-
tion scheme we have just described. Each node corresponds
to half of the interval associated with its parent node. As a
result, two of the components of the 3-D state at each child
node are simply copied from the parent node (namely, one
of the two endpoints of the parent interval and its midpoint
value), and a new midpoint value is generated for the child
interval by taking the average of its endpoints and adding
an independent zero-mean Gaussian random variable with
variance equal to that of the error in the estimate of that new
midpoint given the endpoint values.

It is a straightforward calculation to write down the dy-
namics of (6) for this example (see [224]), but even without
doing that explicitly we can make several important observa-
tions. The first is that the procedure we have just described
works equally well for other Gauss–Markov processes, in-
cluding those of higher order. The only difference is that the

best estimate of a midpoint value given the two endpoint
values will in general be a more complex linear function
of the endpoint values, depending on the correlation struc-
ture of the field. Note also that because of the fact that in-
crements of Brownian motion have variances that scale lin-
early with the length of the interval over which the increment
is taken, the MR model depicted in Fig. 6 has self-similar
scaling behavior (i.e., the variances of the midpoint deflec-
tions decrease geometrically as we move to finer scales). In
addition, as in Example 1, each step in the Brownian motion
construction does indeed involve coarse-to-fine interpolation
plus the addition of independent detail (to deflect midpoints),
although the nature of the interpolation and the detail are very
different in this example, as is the fact that the state of the MR
process at each node does not represent a spatial average of
the process but rather a different type of coarse-scale repre-
sentation, namely a simple three-point piecewise linear ap-
proximation to the Brownian motion sample path, as illus-
trated in Fig. 6(a). Finally, note that, in contrast to Example
1, the MR model for Brownian motionis internal, as the state
at each node is a completely deterministic function of its chil-
dren.

Example 3: A class of nonlinear MR models that plays
just as important a role in theory and practice as the linear
model in (6) is the class of MR Markov chains on trees. In
such a model, each of the variables on the tree takes on
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one of a finite set of values (where the nature and cardinality
of that set may vary from node to node or from scale to scale).
As described previously, such a model can be completely
specified in terms of the distribution at the root node
and the parent–child transition distributions
for every node .

Such models have a long history, extending back to studies
in statistical physics [26], dynamic programming [32], artifi-
cial intelligence and other investigations of graphical models
[7], [89], [128], [169], [267], [294], [295], and signal and
image processing [42], [58], [59], [80], [175], [199], [213],
[261], [281], [283]. Later in this paper we will illustrate ex-
amples of such models for two different purposes. One is a
class of image segmentation problems [42], [58], [199], as in-
troduced in Section II-E in which the discrete variable at each
node represents a coarse-level label for the image region cor-
responding to the resolution and location of that node. A stan-
dard example used in such problems is a multiscale variant
of the Potts model [26], [132] in which each child node takes
on the same value of its parent with some probability and is
equally likely to take on any value different from its parent,
i.e.,

(8)

where the label index set for each node is and
where we allow the probability of the child label equaling
the parent to vary with scale (e.g., as described in [42], one
may wish to increase this probability at finer scales).

The second example in which we will see such discrete
models is in the context of wavelet-based image denoising
problems [59], [80], [261], in which the MR Markov chain
represents hidden variables used at each node to control the
distribution of a wavelet coefficient at that same node. As we
will see, such a model can capture the “cascade” behavior
seen in real imagery in which large wavelet coefficients
occur in localized patterns across scale corresponding to the
locations of abrupt changes, edges, or other high-frequency,
high-contrast signal or image features. Including these
hidden variables then leads to denoising algorithms that
automatically adapt to the presence of edges, alleviating
the blurring that occurs if space-invariant linear filtering is
performed.

C. Some First Ties to Graphical Models, Time Series, and
Matrix Factorization

As we have indicated, MR models on trees are a special
class of graphical models [35], [36], [89], [108], [123], [128],
[143], [168]–[170], [197], [204], [236], [267], [294], [295],
[302], [337], [339], [357]. With an eye toward some of the
generalizations we describe later and to lay the foundation for
relating our framework to other work, we briefly summarize
some of the basic graph-theoretic concepts associated with
this larger class of models.

A graph consists of a set of vertices and a
set of edges between pairs of vertices (i.e., ).

In general, one can distinguish between directed graphs in
which an edge is directed from node to node (so
that the edges and represent different objects) or
an undirected graph in which and do not repre-
sent different objects (so that inclusion of one of these in
is equivalent to inclusion of the other or both). For our pur-
poses, it is sufficient to focus on the latter for the moment
and to make a few comments about the former shortly.10

Consider an undirected graph and a random process
, defined over the index set. Of particular im-

portance to us is the class of MRFs over the graph. Specif-
ically, for each node , let denote the set ofneigh-
borsof , i.e., the set of all nodes other thanitself that are
connected to by an edge. Then is Markov on if for
each node

(9)

That is, conditioned on the values of the process at all its
neighbors, is independent of the remaining values of
the process at other nodes. An alternative characterization
of Markovianity requires a bit more graph-theoretic termi-
nology. A path in the graph is a sequence of nodes in
such that there is an edge corresponding to each successive
pair in this sequence. A subsetof cutsthe graph if the
remaining nodes in (i.e., ) can be partitioned into two
disconnected subsetsand , i.e., two subsets so that any
path in from any to any includes an element
of . Also, we introduce the notation for the set of values

for any subset (although, for , we will
generally denote simply as ). Then, is Markov if,
for any subset that cuts into disconnected subsetsand

, then

(10)

That is, conditioned on the values of on , the set of
values of on is independent of the set of values of
on . Note that, if actually separates into discon-
nected subsets and if is Markov, then the sets of values
of the process over each of these subsets are mutually inde-
pendent given the values on.

The specification of Markov models on general graphs
requires some care. In particular, in contrast to temporal
Markov processes (or, as we will see, tree models as well),
Markov models on graphs are not, in general, specified in
terms of the marginal density at a single node and transition
probabilities between pairs or small groups of nodes, thanks
to the fact that a general graph hasloops or cycles, i.e.,
nontrivial paths that begin and end at the same node. Such
loops imply that there are constraints (typically complex and
numerous) among such marginal and transition probabilities,
so that they do not represent a simple parametrization of
Markov distributions.

The Hammersley–Clifford theorem [35], however, pro-
vides such a parametrization in terms of so-called clique
potentials. In particular, aclique of is a fully connected

10For simplicity, we assume throughout thatG isconnected, i.e., that there
exist paths of edges that connect every pair of nodes inV .
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subset of (so that for every pair of distinct
nodes , ). Let denote the set of all cliques in.
Then, the Hammersley–Clifford theorem states that is
Markov with respect to if its probability density can be
written in the following form:11

(11)

Here, is a function of the values of over the
clique and is known as aclique potential. Also, is a nor-
malizing constant, often referred to as thepartition function.

Several points are worth noting. First, if is a Gaussian
process, then we know that the exponent in (11) is a quadratic
form in the vector minus its mean, where the matrix ap-
pearing in that quadratic form is the inverse of the covariance
matrix of . An examination of the Hammersley–Clifford
theorem for such a process yields the observation thatis
Markov with respect to if and only if

(12)

where, for any matrix whose blocks are indexed by the
nodes in , denotes its -block.

In general, the specification of a Markov process ac-
cording to (11), while providing a natural and unconstrained
parametrization, leads to significant computational chal-
lenges. For example, recovering the marginal probability
distributions of the process at any individual node from this
specification has complexity that can grow explosively with
the size of the graph, even in the Gaussian case.12 Simi-
larly, estimating parameters of such models or performing
estimation of the process given measurements can also be
extremely complex.

The situation, however, is far simpler if is acyclic (i.e.,
loop-free), such as the tree illustrated in Fig. 7(a). One way
in which to see why this is the case is to consider the rela-
tionship betweendirectedgraphical models and undirected
ones. In a directed graphical model, the quantities that must
be specified include the conditional distribution at each node

given the values of all of its parents (whereis a parent of
if there is a directed edge fromto ). It is straightforward

to convert a directed graphical model into an undirected one
(e.g., see [169]), but the construction of a directed graphical
model equivalent to an undirected one is generally very com-
plex and, in fact, requires defining new node and edge sets
where the nodes consist of entire cliques of nodes of the orig-
inal undirected graph (see the references on graphical models

11Note that the exponential form in (11) implies thatp(x) > 0 for all
x and, in this case, (11) is a necessary and sufficient condition for Marko-
vianity. There are conditions for Markovianity that can be stated if that is
not the case; however, that detail is unnecessary for our exposition. We refer
the reader to the references at the start of this section for more on this and
other aspects of graphical models.

12For discrete-state processes, the complexity can be combinatorially ex-
plosive, while in the linear-Gaussian case the complexity of the linear-alge-
braic computations grows polynomially. In either case, the required compu-
tations can be prohibitive for Markov processes on arbitrary graphs. We will
have more to say about this in subsequent sections and also refer the reader
to the references at the start of this section.

(a) (b)

Fig. 7. (a) A typical example of a tree. (b) The tree of part (a)
redrawn as it appears when the node labeled “0” is taken as the
root node.

and also Section VI-A for more insight into this). For a tree,
however, the construction of a directed graphical model from
an undirected one is straightforward13 and in fact does not
change the nodes of the graph nor the graphical structure (ex-
cept that edges become directed rather than undirected).

Specifically, consider an undirected graphical model over
a tree and choose any node to designate as the “root” node.
Consider then “hanging” the tree from this node—i.e., re-
draw the graph with the root node at the top level, with its
neighbors at the next level, etc. For example, in Fig. 7(a), we
have labeled one node, 0, as the root node, with its neighbors
denoted as nodes, , and . In Fig. 7(b), we have redrawn the
tree as it appears when we hang it from 0. It is then straight-
forward to see that the overall distribution for this graphical
model can be specified, exactly as we did in Section III-A,
in terms of the marginal distribution at the root node and the
set of parent–child transition distributions. In particular, note
that for an acyclic graph any single node other than a leaf
node cuts the graph into disconnected components. As a re-
sult, for an MRF on the graph in Fig. 7, the processes on each
of the subtrees rooted at , and are mutually indepen-
dent when conditioned on the value of . Thus, the overall
probability distribution for can be factored in terms of
the individual marginal distribution for and the condi-
tional distributions for each of the three subtrees rooted at,
, and conditioned on . Continuing this process, each

of these subtree conditional distributions can be specified in
terms of the individual transition densities for , , and

conditioned on and the transition densities for each
of the leaf nodes conditioned on its parent.

While the preceding discussion is framed in graph-theo-
retic language, the ideas here become quite familiar to those
in the signals and systems community if we describe them
in terms of time series and matrix factorizations. Specif-
ically, consider a discrete-time Gauss–Markov process
(scalar-valued for simplicity), defined over the interval

, and form the vector by ordering the values of
sequentially. In this case, the graph of interest is simply

the set of integers in the interval , with edges
between consecutive integers. Thanks to (12), we know that
the inverse of the covariance of is tridiagonal. Such a
tridiagonal inverse covariance corresponds to an undirected
representation of the statistical structure of this process.
However, we also know that such a process has a simple
sequential, i.e., adirected, representation with the same

13Discussions of this can be found in or inferred from many of the graph-
ical model references given at the start of this section. Other discussions of
this can be found in [156] and in the discussion of so-called reciprocal pro-
cesses on trees in [101].
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graphical structure connecting each time point to its suc-
cessor. Specifically, if we take the point as the root node
of the (acyclic) graph for this process, the corresponding
directed representation of this Markov process is the familiar
first-order autoregressive (AR) model

(13)

where are a set of independent
Gaussian random variables, which are also independent of
the initial condition, i.e., the value of at the “root”
node. The representation in (13) is precisely in the form of a
directed model.

The matrix interpretation of this representation is equally
simple. Specifically, define the vector ,

, which as we have just seen has a diagonal
covariance which we denote by. If we then collect the
set of equations in (13), together with the trivial equation

, we obtain a vector equation of the form

(14)

where the matrix is lower bidiagonal, reflecting the fact
that each equation in (13) involves a single value of and
its predecessor (while the trivial first equation we have added
involves only the initial value ). Note that a simple cal-
culation using (13) reveals that

(15)

which corresponds to a very simplesquare root-factoriza-
tion of the tridiagonal inverse covariance matrix (which also
in this case is in the form of aUDL-factorization). Several
points are of particular note. The first is that the upper and
lower triangular factors in (15) are bidiagonal and thus have
no fill14 compared to the tridiagonal structure of , which
is equivalent to the statement that the graph for the corre-
sponding causal recursion in (13) has the same first-order di-
rected graphical structure as that for the original undirected
graphical model (corresponding to the tridiagonal inverse co-
variance). Further, the computation of these factors is very
simple, as can be seen from (13): the calculation of and
the variance of involve only the joint statistics of

and .
In contrast, for a general Gaussian graphical model, calcu-

lating a square-root factorization of is computationally
involved and results in additional fill in the square root (im-
plying in particular that a directed version of such a model
has a more complicated graphical structure). However, for a
Gaussian–Markov model on a tree, the procedure we outlined
for hanging the tree from a root node and then proceeding re-
cursively down the tree implies that: 1) the calculation of the
parameters analogous to those in (13) from one node to its
child are as simple as those for a temporal Markov process
and 2) there is again no fill. It is precisely these special prop-
erties of tree models that lead to efficient algorithms such as
those we describe in the next section.

14That is, there is no element ofF that is nonzero for which the corre-
sponding element ofP is zero.

As a final point, it is interesting to note that the proce-
dure we have outlined here to convert an undirected graph-
ical model on a tree into a directed representation of the type
we specified in Section III-A allowed us to chooseanynode
as the root node and then to define recursions relative to that
choice. One of the implications of this for standard temporal
Markov processes is well known: we can define a recursive
model either forward or backward in time. However, what
is perhaps not as widely known or at least as widely used is
the fact that we also can define a recursive model that pro-
ceeds from the center (or any interior point) out toward the
two ends of the interval (see [321]).

IV. ESTIMATION AND INFERENCEALGORITHMS FORMR
MODELS ONTREES

As the preceding discussion suggests and as is well known
in fields such as graph theory, theoretical computer science,
artificial intelligence, and linear algebra, computations on
tree structures can be performed very efficiently. In this and
subsequent sections, we will see that the implications of
this efficiency for statistical signal and image processing
and large-scale data assimilation are substantial, and this in
turn leads to our asking different questions than those that
typically arise in other contexts involving tree-structured
computations.

A. Computation of Prior Statistics and Simulation
of MR Models

Before discussing optimal estimation and other inference
problems for MR models, we examine two related problems,
namely the computation of the prior statistics of an MR
process and the generation of a sample path—i.e., the
simulation—of such a process. These computations are
not only important in their own right but also provide an
initial look at the computational challenges in performing
statistical calculations and how these challenges are met
effectively if we have an MR model on a tree. For each of
these problems, we focus primarily on the linear-Gaussian
model (6) and comment on the analogous issues that arise
for discrete-state models.

As discussed in Section III, the specification of a Gaussian
model that is Markov on a general graph corresponds directly
to specifying the inverse of the covariance of that process.
However, calculating the actual elements of the covariance
from such a specification, i.e., calculating the marginal and
joint statistics of the values of at individual or pairs of
nodes, is far from a computationally easy task for a general
graph. In particular, a naive approach to this would simply
be to invert the inverse covariance, a computation that has
complexity possibly as large as , where is the
number of nodes in the graph andis the dimension of the
“state” at any node in the graph.15 Such complexity,

15In some situations, the dimension of states at different nodes may vary.
In this case, the dimension of the vector of all states is simply the sum of
the dimensions of these variables (which reduces toNd if all states have the
same dimensiond).
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however, can be prohibitive and, in fact, is for the appli-
cations we describe in this paper and for many contexts in
which graphical models are used. For example, consider an
MR model on a quadtree as in Fig. 1(b). A simple calculation
shows that in this case is roughly 4/3 times the number of
pixels at the finest scale. Thus, for a 512512 image, is
on the order of 350 000, while for remote sensing problems,
such as that introduced in Section II-A,can easily be in the
millions. For such applications, computations that scale any
worse than linearly with , i.e., that have more than con-
stant complexity per pixel for spatial estimation problems,
are prohibitive. Moreover, for applications such as in remote
sensing, one would never be able to store or even look at the
full covariance which contains billions or trillions of distinct
elements. However, what wewould like to be able to do is
to compute, in an efficient manner, selected elements of the
covariance, e.g., the diagonal blocks corresponding to the co-
variances of the variables at individual nodes and perhaps a
small number of off-diagonal blocks capturing the correla-
tion in space and scale among selected variables.

To be sure, more efficient methods can be devised that
exploit the structure of particular graphs, but it is for trees
that we obtain especially simple and scalable algorithms
[23], [60], [61], [225], [226] for such computations. In
particular, consider the linear model (6), where is a
white noise process, with covariance , independent of
the state at the root node whose covariance we denote
by . From (6), we then see that the covariance of
satisfies a coarse-to-fine recursion itself as follows:

(16)

which is nothing more than the generalization of the usual
Lyapunov equation for the evolution of the state covariance
of temporal state space systems driven by white noise [12],
[174], [182]. Note that this computation directly produces
the diagonal blocks of the overall covariance matrix for,
and the total complexity of this calculation is . The
quadratic dependence on the dimension of eachreflects
the matrix multiplies and additions in (16), while the linear
dependence on reflects the fact that the recursion passes
through each node on the tree only once.

Calculation of any individual off-diagonal block of the co-
variance of can also be performed in an efficient manner.
In particular, for any two nodesand on the tree, let
denote the closest common ancestor toand . Then, using
the statistical structure of the model, we find that the covari-
ance between and is given by

(17)

where for any two nodes and , in which is an ancestor
of , we have that denotes the state transition matrix
from node to its descendent, which satisfies a recursion
in scale analogous to that for the usual state transition matrix
for state space models

(18)

It is interesting to note that (17) is a strict generalization of
the formula for temporal models. In the temporal context in
which the index set is completely ordered, equals ei-
ther or , and, as a result, a nonidentity state transition ma-
trix appears on only one side or the other in (17). However,
for MR models on more general trees, both of these will ap-
pear in general. Also, note that the calculation of (17) for any
particular value of and is computationally simple,16 with
complexity bounded by , where the factor of

comes from the fact that the path fromor to
can have this length.17

While we have described the computation of statistics for
the linear-Gaussian case, the same concepts and conclusions
hold as well for more general models. For example, consider
the case in which is a finite-state process, taking on
any of values at each node. As we discussed in the pre-
ceding section, the computation of marginal distributions at
individual nodes or joint distributions at small sets of nodes
can be extremely complex for a loopy graph (i.e., a graph
with cycles). In particular, in this case, the distribution of
the process over the entire graph involves a state set of size

, i.e., that growsexponentiallywith , and explicit com-
putation of projections of this distribution corresponding to
particular marginals or joints has been shown to be NP-Hard
for general graphs [76]. However, for an MR process on a
tree, represents a generalization of a Markov chain, and
computations of marginals at all nodes can be computed
by a coarse-to-fine tree recursion generalizing the usual
Chapman–Kolmogorov equation for recursive computation
of distributions in Markov chains [266]. Similarly, joints for
one node and several of its descendants can be calculated
efficiently, and then by averaging over that ancestor node
we can obtain joints for any set of nodes [yielding the
counterpart to (17)]. In each of these cases, the complexity
of computation grows at most linearly with and expo-
nentially in the number of nodes whose joint distribution is
required. As in the linear case, computing or even storing
all such joints is prohibitively complex. Typically, one is
interested in calculating only a modest number of very
low-dimensional joint probabilities, and such computations
can indeed be performed efficiently.

MR models also admit very efficient simulation methods.
For example, generation of a sample path for the linear MR
model (6) is a simple generalization of the straightforward
simulation of a linear state space model driven by white
noise. We need only to generate a sample of the Gaussian
random vector corresponding to the root node and in-
dependent samples of each of the , and then perform the
coarse-to-fine computation corresponding to (6). Similarly,
for a discrete-state MR model, we draw a sample from the
distribution for and then, in a coarse-to-fine manner,
draw samples from the distribution for each node

16Note that, essentially with a bit of additional storage and a modest level
of additional computation, the calculation of (17) for a particular pair of
nodess andt also yields the values for the covariances for any other pairs
of nodes on the path froms to t.

17This assumes a more or less balanced tree such as in Figs. 1 or 7 in which
the diameter of the tree (i.e., the length of the longest direct path between
any pair of nodes) isO(logN).
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conditioned on the previously drawn sample value for its
parent. In contrast, the simulation of MRFs on graphs with
loops can be very complex. For example, for discrete-state
processes, iterative procedures such as the Metropolis or
Gibbs sampling algorithms [35], [132], [234], [339] must
often be employed. Such procedures generally require many
revisits of each node of the graph, compared with the single
pass through each node for MR models.18

As a final comment, it is important to note that the
complexity of the MR algorithms we have described here
and that we will describe in the rest of this section scale
extremely well with problem size as measured by, the
number of nodes in our MR tree. However, it is also the
case that these algorithms scale polynomially in, which
measures the “size” of the variables stored at each node of
the tree, e.g., the dimension of the state in a linear model
or the cardinality of the state set in a finite-state model.
Consequently, the utility of all of these methods depends
critically on being quite small compared to , and it is
this observation that in essence provides the “acid test” to
see if any particular problem can be successfully addressed
using the methods described in this section. The issues
of constructing models with manageable state sizes and
characterizing processes for which that is or may be possible
is the subject of Section VI.

B. Two-Pass Estimation Algorithms

In this section, we consider the problem of estimating an
MR process given noisy measurements of some or all of its
values. As we did in the previous section, we begin with a dis-
cussion of the linear case, i.e., with an MR model as specified
by (6), where, for simplicity of exposition only, we assume
that is zero mean. The problem to be considered is that
of estimating this MR process given a set of linear measure-
ments

(19)

Here, is a zero-mean white noise process on the tree,
independent of and with covariance , while the
matrix specifies what is measured at each node of the
tree. Note that, in principle, this model allows measurements
at multiple resolutions and, thus, the estimation algorithm we
describe here provides a means for seamlessly fusing such
MR data. In addition, even if we only have measurements at
the finest scale [i.e., even if for all nodes other
than those at the finest scale], the algorithm we describe has
substantial computational advantages.

18There are classes of Gaussian graphical models on loopy graphs for
which simulations can be performed with efficiency approaching or com-
parable to theO(N) complexity for tree models. For example, FFT-based
methods can be used to simulate spatially stationary random fields with
O(N logN) operations (this follows directly from the fact that the Fourier
transform whitens stationary processes [266]). Alternatively, efficient sparse
matrix methods (e.g., those used to solve elliptic PDEs) can often be ex-
ploited for loopy but sparsely connected graphs, resulting in procedures for
sample generation that also haveO(N) complexity (see Section IV-D for a
related discussion).

Let denote the optimal estimate19 of given
all of the data in (19) throughout the tree [i.e.,

, where denotes the set of all nodes in the MR tree],
and let denote the covariance of the error in this es-
timate. As developed in detail in [60], the computation of
these quantities throughout the entire tree can be accom-
plished using a two-pass algorithm analogous to the two-pass
Rauch–Tung–Striebel (RTS) smoother [12], [174], [277] for
temporal state space models.20 That smoother consists of
a two-sweep algorithm. The first sweep, forward in time,
yields the optimal causal estimate (i.e., the optimal estimate
at each time given all data before and including time),
a computation performed using a Kalman filter [12], [174],
[182]. At the end of the time interval, , the forward sweep
yields the optimal estimate at that final point given all of the
data, i.e., this is the optimal smoothed or noncausal estimate
at this terminal point as well, since there are no data beyond
time . That smoothed estimate then serves as the initial con-
dition for a second sweep backward through the data to com-
pute the optimal smoothed estimate at every point in time. At
time , this backward sweep combines the optimal causal es-
timate at time , computed during the first sweep, with the
smoothed estimate just computed at time , in order to
determine the optimal smoothed estimate at that time, to-
gether with the covariance of the error in this estimate.

For more general trees, such as those in Fig. 1, the situa-
tion requires a modest amount of additional care and nota-
tion. First of all, while the RTS algorithm for time series can
be equally well applied from either end of the interval (i.e.,
we could just as easily start with a Kalman filter that runs
in reverse time, starting from time, followed by a sweep
forward in time), there is an asymmetry between the fine-to-
coarse and coarse-to-fine directions in MR trees, as shown in
Fig. 1. As a result, the generalization of the RTS smoother to
such a tree must begin with a fine-to-coarse, child-to-parent
sweep, starting at the finest nodes, followed by a coarse-to-
fine, parent-to-child sweep.21 The first fine-to-coarse sweep,
whose computational flow is illustrated in Fig. 8(a), is a gen-
eralization of the temporal Kalman filter. The objective of
this sweep is the computation, at each nodeof , the
optimal estimate of based on all of the data in , the
subtree rooted at node(i.e., node and all of its descen-
dants), together with , the covariance of the error in
this estimate. As in the temporal Kalman filter, the recursive
computation of these estimates involves several steps and
intermediate quantities. In particular, suppose that we have
computed the best estimate and corresponding error

19Optimality here is defined in the least-squares sense, so that the optimal
estimate is simply the conditional mean based on the available data.

20In addition, there are other smoothing algorithms for graphical models
on trees which have somewhat different computational structures, with the
same general complexity. See, for example, [169], [259], [267], [285], [332],
[334], [338], and, in particular, [110] for the general characterization of any
algorithm that yields the optimal smoothed estimates in a finite number of
steps.

21Actually, one can equally well define a smoothing algorithm that takes
any node as its “root” and which then first sweeps from leaf nodes to the
root node, followed by a root-to-leaf sweep. Note that any such procedure
has the property that data from each node do in fact find their way into the
computations of the smoothed estimate at every other node in the tree.
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Fig. 8. Illustrating the recursive structure of statistical processing
algorithms on MR trees. (a) The fine-to-coarse “upward” sweep
of the optimal estimation algorithm [see (20)–(32)]. (b) The
coarse-to-fine “downward” sweep producing optimal smoothed
estimates [see (33)–(37)]. (c) The hybrid recursive structure
for the whitening of MR data (see Section VI-C); the upward,
fine-to-coarse portions of these computations comprise the
Kalman filtering upward sweep shown in (a) to produce partially
whitened measurement residuals; the downward portion of these
computations complete the whitening based on a particular total
ordering of nodes on the tree that is compatible with the partial
order implied by the tree itself. (Adapted from [225].)

covariance, , at node , given all of the data in ex-
cept for the measurement at nodeitself. The computations
to produce the updated estimate (and associated error covari-
ance) that incorporates the measurement at nodeare iden-
tical in form to the analogous equations for the usual Kalman
filter.

Measurement Update:Given , , and
, we have

(20)

where is the measurement innovations

(21)

which is zero-mean with covariance

(22)

and where the gain in (20) and the updated error co-
variance are given by

(23)

(24)

The second component of the fine-to-coarse recursion is a
step that has no counterpart in temporal Kalman filtering, as
it involves the fusion of estimates that come from all of the
immediate children of node. Specifically, let de-
note the optimal estimate for nodebased on all of the data in

, the subtree rooted at node , and let denote
the corresponding error covariance. Fusing all of these esti-
mates produces the estimate (and error covariance) at node

based on all of the data at nodes descendent fromas fol-
lows.

Fusion of Subtree Estimates:Given and
for all (where we let denote the number of

descendants of node), we have

(25)

(26)

where is the prior covariance at node, computed from
(16).

The third step of the recursion involves the computation of
the estimates (and error covariances) for each child
of node . This step is identical in nature to the one-step pre-
diction step in the usual Kalman filter (in which we predict
the state at timebased on data through time ). The only
difference in detail is that the “prediction” we must do here is
from fine to coarse, while the MR model (6) is specified in a
coarse-to-fine manner. As a result, the form of the following
step involves a so-called “backward” model analogous to that
for temporal models [328].

Fine-to-Coarse Prediction:Given and
, we have

(27)

(28)

where

(29)

(30)

Finally, this recursion must be initialized, where, in con-
trast to the temporal Kalman filter, we must provide initial
conditions atall of the finest scale leaf nodes of the tree. This
is done by setting the initial estimate at each leaf node to the
prior mean (here assumed to be 0) and the initial covariance
to the prior covariance.

Initialization at the Finest Scale:For each finest scale leaf
node , we have

(31)

(32)

Note also that as for temporal Kalman filters the gain and
covariance matrices can be precomputed, and, in fact,
(22)–(24), (26), (28)–(30), and (32) together form the MR
tree generalization of the Riccati equation for the error
covariance [61].

When the fine-to-coarse sweep reaches the root node, the
estimate and covariance computed at that node provide initial
conditions for the second coarse-to-fine sweep, exactly as in
the temporal RTS algorithm as follows:

(33)

(34)

As derived in [60], the computations in this second sweep
are identical in form to those in the temporal RTS algorithm.
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In particular, the computation at nodein the tree involves
fusing together the optimal smoothed estimate and covari-
ance just computed at its parent with the statistics com-
puted at node during the first Kalman filtering sweep. The
only difference in the case of trees is that the nodehas
several children, so that the following computation is carried
out in parallel [as illustrated in Fig. 8(b)] at each of the chil-
dren of node :

(35)

(36)

where

(37)

Note again that the covariance computations (34), (36), and
(27) can be precomputed.

As with the computation of prior statistics described
in Section IV-A, the smoothing algorithm just described
has very significant computational advantages. In partic-
ular, note that the computations at any node on either the
upward or downward sweep involve matrix–vector and
matrix–matrix multiplies, as well as matrix inversions,
where the matrices and vectors involved have dimension
(or perhaps less for those involving the measurement
and its associated matrices). In addition, each node in the
tree is visited twice—once in each sweep. Consequently
the total complexity of this algorithm is at worst ,
which does scale linearly with the number of nodes in the
tree. Furthermore, the result of this computation produces
both estimatesand their error covariances.

To understand the significance of this result a bit more
deeply, consider an alternate vector form of the estimation
equations. Specifically, as before, letdenote the vector of
values of throughout the tree, and let denote its co-
variance. Similarly, let and denote the corresponding vec-
tors of measurements and measurement noises, respectively,
so that

(38)

where has covariance and where and are block-
diagonal matrices formed, respectively, from the values of

and throughout the tree. Then one form for the
equations for the optimal estimate is the following:

(39)

where denotes the vector of optimal smoothed estimates,
which has corresponding error covariance given by

(40)

Thanks to the fact that is Markov on the MR tree,
has a tree-structured pattern of nonzero elements. Further,
since and are block-diagonal, the matrix on the left-hand
side of (39), namely , also has the same tree structure.
There are two implications of this observation.

The first is that (39) can be solved very efficiently via the
tree-structured generalization of Gaussian elimination (the
fine-to-coarse Kalman filtering sweep) followed by back-
substitution (the RTS smoothing step), yielding the
complexity discussed previously. To be sure, other methods
of numerical linear algebra (e.g., conjugate gradient or multi-
pole methods [138], [256], [280]) could be used to solve this
equation with this same order complexity. However, what is
particularly important about the MR algorithm are both its
noniterative nature and especially the fact that it also yields
the diagonal blocks of the error variance matrix as part
of this same computation. Since these error statistics are ex-
tremely important in many applications (see Examples 4, 5,
8, and 9 to follow in this and subsequent sections), this is a
major benefit of the use of MR tree models.

The second implication of the tree structure of , which
directly generalizes known results for temporal models [17],
[27], [28], [226], is that this implies that the error process

is an MR process on the same tree, with
parameters (i.e., matrices analogous to and for the
original process) that are automatically available as a result
of the RTS smoothing computations. Since those computa-
tions already yield the covariance of the error at each indi-
vidual node, the method described in Section IV-A (in partic-
ular, equations analogous to (17) and (18) for the smoothing
error model) can be used to compute any of the covariances
between errors at different nodes. More importantly, we see
that the result of the smoothing process produces a model for
the remaining errors that has the same form as the original
model and which therefore can be used directly for the fu-
sion of any subsequent measurements that become available.
Moreover, this error model provides the basis for extremely
efficient conditional simulation of MR processes, a feature
that is illustrated in Example 9.

It is interesting to note also that there are connections of
the preceding development (and, for that matter, much of the
discussion in this paper) to problems arising in the field of
decentralized control. In such problems, different “nodes”
in a network correspond to different “agents” or controllers
who observe and can influence the behavior of a dynamical
system. If all of the data collected by these agents could be
centralized, in principle, one could determine the optimal es-
timate of the system given all of the measurements as well
as determine the optimal coordinated control policy for all
of the agents. However, because of constraints that might in-
clude computation but in many cases are dominated by other
issues (such as communication constraints or the geographic
separation among agents), such centralization of information
is not possible, and instead one must consider alternative
strategies for coordination that, in particular, may produce
estimates that are suboptimal. While there are many issues
in decentralized control that do not arise in the processing
problems considered here,22 it is worth noting that one case
in which relatively simple solutions can be found is that in
which the agents have what are referred to in [148] and [149]

22For example, a significant complication arises due to the indirect “com-
munication” that occurs when each agent’s control actions influences the
subsequent measurements of other agents.
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aspartially nested information patterns, a construct that is
directly related to the singly connected structure of our MR
models and of MRFs on acyclic graphs more generally.

Example 4: As a first example, consider the optimal esti-
mation of sea-level variations given satellite altimetry mea-
surements such as in Fig. 2, as briefly described in Sec-
tion II-A and in much more detail in [112] and [113]. As men-
tioned in Section II-A, sea-level variations have a fractal-like
spectrum. Thus, the model (7), with variances of the noise
process that decrease geometrically at finer scales, rep-
resents a simple MR model that captures statistical behavior
with this type of spectral fall-off. The finest scale in this
representation corresponds to pixels of the same size as the
resolution of the satellite data. These data, then, are simply
modeled as measurements at those finest scale nodes cor-
responding to locations along the tracks in Fig. 2 (so that

in (19) except for this irregular pattern of finest
scale nodes). Fig. 9 shows the results of applying the MR
estimation algorithm described in this section to data along
the tracks shown in Fig. 2. Fig. 9(a) shows the optimal esti-
mates of sea-level variations, while Fig. 9(b) shows the cor-
responding error variances over the entire field.

There are several clarifying remarks to make about this
example. The first is simply the observation that the dimen-
sionality of this example is nontrivial: we are attempting to
estimate roughly 250 000 pixels from approximately 20 000
measurements and at the same time calculate the diagonal
elements of the 250 000 250 000 error covariance matrix.
Using the MR estimation algorithm and this simple model,
this is a relatively modest computational task. A second point
is that, as described in [112], the measurement noise model
used in this case is highly nonstationary, due to the fact that
errors in knowledge of the geoid were known to be much
larger in regions in which there were significant gradients in
the geoid, due, for example, to significant bathymetric fea-
tures (i.e., variations in the sea floor, such as sea mounts,
trenches, etc.). Indeed, one of the advantages of having the
error variances computed by the MR estimation algorithm is
that we can use these to detect statistically significant anom-
alies, that is, differences between measurements and esti-
mates that are large compared to what the estimation algo-
rithm would expect based on the computed error variances.
Fig. 9(c) shows the locations of the set of the detected anom-
alies superimposed on a map of ocean bathymetry, showing
substantial correlation with significant features of the ocean
floor. This suggests, among other things, using these anoma-
lies, together with maps of bathymetry, to provide localized
corrections to the geoid.

A third point is that having error variances at multiple
scales allows one to identify the optimal scale for reconstruc-
tion at different points in the field. In particular, it seems
reasonable that one would have greater confidence in higher
resolution reconstructions nearer to the regions covered by
satellite measurements than in regions farther from any such
satellite track. One method for quantifying this is to identify,
at each finest scale pixel, its coarser resolution ancestor with
the smallest error variance. Thus, at that location, estimation
at finer resolutions leads to an increase in uncertainty. An ex-
ample of this, applied to a different application (namely, the

(a)

(b)

(c)

Fig. 9. (a) Estimates of ocean height (relative to the geoid) based
on a set of TOPEX/POSEIDON measurements along the tracks in
Fig. 2. (b) Estimation error variances associated with the estimates
in (a). Both of these maps were computed using an MR estimation
algorithm. (c) An overlay of ocean bathymetry contours with
the locations of statistically anomalous measurement residuals.
(Reprinted from [112].)

estimation of optical flow in image sequences), is given in
[223].

It is also possible to use the MR algorithm together
with more sophisticated models that attempt to capture
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what is known about the ocean surface more accurately.
For example, as discussed in [112], knowledge of spatial
inhomogeneities such as the Kuroshio current can be used
to adapt the model locally, e.g., by increasing the variances
of the in particular spatial regions and at particular
scales. In addition, it is also possible to use higher order
models, such as those that have been developed for surface
reconstruction problems (see Example 8 in Section VI-B1).
Further, using the likelihood function computation method-
ology described in the next section, we can also tune our
models by finding the maximum-likelihood (ML) estimates
of the parameters in the model, e.g., the rate of geometric
fall-off in noise variances in (7) (see [113]).

Finally, it is important to note that the results shown in
Fig. 9 are not obtained quite as simply as the discussion to
this point might imply. In particular, as we discuss in Sec-
tion VI-B1 and as has been pointed out by other authors [67],
[188], [261], [281], [322], MR models on trees and espe-
cially very simple models such as (7) can produce results
that have significant artifacts across major tree boundaries
(i.e., at points at the finest scale that are close together spa-
tially but far apart as measured by the path from one to the
other along the tree). There are several approaches to dealing
with this, including those described in Section VI and also in
Section VII. What was used to produce the results in Fig. 9
is the same simple method used by others [72], [270], and
[298], namely, averaging the estimation results using several
different tree models, each of which is shifted slightly with
respect to the others, so that the overall average smoothes out
these artifacts. We refer the reader to Section VI-B1 for fur-
ther discussion of this important issue.23

While the preceding discussion is couched in the context
of linear-Gaussian models, the same two-sweep structure
for optimal estimation holds forany Markov model on
an MR tree, although, instead of propagating means and
covariances in the upward and downward sweeps, we now
propagate probability distributions. For example, consider
a finite-state MR process as discussed in Example 3, and
suppose that we have observations which we assume
are conditionally independent measurements of the MR
variables at individual nodes. That is

(41)

The discrete case raises a number of issues not encountered
in the linear-Gaussian case, one of which is the specific
objective of processing. In particular, in the Gaussian case,

23Note that, as discussed in [188], [261], [262], [281], and [322], ob-
taining shift-invariant algorithms (which are devoid of the artifacts noted in
the text) requires, in principle, considering a full set of possible shifts of the
MR tree. Such models can be thought of as mixtures of trees [237], [240],
i.e., a probabilistic draw is made of one of these tree models. Note that, while
straight averaging of the estimates from all of these trees does result in a
shift-invariant algorithm, it is technically not the optimal Bayesian estimate.
In particular, the optimal Bayesian estimate would require weighting each
tree estimate by the conditional probability (based on the observed data) that
particular tree was the one drawn from the mixture. While it is certainly pos-
sible to do this using the likelihood computation methods described in the
next section, to our knowledge this has never been used. Further, the benefit
of this additional complexity is, we believe, negligible.

the algorithm described previously in this section can be
viewed as solvingseveralproblems simultaneously: it pro-
vides the overall joint conditional distribution for the entire
MR process (implicitly specified as a tree model itself); it
also yields the individual marginal conditional distribution
for each individual node;and it yields estimates that not
only are the least-squares optimal estimates but also are the
individual node maximuma posteriori (MAP) estimates
and the overall MAP estimate of the entire MR process. For
discrete processes, however, computing the node-by-node
MAP estimates or computing the overall MAP estimate for
the entire process are quite different, and, depending on
the application, one or the other of these may be prefer-
able. For example, for image segmentation applications,
strong arguments can be made [234] that the computation
of individual node estimates rather than an overall MAP
estimate is decidedly preferable as it reflects directly the
objective of minimizing the number of misclassified pixels.
Nevertheless, both of these criteria (as well as a third that we
briefly discuss in Example 10) are of considerable interest,
and, for graphical models on trees, algorithms for each have
been studied and developed by many authors.

In particular, a variety of algorithms have been developed
for the computation of the conditional marginals at individual
nodes. One class, namely, the so-called “message passing”
algorithms, are briefly described in Section IV-D. Another,
which can be found explicitly or implicitly in several places
(e.g., [7], [169], [199], [205], [267], [294], [295], and [332])
involves a structure exactly as that described previously for
the linear-Gaussian case (see, in particular, [199] for a de-
tailed development). As a preliminary step, we first perform a
coarse-to-fine Chapman–Kolmogorov computation to com-
pute the prior marginal distribution at each node. The algo-
rithm then proceeds first with a fine-to-coarse step, analo-
gous to the MR Kalman filter in (20)–(32), for the compu-
tation of the distribution at each node conditioned on all of
the measurements in the subtree rooted at that node. Finally,
there is a coarse-to-fine sweep, analogous to the RTS sweep
in (33)–(37), which yields the marginals at each node condi-
tioned on data throughout the entire tree. Choosing the mode
of each of these marginals yields the so-called mode of the
posterior marginals (MPM) estimate. Furthermore, as in the
linear-Gaussian case [225], the distribution of the entire MR
process conditioned on all of the data has the same tree struc-
ture, and the model parameters of this conditional model, i.e.,
the conditional distribution at the root node and the condi-
tional parent–child transition distribution, are also immedi-
ately available as a result of the two-sweep estimation algo-
rithm [332].

The computation of the MAP estimate for the entire
process involves somewhat different computations but with
very much the same structure and spirit, something that has
been emphasized in several investigations [7], [169], [294],
[295]. Computing the MAP estimate involves a generaliza-
tion of the well-known Viterbi algorithm [118], one that can
be traced at least back to the study of so-called “nonserial
dynamic programming” [32] and to the work of others in
artificial intelligence and graphical models [7], [89], [169],
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[267], [294], [295]. A description of the algorithm that
mirrors very closely the two-pass structure of the estimation
algorithms we have described so far (and that also makes
clear how this algorithm generalizes standard dynamic
programming procedures) can be found in [89] and [199]. A
first fine-to-coarse sweep is performed in which two func-
tions are computed at each node. One of these specifies the
optimal estimate at that node given the optimal estimate at its
parent. The second is the optimal “cost-to-go,” namely, the
maximum value of the conditional distribution for the entire
subtree rooted at that node given both the data in the subtree
and the state value at the parent node. This latter quantity is
passed back to the parent node for use in the computation
of the analogous pair of quantities at that node. When the
top of the tree is reached, the optimal estimate at that node
is easily computed, initiating a coarse-to-fine recursion in
which the estimate of each parent node, together with the
function computed on the upward sweep, yield the optimal
estimate at each child. As with the MPM algorithm and the
computation of likelihoods described in the next section, the
key to the existence of this very efficient structure is the fact
that the conditional distribution of an MR process on a tree
can be recursively factored.

C. Likelihood Functions

In addition to the optimal estimation algorithms described
in the preceding section, very efficient algorithms also exist
for the computation of likelihood functions, quantities that
are needed in the solution of problems such as hypothesis
testing and parameter estimation. Specifically, by exploiting
recursive factorizations of MR processes, one can develop an
algorithm for computing the likelihood function

that involves a single fine-to-coarse sweep through the
data (see, e.g., [169], [267], [333], and [336]). Such an algo-
rithm follows from the following equalities, displayed here
for the discrete-state case:

(42)

(43)

Note that, for , the root node does not exist,
and at this node the right-hand side of (42) is simply the
overall likelihood function, while the transition probability

is simply the prior marginal for . Also,
in the case of continuous variables, the summation in (42)
becomes an integral, which reduces to simple matrix/vector
equations in the linear-Gaussian case.

While the fine-to-coarse application of (42) and (43) is
quite efficient and most likely the method of choice if the
sole objective is the computation of likelihoods, there is an
alternative two-pass method for the linear-Gaussian case,
which also has total complexity that is linear in, although
with a slightly larger proportionality constant. Further, this

alternate method computes quantities that can be of value for
other problems (such as anomaly detection) and also brings
out interesting and important similarities and differences
with well-known ideas in state space estimation for temporal
processes. In particular, one of the keys to the computation of
likelihood functions for temporal state models—and, in fact,
one of the key concepts more generally for temporal models
of other forms [216], [217]—is the concept ofwhitening
the measurements, i.e., of recursively producing predictions
of each successive measurement (using a temporal Kalman
filter), which, when subtracted from the actual measurement
values, yield a sequence of independent random vectors,
referred to as theinnovations, whose covariance depends
in a known way on the temporal state model. Since these
whitened measurements are informationally equivalent to
the original ones, the likelihood function can be written in
terms of the joint distribution for the innovations, which
is nothing more than the product of the marginals for the
innovations at each successive time point.

The estimation algorithm described in the preceding sec-
tion—and, in particular, the fine-to-coarse MR Kalman fil-
tering sweep—does produce a set of measurement “predic-
tion” errors, namely in (21). However, because of the
tree structure, this process isnotwhite over the entire tree. In
particular, thanks to the structure of the fine-to-coarse sweep
[as depicted in Fig. 8(a)], each value of this process involves
predicting based only on the data in the subtreebelow
node . For that reason, it is not difficult to see that and

are most certainly independent ifand are on the same
path from a leaf node to the root node (i.e., if one of these
nodes is a direct descendent of the other), but and
are generally not independent otherwise.24

As described in [225], to complete the whitening operation
(so that the overall likelihood can be written as a product of
distributions for the individual innovation values), we define
a total ordering on , extending the partial order of the tree
(in essence placing orders on cousins,th cousins times
removed, uncles, etc.) and then complete the whitening op-
eration. By choosing this ordering in a systematic fashion,
e.g., as illustrated in Fig. 8(c), we can accomplish this re-
maining whitening very efficiently, in fact using a somewhat
different coarse-to-fine sweep complementing the Kalman
filtering fine-to-coarse computation. The result, again, is an
algorithm with total computational load that scales linearly
with .

Example 5: One application of the MR likelihood func-
tion computations is to the texture discrimination problem
introduced in Section II-B and developed more thoroughly
in [225]. As mentioned in Section II, many textures, such
as those shown in Fig. 4, can be modeled effectively using
MRF models. However, likelihood function computations for
MRFs can be highly nontrivial, so that suboptimal methods
(such as those in [50]) are often used.

Another approach starts with the simple and obvious state-
ment that such MRF models do not represent “truth” but

24As discussed in [225],�(:) represents amartingale incrementprocess
on the partially ordered set defined by the tree.
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Fig. 10. (a) Comparison of the probabilities of correct
classification (as a function of a parameter!). Here, the dashed
line represents the optimal performance using the exact Gaussian
Markov random field (GMRF) likelihood ratio test (LRT); the solid
line corresponds to the performance using a MR model (MM)-based
LRT [using what is referred to in [225] as azeroth-order model
(corresponding to keeping only a scalar state at each node in the
quadtree model)], and the dashed–dotted line is the performance
using the suboptimal minimum-distance (MD) classifier from
[50]. The results in (a) are for a 32� 32 image chip at an SNR of
0 dB. (b) Illustrating how performance approaches the optimal
achievable as we increase the order of the approximate MR model
(these results are for a 16� 16 image chip at an SNR of 0 dB).
(Reprinted from [225]).

rather is itself an idealization of real textures. As a result,
it is reasonable to seek alternate models that lead to much
simpler likelihood computations resulting in performance es-
sentially as good as what one would be able to achieve using
the original MRF models. Fig. 10 illustrates the results of
such a texture discrimination system, that is, one based not
on MRF models but rather on MR models constructed using
reduced-order “cutset” models of the type described subse-
quently in Section VI-A1. This figure depicts the probability
of error in texture discrimination between two models, where
one of these models is the MRF model for the sand texture
in Fig. 4, while the other model is parameterized by a scalar
parameter , where corresponds to the model for the
pigskin texture in Fig. 4, corresponds to the sand tex-
ture, and intermediate values ofcorrespond to MRFs with
parameters that are a weighted average of the parameters for
the pigskin and sand textures (so that the two textures being
discriminated are the most different for and become
increasingly similar as increases toward 1, at which value
they are identical).

Fig. 10(a) shows that discrimination performance using
very simple approximate MR models for these textures is
significantly better than the suboptimal method of [50] and
nearly as good as the performance achieved if likelihoods
using the exact MRF models are employed. Fig. 10(b) shows
how the MR-based algorithm’s performance varies as the
order of the MR model is increased (see Section VI for a de-
tailed discussion of modeling).25 As this figure indicates, the
use of low-order MR models results in performance essen-
tially as good as that achieved using the exact MRF models
for these textures.

D. Further Ties to Graphical Models

To provide some additional perspective on the algorithms
described in the preceding sections, we now take a brief
glimpse at inference algorithms for models on more general
graphs, a topic which has been and remains the subject of
numerous investigations (see, e.g., [35], [36], [128], [132],
[164], [169], [170], [200], [204], [208], [222], [267], [269],
and [339]) and to which we return again in Section VII. To
begin, consider the estimation of the state (assumed
to be zero-mean for simplicity) of a Gaussian graphical
model on a possibly loopy graph, given a set of linear
measurements, as in (19).26 As we did in Section IV-B, if
we collect all of the state values into a single vector, with
covariance , and similarly collect all of the measurements
into a vector , so that the measurement equation is as in
(38), then the optimal estimate is once again the solution
to (39), and the error covariance matrix is given by (40).
Moreover, just as in the analysis in Section IV-B, we see that
the block-diagonal structure of implies that the
structure of is the same as that of , i.e., off-diagonal
blocks are nonzero only for those blocks corresponding
to edges in the graph. As a result, the estimation error
also is Markov with respect to the same graph, a result
that can be found in a number of places in the literature
(e.g., [208]) and that generalizes the results for time series
and MR trees discussed in Section IV-B. The same is also
true for nonlinear and discrete-state models, namely that
conditioning an MRF with independent measurements at
individual nodes yields a conditional distribution that is also
Markov over the same graph.

As the results in Section IV-B indicate, if the graph
is loop-free, there are efficient methods for computing esti-
mates and error covariances in the linear-Gaussian case and
marginal conditional distributions in the more general non-
linear case. The reason for this efficiency can be explained
in terms of the existence ofelimination orders, i.e., orders

25Here, the “order” of the MR model refers to the dimensiond of the state
at each node.

26In the graphical model literature, there is often no distinction made be-
tween measurements and the variables defined at nodes on the graph; we
simply have knowledge of some of these variables and wish to perform in-
ference (estimation or likelihood calculation, for example) based on this in-
formation. This is a cosmetic rather than substantive difference, as we can
easily add nodes to our graph corresponding to each nodal measurement
y(s) and a single edge for each such node connecting it to the corresponding
original nodes. We then wish to perform inference based on observation of
the variables at these new nodes.
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in which variables are eliminated in a first sweep and then
added back in the second sweep, for which there is no fill.27

From a random field/graph-theoretic perspective, the lack
of fill for such elimination orders has a simple interpreta-
tion: if we subsamplethe random field or graphical model
by eliminating a set of variables, this restricted modelre-
mainsMarkov with respect to a graph on the remaining nodes
with the same neighborhood (and fill) structure as the orig-
inal graph (see [164], [200] and, in particular, [269] for dis-
cussions of this issue for general graphical models).

Similarly, and as we saw in Section IV-C, the compu-
tation of likelihoods for loop-free models can also be per-
formed efficiently. While this can be interpreted in terms of
the existence of elimination orders without fill, it can also be
directly tied to factorizations of the probability distribution
over such graphs (e.g., in terms of a root node marginal and
parent–child transition densities or as in (42) and (43) in Sec-
tion IV-B). In particular, the existence of such factorizations
implies that the partition function in (11) is not a function
of the values of the parameters of the model on a loop-free
graph (e.g., the matrices and in a linear-Gaussian
MR model), a fact that greatly simplifies ML estimation of
parameters for such models.

In addition to the MR models on which we focus here,
there are other loop-free graphs and processes that have been
examined in the literature, primarily in the context of image
processing. One such class that received much early atten-
tion in the investigation of recursive estimation algorithms
for random fields (see, e.g., [163], [343], [345] and the refer-
ences therein) involves imposing a complete order on a reg-
ular 2-D grid of points—typically a “raster scan” order in
which the “past” of each point in the lattice consists of all
points in previous lines of the 2-D lattice plus the points on
the same line that come earlier in the scan order. Another
example is the class so-called “Markov mesh” models (for
both Gaussian and discrete-state processes), which impose
a partial order on pixels in 2-D [1], [78], [88], [98], [213].
However, in many problems, imposing such total or partial
orders is clearly artificial. Moreover, often very high-order
models of these types are needed to capture accurately the
statistics of random fields of interest. As a result, there has
been considerable work in developing stochastic models for
images that do not impose orderings of pixel locations. For
example, MRF models, such as so-calledfirst-order MRFs
on the nearest-neighbor graph associated with a regular 2-D
lattice [132], [234], represent one widely studied class of this
type. Consequently, the investigation of inference on loopy
graphs, which are the rule rather than the exception in many
other fields including artificial intelligence and turbo coding,
is also of great interest in image processing.

As we have indicated previously, distributions for Markov
models on loopy graphs do not admit elimination orders
without fill or simple factorizations in terms of local mar-
ginal distributions. Furthermore, the partition function for
such a graphical model is generally a complex function of

27In particular, when such an order is used to solve (39) by Gaussian elim-
ination and back-substitution, no new nonzero elements are introduced into
the matrix on the left-hand side as variables are eliminated.

the parameters of the graphical model, e.g., of the clique
potentials in (11). Indeed, in the linear-Gaussian case, in
which the partition function is proportional to the square
root of the determinant of the process covariance, this has
been known at least since the work of Whittle [340], [341]
(see also [344]) on 2-D random fields, Thus, while the com-
putation of likelihoods and optimal parameter estimates for
models on loop-free graphs is computationally tractable and
straightforward, the absence of simple factorizations and the
dependence of the partition function on model parameters
make optimal parameter estimation and hypothesis testing
far more challenging computationally. Analogous chal-
lenges arise in solving estimation problems, i.e., computing
conditional marginal distributions for general nonlinear
and discrete-valued models or, in the linear-Gaussian case,
solving (39) and determining at least the diagonal elements
of the error covariance whose inverse is given in (40). In
particular, in general, for such graphical models, successive
elimination of variables in any order induces fill, implying
both that the set of variables remaining after such an elimi-
nation step is Markov with respect to a graph with additional
(and frequentlymany additional) edges (see [269]) and
that subsequent stages of computation may be increasingly
complex.

As a result of these complications, there has been consider-
able interest in developing either exact or approximate com-
putationally feasible methods for such inference problems.
For example, for simple graphs consisting of a single loop,
very efficient noniterative algorithms exist that are closely re-
lated to methods for solving two-point boundary value prob-
lems. One first performs two-sweep computations analogous
to RTS computations but ignoring the boundary conditions,
e.g., the fact that the two endpoints of the sweep are linked.
A subsequent correction step, taking these boundary condi-
tions into account, then produces the correct estimates and
covariances or the correct likelihood function.28 Also, as de-
scribed in Section VI-A, it is always possible in principle
to construct exact noniterative algorithms for inference on
loopy graphs, essentially by converting them to problems
on loop-free graphs with nodes that correspond to groups of
nodes in the original graph. Such methods, which correspond
to eliminating groups of variables at once, also can be found
in the linear algebra literature (e.g., so-called nested dissec-
tion methods [133]). However, such exact methods are not
computationally feasible for many graphs, and, as a result,
there has been considerable interest in developing approxi-
mate and/or iterative algorithms as well.

For the linear estimation problem in (39), a variety of
methods exist, especially when the underlying graph, while
loopy, is far from fully connected so that the matrix
on the left-hand side of (39) is sparse. For example, solving
such an equation [208] for a first-order MRF essentially
corresponds to solving (a discretized version of) an elliptic
PDE [208] for which extremely fast algorithms (conjugate
gradient, multipole, etc. [138], [256], [280]) exist. However,

28See [4], [5], [141], [210], [258], and [260] for a methodology applied to
time series, [101] for analogous results for MR trees, and [337] for results
for discrete-state graphical models on single loops.

1418 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002



these methods donot compute the error covariances (i.e.,
either the diagonal blocks of or any of the off-diagonal
blocks), a difficulty that we briefly discussed in Section IV-A
and that also implies that such methods do not allow one to
compute likelihood functions.

The graphical model literature also contains a variety of
iterative methods that apply to both linear and nonlinear/dis-
crete models and that directly yield approximations to the
conditional distributions (i.e., estimates and covariances in
the linear-Gaussian case) and in some cases to the compu-
tation of likelihoods. Among these are the methods based
on generating samples from the conditional distribution for
the entire process using techniques such as the Metropolis or
Gibbs sampling algorithms [35], [132], [234], [339], which
can be used either to estimate marginal distributions at indi-
vidual nodes (from which approximate MPM estimates can
be obtained) or as part of a simulated annealing procedure
for the computation of the MAP estimate. Also, a variety of
alternative deterministic methods exist. One is the method of
iterated conditional modes (ICMs) [36] in which the value at
each node is iteratively modified to maximize the conditional
distribution for that node given the current iteration’s values
at its neighbors [a method that reduces to Gauss–Seidel it-
eration for the solution of (39)]. Others include so-called
mean-field methods [359] and the rich class of variational
methods [169], [170]. Another method that deserves mention
is that developed in [351] using the so-called Bethe tree ap-
proximation. In this approximation, the computation of sta-
tistics at a specific individual node is approximated by re-
placing the original graph by a tree rooted at that node, where
each path away from the node in the original graph is re-
placed by a path in the tree. If the path in the original graph
contains a loop and thus goes through some node a second
time, the corresponding path in the Bethe tree passes through
a “distinct” node corresponding to a second “copy” of the ac-
tual node in the original graph. Tree algorithms can then be
used to compute approximations to the desired statistics.

Several alternate methods for setting boundary conditions
on such a tree are described in [351]. If one uses the par-
ticular approach of extending the tree without terminating
it at some finite point, the concept explored in [351] inter-
sects with a very important class of iterative methods that is
widely known in the graphical model literature and that is
the subject of considerable current interest, both as an ob-
ject of analysis in itself and as a point of departure for devel-
oping and understanding other emerging methods. This is the
class of so-calledBelief Propagation(BP) [267] algorithms,
originally developed in the context of discrete models. While
there are a variety of forms for BP, especially for trees, one
version that is introduced in [267] and that applies to loopy
graphs as well is a “message passing” iterative algorithm, in
which each node iteratively passes messages to and incorpo-
rates messages from its neighbors. After a single step of the
iteration, each node has information from its nearest neigh-
bors, while the next step includes information from nodes
that are a distance two from the node in question, etc., pro-
viding an expanding “sphere of influence” for each node as
the iteration proceeds.

The key to the algorithm is the method for incorporating
successive messages from a set of neighbors and then gener-
ating the next messages to be passed back to the same set
of neighbors. Intuitively, a BP message-passing algorithm
incorporates each such message, assuming that the new in-
formation it contains is independent of previously incorpo-
rated information as well as the information provided by
messages from other neighbors. This is the case as long as
messages do not propagate around loops of the graph. For
a tree, such an algorithm yields the optimal estimate after a
number of iterations equal to the diameter of the tree (so that
information propagates from each node to every other node).
Thus, for a linear or nonlinear MR model on a tree, this local
message-passing version of BP represents an alternative to
the two-sweep algorithms described in Section IV-B, with
a total computational load that is slightly greater than that
of the two-sweep algorithm (roughly speaking, each of the

nodes performs computations during each iteration, with
the number of iterations corresponding to the diameter of the
tree, which, for a balanced tree such as in Fig. 1, is on the
order of ). Furthermore, as elucidated in [332], for a
tree, BP also provides all of the parameters needed to con-
struct factorizations of the distribution of the entire graph-
ical process, providing the basis for both efficient likelihood
function computation and the construction of equivalent di-
rected models for any choice of root node.

When BP is applied to a graph with loops, the sets of in-
formation provided by different neighbors and on successive
iterations arenot independent, since, for example, a message
sent by some node will be incorporated into a succession of
messages that eventually make their way back to the orig-
inating node through a loop in the graph. Such dependen-
cies are not accounted for in the BP inference computations,
so that, roughly speaking, information is counted multiple
times as it propagates around loops in the graph. As a re-
sult, BP may not converge, and if it does converge it will
typically not converge to the correct statistical answers. Nev-
ertheless, empirical success of this algorithm in a number
of applications, including turbo-decoding [7], [236], [278]
and artificial intelligence, as well as known failures of BP in
other cases, has led to an intensification of efforts to analyze
BP and to develop enhancements and variants of it [285],
[332], [334], [337], [338], [357]. For example, as shown in
[285] and [338], BP applied to the approximate solution of
the linear-Gaussian estimation problem in (39) and to the si-
multaneous approximate computation of the diagonal error
covariance blocks of may or may not converge. If it con-
verges, the estimate will, in fact, converge to the exact so-
lution to (39). However, the computed approximations to the
error covariances donot converge to the correct values (and
typically underestimate the size of the estimation errors.)

As this discussion indicates, the complexity of inference
on graphs with loops has sparked a considerable body of re-
search and very active lines of inquiry, both to develop new
algorithms and also to analyze the performance of existing
procedures. In Section VII, we return briefly to this topic
to describe several lines of current inquiry that exploit the
efficiency of inference on trees in order to develop new al-
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gorithms for and insights into inference on more complex
graphs.

V. SOME ORIENTATION: WAVELETS, MULTIGRID, AND

INVERSEPROBLEMS

As we pointed out in Section I, MR methods span a very
broad array of concepts and approaches, and in this section
we examine several other components of this large field. Our
objective in doing this is to help the reader both navigate
through this larger domain and understand how these other
lines of inquiry relate to the MR models and algorithms on
which we focus.

A. Wavelets

The use of wavelets [86], [228], [329] to analyze stochastic
processes is, perhaps, the most familiar concept that comes to
mind when the idea of MR analysis of stochastic processes is
raised. Much of the reason for this stems either from analyses
that demonstrate that wavelet transforms provide substantial
decorrelation of important classes of processes such as fBm
[69], [83], [100], [102], [114], [117], [137], [146], [154],
[176], [191], [235], [273], [293], [320], [346], [360], or from
constructions of processes using wavelet synthesis [62], [80],
[83], [100], [114], [151], [275], [346]–[350], [358]. In this
section we take a brief look at some of the relationships be-
tween wavelets and MR models on trees, a subject we have
divided into two components. The first of these describes a
set of important examples that are explicitly in the form of
MR models on trees with variables at nodes corresponding to
individual detail or scaling coefficients of a wavelet decom-
position of a signal or image. The second focuses on the inter-
pretation of wavelet synthesis as a coarse-to-fine, scale-dy-
namic system, a viewpoint that has also received significant
attention in the literature but whose explicit connection to
tree models (a topic we defer to Section VI-B) is not as ob-
vious.

1) Elementary Wavelet Models on Trees, HMMS, and
Wavelet Cascades:The fact that wavelet coefficients of
many stochastic processes are nearly decorrelated leads
directly to a first, elementary method for MR modeling
in which we simply assumethat these coefficients are
completely decorrelated. Such an approach, for example,
was proposed and developed in [346], [347], and [350] for
the modeling of fractal Gaussian processes. Such models
can be trivially identified with simple MR models on trees,
in which individual detail coefficients serve as the variables
that populate nodes at different levels of the tree. For
example, for a 1-D signal and the dyadic tree of Fig. 1(a),
each node corresponds to a particular scaleand shift ,
and the coefficient placed at that node would be the detail
coefficient corresponding to that scale and shift. Identifying
that variable with the state of a linear MR model leads
to a model as in (6) with , capturing the fact that in
this very simple model all coefficients are independent and
Gaussian. In the 2-D case, using the quadtree in Fig. 1(b),
each node corresponds again to a scale and a 2-D shift,
and the variables resident at each node are the three detail

coefficients associated with that scale and shift.29 Once
again, taking implies that the coefficients are
independent from node to node. If we also take the covari-
ance of to be diagonal (as is often done in the
literature), we then have that each of the coefficients at each
node is independent of the others.

While the class of MR models described in the preceding
paragraph have degenerate coarse-to-fine dynamics, it serves
as a useful point of departure for the examination of other
wavelet-based model constructs. A first of these involves an
issue of great importance in image processing applications in
particular, in which wavelet coefficients, while often nearly
decorrelated, are most definitely neither Gaussian nor inde-
pendent. In particular, as discussed by many authors (e.g.,
[46], [157], [218], [250], [299], and [300]), the distribution
of wavelet coefficients tends to be highly kurtotic and have
heavy tails—resulting from the fact that many coefficients
come from relatively smooth regions of an image and thus
are quite small, while others, corresponding to locations of
edges, can be very large. Furthermore, as is also discussed in
the literature (e.g., [46], [80], [296], [299], [300], and [333]),
large wavelet coefficients generally formcascadesthat are
localized in space and propagate across scale, reflecting the
presence of edges. Indeed, so-called embedded zerotree ap-
proaches to image coding [296] take explicit advantage of
these properties of wavelet coefficients.

A class of MR models that captures the non-Gaussianity
of wavelet coefficients but not their dependence involves a
simple modification to the model described previously. In
particular, we still use (6) with , but we use a
non-Gaussian distribution for . One possibility is a dis-
tribution from the class of so-called generalized Gaussian
distributions [41], [250] of the form , with

. An alternative is the class ofmixture distribu-
tions[80], [218]. For example, one of the simpler models in-
troduced in [80] consists of modeling wavelet coefficients as
independent with distributions consisting of finite weighted
Gaussian mixtures. Such a model, while not truly heavy-
tailed (since the Gaussian fall-off is still present as ),
can capture a substantial range of non-Gaussian behavior. For
example, a very simple two-component mixture (consisting
of low-variance and high-variance Gaussians) is used in [80].
Note that, in this case, we can think of each node of the tree as
having a hidden variable in 1-D or a set of three hidden vari-
ables in 2-D, corresponding to the random choices of which
mixture component is used for each wavelet coefficient. Al-
ternatively, as discussed in [333] (see also [46], [300], and
[308]), one can obtain a rich variety of truly heavy-tailed dis-
tributions as so-called “scale mixtures,” i.e., by multiplying
a unit mean Gaussian random variable by a positive random
variable, generated as a nonlinear function of a second in-
dependently drawn Gaussian random variable. Both of these
Gaussians are, in essence, hidden variables, as it is only the
heavy-tailed product that is observed. Optimal estimation for

29As is standard in wavelet analysis of images, these three coefficients
correspond to: 1) high-frequency detail in both dimensions; 2) low frequency
in the horizontal and high frequency in the vertical; and 3) high frequency
in the horizontal and low in the vertical.
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any of the choices of distribution mentioned in this para-
graph corresponds to performing nonlinear operations on in-
dividual wavelet coefficients. Among the algorithms that re-
sult from such models are so-called wavelet shrinkage algo-
rithms [2], [49], [57], [68], [104], [192], [193], [251], [301],
[330].

As described in [80], such independent mixture models
result in very simple nonlinear operations on individual
wavelet coefficients for optimal estimation. Moreover, both
the discrete-state hidden models as well as the continuous
ones in [333] open the door to building MR models on
trees that not only capture the non-Gaussianity of wavelet
coefficients but also the dependencies displayed by these
coefficients in real imagery. A number of approaches to
capturing such dependency have been developed (see, e.g.,
several contributions in [251]). One method is described
in [155], where wavelet shrinkage is first used to obtain
a coarse estimate of denoised wavelet coefficients, and
once these denoised coefficients are subtracted from the
observed data a linear MR model is used, together with the
two-sweep algorithm in Section IV, to estimate smaller-scale
fluctuations. Other approaches attempt to capture directly
cascade behavior in which the occurrence of a large wavelet
coefficient at one scale implies that nearby coefficients
at other scales are also likely to be large. The following
example illustrates one important method for accomplishing
this.

Example 6: In a series of papers [59], [80], [261], [281],
[282], a methodology is developed for signal and image pro-
cessing applications based on so called hidden Markov trees.
The basic idea behind these models builds on the Gaussian
mixture model just described. In particular, the MR model in
this case is a finite-state model as described in Example 3.
In the basic version of this model, each state consists
of either a single binary random variable (for 1-D signals)
or a set of three binary random variables (for 2-D), which
correspond to choices of low- or high-variance Gaussians
for the corresponding wavelet coefficients. In order to cap-
ture cascade effects of large wavelet coefficients, one can
choose the parent-to-child transition probabilities so that the
choice of “high” at a parent node makes it likely that “high”
will be chosen at a child node. The wavelet coefficients are
then modeled as being conditionally independent given the
value of the corresponding discrete state . Given such
a model, the discrete-state version of the two-sweep estima-
tion algorithm described in Section IV can be directly ap-
plied in order to perform image denoising. Fig. 11 depicts
the result of applying this methodology to the noisy image
depicted in Fig. 3(b) using a set of complex-valued wavelets
[186] chosen to minimize the problem of nonshift-invariance
that arises with the use of decimated wavelet decompositions
[282]. Comparing Fig. 11 with the Wiener filtering results
in Fig. 3(c) and (d), we see visually that the nonlinear pro-
cessing inherent to the MR hidden Markov tree model leads
to excellent noise rejection without the blurring evident in
the linear Wiener filter.

We also refer the reader to [333], in which the cascade
and heavy-tailed behavior of image wavelet coefficients are

Fig. 11. Denoised version of the noisy image shown in Fig. 3(b)
using a hidden Markov MR tree model and complex wavelet
decomposition. (Reprinted from [282].)

captured through the use of a linear MR Gaussian model as
in (6) for the hidden state, where the measurement model
involves multiplying a nonlinear function of this hidden
state with a white noise sequence to produce a model for
the actual wavelet coefficients. These coefficients, then,
are uncorrelated but not independent and, in fact, display
the same type of cascade behavior seen in real imagery.
Furthermore, as mentioned previously, such a model can
capture truly heavy-tailed distributions. Estimation for this
nonlinear model, however, requires iterative relinearization.
Thanks to the linear MR model for the hidden variables, each
iteration can be performed efficiently using the two-sweep
algorithm described in Section IV.

The idea of using multiplicative models to capture cas-
cades in MR decompositions actually has its own rich lit-
erature in areas ranging from mathematical physics and the
study of random cascades and multifractals [15], [94], [136]
to multiscale models for counting processes [188], [261],
[263], [322] to multifractal cascade models for communi-
cation network traffic [279]. One example of such a model
(in which the state variables at each node are scaling rather
than wavelet coefficients) is described in Example 7 in Sec-
tion V-C.

The lack of shift-invariance associated with decimated
wavelet representations has led a variety of authors [72],
[203], [270], [282], [298], [333] to consider alternatives
generally involving the use of overcomplete, undecimated
wavelet representations in 1-D and overcomplete “steerable”
pyramids in 2-D that allow one to avoid artifacts due to
a lack of rotational invariance as well. The use of such
overcomplete representations, however, implies that any
faithful statistical model must capture the fact that there are
constraints among the coefficients in this representation.
Since including such constraints greatly complicates any
statistical model, it is common in practice to ignore them
and thus to use a model that produces estimates of sets of
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variables that are inconsistent in that they do not correspond
to the coefficients in the overcomplete representation of
any signal. In practice, a variety of methods for projecting
such estimates onto a consistent set—or, equivalently, for
directly reconstructing a signal given these estimates—have
been developed, and we refer the reader to the references
cited previously in this paragraph. Note also that this incon-
sistency is closely related to the concept of internal models
first introduced in Example 1 and discussed further later in
this section and in Section VI-B.

Finally, there is also a substantial body of work on
so-called adaptive representations (e.g., [52], [73], [192],
[193], [228], and [229]) using entire families or “dictio-
naries” of bases, which taken together generally form vastly
overcomplete sets. The objective in each of these methods is
to select one basis from this collection that leads to the “best”
representation—in terms of maximal decorrelation among
and/or sparsity in the resulting expansion coefficients for the
signal in question. The argument can be made that such an
approach produces a tree-structured signal decomposition in
which the correlation or dependence among coefficients in
the tree is minimized. As a result, using such an optimized
representation can improve the accuracy of a resulting MR
model for the signal—e.g., the trivial linear model (with

) or a more complex model such as one using
hidden Markov trees.

2) Scale-Recursive Models Based on Wavelet Syn-
thesis: We now turn to an alternate approach to using
wavelets in scale-dynamic models. A first method, de-
scribed by several authors [62], [100], [137], is based on
the wavelet synthesis equation. Specifically, let denote
the vector of all scaling coefficients at theth scale in an
orthogonal wavelet decomposition, and let denote the
corresponding vector of wavelet coefficients at the same
scale. Then, assuming that we use a compactly supported
wavelet, corresponding to a particular pair of wavelet and
scaling filters [86], [228], [329], the wavelet synthesis
equation can be written as a scale-to-scale recursion

(44)

where and are matrices corresponding to the con-
jugate filter pair for the particular wavelet decomposition
chosen, and where the first term on the right-hand side cor-
responds to the coarse-to-fine interpolation of scaling coeffi-
cients and the second to the insertion of the additional detail
at that next finer scale.30

Equation (44) is the starting point for several important ob-
servations and investigations. The first involves its direct use
in both multiscale modeling and estimation when the wavelet
coefficients are modeled as being white noise. In this case,
estimation based on such a model given noisy measurements
of the wavelet coefficients corresponds to a standard scale-re-

30Note that, in the representation of 1-D signals,x has twice the di-
mension asx , each corresponding to the full set of variables at the corre-
sponding level of a pyramidal representation. In 2-D, the number of coeffi-
cients increases by a factor of four as we move from one scale to the next
finer scale. For this reason, the linear operatorsH andG are rectangular
and also have dimensions that vary with scale.

cursive Kalman filter with state at scale corresponding to
the entire vector of scaling coefficients . Note that this
model allows the direct fusion of nonlocal measurements as
long as they correspond to observations of individual wavelet
or scaling coefficients [62], [100], [151].

Second, one can do better than this in both modeling and
estimation by taking any residual correlation into account.
Indeed, several authors have considered methods for doing
this [85], [146], [275], [358], and (44) suggests a very simple
method of this type, similar to an approach described in
Section VI-B. In particular, suppose that the objective is to
construct a model as in (44) so that the finest scale process
has covariance that closely approximates a given covariance
(e.g., of fBm). Since the coefficients and are the
scaling and wavelet coefficients of the finest scale process

, we can directly use the specified, desired statistics
of this fine-scale process to determine the statistics of the
coefficients at coarser scales. For example, such a computa-
tion can be used to determine the variances of the wavelet
coefficients . If we then ignore any correlations, i.e., if
we use these computed variances but otherwise assume that
the are white, we obtain an approximate model of the
type we have already described. However, it is easy to obtain
a more accurate approximation analogous to (44) without
any increase in dimensionality. Specifically, suppose that,
rather than assuming that the are white, we make the
weaker assumption that forms a Markov sequence in
scale. In this case, we can capture any correlation between

and by writing

(45)

where is the best estimate of based on and
where is uncorrelated with and, in fact, is a white
sequence in scale under the assumption thatis Markov.
Further, both and the covariance of are directly com-
putable in terms of the target fine-scale statistics. Substituting
(45) into (44), we obtain the following dynamic model:

(46)

which represents a more accurate approximation as it cap-
tures some of the residual correlation among wavelet and
scaling coefficients. Of course, one can consider higher order
approximations (e.g., modeling as a higher order Markov
process in scale), although such approximations will require
defining a “state” for recursive estimation that consists of
several successive resolutions of scaling coefficients. Simi-
larly, by attaching a hidden Markov tree to , we can, in
principle, cpmbine the approach described here with that in-
troduced in Example 6, a possibility that to date has not been
examined in the literature.

In addition, other nonlinear variations of this type of struc-
ture can be found in [124] and [125] in which the estima-
tion of based on takes on a form that is in some
sense both more general and more restrictive than (46). In
particular, in the models in these references, the individual
detail coefficients comprising are assumed to be condi-
tionally independent when each is conditioned on a speci-
fied window of neighboring scaling coefficients (i.e., a cor-
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responding subvector of ). Both the dependence of each
such coefficient on only a local window of scaling coeffi-
cients and the resulting conditional independence of the en-
tire vector of coefficients represent what in principle are re-
strictions compared to the general form of (46), although
such restrictions are generally required in order to obtain
computationally tractable models (e.g., we will see some-
thing similar in Section VI-B). What is more general in [124]
and [125] is that the conditional distribution for each compo-
nent of is modeled as Gaussian, with mean and variance
that arenonlinear functions of the window of neighboring
scaling coefficients (see Section VI-C3 for a further brief dis-
cussion).

Note that both of the models (44) and (46) represent con-
sistent models in that the values of the vectorsand
are, with probability 1, the scaling and wavelet coefficients of
the finest scale process . However, as discussed in [62], it
is also possible to specify models that do not have this consis-
tency but which still exploit wavelet structure. In particular,
a model studied in [62] is the following variant of (44):

(47)

where is white noise. We note here only that the addi-
tional DOFs in models such as (47) provide additional flex-
ibility—and, hence, the potential for greater accuracy—in
approximating the statistics of any process. However, while
examples exist demonstrating the potential of such models
(see, e.g., [111], [223], and the discussion in Section VI-B),
exploiting this flexibility in a systematic fashion remains an
open problem. What is true, however, is that estimation for
such models admits efficient solution in exactly the same
cases as for (44) and (46).

In particular, note that the dimensions of the state vari-
ables in (44) and (45) are substantial, corresponding toall
of the scaling coefficients at a single scale. As a result, di-
rect implementation of Kalman filtering equations is prohib-
itively complex for signals or images of even modest size.
However, as discussed in [62], if the data that are available
are either independent-noise-corrupted measurements of the
wavelet or scaling coefficients or can be transformed into
this form, the Kalman filter can be implemented in decou-
pled, diagonalized form using the wavelet transform. One
case in which this occurs is if there are dense measurements
of the process at one or more scales, corrupted by indepen-
dent additive noise of variance that can vary from scale to
scale but is constant at each scale. In this case, application of
the wavelet transform to these data transform them into inde-
pendent measurements of individual wavelet coefficients.31

On the other hand, if the available data are sparse or irregu-
larly sampledor simply have varying noise variances within
any scale, the wavelet transform does not yield such a simpli-
fication, and the complexity of the Kalman filter associated
with these models becomes prohibitive. One of the reasons

31We refer the reader to [110] for a significant extension of these ideas to
a construction using wavelet packets [73] rather than wavelets and in which
taking the wavelet packet transform of dense measurements at one or more
scales transforms the problem into a set of almost-decoupled MR tree esti-
mation problems, coupled only through a common root node.

for this apparent complexity is that the models (44) and (46)
do not correspond to MR models on trees, while (47) does
only for the case of the Haar wavelet. Fortunately, however,
a more careful, component-by-component look at the struc-
ture of the wavelet synthesis equation—and a very different
definition of the MR state—does indeed allow us to construct
MR models on trees such as in Fig. 1. The construction of
such wavelet-based models is described in Section VI-B3.

B. Multigrid and Coarse-to-Fine Algorithms

In this section, we discuss several classes of algorithms
using multigrid and coarse-to-fine algorithmic structures.
With the exception of the last few approaches we describe,
these methods are fundamentally different from those on
which we focus in this paper. For that reason, we will be
rather brief in our descriptions and not as exhaustive in our
review of the literature.

Most of the algorithms that fall within the category on
which we focus here correspond to problems that can origi-
nally be described at a single, finest resolution—i.e., the data
and desired estimates are only available or required at that
single resolution. For a variety of reasons, however, direct
solution of that single-resolution problem is either too com-
plex to consider directly or is subject to large numbers of
local minima, many of which are far from the optimal so-
lution. The general idea of coarse-to-fine methods for such
problems is to construct approximate, coarser versions of the
problem (typically at multiple resolutions) and to use the
solution of the coarser, and hopefully simpler, problems to
guide solutions at finer (and eventually the finest) scales. Per-
haps the simplest examples of such approaches are to prob-
lems in which the spatial phenomenon to be estimated is
not modeled as a random field but rather is simply viewed
as an unknown, which is represented in an MR fashion to
allow coarse-to-fine algorithms for ML estimation. One ex-
ample of such an approach is given in [63] in the context
of an inverse conductivity estimation problem, in which the
unknown conductivity field is modeled as piecewise con-
stant at a sequence of resolutions from coarse-to-fine (corre-
sponding to Haar wavelet approximations), and the solution
of the problem at one resolution is used as an initial condi-
tion for the solution at the next finer resolution. Similarly,
coarse-to-fine approaches for the detection and localization
of significant anomalies (modeled as unknowns) in a back-
ground field (modeled as a random field) [120], [245] have
been developed to allow efficient zooming in on features of
interest.

There is also extensive literature on the use of MRF
models32 together with either full multigrid computational
algorithms or purely coarse-to-fine algorithmic structures.
Examples of the former can be found in [70], [109], [319],
and [356], where the treatment in [319] represents what to
the author’s knowledge is the first thorough examination
of the application of multigrid methods to image pro-

32In some of these treatments, e.g., [319], MRF models are not explic-
itly discussed. However, the regularization formulations used, which involve
variational penalties on the reconstructed field (e.g., on smoothness), have
direct interpretations as MRF models. See Section VI-B1 for more on this.
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cessing/computer vision problems. Full multigrid methods,
such as those used in [319] and discussed in much more
depth in references devoted to the subject such as [44] and
[45], involve both coarse-to-fineand fine-to-coarse opera-
tions in an iterative algorithmic structure. The idea in the
coarse-to-fine step is essentially the same as for the methods
described in the preceding paragraph: we interpolate a
coarser approximation of the estimate to the next finer scale
to provide a starting point for the optimization at that scale.
Various types of interpolation can be used. For example,
there is the general class of wavelet-based interpolation
schemes, in which the interpolation from one scale to the
next involves simply propagating a scaling coefficient from
one scale to the next finer one with the corresponding detail
coefficient set to zero (e.g., (44) with set to zero). In
other interpolation schemes, the coarser variables might
simply represent subsampled versions of the field, with
sparser subsamplings at coarser scales. In this case, the
coarse-to-fine interpolation might correspond to replication
or to something slightly more complicated such as bilinear
interpolation.

As discussed in [44] and [45], the fine-to-coarse opera-
tions in multigrid reflect the fact that, in most applications
of multigrid, the problem that is actually solved at a coarser
scale represents anapproximationto the original problem.
For example, in approximating the solution to PDEs (as often
arise in continuous-space MRF estimation problems [208]),
derivatives at each scale are replaced by differences. Such ap-
proximations suffer from aliasing errors which can, in prin-
ciple, be reduced once we have estimates at the next finer
scale. Indeed, as discussed perhaps for the first time in [209],
a general interpretation of multigrid algorithms as applied to
random field estimation is that, at each resolution, such an al-
gorithm computes the optimal estimateassuming that there
is no finer scale detail in the field, i.e., that the coarse-to-fine
interpolation process is exact so that any finer scale detail
coefficients are zero. For example, if we were to assume that
an image is constant over a 22 block of pixels, then noisy
measurements of those four pixels would simply be aver-
aged in computing the corresponding optimal estimate at that
resolution. However, if we subsequently have available finer
scale estimates, which in general will vary over these coarser
2 2 blocks, this fine-scale detail could then be used to cor-
rect for the erroneous averaging at the coarser scale, allowing
new, coarser scale estimates to be computed. This is exactly
what the fine-to-coarse multigrid correction step does.

In a number of other MRF estimation algorithms [40],
[126], [135], [140], [144], [145], [195], [257] the full multi-
grid structure is not used, and only coarse-to-fine operations
are performed. In some of these (e.g, see [40], [140], [144],
and [145]), the problems that are solved at coarser scales
correspondexactlyto the original problems but with a con-
strained set of allowed reconstructions (e.g., finding the op-
timal estimate among all fields that are piecewise constant at
each resolution), while in others this is not the case.

While it is certainly possible to view such coarse-to-fine
algorithms as purely computationally motivated constructs,
[209] makes clear that there are statistical interpretations

of at least some of the computations and representations
embedded in such algorithms. As a result, a number of
authors [164], [144], [200], [269] have looked in more detail
at the following question. Suppose we begin with an MRF
model at the finest resolution; what is the corresponding
statistical structure of a coarsened version of the field (e.g.,
corresponding to a coarse wavelet approximation or to a
subsampled version of the field)? As discussed in [140],
[144], and [145] (and as can be inferred from the discussion
in [40]), if one begins with a nearest-neighbor MRF in 2-D
and then uses Haar-based coarsening, i.e., block-averaging
at a set of increasingly coarse scales, then each of these
coarser fields is also a nearest-neighbor MRF.33

However, as discussed in detail in [164], [200], and [269],
in all but a special set of circumstances, coarser scale fields
resulting from other coarsening procedures such as sub-
sampling [195], [200] and so-called renormalization group
methods [99], [131], [135], [257] do not have such simple
exact descriptions—and indeed may correspond to graphical
models with fully connected graphs. In such cases, what are
generally used at coarser scales areapproximationsto the
exact statistics of the coarsened representation that are much
more tractable computationally. For example, methods for
constructing MRF models that represent optimized approxi-
mations for such coarsened fields are described in [195] and
[200], while [135] and other renormalization approaches
use statistical methods as a means of averaging over finer
scale fluctuations in order to construct approximate coarser
scale MRF models. Using such approximate models implies
that the problems being solved at coarser scales are only
approximations to (rather than constrained versions of) the
finest scale problem. Of course, this is completely consistent
with the philosophy of multigrid, in which coarse scale
computations are of no intrinsic interest in themselves but
rather serve the purpose of helping to guide the finer scale
computations.

As the preceding discussion makes clear, in all of the
multigrid/coarse-to-fine image processing and random field
estimation algorithms described so far (and in the vast
majority of such methods in the literature), coarse-scale rep-
resentations of the phenomenon of interest are introduced
primarily for computational purposes, and any explicit
or implied statistical structure is isolated from scale to
scale—i.e., there is no single, consistent statistical model
across the scale. As a result, these methods are rather
different from those on which this paper focuses. However,
there are several investigations that both fall into the general
category of multigrid or coarse-to-fine procedures and
do involve random quantities at multiple resolutions that
are explicitly linked statistically across scale through a
graphical model. One such example using MR models on
trees for coarse-to-fine SAR segmentation can be found
in [119]. Another, which involves graphs other than trees
for image segmentation, is that originally developed in

33This is closely related to the fact, mentioned in the preceding para-
graph, that these methods produce exact, solutions to the original estimation
problem at each resolution under the constraints that there is no finer scale
detail present in the random field.
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[42] (see also [53], [183], and [323]), which we describe
and illustrate in Section VII. In addition, there are several
other such modeling frameworks described in the literature,
including those in [179] and [180], in which the basic
graphical structure superficially resembles the quadtree
of Fig. 1(b), except that there are also edges within each
resolution—so that each scale by itself has connectivity
exactly as with an MRF (e.g., nearest-neighbor edges
for first-order models or larger neighborhoods for higher
order dependencies at each resolution). Such a graph has
complexity34 that is considerably greater than a single-scale
first-order MRF, and methods such as simulated annealing
need to be applied in order to obtain solutions. In fact,
the authors of [179] and [180] develop multitemperature,
MR annealing algorithms and demonstrate that there are
potentially some advantages to this approach that result
from the usual multigrid/coarse-to-fine philosophy of using
coarser grids to guide solutions at finer ones. We also refer
the reader to other MR models [74], [125], [127], [212],
[213], [289], that involve structures other than trees, together
with algorithmic structures that are reminiscent of multigrid
and coarse-to-fine procedures.

One final point to make about the methods mentioned in
the preceding paragraph concerns the modeling of the mea-
surements. One of the critical properties of the graphical es-
timation problems and algorithms discussed in the preceding
sections is the assumption that each observation consists of
a measurement of the state at a single node on the graph cor-
rupted by independent noise. If this is not the case, then the
actual graphical structure of the estimation problem must re-
flect the additional dependencies introduced by the measure-
ments. In some methods, such as that in [42], the assumption
of conditional independence is clearly satisfied, as all of the
measurements are of individual finest scale pixels. However,
in others, such as [74], [179], [180], and [213], the original
finest scale measurements are transformed—e.g., simply by
replicating the same measurements at different resolutions,
by transforming the raw data using wavelet transforms, or
by extracting features at multiple resolutions. Furthermore,
the algorithms in these papers implicitly assume that these
transformed data are conditionally independent, a condition
that in some cases (e.g., measurement replication) is clearly
not true and in others represents an implicit assumption of
whitening resulting from wavelet transformation or feature
extraction.

C. MR Algorithms for Inverse Problems

In this section, we take a look at MR algorithms for inverse
problems, i.e., problems in which the measurements are
nonlocal functions of the random field to be reconstructed.
Inverse problems span a broad array of applications and
mathematical formulations, and the literature investigating
their properties and developing methods for their solution is
equally vast (see, for example, [33]). Many of the problems

34Where “complexity” can be assessed in terms of the loop structure of
the graph or, more precisely, in terms of the complexity of the associated
junction tree (see Section VI-A).

and methods in this field have no or at most tangential
connection with the MR statistical models and processing
algorithms with which we are primarily concerned. Conse-
quently, our discussion here is brief, focusing exclusively
on aspects of work in this area that intersect with the main
themes of this paper.

As a first comment, we note that MR methods for inverse
problems have significant overlaps with the topics of both
of the preceding sections. For example, the use of multigrid
or coarse-to-fine algorithms for inverse problems in order
to combat problems of computational complexity and local
minima is well documented (with [63], [125], [126], [215],
[289], [290], and [356] representing examples). As for the
use of wavelets, the motivations include not only the fact
that wavelets decorrelate many stochastic processes but also
that in many cases they lead to significant sparsification of
the nonlocal operator relating the measurements and the un-
derlying random field which we wish to reconstruct. For ex-
ample, a number of authors [38], [95], [264], [271], [276],
[286], [287], [361] have exploited this fact in the specific
context of tomographic reconstruction in order to develop
deterministic inversion algorithms that are either very effi-
cient or that allow fast high-resolution reconstructions of lo-
calized regions. Also, a number of authors [39], [103], [107],
[246]–[248], [305], [335], [362] have used both the decorre-
lation and sparsification properties of orthogonal wavelet de-
compositions in order to develop statistical reconstruction al-
gorithms for tomography, deblurring, and other inverse prob-
lems. For the most part, such methods involve the use of the
simplest class of statistical models described in Section V-A,
namely, those resulting from assuming that the wavelet coef-
ficients are uncorrelated random variables. If one were then
also to assume that the wavelet transform truly diagonal-
ized the measurement operator, the associated measurement
model would have the form of (19), corresponding to uncor-
related measurements of individual wavelet coefficients.

Given the discussion in Section V-A, an obvious vari-
ation of such methods is one in which we use wavelet
shrinkage techniques—e.g., corresponding to modeling
the wavelet coefficients as independent but non-Gaussian
random variables. Several such methods have been devel-
oped (see, for example, [244]), but the predominant use
of wavelet shrinkage for inverse problems, introduced and
popularized by Donoho [105], uses a variation, known as
the wavelet–vaguelette decomposition (WVD). As shown
in [105] and in other references in this area (see, e.g., [3],
[187], and [206]), WVDs can be designed for important
classes of inverse problems (including tomography). Such
decompositions correspond to using an orthogonal wavelet
decomposition for the random field to be reconstructed
and abiorthogonalbasis for the measurement domain that
together exactly diagonalize the measurement operator.
Shrinkage in this transformed domain then corresponds
to projecting the measurements onto the nonorthogonal
measurement basis, shrinking component by component,
and then reconstructing using the orthogonal image domain
basis. As with other shrinkage applications, these algorithms
have important asymptotic optimality properties, many
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of which are related either explicitly or implicitly to the
heavy-tailed nature of wavelet coefficients of imagery.35 We
refer the reader to the references for details.

While some of the approaches described in the preceding
paragraphs can be interpreted as employing degenerate MR
models (i.e., in which in (6) and where is
modeled as either Gaussian or heavy-tailed), there are other
statistical approaches to inverse problems that involve more
complex MR models. One that suggests itself based on the
development in Section V-A, but that to our knowledge has
not been explored, is to combine models that capture cas-
cade behavior in wavelet coefficients (e.g., as in the hidden
Markov trees described in Example 6) with the WVD decom-
positions described in the preceding paragraph. A second that
has been studied in detail is that in [124] and [125] which uses
nonlinear models (as briefly introduced in Section V-A and
again in Section VI-B) that relate wavelet and scaling coef-
ficients across scale in a pyramidal graphical structure that
is generally more complex than a tree, leading the authors
to employ an iterative estimation algorithm for the tomo-
graphic reconstruction problem on which they focus. Also,
while the random field model that is used in that work is an
MR model in the wavelet domain, the reconstruction for the
tomographic reconstruction problem is performed directly in
the image domain (to ensure positivity of the reconstruction),
using the full nonlocal tomographic measurement operator so
that the measurements are not local with respect to the nodes
of this graph (which implies that the estimation structure is
quite different than that described in Section III).36

While the examples described so far in this section are only
tangentially related to MR models on trees or can be inter-
preted as involving degenerate MR models, there are also
investigations that make much more explicit and substan-
tive contact with the primary focus of this paper. One such
example involving Poisson data and multiplicative scale-to-
scale dynamics is illustrated in the following example.

Example 7: In this example, we take a brief look at MR
models introduced and studied in [188], [261], and [322] in
the context of Poisson measurements and in [279] for the
modeling of traffic in communication networks. The idea of
modeling counting processes at multiple resolutions has a
substantial history, including a number of examinations of
models for self-similar counting processes for a variety of
applications [165], [201], [202], [221], [231], [311], [318].

35Note that shrinking individual coefficients of WVD decompositions im-
plicitly corresponds to assuming that these transformed measurement coef-
ficients are independent (see, e.g., [206] for an explicit discussion of this and
related issues). While this is a perfectly valid probabilistic model—and one
that leads to impressive results for many applications—it is worth noting
that, if the measurements are corrupted by white noise, the coefficients of
the measurement expansion are not exactly uncorrelated since the basis used
is not orthogonal (but rather is half of a biorthogonal pair).

36In [289] and [290], some of these same authors develop an alternate MR
modeling framework that works directly with MR pixels as state variables
rather than wavelet and scaling coefficients. The approach to tomographic
reconstruction in these references involves a coarse-to-fine/multigrid algo-
rithm in which the data are used at each resolution to perform estimation
assuming that the finer scale detail is absent, and a simple scale-to-scale
pyramidal MR model. This graphical structure and the algorithms used are
closely related to the one introduced in [42], which is illustrated in Example
10 in Section VII.

The models introduced in [188] and [322] make use
of very simple properties of Poisson counting processes,
namely the facts that: 1) the numbers of counts of such a
process over nonoverlapping intervals are independent and
2) the sum of independent Poisson random variables is also
Poisson. For a 1-D Poisson process over a time interval,
these properties suggest a simple “dyadic partitioning” [188]
of the interval in which we construct an MR tree exactly
as in Fig. 1(a), in which each node is identified with a
corresponding dyadic subinterval of(so that, for example,
the nodes and in Fig. 1(a) correspond to the two
halves of the interval corresponding to their parent). The
variable placed at each node is then simply the number
of counts over that subinterval. These variables have an
obvious fine-to-coarse relationship, i.e., is the sum of
the two child values, and , so that this model
is what we have termed internal since the value at each node
is a deterministic function of its descendants. This leads
directly to a coarse-to-fine model, reflecting the fact that

and are complementary fractions of

(48)

where is a random variable, independent from node to
node, taking on values between zero and one. As discussed in
[188], [263], and [322], the conditional distribution for each
child conditioned on its parent is a binomial distribution with
a parameter corresponding to the “fractional rate” of counts
in one half interval versus the other. That is, if we let
denote the mean of the number of counts over the interval
corresponding to node, then

(49)

where is the binomial distribution

(50)

Thus, if the rate function of the Poisson counting process
were known, (48) would be a simple MR tree model for

.37 However, of central interest for Poisson estimation
and imaging applications is the case in which the rate func-
tion itself is random and is to be estimated from the
observations of the count process . Since the mean of
the sum of Poisson random variables is the sum of their in-
dividual means, the count function also has the same
additivity property as the count process. Thus, we have the
following parent–child relationships for the rate as well:

(51)

37Actually, (48) is not quite a tree model asx(s� ) andx(s� ) are not
independent conditioned onx(s), since their sum must equalx(s). This is
the same issue as mentioned in Section V-A concerning the relationship of
(44) to tree models and which is examined and solved in Section VI-B by
very simple state augmentation (in particular, in this example,x(s) and�(s)
together become the state in the MR tree model).
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where , which takes on values between zero and one,
is precisely the fractional rate appearing as the
binomial parameter in (49).

To complete the formulation of the problem of estimating
given observation of , we need to specify the

distributions for the independent random variables , as
well as the random variable corresponding to the total
mean count over the entire interval. As discussed in [188]
[263], and [322], a particularly judicious set of choices are
to model with a gamma distribution and each with
a beta distribution. In particular, this choice isconjugate
to the choice of a Poisson distribution for the total number
of counts and binomial distributions in (49). With
these choices, the conditional distribution for the rates and
fractional rates have the same forms as their priors and are
simply obtained by updating the parameters of these distri-
butions using the observed count values . The estimation
problem can then be put exactly in the form considered
in Section III, leading to a two-sweep algorithm. Thanks
to the internality and special structure of this model, the
upward, fine-to-coarse sweep consists simply of summing
counts over intervals, i.e., computing the unnormalized Haar
scaling coefficients of the numbers of counts over dyadic
intervals, followed by a nonlinear coarse-to-fine sweep to
specify the parameters of the conditional distributions and
hence the optimal estimates at each node. We refer the
reader to [188], [263], and [322] for details.

It is important to make several comments at this point.
First, the use of Haar scaling coefficients in this case is
critical, as the structure of this model depends crucially
on the summing of independent Poisson random variables.
Hence, the same ideas do not work using other wavelets.
Second, as mentioned in Section V-A, the multiplicative
form of the models in (48) and (51) makes contact with
other research on wavelet cascades and multifractals (see,
e.g., [15], [94], [136], and [279]). Furthermore, by carefully
choosing the parameters of the beta distributions for
or by using mixture models instead, one can obtain a wide
variety of count models, including ones with self-similar or
with bursty behavior, as well as estimation algorithms that
have shrinkage-like characteristics. We refer the reader to
[188] and [322] for details. Also, the extension of the models
to 2-D deserves some comment. In particular, the approach
described in [188], [263], and [322] uses an asymmetric
model in which a coarse-level square at one resolution is
first split horizontally and then each half is split vertically.
Each of these two steps corresponds to splitting a region
into two halves, resulting in models analogous to (48) and
(51). As pointed out in [261] and [263], one could directly
consider a quadtree structure in which counts over a square
are split into four separate child counts over each of the
quadrants. In this case, the conditional distributions for each
child given the parent becomes multinomial rather than
binomial, and the corresponding conjugate distributions for
the fractional rates then become Dirichlet rather than beta.
In either case, the resulting two-sweep estimation algorithm
has exactly the same structure as in the 1-D case.

Finally, the estimation problem we have considered so far
in this example is one in which we directly observe the counts

as a function of time or space, i.e., we have direct measure-
ments of counts for each time interval or each pixel. How-
ever, in many applications such as emission computed to-
mography, the estimation problem is a true inverse problem
in that the total count recorded by each measurement detector
is the sum of counts corresponding to photons from each
pixel in the field to be imaged that impinge on the detector.
At first glance, this problem seems to require very different
solution techniques from the ones that we described previ-
ously in this example, since we do not directly observe the
total number of photons emitted at each location in the image.
However, in [263], the iterative expectation–maximization
(EM) algorithm38 is employed, each step of which involves
MR algorithms of the type just described and which is guar-
anteed to converge to the optimal estimate. The key to this
method is a clever choice of the so-called “complete informa-
tion” for the EM algorithm, namely the number of photons
impinging on each measurement detector from each indi-
vidual image pixel. An example of the application of this pro-
cedure to simulated emission computed tomographic (ECT)
data is illustrated in Fig. 12.

As a final comment, we note that most of the methods for
inverse problems described in this section—and certainly
those that involve taking wavelet transforms of the observed
data—assume the availability of a regular set of nonlocal
measurements. For example, the near-diagonalization of
many such measurement operators using wavelet transforms
rely on this regularity to transform the observed data into
what can be modeled as measurements of individual wavelet
coefficients. Of interest as well are problems in which
we may have only a relatively few and irregularly spaced
nonlocal measurements, e.g., as arises in data fusion prob-
lems such as described in Section II-F. In such a situation,
wavelet-based methods do not apply (except in the very
special and unlikely case that the nonlocal measurements
correspond exactly or approximately to measurements of
individual wavelet coefficients), and instead other methods
are required to invert and fuse these data together with
other measurements. In Section VI-B2 we describe a way in
which this can be accomplished using MR models on trees.

VI. MR M ODEL CONSTRUCTION ANDIDENTIFICATION

As the development in Section IV makes clear, MR models
offer the possibility of very efficient and scalable algorithms.
A caveat to this, of course, is the requirement that the phe-
nomenon and data of interest be well modeled within the MR
framework, where “well modeled” refers not only to cap-
turing the desired statistics to the required level of fidelity
but also to the parsimony of the resulting model. In partic-
ular, while the complexity of various MR tree-based com-
putations scales linearly with problem size as measured by
the number of nodes in the tree, estimation algorithms for
linear-Gaussian problems scale quadratically or cubically in
the dimension of the state of the model at each node, while
inference algorithms for discrete-state processes are polyno-
mial in the cardinality of the state set at each node. Thus,

38See Section VI-C1 for a brief description of the EM algorithm.
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Fig. 12. (a) Noise-free image to be reconstructed from ECT measurements. (b)–(d) Three different
reconstructions from ECT measurements using three different MR models corresponding to different
parameter values and corresponding “strengths” of the prior models, ranging from weakest in (b) to
strongest in (d) (for details see [263] from which this figure is reprinted).

a requirement for ausefulMR model is that its state dimen-
sion or cardinality be comparatively small or increase at most
modestly with problem size.

The examples in the preceding sections make clear that
there is a substantial body of inference problems that can, in-
deed, be well modeled and solved using MR models on trees.
In this section, we step back from specific examples and, for
the most part, from predetermined notions of what variables
(e.g., wavelet coefficients) populate the nodes of our model
and take a more careful look at the topic of MR modeling
from several different vantage and starting points. Modeling
and model estimation are, of course, vast topics taking on a
variety of guises in different fields, and we will make contact
with several of these. While we certainly cannot explore all
of these connections in real depth, we hope that the following
serves not only to show the unique blend of ideas that enter
into MR modeling but also to provide points of entry for fur-
ther exploration.

The starting point for MR modeling has two components:
1) the available data or statistical information whose charac-
teristics we wish to capture in our model and 2) the model

class that is available to us. For the former, we have several
possibilities, namely, sets of measurements of some or all of
the variables that we wish to model; an explicit and complete
probabilistic specification of the variables whose statistical
variability we wish to capture in our model; or an implicit
specification of that probabilistic specification in terms of a
graphical model. (e.g., an MRF model). As for the specifi-
cation of the class of models available to us, there are also
several possibilities: models in which the nature of all of the
variables at every node in the MR tree are already specified
so that what is required for MR modeling is the identifica-
tion of the coarse-to-fine probabilistic dynamics; models in
which the tree structure is specified but only some of the vari-
ables are already specified (so that we must determine both
the nature of the “hidden” variables and then the MR tree dy-
namics); and models in which not even the tree structure is
specified so even that needs to be identified or learned. In-
terestingly, some of these possibilities are standard in some
fields (e.g., signal processing, systems and control, or graph-
ical models) and comparatively foreign to others, a point we
highlight on several occasions in what follows.
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A. From Graphical Model to Tree Model

We begin with some ideas that are well known in the
graphical models field but not nearly as common in the
fields of signals and systems, as not only do they involve one
idea thatis known in those fields (namely the aggregation of
variables or state augmentation) but one that is not usually
considered, namely, a complete redefinition of the index
set of the graph. For the purposes of discussions to follow,
it is useful to describe two alternate viewpoints for such
graphical constructions, namely, one based explicitly on
separators orcutsetsand one on the construct of ajunction
tree [108], [128], [143], [168], [169], [204], [207], [291],
[314], [339].

1) Cutset Models:Consider a graphical model on a
graph , and suppose that is a cutset of the graph
(see Section III-C), so that is partitioned into two dis-
connected subsetsand separated by . Each of the sub-
sets and has its own induced graph (e.g., ),
where is the subset of of all edges between elements of

), and thus we can repeat this process (i.e., finding cutsets
that partition graphs into disconnected subsets) on each of
these two subgraphs and continue until we reach sufficiently
small subsets of nodes (i.e., until an ultimate “finest” scale
of singleton nodes).

Equation (10) then allows us to construct a tree model.
For example, since and are conditionally indepen-
dent given , we place the vector at the root node of our
tree and then continue the process using finer and finer cut-
sets and partitions. An example of this is depicted in Fig. 13.
As shown in Fig. 13(b), the set is a cutset,
with and , and in Fig. 13(c)
we have indicated that plays the
role of the state at the root node of the tree. Further, the sin-
gleton set is a cutset for the subgraph on, which
might lead one to take as the state at the corresponding
second-level node. However, and are not indepen-
dent when conditioned on , since, in the full graph, there
are other connections between nodes 2 and 6. However, if we
augmentthe value of the state at this second-level cutset with
the values at its parent, i.e., at the first level, then, conditioned
on all of these values, and are independent. The re-
sult is a tree model as shown in Fig. 13(c) in solid lines.

There are several points worth noting about this construc-
tion. The first is that the individual values of the graphical
process in the model in solid lines show up at nodes at dif-
ferent levels in the tree. It is straightforward, however, to ex-
tend the model, as shown in Fig. 13(c) with the additional
dashed lines, to a model in which all of the individual values
of the process do indeed appear at the finest scale. This cor-
responds simply to a deterministic copying of some of the
variables from the parent node, much as the root node value
is copied to each of its children. Second, note that, when we
incorporate the dashed part of the model in this figure, the
resulting model is almost internal in the sense introduced in
Section II. In particular, each of the states on the left branch
of the tree (from root to leaf) is a deterministic function of
its finest scale descendants. The same is not true on the right

side, but this could easily be accomplished by a redundant
copying of the values of , , and to the finest
scale.

Obviously, these models (corresponding to the solid lines
in Fig. 13(c) or the solid and dashed lines together) have
considerable redundancy, which may or may not be of value
in a representation but certainly do increase dimensionality
and thus raw computational complexity for algorithms using
these models. Indeed, the simple fact of augmenting the state
at a given node with the full state at its parent is generally un-
necessarily complex. For example, if we examine the graph
in Fig. 13(a) or (b), we see that nodes 2 and 6 are indepen-
dent conditioned on less information than that contained in
the -cutset augmented with the full cutset . Indeed,
we only need to add theboundary values [and
not the internal value ] to accomplish this. Similarly, we
only need augment the -cutset 8 with a single boundary
value in order to achieve the desired conditional in-
dependence. Thus, a considerably more parsimonious tree
model is that shown in Fig. 13(d). We refer the reader to
[156] for further discussion and examples of the construc-
tion of such reduced-dimension tree models.

Note that the model for Brownian motion described in Ex-
ample 2 is a cutset model, and we now see that that style
construction could be equally well used to construct an MR
model foranytemporal Markov chain or process. In this case,
the dimensions of the states do not depend on the level in the
MR representation nor on the extent of the time interval of
interest essentially because of the very simple structure of
minimal cutsets of the linear graph of a Markov chain. For
more complex graphs, however, state dimensions can vary
and, in particular, grow with the size of the original graph. For
example, consider the regular 2-D nearest-neighbor graph
shown in Fig. 14. In this case, an obvious cutset is the red line
of nodes in the center of this grid: conditioned on the values
of a graphical process on this cutset, the sets of values in the
two remaining halves of the graph are independent.39 Note,
however, that in this case the cardinality of the cutset equals
the linear dimension of the grid which (for square grids) is
the square root of the total number of nodes, implying that the
dimension of the state of a linear-Gaussian MR model using
such a cutset is , while for a discrete-state model the
cardinality of the state set corresponding to this cutset is ex-
ponentially large. Consequently, the resulting MR represen-
tations, which are closely related to so-callednested dissec-
tion methods in scientific computing and numerical linear al-
gebra [133], lead to inference algorithms with complexities
that do not scale linearly with problem size.

Finally, as we develop in more detail in Section VI-B2, it
is often possible to construct reduced dimension approximate
models in which we keep only a lower dimensional projec-
tion of the vector of cuset values at each node on the tree,

39Note also that the choice of a somewhat larger cutset, e.g., taking both
the red and blue lines in Fig. 14, leads to partitioning of the graph intofour
disjoint components, which in turn leads to a quadtree MR structure. Obvi-
ously one can find other sets of cutsets that lead to more general MR trees
(e.g., unbalanced trees, trees with differing numbers of children at each node,
etc.).
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Fig. 13. Illustrating the construction of cutset tree models. (a) A graph over which a graphical
modelx(:) is defined. (b) Illustrating a particular choice of root cutset,A, along with the disjoint
subsetsU andW separated byA. (c) The cutset tree model resulting from this choice of root cutset;
here the dashed lines indicate redundant values that can be added to the finest scale so that the entire
process resides at the finest scale. (d) A lower dimensional model in which unnecessarily repeated
variables are removed from various nodes.

neglecting the residual dependency that remains among de-
scendent nodes when we condition only on this projection.
A simple version of this approach was used in the texture
discrimination problem described in Section II (Example 5)
and [225]. In particular, rather than assuming that the four
quadrants in Fig. 14 are independent given the entire set of
values of the field along the red and blue boundaries, we as-
sume that they are independent given only a coarser version
of the values along these boundaries (essentially coarser 1-D

wavelet approximations of these sets of boundary values). As
shown in [224], such models can have artifacts across tree
boundaries (which can be reduced somewhat by more judi-
cious choice of lower dimensional projections, as described
in Section VI-B2), but they are more than adequate for tex-
ture discrimination problems, as the results in Fig. 10 indi-
cate.

2) Junction Tree Models:A second viewpoint on con-
structing a tree model from a given graphical model involves
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Fig. 14. A regular 2-D nearest-neighbor lattice, with a horizontal
cutset (in red) containing a number of nodes equal to the linear
dimension of the lattice. Taking this cutset together with the vertical
one (in blue) leads to a quadtree MR model structure.

the concept of ajunction tree. The first step in the construc-
tion of a junction tree representation is the addition of edges
in order totriangulatethe graph, resulting in what is also re-
ferred to as achordal graph. In particular, such a graph is
defined by the property that every cycle through the graph
passing through four or more nodes contains a chord (i.e., an
edge in the graph that connects two nonconsecutive nodes on
the cycle). For example, in Fig. 15(a), we have depicted one
triangulation of the graph from Fig. 13(a).

The second step in the construction is to identify a set of
maximal cliques40 of the triangulated graph that form a junc-
tion tree.41 Such a tree is shown in Fig. 15(b). Note that each
node of this graph corresponds to a maximal clique of the
graph in Fig. 15(a). Furthermore, the corresponding vectors
of values of the original graphical process that now popu-
late this junction tree do indeed form a Markov model on the
tree. For example, it is straightforward to see from the orig-
inal graph that, conditioned on , the
vectors , , and

are mutually independent. Further, the
clique tree in the figure has the property required for it to
be a junction tree: if a node of the original graph appears
in cliques corresponding to two of the nodes in the junction
tree, then it must also appear in the cliques of every node
on the path between those two junction tree nodes. For ex-
ample, node 8 of the original graph appears in both the root
node and the bottom-right node8, 9 , and it also appears
in the intervening node3, 4, 8 . The reason for this is very
simple: the statistical model we wish to construct on this tree

40A maximal clique is a clique that is not contained as a proper subset of
any other clique.

41In some treatments of graphical models, the junction tree explicitly in-
cludes intermediate nodes, representingseparator sets, that is, sets of nodes
that are common to the two cliques to which the separator is connected.
For example, in Fig. 15, this would lead to including a node labeledf3, 8g
between the root nodef3, 5, 6, 8g and the nodef3, 4, 8g. Including such
nodes is often convenient, as it facilitates checking the junction tree prop-
erty and identifying the explicit form of the resulting factorization of the
overall distribution. However, such nodes are unnecessary probabilistically,
since the coarse-to-fine dynamics can just as easily be defined on the model
in Fig. 15(b).

should be equivalent to the statistical model of the variables
on the original graph and thus must provide unambiguous
values for each of the variables in the original model. Conse-
quently, variables such as must, with probability 1, take
on the same value in each of the vectors of clique variables
involving node 8. This can be ensured if the junction prop-
erty is satisfied, e.g., the MR dynamics for Fig. 15(b) simply
copy the value of from the root node to its two children
that include node 8, and that value is then copied again to
the bottom-right node. This notion of consistency in an MR
model is very closely related to the idea of an internal MR
model that we have introduced previously and which we ex-
plore in more depth in Section VI-B2.

Note that the construction of a cutset model implicitly pro-
vides a triangulation of the graph (in particular the nodes in
each separator set can be viewed as cliques in an augmented
graph). Typically, there are many different ways in which to
triangulate a graph, and finding a triangulation that leads to
a junction tree with small maximal cliques can be a chal-
lenging graph-theoretic problem [169], [204], [207], [314],
[315].42 Moreover, for some graphs, all triangulations have
maximal cliques that are quite large. For example, the trian-
gulation of the regular 2-D graph in Fig. 14 is nontrivial, re-
quiring much more than simply adding diagonal connections
across each of the 2 2 blocks of nodes [e.g., there are cy-
cles that require triangulation much as the one that required
the inclusion of the dashed edge in Fig. 15(a)]. On the other
hand, for some graphs, the construction of low-dimensional
MR cutset or junction tree models is straightforward. One
such example is the MR model considered in [213] based on
a quadtree structure as in Fig. 1(b) but with edges connecting
each of the four children of each of the parents. In this case,
each set of four children of a single parent form an elemen-
tary cutset, resulting in an MR model in which each such set
of four variables is aggregated into a single node, resulting
in an MR quadtree model.

B. Methods for Constructing Linear MR Models

In this section, we describe several general approaches to
linear MR model construction that make contact with the
examples and discussions in previous sections and that also
introduce several other important concepts. The perspective
pursued in this section is motivated by image and signal
processing applications in which the ultimate objectives,
namely, performing estimation or hypothesis testing, are
quite different than the objective of exact matching of a
statistical model. Indeed, in many such applications, the
implied or imposed prior model on the quantity to be
estimated or analyzed is either only known approximately
or represents statistical regularization rather than “truth”

42Note that cutset models do not generally lead to the smallest maximal
clique sizes. For example, the MR model for samples of Brownian motion
depicted in Fig. 6(b) corresponds to creating cliques consisting of subin-
terval endpoints and midpoints. In this case, the original graph, in which
each time point is connected only to the points immediately before and after
it, is already a junction tree. Thus, there is a modest increase in dimension-
ality using the MR cutset model. In other cases, such as cutting the grid in
Fig. 14 with vertical and horizontal lines, the resulting clique sizes are of
the same order as in optimal triangulations.
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Fig. 15. (a) A triangulation of the graph in Fig. 13. (b) The junction tree for this triangulation.

about the phenomenon of interest. Such contexts suggest the
idea of approximating or replacing such a prior model with
an MR model of (hopefully) modest dimension that serves
the desired purposes just as well in terms of capturing the
expected behavior of the phenomenon and much better in
terms of admitting efficient and scalable algorithms. This
line of inquiry has been the subject of considerable attention,
and in this section we describe four lines of thought that
have been pursued for linear models.

1) MR Variants of “Smoothness Priors”:Some of the
earliest work on exploiting MR models resulted from a
simple observation concerning a class of image processing
algorithms based on variational formulations with what
are often termed “smoothness priors.” One example of
such smoothness priors is that introduced in Section II-D
(and revisited in Example 8 to follow) in the context of
the problem of surface reconstruction. Another simpler
example is the problem of image denoising. In particular,
suppose that we observe , a noise-corrupted version of
an underlying 2-D image , both defined over the 2-D
image domain . One approach to denoising involves
choosing as our estimate the function that minimizes
the following functional:

(52)

The first term in (52) is a data fidelity term, while the second
is a penalty on the size of the gradient of penalizing the
roughness of the reconstruction.

The first of these terms has a simple statistical interpreta-
tion, namely that consists of measurements of over

corrupted by 2-D white Gaussian noise of intensity .
The precise statistical interpretation of the second term re-
quires some care,43 but, if we take the perspective that all we
are attempting to do is to capture theintent of this regular-
ization penalty, we can use a simple observation to replace
it with a very simple MR quadtree model. In particular, as
pointed out in [223] and [312], the second term in (52) can
be thought of as a (Gaussian) “fractal prior.” For example, in
1-D, each of the functions in Fig. 16 yields identical values
for the 1-D version of the second term in (52) and, thus, are
“equally likely” under this implied prior. Alternatively, as ar-

43See, for example, [284].

Fig. 16. A set of 1-D signals, each of which yields the same value
for the 1-D version of the smoothness penalty in (52). Taken from
[223].

gued in [111] and [223], this penalty term corresponds to a
Gaussian process with a fractal spectrum.

As is well known in the literature (see, e.g., [116], [117],
[313], and [349]) and as we have discussed in Examples 1 and
2 and already exploited in Example 4, the self-similar scaling
behavior exhibited by such fractal processes can also be cap-
tured through simple MR models, such as the scalar model
(7), with the variance of taken to decrease geometri-
cally as we move to finer scales. While definitely not iden-
tical to the prior model implied by the smoothness penalty in
(52), this model has similar qualitatitve characteristics, and
its use instead of the smoothness prior in (52) allows us to use
the efficient two-sweep estimation algorithm of Section IV to
compute both estimates and associated error variances. This
should be contrasted with the computation of the optimal es-
timate corresponding to minimizing (52) which requires the
solution of an elliptic PDE for the computation of the optimal
estimates and essentially the inversion of the elliptic differen-
tial operator to calculate the corresponding error variances.

This same concept has been applied to somewhat more
complicated image processing and computer vision prob-
lems (optical flow [223] and surface reconstruction [111]),
and, in Example 8 to follow, we provide one such illustra-
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tion, including showing how the error statistics computed
by the two-sweep estimation algorithm can be used to lo-
calize significant anomalies, i.e., spatial locations at which
the smoothness penalty should be relaxed (e.g., where there
is an edge or abrupt change in the image or field being im-
aged).

The use of this simple MR model does, however, raise an
issue that we have encountered previously (e.g., in Example
4) and revisit in more detail here, namely the possibility of
artifacts in the estimates produced using MR tree models.
In particular, consider the tree in Fig. 1(b), where the finest
scale of this tree represents the actual image field to be re-
constructed and on which we wish to impose a smoothness
or fractal penalty. The simple MR model (7) certainly ac-
complishes the latter but does a spatially variable job of the
former. In particular, consider the two finest scale shaded
nodes near the center of the image in Fig. 1(b) but on opposite
main branches of the MR tree. In this case, the tree distance
between these nodes is far greater than the spatial distance
and, as a result, reconstructions based on this MR model
can lead to noticeable discontinuities across such major tree
boundaries. As argued in [223], whether this is of any sig-
nificance or not depends on the application. However, if it is
of significance, this simple MR model is inadequate for the
desired purpose.

In this case, there are four alternatives that one can con-
sider. The first is relaxing the requirement of using a tree by
allowing an edge between nodes across such tree boundaries.
This, of course, leads to the requirement to solve estimation
problems on loopy graphs, which, as we have discussed, can
be complex. However, we return to this possibility in Sec-
tion VII. A second possibility is to increase state dimension
in order to capture the correlation across this major boundary
more accurately. In particular, note that, conditioned on the
root node of the tree in Fig. 1(b), the two shaded nodes are
independent. Since smoothness dictates that these two pixel
values are stronglydependent, this suggests that the state at
the root node must capture all or at least a significant por-
tion of this dependence.44 This is the basic idea behind ap-
proaches described in the next topic. A third possibility is
the one used in Example 4 and also in many of the investi-
gations of other authors (see, e.g., [188], [261], [263], [281],
and [322]), namely, to construct several MR models using
trees that are spatially offset with respect to each other (so
that their major boundaries do not coincide) and then to com-
bine the results of estimation based on each of these trees.

Using multiple shifted trees is one approach to overcoming
the problem of placing some nodes on one side or another
of a major tree boundary when we actually would like these
nodes to be onall sides of such boundaries. Another ap-
proach aimed at this same objective but employing only a
single MR tree involves the use of so-called “overlapping
trees” [159]. In standard MR tree models, such as that shown

44For 1-D signals, it is always possible to maintain continuity of the signal
modeled by an MR model by using an approach as in Example 2 in which
endpoints of intervals are included in the states at each node in the tree. In
2-D, the problem is much more complicated, motivating the development in
Section VI-B2.

in Fig. 1(b), the nodes at each level of the tree correspond to
nonoverlapping portions of the 2-D field being represented.
For example, the standard quadtree in this figure has nodes
corresponding to square regions of the field, each of which
is subdivided into four nonoverlapping subregions at the next
finer scale. In the overlapping tree framework, each region is
subdivided into overlapping subregions at the next scale, so
that each of these subregions has linear dimensions some-
what larger than half of the dimensions of its parent.

There are several consequences of this construction. The
first is that an overlapping tree will always have more reso-
lutions than a standard one, since the linear dimensions de-
crease more slowly from level to level. As a consequence, the
total number of nodes in an overlapped tree model is larger
than that for a nonoverlapped tree model and, in fact, in-
creases geometrically with the number of additional scales
that are added, implying that the number of scales that can
be added (and hence the degree of overlap achieved) needs
to be carefully controlled in order to maintain computational
feasibility. Second, each finest scale pixel in the image do-
main actually corresponds toseveralfinest scale nodes in the
overlapped tree. Indeed, this is precisely the intention of the
construct, as the set of fine-scale nodes that correspond to a
single real pixel are guaranteed to include elements that re-
side on different sides of major tree boundaries. Of course,
this then creates the question of how tousesuch a tree when
the real data and desired estimates both reside in real image
space. As described in [159], there is a straightforward way
in which to “lift” the image domain estimation problem to
the redundant overlapped domain. This construct involves
two linear operators, one of which takes an image domain
pixel value and replicates it at each of the redundant nodes
corresponding to that pixel. The second operator (which is a
left inverse of the first) collapses the values at each set of re-
dundant tree nodes into a single weighted average, which is
then mapped to the corresponding image pixel. An estimator
using an overlapped tree, then, consists of the application of
the first operator to lift the image domain measurements to
the tree domain, followed by the application of the tree es-
timation procedure described in Section IV-B, and then by
the application of the second operator to project the tree es-
timates back to the image domain.45

Example 8: One example of a successful application of
this overlapping technique is to the surface reconstruction
problem introduced in Section II-D. The full development
in [111] combines several important features. The first is
the construction of MR models that accommodateboth of
the smoothness terms (thin membrane and thin plate penal-
ties) in (2) simultaneously. The second is overcoming the
need to deal explicitly with the integrability condition men-
tioned in Section II-D and captured in the consistency rela-
tion (3). The method used to deal with these in [111] is to

45Note that it appears that this approach “overcounts” each real measure-
ment by replicating it at several tree nodes. As shown in [159], this is avoided
by modeling each of the resulting tree measurements as having measurement
noise with covariance that is a multiple of the covariance of the real mea-
surement, where the multiple used is the cardinality of the set of tree nodes
that correspond to the real image pixel being measured.
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(a) (b)

(c) (d)

Fig. 17. (a) Ocean surface reconstruction from TOPEX/POSEIDON data such as in Fig. 2.
(b) Discontinuous surface to be reconstructed. (c) Reconstruction of the surface given noisy
measurements and using the MR estimation algorithm described in the paper employing thin-plate
and membrane priors which lead to smooth reconstructions across surface discontinuities. (d)
Distribution of locations and signs of statistically significant measurement residuals, providing clear
statistical evidence for the detection, localization, and estimation of the surface discontinuities.
(Reprinted from [120].)

construct a MR model with a 3-D state that approximates
both of the smoothness penalties as well as the consistency
condition (3). The three state variables at each node corre-
spond to surface heightand surface gradient ( ) at each
scale and spatial location. In addition, we replace the hard
constraint (3) with a softer one, consisting of an additional
“measurement” at each node, corresponding to requiring that
the difference between the gradient46 of and the value of the
vector ( ) at each node is a zero-mean white noise process
on the tree, with small variance. Finally, the third component
of the model construction is the use of overlapping, which has
the effect of modifying the geometric decay in the covariance
of the process noise as one moves to finer resolutions.

Fig. 17 shows an illustration of this method to such sur-
face reconstruction problems. Fig. 17(a) illustrates the ef-
fectiveness of this method for the reconstruction of a rela-
tively smooth surface [namely ocean surface height as dis-
cussed in Example 4 but here using a more sophisticated
MR model based on (2)], while Fig. 17(b) and (c) shows the

46Actually a discrete, multiscale approximation to the gradient (see
[111]).

well-known problem that this as well as other smoothness-
based reconstruction methods have when there are disconti-
nuities in the actual field being reconstructed: the smoothness
penalty leads to blurring or smoothing of the surface across
the discontinuity. However, because of the ready availability
of error variances when using MR methods, we can employ
these statistics to identify regions in which the difference be-
tween the raw surface measurements and the reconstructed
surface are statistically anomalous. Fig. 17(d) illustrates the
result in this case, in which we have also indicated the sign of
these anomalies, which provide clear indication of the nature
of the discontinuous jumps in surface height in this example.

The fact that MR error statistics allow us to localize dis-
continuities such as in Fig. 17(d) suggests that it should be
possible to develop an adaptive algorithm that performs op-
timal estimation without blurring across high-contrast edges
or discontinuities. One such method is developed in [292] by
considering a more complex MR model, namely, one which
leads to estimates not only of surface height but also of an
auxiliary field [roughly corresponding to and
in (2)] that controls the spatially varying smoothness of the
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(a) (b)

Fig. 18. Illustrating the role of the state in linear-Gaussian MR models. (a) In general, conditioned
on the value of the statex(s), the three sets of variables indicated in dashed lines must be
uncorrelated with each other. (b) For internal MR models, the statex(s) need only decorrelate
x(s� ), x(s� ), and the set of values in the single set of nodes encircled by the dotted red line—the
remaining decorrelation required as in (a) is automatically satisfied thanks to internality.

field.47 An alternate approach, developed in [324], addresses
this and other related problems using an expectation–maxi-
mization formalism.

2) Internal Models and Approximate Stochastic Realiza-
tion: In this section, we describe a more general and formal
construction of linear MR models [82], [85], [122], [161].
The approach makes use of concepts adapted from state
space theory [8], [9], [16], [214]; however, the adaptation to
trees uncovers some important differences with the temporal
case. First, in contrast to the usual temporal state space
framework—and, for that matter, to the framework im-
plicitly used in most graph-theoretic studies—we consider
problems in which the random process or field whose sta-
tistical behavior we wish to realize corresponds to variables
on only a fraction of the nodes of the MR tree. In particular,
we focus initially (and primarily) on problems in which the
process to be realized, whose covariance or power spectrum
is assumed to be given (and which, for simplicity, we assume
is zero-mean) resides only at the finest scale of the tree, i.e.,
at the leaf nodes. In standard time series analysis, in which
the index set is a completely ordered interval of integers,
the set of “leaf” nodes is a singleton consisting of the single
point at one end of the interval. However, for dyadic trees
or quadtrees, as in Fig. 1, the finest scale can accommodate
entire 1-D or 2-D processes.

Another issue that arises in constructing MR models is
specifying how to map the 1-D or 2-D process of interest
to the finest scale of the MR tree, a specification that then
also determines which finest scale values have common par-
ents, common grandparents, etc. The problem of estimating
or identifying this graph structure does not arise in standard
time series analysis but is an important problem in its own
right both for trees and for more general graphs. We return
to this problem in Section VI-C3, but, for this discussion,
we assume that this structure is fixed and given. A typical

47The formulation in [292] represents a relaxed version of the widely-
studied Mumford–Shah functional for image denoising and segmentation
[11], [252].

example,48 to which we refer on occasion, is that shown in
Fig. 18. Here we begin with a zero-mean Gaussian process

, , whose second-order statistics are
given and which we wish to realize, either exactly or approxi-
mately, at the finest scale of the MR tree shown in the figure,
in which we have indicated that the finest scale nodes are
mapped to consecutive integers over the interval in question.
Note that, with this ordering, each node at coarser scales cor-
responds to an interval of the process (e.g., the node labeled s
in the figure corresponds to the interval ), which
is exactly the type of correspondence we have seen before,
e.g., for Brownian motion in Example 2.

With the graph structure fixed the problem of MR mod-
eling bears a number of similarities—and some significant
differences—with state space modeling for time series. For
example, we refer the reader to [29] for the development of
a state space theory for deterministic MR dynamics on trees
and to [24], [25], [65], and [66] in which MR counterparts to
autoregressive modeling and efficient algorithms analogous
to Levinson’s algorithm for time series are developed for the
class of isotropic processes on trees (i.e., processes in which
the covariance between variables at different nodes depends
only on the distance between the nodes). In this section, we
focus on problems of approximate stochastic realization,
where, as in standard state space realization theory we must
deal with two basic issues: 1) we need to define the “state”
of the process at each of the unspecified, coarser-scale nodes
of the tree and 2) we must then define the coarse-to-fine
dynamics among these state variables, resulting in a model
that is Markov with respect to the MR tree. Because of
the special property of trees, the first problem bears a
resemblance to the standard temporal problem for Gaussian
processes [8], [9], [214] in which the role of the state at any
point in time is to decorrelate two sets of variables, namely,
the values of the process in the past and the values in the
future. Referring to the tree in Fig. 18 (and the blue dashed
lines therein), the role, then, of the state in this example

48For simplicity we illustrate these concepts using dyadic trees and 1-D
examples; however, the same ideas work for quadtrees and 2-D fields.
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is to decorrelatethreesets of variables, namely those in the
subtree rooted at node , those in the subtree rooted at

, and the large set of variables over the entire tree except
for those in the subtree rooted at node.

Note that the definition of the state in this case is given in
a manner that couples the definitions at distinct nodes, e.g.,

in Fig. 18 must decorrelate from , a fact that
makes the general analysis of realization more complex than
its temporal counterpart, and a complete treatment still re-
mains to be developed. However, a considerable amount can
be said if we borrow another concept from temporal realiza-
tion theory, and one whose MR counterpart we have encoun-
tered informally on several occasions already, namely, that of
aninternal model. For temporal systems, an internal model is
one in which the state at each point in time is a deterministic
function of the process being realized. In particular, the state
of an internal model is typically taken to be a function of the
past of the process to be modeled, capturing the memory in
the process required to decorrelate past and future.49 Thus,
an internal state does not introduce any additional random-
ness not present in the process to be realized. A very impor-
tant result in standard state space realization theory [8], [9],
[214] is that it is always possible to find internal state space
realizations that areminimal, i.e., that have the smallest state
dimension possible, so that considering noninternal realiza-
tions does not buy us anything in terms of model dimension-
ality.

By analogy, for our problem, we define the concept of an
internal model as one in which the state of the model , at
any node , is a deterministic, linear function of the values
of the process at the finest scale in the subtree descending
from . For example, the state of an internal model at node
in Fig. 18 must be a linear function of the values of for

, , , and . As shown in [122]
and [161], there are several very significant implications of
restricting attention to internal models. First, of course, these
models do not introduce additional randomness at coarser
scales (and thus coarse-scale nodes, while technically not ob-
served, are not really “hidden”). Second, there is a poten-
tial price to be paid by excluding noninternal models, as it
is sometimes possible to find noninternal models of smaller
state dimension. However, third, and very importantly, inter-
nality considerably reduces the complexity of constructing
state variables. In particular, as shown in [122], in this case,
the states can be defined resolution by resolution, as it is suf-
ficient to design the state at each node simply by looking
at the nodes one scale finer. For example, the state in
Fig. 18 must be a linear function of the states at its chil-
dren and , and it is sufficient to choose that
linear function so that decorrelates its two descendent
values from each other and from the remaining nodes at that
next finer scale (the red dotted region in the figure). Note
that, since each state is a linear functional of its children, we
maintain consistency along paths from coarser to finer scales.
In particular, the fact that consists of linear functionals
of its two children implies that the coarse-to-fine dynamics

49It is equally possible, however, to define the state of an internal model
as a function of both the past and future. See, for example, [214].

(6) must deterministically “copy” the information from each
parent to its children. This consistency, while different in de-
tail, is identical in purpose to the consistency requirements
for a junction tree as described in Section VI-A2.

Note also that, once we have performed this fine-to-coarse
process of defining the state at every node, we can imme-
diately determine the coarse-to-fine dynamics, i.e., the ma-
trices in (6) and , the covariance of in (6).
In particular, is the best estimate of given

, and is simply the error in this estimate. Thus,
computing and requires only the joint statistics of

and . Since both of these states are linear func-
tions of the finest scale process (which, in our 1-D example
in Fig. 18, is the process whose second-order statistics
have been specified), the joint statistics of and
can be computed in terms of the statistics of the finest scale.

Let us return to the issue of constructing the states at in-
dividual nodes. There are two points that make this problem
challenging even in this form. The first is that the required
state dimensionality to achieve complete decorrelation may
be prohibitively high. For example, note that the state at the
root of any of our trees must, in principle, completely decor-
relate the disjoint regions associated with each of the root
node’s children, a task that may require very high state di-
mension (e.g., as we saw in Section VI-A1 for the realization
of 2-D MRFs on regular nearest-neighbor lattices). Large
state dimensionality, of course, is also a problem in stan-
dard state space realization, and once again we adopt ideas
from that context. In particular, we may wish to constructre-
duced-order modelsthat yield realizations at the finest scale
that only approximate the desired statistics of the process we
are attempting to model. In fact, suppose that we follow such
a procedure (yet to be defined) to define reduced-order states
in a fine-to-coarse manner, so that each state is still a linear
function of its children. In this case, we can still define the
coarse-to-fine MR dynamic matrices and using
the same procedure as previously described, and we can also
be assured that the “noise” is uncorrelated with ,
since is simply the error in an estimate based on .
However, since we have used reduced-order states, so that in
particular may not completely decorrelate its two chil-
dren, it will generally not be true that the values of are
white over the entire tree.50 This is also the case for standard
state space models, where the idea is to neglect these residual
correlations; that is, we use the model dynamics and

we have constructed and simply assume that is
white. The resulting model then yields a process that has sta-
tistics at the finest scale that do not completely match those
of the target process . Specifically, the variance of indi-
vidual samples of will be captured exactly by this model,
but the cross-covariances at different points in time may not
be realized exactly.

50The noisesw(:) areguaranteed to be white on coarse-to-fine paths but
not necessarily uncorrelated between nodes (such ass� ands� ) that are
not on the same path from the finest scale to the root node. As a result, when
we construct our reduced-order model by neglecting this residual correla-
tion, we are guaranteed thatsomeof the desired statistics are preserved in
this approximate model, e.g., the statistics along any coarse-to-fine path and,
in particular, the covariances of the individual finest scale nodes, but not the
complete statistical description of the finest scale process.
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It remains to specify precisely how state-order reduction
is to be carried out. For standard state space models, this
is a well-developed field, particularly for time-invariant sys-
tems [8], [9], [214] in which state definitions are identical
across all points in time, so that the impact of the decision
on how to define the state on global measures of fidelity can
be computed. In contrast, except in very special situations
(e.g., in Example 2 or in the more general MR modeling of
self-similar Gaussian processes in [83]), the states at different
resolutions in MR models represent very different quantities
and may, in fact, have varying dimension. Moreover, one of
the major domains of application of these methods involves
highly nonstationary phenomena. As a result, the use of stan-
dard global measures of model accuracy (e.g., such as the
Kullback–Leibler divergence) have not yet led to compu-
tationally tractable algorithms for model construction, and
thus the methods that have been developed (and borrowed
from standard time series contexts) focus on local criteria for
defining states at individual nodes. In particular, the funda-
mental objective in defining the state in Fig. 18 is to have
it decorrelate , , and the set of variables inside
the dashed region in the figure. Consequently, it is natural to
consider choosing approximations in terms of how well they
perform this decorrelation.

In the context of standard state space systems, this idea
has led to the use of the statistical notion ofcanonical corre-
lations[9]. Roughly speaking, canonical correlation analysis
takes two random vectors and and identifies ranked-or-
dered pairs of linear functionals of each: ( ),
( ), where each of these individual variables has
unit variance, the functionals of are all uncorrelated
with each other, as are the functionals of, and the pairs
of functionals ( ) have correlation , with

(so that ( ) represents the most
highly correlated functionals of the two vectors and ,
( ), the next most correlated). In the context of
time series, represents the past of the process and
the future, and the functionals form a rank-ordered
set of natural state variables, providing a quantitative basis
for choosing the state variables to keep in a reduced-order
model.51

As discussed in [16] and [122], one of the potential draw-
backs of the metric corresponding to canonical correlations
is that the rank-ordering is based on correlation coefficients
(since the linear functionals are normalized to have unit vari-
ance). As a result, components of the past and future that con-
tribute very little to the total variance of either of these may
rank higher than components that contain much more of the
process variance. This observation suggests an alternate cri-
terion referred to aspredictive efficiency, which, as opposed
to canonical correlations, treats the variables involved asym-
metrically: for the two random vectors and , the objec-
tive is to produce a set of scalar linear functionals which

51Typically this is done in one of two ways: 1) we fix the state dimension,
say at a valued, and thus choose the functionals corresponding to thed

largest of the� or 2) we set a threshold for residual correlation and keep as
many functionals as needed so that the sum of the remaining� falls at or
below the threshold.

are uncorrelated with respect to each other and are rank-or-
dered in terms of the amount of variance reduction each of
these functionals provides toward the estimation of. If
represents the past of a time series andthe future, this pro-
vides an alternative criterion for ranking possible state vari-
ables in a time series model.

The computation of functionals for either the canonical
correlations or predictive efficiency criteria involves the sin-
gular value decomposition (SVD) of a matrix derived from
the covariance matrix of the two sets of variables. For time se-
ries, both of these are typically of the same dimension, so that
there is not a computational advantage to either approach.
However, for MR tree models, this is generally not the case,
and, in addition there are other important differences with the
time series case. For example, consider the nodein Fig. 18.
Note that in this case we wish to design to decorrelate
not two butthreerandom vectors, namely , ,
and the very large vector (call it) of values of at the
remaining nodes at the same scale asand . The first
complication is that we have three rather than two variables,
making the problem of defining what we mean by the “best”
variables to include in more complex. Second, the di-
mensions of the three vectors are quite different, and this
asymmetry greatly favors using the concept of predictive ef-
ficiency, with always playing the role of all or part of .
As described in [122], this then leads to a procedure in which
we sequentially add variables to form , first including
some linear functionals of of most value in estimating

and , then adding functionals of that are
of mostadditionalvalue (i.e., taking into account the func-
tionals already constructed), and then possibly alternately
adding functionals of and to enhance the fi-
delity of the state design.52 The resulting approach to con-
structing an MR model has complexity. This com-
plexity may not be prohibitive for some applications, since
it need only be performed once to build the model. On the
other hand, in many cases, the complexity is still too large
and, more to the point, is often wasteful. For example, in
many time series problems, the primary correlation between
the past and future relative to some timeis captured in a
comparatively small interval around that time. This suggests,
for example, rather than using all of the -dimensional
vector in Fig. 18 in order to define , we might safely
replace with an -dimensional vector of the values
closest to the nodes, , and . Using this so-called
boundary approximationyields an algorithm of complexity

.
A number of examples illustrating the use of this method

are given in [122]. For example, if applied to a Markov
process, such as Brownian motion, the algorithm does
indeed identify that the correct linear functionals to keep at
each node consist of the boundary points of the time interval
corresponding to that node, as in Example 2. Similarly, for
2-D nearest-neighbor MRF s, in which each of the tree nodes

52Note that for a quadtree there are five sets of variables that need to be
decorrelated by the state at any node, namely the variables at each of the
four children and the vector of all other tree variables at the same scale as
those children.
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(a) (b)

(c) (d)

(e) (f)

Fig. 19. Illustrating the result of applying the scale-recursive method for constructing internal
approximate MR stochastic realizations, in this case of fBm (with Hurst parameterH = 0:7). (a)
Plot of the exact covariance matrix for a window of fBm. (b) Plot of the covariance achieved using an
MR model with state dimension four. (c) The difference between the covariances in (a) and (b),
plotted as an image. (d) A set of noisy measurements of this fBm process over the two ends of the
interval of interest. (e) The estimates using the MR algorithm and the four-dimensional state model
(solid line), the optimal estimates using the exact fBm statistics (dashed line almost completely
obscured by the solid line), and plus/minus one standard deviation error bars (dotted line). (f) Error
standard deviations given by the MR estimator (solid line) and based on the exact fBm statistics
(dashed line, again almost completely obscured by the solid line). (Reprinted from [122].)

corresponds to a square region of the 2-D image domain, the
full state required to decorrelate one such region from the
rest of the image consists of the values around the boundary
of the region—exactly the type of construction we saw in the
cutset models in Section VI-A1. However, the framework
we have described here allows us to consider reducing the
dimensionality of the full cutset state by keeping only those
functionals of the process around the boundary that rank

highest in terms of predictive efficiency in estimating the
rest of the domain.53

Fig. 19 illustrates another example, in this case to the ap-
proximate modeling of fBm, a process that is not Markov but

53An alternate approach to reducing complexty of approximate cutset
models involves not reducing the dimension of the state corresponding to a
boundary in a 2-D MRF but rather to reducing the complexity of themodel
for that state. We briefly discuss this idea in Section VII.
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that does possess fractal, self-similar scaling properties that
generalize those of Brownian motion.54 As shown in [83],
the optimal choices of linear functionals to keep in the state
at each node also have approximate self-similarity in scale.
In this figure, we show both the approximation errors in the
realized process covariance and also what is really the most
important result, namely that the differences in estimation
accuracy using the exact fBm statistics or the approximate
ones captured in the MR model are statistically insignicant
(especially given that fBm itself represents a mathematical
idealization of real processes).

Finally, it is worth noting that the scale-recursive proce-
dure for state construction that we have described has an im-
portant extension [82] to problems in which we have specific
functionals of the finest scale process that we would like to
include as state variables at coarser scales in the tree. As a
simple example, consider a fine-scale process

, and suppose that we require that a particular linear
functional of the finest scale, e.g., a linear combination of

, and , be avail-
able as a component of the state at some node. In this case,
the first common ancestor of the points is
the node in Fig. 18. However, as discussed in [82], [122],
and [161], placing the desired linear functional directly at
this node isnot generally advisable, as conditioning on this
linear functional can actuallyincreasethe correlation be-
tween the variables at the children of node. In particular,
the correlation between two random vectors is always re-
duced if we condition on a linear functional of one or the
other alone, but may, in fact, increase when conditioned on a
linear combination involvingbothvectors (e.g., two uncorre-
lated random variables are no longer uncorrelated when con-
ditioned on their sum). As a result, we actually placetwo
nonlocal functionals at node, namely, the separate func-
tionals of and of ,
whose sum is the required linear functional. To maintain in-
ternality, then, we need to ensure that these individual linear
functionals can, in fact, be expressed as linear functionals of

and , respectively, and this, in general, will
also specify several components of each of these states as
well.

In general, this purely algebraic process involves suc-
cessive examination of each of the descendants of nodes
at which nonlocal functionals have been placed. At each
such node, internality first requires that specific functionals
be available, while the requirement of reducing rather than
increasing correlation among the children ofthat node
typically leads to each of these functionals be broken into
several separate functionals. Once we have completed this
process, we can then begin the fine-to-coarse construction
of the full state at each node, except that now, when we
come to design the state at each node, we may already have
several components of that state prespecified. In this case,
the only change to the procedure that we have outlined is that

54Fractional Brownian motion processes are characterized by the
so-called Hurst parameterH , which controls the rate of spectral fall off.
In particular, while fBm is nonstationary, its power spectral density is well
defined over any band of frequencies [346] and falls off asl=f .

the choice of additional linear functionals is based on the
measure of predictive efficiency taking into account the in-
formation already provided by the prespecified functionals.
As the next example illustrates, the ability to incorporate
particular functionals of the field in question as states of our
MR model allows us to fuse MR measurements and estimate
specific coarse-scale functionals using the estimation
algorithm described in Section IV-B.

Example 9: An example of the construction and exploita-
tion of MR models in which specific nonlocal variables are
included in the states at coarser scale nodes is the ground-
water hydrology problem examined in [84] and introduced in
Section II-F. In particular, in this problem, the random field
modeled by the MR tree represents the log-hydraulic con-
ductivity field of a region of interest. The measurements of
log-conductivity represent point, i.e., finest scale, measure-
ments of this process at a scattered set of fine-scale nodes cor-
responding to the locations of the well measurements. How-
ever, as we discussed in Section II-F, hydraulic head, which
is also measured at each well location, is a strongly nonlocal
and also nonlinear function of log conductivity. The approach
taken in [84] is to linearize this nonlinear relationship about
a known background log-conductivity value over the region
of interest, resulting in a linearized model for hydraulic head
at each well location, namely as a weighted integral of log
conductivity. Using the method developed in [82] and just
described, an MR model was constructed in which each of
these nonlocal functionals was included in the state at indi-
vidual nodes of the tree.

As discussed in Section II-F, the real objective of the ap-
plication considered in [84] is the estimation of the travel
time for solute particles to migrate from one spatial point
to another. This quantity is also a complex, nonlinear, and
nonlocal functional of log conductivity, and in [84] two al-
ternate methods are described for its estimation. The first is
analogous to the method used to incorporate head measure-
ments: we linearize the relationship between travel time and
log-conductivity, producing a model for travel time (or, more
precisely, the perturbation in travel time from its nominal
value as computed using the assumed background conduc-
tivity field) as a weighted linear functional of log-conduc-
tivity. This linear functional can then be augmented to the
MR model in the same manner as the linearized head mea-
surements, so that the resulting MR estimation algorithm au-
tomatically estimates this travel time perturbation as well.

As discussed in [84] and as illustrated in Fig. 20, this ap-
proach works as long as the perturbations from the back-
ground conductivity are not too large. If this is not the case,
an alternate method can be used that emphasizes another fea-
ture of the MR formalism. In particular, suppose we do not
augment the MR model with a linearized model of travel time
but simply use the available log-conductivity and head mea-
surements to estimate the log-conductivity field. As we dis-
cussed in Section IV-B, the result of this estimation process is
not just a best estimate of that log-conductivity field but also
an MR model for the errors in that estimate. This model can
then be used to perform conditional simulations, which, as
pointed out in Section II-F, is a well-known concept in geo-
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(a)

(b)

Fig. 20. Illustration of the effectiveness of the MR algorithm in
estimating travel time perturbations. In each figure, the dashed
line represents the distribution predicted by the direct estimation
of travel time perturbation modeled as a linearized functional of
log conductivity, which was directly incorporated into the MR
model as a state at a coarse-scale node, i.e., these dashed Gaussians
have means and variances corresponding to the resulting estimate
and error variance computed by the MR estimation algorithm.
The histogram in each figure depicts the result of conditional
simulation, in which we use the estimates of fine-scale conductivity
and the MR model of the errors in these estimates to draw sample
conductivity fields which are then used to drive the hydrologic
equations, yielding sample values for travel time. The figure in (a)
corresponds to the case in which the log-conductivity perturbation
from the background value is comparatively small, while it is an
order of magnitude larger in (b). (Reprinted from [84].)

physics [171]–[173].55 In particular, we can generate sam-
ples from this MR error model, add them to the best estimate,
and use the resulting log-conductivity field to solve the hy-
drology equation (4), which in turn yields the velocity field
(5), which can then be used to compute the travel time for
this particular log-conductivity field. By repeating this con-
ditional simulation process many times, we can estimate the
probability distribution for travel times. The key here is that,
thanks to the tree structure of our MR models, we can con-
struct such conditional realizations of the log-conductivity
field very efficiently.

55We refer the reader to [198] for another example of the use of MR
models for conditional simulation in geophysics.

3) Linear MR Models and Wavelet Representations:We
now return to the topic of MR models and wavelets. As men-
tioned in Section V-A, while wavelet synthesis can readily be
viewed as a dynamic recursion in scale (44), more is needed
to build MR models on trees based on wavelets. Consider first
the simple case of the Haar transform and suppose that we
wish to represent a stochastic process , at
the finest scale of a dyadic tree as in Fig. 18. In this case, the
use of the Haar transform might first suggest that the states
at each coarser scale node should be the corresponding (nor-
malized or unnormalized) Haar scaling coefficient, e.g., re-
ferring to Fig. 18, we might consider taking

(53)

However, note in this case that the dynamics of the Haar
wavelet synthesis imply that

(54)

where

(55)

Thus, not only are and not independent, they
are in fact deterministically related.

One solution to this would simply be toassumethat
and are independent, corresponding to the

noninternal model in (7) and (47), in which case the vari-
ables in the MR model no longer correspond to the scaling
coefficients of the finest scale process (e.g., will not
be the deterministic average of its children). Alternatively,
if we do wish to maintain internalityand the interpretation
of states as components of the wavelet representation of
the finest scale process, detail coefficients, such as in (55),
must also be included as components of the state at each
node (except for the finest scale at which we only need
the individual signal value). For example, the 2-D state at
node in Fig. 18 consists of the scaling coefficient
in (54) and the wavelet coefficient in (55). Note that, with
this definition of the state, the coarse-to-fine dynamics of
our MR model is partially deterministic. For example, as
(54) and (55) show, the first components (i.e., the scaling
coefficients) of the states at the two children of node
are deterministic functions (a simple sum and a simple
difference) of the two components of the state at node.
The other components of the states at these two nodes are
then the new wavelet coefficients that will then be used in
the next step of the coarse-to-fine synthesis. If the Haar
transform did indeed exactly whiten the process , the
coarse-to-fine dynamics would simply insert a white noise
value for this detail coefficient. However, the structure
of our MR model allows us to do better than this if the
Haar transform does not perfectly whiten the process. In
particular, using the same procedure for constructing the
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and matrices as in Section VI-B2, we can define
dynamics that take advantage of the residual correlation in
the wavelet coefficients to do the best job of predicting the
finer scale wavelet coefficient from its parent scaling and
wavelet coefficients. This idea has been used, for example,
in [83] to obtain better approximations to fBm than methods
that completely neglect this residual correlation.56

The Haar case is a particularly simple and obvious one
in its connection to MR tree models, thanks to the nonover-
lapping support of the shifted and scaled Haar scaling func-
tions and wavelets that comprise a dyadically scaled orthog-
onal basis. For example, the scaling coefficients in (54) in-
volve only values of the fine-scale process at points in
the subtree below the corresponding nodes. However, if we
consider more complex orthogonal or biorthogonal wavelets,
e.g., ones with additional vanishing moments [86], [228],
[329] and thus with higher degrees of smoothness, the sit-
uation appears to be much more complicated. In particular,
in this case, the synthesis of each signal value, e.g.,
in Fig. 18, requires contributions fromall of the wavelet and
scaling functions whose support includes the point .
Thus, achieving a form for the coarse-to-fine wavelet syn-
thesis “dynamics” that has the structure of (6) requires that
all of these required scaling and wavelet coefficients be part
of the state .

As discussed in [85], this state augmentation can indeed
be done, but it is only half the story, since if only this condi-
tion were used to define the state at each node the resulting
model would not be internal. The implications of this lack
of internality in this case are severe. In particular, because of
the need to augment the state at each node, individual scaling
and detail coefficients appear at multiple nodes. Suppose, for
example, that a particular coefficient appears in the state at
two nodes and . The junction tree constraint (or, more pre-
cisely, its counterpart for linear models) would then require
that this coefficient also appears in (or, more precisely, be a
deterministic linear function of) the state at each of the nodes
on the path betweenand . However, the augmentation done
simply to make sure that everything needed for wavelet syn-
thesis at a particular node is included in the state at that node
does not satisfy this condition. As a result of this violation
of the junction tree constraint, the multiple replicas of what
is supposed to be a single coefficient need not (and typically
with probability 1will not) be equal.

The key to see how to overcome this problem and recover
internality is the examination of the fine-to-coarse wavelet
analysisdynamics, in which wavelet and scaling coefficients
at successively coarser resolutions are constructed as linear
combinations of scaling coefficients at the previous finer res-
olution. Again, because of the overlapping supports of the
wavelets and scaling coefficients at each scale, each of these

56Note also that exploiting this residual correlation in order to do the best
job possible of predicting finer scale wavelet detail coefficients is similar in
spirit to discussion in Section V-A and in particular to the model (46). The
key difference is that the model in (46) allows the use of the entire vector of
scaling coefficients at the preceding scale to be used to estimate each detail
coefficient at the next scale. In the tree-based approach described here for
the Haar transform, each detail coefficient is predicted based only on the
state (single wavelet and detail coefficient) at its parent node.

coarser scaling coefficients, say one located at nodein
Fig. 18, is a linear combination of a number of the finer scale
scaling coefficients. If the model we construct is to be in-
ternal, we must then have that all of these required coeffi-
cients must be resident at the two children of node. Ac-
complishing this requires some additional state augmenta-
tion, which at first blush might lead one to believe that it
would then be necessary to revisit the synthesis side of the
problem in order to guarantee that we have everything we
need at each node for consistent coarse-to-fine dynamics as
in (6), and then to revisit the analysis side, etc. However, as
shown in [85], this is not necessary, as the combination of
a preliminary state definition for the synthesis dynamics fol-
lowed by a second augmentation to ensure internality leads to
a well-defined internal, linear, MR model in which the state at
each node consists, with probability 1, of a vector of scaling
and detail coefficients of the finest scale process.

Not surprisingly, the dimension of the state of the re-
sulting model grows linearly with the support of the wavelet
(or wavelets in the biorthogonal case), as typically does the
degree to which such a wavelet transform whitens a given
process such as fBm. In pure wavelet analysis, this often
suggests the use of fairly high-order wavelets so that the
residual correlation can be safely neglected. However, using
our coarse-to-fine dynamics, we do notneedto neglect the
residual correlation and can in factexploit it to enhance
the fidelity of the resulting model. The result of this is that
high-fidelity approximations of processes such as fBm can
be created using MR representations based on wavelets of
much smaller support than are typically used otherwise.

While the benefit described in the preceding paragraph is
interesting and while the rapprochement with wavelets is in-
tellectually satisfying, neither of these by themselves make
a compelling case for why one would want to use such a
representation. However, one good reason given in [85] is
that, once we have this model, we can consider estimation of
a process based on sparse, irregular, and even multiresolu-
tion measurements, i.e., to problems in which the data them-
selves are so erratically distributed that direct application of
wavelet analysis is not possible. Fig. 21 illustrates the use of
an internal MR tree model based on the Daubechies six-tap
orthogonal wavelet [86] to estimate an fBm process given
“gappy” measurements of differing quality over the two ends
of the interval over which the process is to be estimated. Note
that the resulting estimate is nearly identical to the one based
on the exact fBm statistics, with deviations only a tiny frac-
tion of one standard deviation of the errors in the optimal
estimates.

4) Covariance Extensions, Maximum Entropy, and MR
Models: We now examine another important topic in sta-
tistical signal processing with strong ties to graph theory
and to MR models. The problem is that of covariance ex-
tension. Specifically, in many applications, it is unreason-
able to expect to be provided with the complete covariance
of a random process or field—or to have data available from
which such a complete specification could be estimated. For
example, in dealing with large-scale remote sensing prob-
lems, the random fields of interest can have dimensionality
in the millions, making not only the availability but even the
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(a)

(b)

Fig. 21. Illustrating the use of an internal MR tree model for fBm
(with Hurst parameterH = 0:3) using the Daubechies six-tap
orthogonal wavelet. (a) We consider the problem of estimating
a sample path of fBm given noisy measurements of the process
over subintervals at the two extreme ends of the overall interval of
interest. (b) The estimation results using both this MR model (solid
line) and also using the exact fBm statistics (dashed–dotted line),
as well as� one standard deviation bars (dashed line). (Reprinted
from [85].)

storage of a full covariance matrix prohibitive. In such prob-
lems, what is more likely to be the case is that only a compar-
atively small part of the covariance matrix is specified, and
what we then seek is a model that is consistent with that par-
tial specification.

This idea of modeling from partial specifications is well
known in the signal processing field. In particular, consider
the construction of a stochastic model for a stationary time
series that matches a partially specified correlation function
consisting of the first few values of that correlation func-
tion. If this partial specification is valid (i.e., if it does in-
deed correspond to the first few values of a completely spec-
ified correlation function), then it is indeed possible to find
models that match that partial specification, one of which,
namely themaximum entropyextension, corresponds to an
AR signal model whose coefficients can be efficiently calcu-
lated from the specified portion of the correlation function,
using, for example, the celebrated Levinson recursions (see,
for example, [307]). Further, although not typically empha-
sized, the resulting AR model can then be used for the ef-

ficient, recursive computation of the covariance values not
specified originally.

Interestingly, that maximum entropy extension also has
important implications for MR modeling. In particular, the
resulting AR model is a th-order Markov process, where
is the number of covariance values that were originally spec-
ified. As a result, using a construction analogous to that for
Brownian motion in Example 2, we can, in principle, con-
struct an MR model for this process analogous to that shown
in Fig. 6, except that the number of boundary points kept
at each end of each subinterval would berather than one.
That construction, however, requires knowledge of what ap-
pears to be a considerable number of covariance values other
than those that were originally specified. For example, refer-
ring to Fig. 6, for a first-order Markov process, specifying
the coarse-to-fine dynamics requires knowledge of the co-
variance between points (namely end- and mid-points) that
are not near each other. In principle, these can be computed
from the AR model as mentioned in the preceding paragraph,
but that recursive method also calculates many elements of
the covariance sequence that are not needed to construct the
MR model. This raises the question, then, of whether the
needed elements can be computed much more directly and
efficiently, and that, in turn, leads to some important ties to
graph theory.

In particular, suppose that is a partially specified
covariance matrix, i.e., only certain elements of, always
including its diagonal, are specified. Furthermore, we must
also have that is valid, namely, that any completely filled
principal submatrix (i.e., any submatrix consisting of the
same choices of rows and columns ofand for which all of
the elements are specified) is positive definite. Anextension
of , then, corresponds to filling in some of the unspecified
values in while still maintaining validity, while acom-
pletion is an extension in which every element is specified,
yielding a full, positive-definite covariance matrix.

Two important questions are as follows.
1) Does a given partially specified covariance matrix

have extensions and completions?
2) If so, what is the maximum entropy extension?

Answers to both of these questions have important
graph-theoretic interpretations. In particular, if is an

matrix, consider the undirected graph with nodes
labeled , where we include the edge
between distinct nodesand if the th element of has
been specified. Then, the following results hold [21], [75],
[142].

1) Given a particular graph of this type, extensions and
completions exist for any valid partially specified co-
variance with this graph structure if and only if the
graph is chordal.57

2) If a completion exists for a given partially specified
covariance, then the maximum entropy extension is
Markov with respect to the graph determined by.

One typical example in which 1) holds is if a consecutive
set of diagonal bands of are specified—this is simply the
generalization of the usual AR modeling framework to allow

57If the graph is not chordal, the existence of extensions and completions
depends on the specific numerical values of the specified elements ofP .
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for the time series to be nonstationary (so that each of the
diagonals within the band need not have constant values).
In this case, the resulting maximum entropy model is, as we
have said, th-order Markov, which is identical to the process
being Markov with respect to the graph determined by.

Suppose that the graphof is chordal. The question of
then calculating particular elements ofor, more precisely,
the possible recursive orders in which these elements can be
calculated also has a graph-theoretic interpretation, as shown
in [121]. Specifically, let be an extension of (so that

agrees with wherever is defined), and let be the
graph corresponding to (so that ). Then, if
is also chordal, we can calculate the additional elements of

without having to calculate any other elements beyond
those in . Moreover, this can be accomplished recursively
by constructing achordal sequence

(56)

where each step in this sequence corresponds to adding a
single edge to the preceding graph. This sequence then pro-
vides a recursive ordering for the computation of the required
elements of .

In [121], it is also shown that each step of this recursion
defines a range of values for the new element of the exten-
sion, providing, in essence, a complete characterization of
all possible extensions much as reflection coefficients do for
standard time series models [307]. In particular, it is shown
in [121] that the required computations for each of the steps
in the sequence involves a submatrix corresponding to the
new maximal clique formed by the addition of the new edge.
This submatrix has a single new element to be computed.
Choosing any value that makes the submatrix positive def-
inite is valid, and choosing the particular value that maxi-
mizes the determinant of this submatrix corresponds to the
maximum entropy extension. In some cases, the maximal
clique size can grow as the recursion progresses, apparently
implying that the required computations also grow. How-
ever, we refer the reader to [121] for an additional set of
graph-theoretic conditions on the chordal sequence in (56)
that in essence guarantee that most of the computations re-
quired at each stage of the recursion have already been per-
formed at previous stages. This result provides a nontrivial
extension of Levinson-like recursions.

Finally, let us examine the specific extension required to
form the MR tree model when we begin with a partial co-
variance consisting of diagonal bands on either side of the
main diagonal. In this case, as described previously, the addi-
tional elements of the maximum entropy extension that must
be computed are unusually distributed (and, in fact have a
fractal pattern—see [121]). Moreover, they are an extremely
sparse subset of the elements of(having elements).
Surprisingly, however, the graph corresponding to this exten-
sion is chordal. Moreover, when the corresponding chordal
sequence is constructed to compute these needed elements,
we find that the resulting sequence of new maximal cliques
remains bounded in size, so that the total computational load
to construct the resulting MR model is also . We refer
the reader to [121] for details.

C. Estimation of Model Parameters and Learning of MR
Models

In this section, we take a brief look at the problem of es-
timating or learning MR models from data. There are three
separate classes of problems we describe, as detailed in the
following sections.

1) Estimation of MR Model Parameters:The first class
of problems involves the estimation of parameters of MR
models of fixed and known structure.58 As discussed in Sec-
tion IV-C, the computation of likelihood functions can be
performed efficiently for MR models, implying, for example,
that one can use these computations as the basis for ML pa-
rameter estimation. Examples of this for linear models can be
found in [113] and [114] for both the estimation of the Hurst
parameter of fBm and for the estimation of noise correlation
structure and parameters for models used in oceanographic
remote sensing.

For discrete or hybrid MR models, e.g., as in the MR seg-
mentation model in [42] or the hidden Markov tree models
illustrated in Example 6 and developed in detail in [59],
[80], [261], [281], and [282], a very effective approach to
parameter estimation involves the use of the EM algorithm
[97]. The employment of EM requires the specification
of the so-calledcomplete data, which includes not only
the actual measured data but also some additional hidden
variables, which, if available, make the computation of
parameter estimates much easier. For example, as described
in [80], for hidden Markov tree models, the clear choice for
the complete data consists not only of the actually observed
wavelet coefficients but also the hidden discrete states at
each node, where for the following discussion we let
and denote the vectors of all of the wavelet coefficients
and discrete state variables, respectively. We also denote
by the vector of parameters to be estimated, consisting of
the probabilities defining the discrete-state hidden Markov
model and the means and variances for each wavelet co-
efficient conditioned on each of the possible values of the
corresponding discrete state. The E or expectation step
then consists of computing the conditional expectation of
the log-likelihood function conditioned on
both and on the previous iteration’s estimate of. This
corresponds to averaging over the possible values of
given the conditioning information. The maximization (or
M step) then involves maximizing the function computed
during the E step in order to compute the next iteration’s
estimate of . Note that the vector, consisting of choices
for all of the discrete states at every node in the tree, has a
number of possible values that is exponential in the number
of nodes in the tree. Thus, as discussed in [222] and also in
Section VI-A, the computation of such expectations for gen-
eral graphical models can be prohibitively complex, while
for trees such computations can be performed extremely
efficiently. As a result, the implementation of EM-based
algorithms for parameter estimation for MR models on trees

58In many cases, the quantities to be estimated are often referred to as
hyperparameters, typically a small number of unknowns, where the actual
parameters of the model, e.g., the elements of the matricesA(s) andQ(s)
in linear MR models, are (typically nonlinear) functions of these unknowns.
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are computationally attractive. We refer the reader to [42]
and [80] for further discussion and examples.

2) Learning MR Models:An alternative to the para-
metric estimation methods discussed in the preceding
paragraph is the use of a nonparametric or machine learning
philosophy in building such models. We briefly describe two
lines of investigation, in each of which wavelet transforms
are used to populate the variables in such an MR model and
then MR models are learned from training data.

The first of these, described in [124] and [125], involves
the construction of nonlinear coarse-to-fine statistical
models for wavelet transforms, i.e., models much as in (45)
and (46) except that the estimate of each wavelet coefficient
is allowed to be a nonlinear function of a window of nearby
scaling coefficients. Specifically, the wavelet coefficients at
each scale are modeled as being independent when each is
conditioned on its own local window of scaling coefficients,
and the conditional distribution for each coefficient is
assumed to be Gaussian. However, the mean (variance) of
that conditional distribution is modeled as a piecewise affine
(constant) function of the window of scaling coefficients.
For any such “piece,” we have a linear parametric model as
in (45). However, determining how many such linear pieces
there should be and specifying the region over which each
linear function should be applied require nonparametric
estimation techniques. We refer the reader to [124] and
[125] for details and also for the application of these models
to problems of tomographic reconstruction. Finally, we
note that, since each wavelet coefficient depends on several
scaling coefficients, the question arises as to whether the
resulting MR model forms a tree or, more precisely, if state
augmentation methods such as described in Section VI-B3
can be applied to transform this model into a tree model.
In some cases, this will certainly be the case. However, in
others, the result will be a more complex graph that does not
yield a junction tree or cutset tree model with acceptably
small state dimension.

Another very interesting approach to MR modeling for
image processing is that developed in [90]–[92]. The basic
idea behind this approach is quite simple. Given a sample
image, we form an MR pyramid by performing an MR de-
composition of the image—the specific decomposition used
in [91] is an overcomplete steerable pyramid [298]. Thus,
at each node, on a quadtree, we have a vector of coeffi-
cients, denoted by , sensitive to variations in different
directions at the location and scale corresponding to node.
From this one image sample—or perhaps from a small set
of images [20]—we wish to learn non-Gaussian, nonlinear,
coarse-to-fine statistical dynamics. In particular, what is done
in [20] and [90]–[92] is to use nonparametric density estima-
tion methods to estimate both the distribution of the vector
of values at the root node and the conditional distributions
for every other node given all of its direct ancestors. That is,
for each node other than the root node 0, we estimate the
density

(57)

Fig. 22. An example of the method developed in [91] for
nonparametric estimation of MR models of steerable wavelet
pyramids of a sample image. The small region included within the
black border in the image on the right is a real image, from which
an MR model was learned. The entire image shown is entirely
synthetic, using this learned model, except for this one small region
in which the real image is located. (Based on [90] and [91].)

The way in which this is done is to assume an interesting vari-
ation of stationarity, namely, that each nodeat a given scale
has the same conditional distribution (57) as all other nodes
at that scale. What this implies is that, even with a single
image from which to learn the distribution, we will have a
significant number of samples from which to estimate these
densities at finer scales (at which there are many nodes), al-
though the resulting learned densities at coarser scales will
be less certain. Note also that the distributions in (57) do not
correspond to a Markov model on the tree for , since, if
that were the case, conditioning on would make
further conditioning on more distant ancestors of no infor-
mational value. However, just as in time series analysis, it is
simple to turn such a higher order Markov description into
a first-order representation by state augmentation, i.e., by
defining the state at each node to consist of a vector of the
values of at the ancestors of that node. As with hybrid
and nonlinear wavelet-based methods, such as in [59], [80],
[261], [281], [282], and [333], the motivation for this mod-
eling methodology is to capture both the non-Gaussian nature
of wavelet statistics and the cascade behavior characteristic
of wavelet decompositions of natural images. Fig. 22 illus-
trates one example, suggesting the promise of this approach
for the modeling of natural imagery.

3) Learning MR Tree Structure:Throughout the discus-
sions in this entire section, we have focused on aspects of the
MR modeling problem other than identifying or learning the
structure of the MR tree; that is, we have focused on iden-
tifying the variables to place at particular nodes on a pre-
specified tree and/or the problem of determining the param-
eters of a model once those variables have been specified. A
strong argument can be made that this is reasonable for signal
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and image processing applications, since the nodes and vari-
ables at these MR nodes have at least rough intuition asso-
ciated with them related to the representation of phenomena
at different scales and spatial locations. Nevertheless, it is
worth noting that the topic of identifying the structure of the
tree has received some attention [64], [177], [230], [238],
[239], [303], mostly in fields other than signal and image pro-
cessing.

Perhaps the best known work in this area is that of Chow
and Liu [64]. The idea in this work is that we are given an
index set , a set of random variables , and a
number of independent realizations of this set of variables.
We assume that the joint distribution of these variables is
given by a tree distribution, i.e., that the ’s form a graph-
ical model with respect to a tree with node set. However,
we neither know which of the many trees with this index set
is the correct one nor the distribution for these variables. The
objective, then, is to use the available measurements to de-
termine the ML estimate of both the tree and the distribution
with respect to that tree. Since for any a specific choice of
tree structure the ML estimate of the distribution over that
tree is simply the empirical factored distribution based on the
observed data, the central problem reduces to identifying the
best choice of tree structure. As shown in [64], this problem
can be solved very efficiently.

The special nature of trees is reinforced by the obser-
vation that the solution to this problem in which we allow
graphs other than trees is much more difficult and, in fact,
is NP-Hard [303]. An important recent advance in this area
is the work reported in [177] and [303] which focuses on
chordal graphs with bounded tree width (so that maximal
clique sizes are bounded). Even for this limited set of graphs
optimal identification is prohibitively complex, but the
results in [177] and [303] show that it is possible to develop
computationally feasible algorithms that have ranks (with
respect to maximizing the likelihood) that are provably
bounded relative to the optimal. The significance of these
results for MR modeling have yet to be developed, but some
additional motivation for considering graphs that are in
some sense “close” to trees is given in the next section.

VII. M OVING BEYOND TREES

As the preceding sections make clear, MR models on trees
have many attractive properties that lead to powerful and ef-
ficient signal and image processing algorithms that have ex-
tensive domains of application. The fact that these models
are Markov ontrees, i.e., graphs without loops, leads both to
the power of these algorithms and also to the apparent limi-
tations on their applicability. In particular, as we discussed in
Section VI, while it is always the case that any process (e.g.,
any MRF or graphical process on a loopy graph) can be mod-
eled (exactly or approximately) using an MR model on a tree,
in many cases the resulting dimensionality or cardinality of
the state of that tree model is large. Since the complexity of
the algorithms we have described grows polynomially with
state dimension or cardinality, we have three alternatives: 1)
reduce the dimension or cardinality of the state; 2) develop

alternative algorithms and approximations that reduce com-
plexity but allow us to keep higher dimensional or higher car-
dinality states; and 3) consider MR models on graphs with
loops.

In the preceding sections, we described a variety of
approaches to the first of these alternatives. In some cases
(e.g., with the smoothness-based models described in Sec-
tion VI-B1), reduction of state size can be accomplished
by replacing one model with another that serves essentially
the same purpose. In others (e.g., with the approximate
stochastic realization methods in Section VI-B2) the
method used is to reduce state dimensionality by keeping
a limited-dimensional projection of the full state at each
node, chosen to minimize the residual correlation be-
tween variables that the full state completely decorrelated.
Alternatively, as discussed at the end of Section VI-B1,
one could use the method based on overlapping trees to
overcome the severe burden, especially at coarser scales,
that is placed on the state of a tree model, namely providing
complete conditional mutual independence to the sets of
variables in the separate subtrees descendent from that node.
However, as we also indicated, one of the prices for using
an overlapping tree is that the total number of tree nodes

increases by a factor of two for a dyadic tree and by a
factor of four for a quadtree with every additional scale.
Thus, the amount of overlap that can be accommodated
while maintaining computational efficiency of the resulting
inference algorithms also has limits.

As a result, there is considerable motivation to consider
the other two alternatives mentioned previously. In the next
section, we take a brief look at an approach that keeps
state size large but reduces the computational burden of the
resulting inference algorithms, and in this context we also
make contact with the very important field of space–time
processes and algorithms and its counterparts, e.g., dynamic
Bayes nets (DBNs), in the graphical model literature. In
Section VII-B, we then take a brief look at several recently
introduced methods that have been developed to deal with
estimation on graphs with loops. While these methods were
originally motivated by inference problems for MR pyra-
midal structures, they can be applied to arbitrary graphical
models and thus are of independent interest to the graphical
model community.

A. Reduced-Complexity Cutset Models and Time-Recursive
Approximate Modeling

In this section, we return to the cutset models discussed
in Section VI-A1, and while the ideas we describe can (and
have) been applied to more general graphs and to nonlinear
models, for illustrative purposes we frame our discussion
in terms of a linear-Gaussian, nearest-neighbor MRF on a
regular 2-D lattice as in Fig. 14. As we discussed in Sec-
tion VI-A1, an exact MR model can be formed by taking
as the state at the root node either the full set of variables
along either the red row or blue column of the grid in Fig. 14
(leading to a dyadic tree structure in which, for example,
we alternatively bisect regions horizontally and vertically) or
where we take the root node state to be the set of variables
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alongboththe red row and blue column in the figure (leading
to a quadtree model). In either case, the dimension of the state
at the root node is , where is the number of nodes
in the 2-D grid. Note that the dimensions of nodes at succes-
sively finer scales are only half the dimension of their par-
ents, so that the overall complexity of inference algorithms
is not as bad as if every state had dimension , but
it is still the case that large state dimension at even a small
number of nodes leads to problems for procedures such as
the estimation algorithm described in Section IV-B.

In particular, the dynamic model (6) and the estimation
algorithm given by (20)–(37) are written in a form that re-
quires the explicit representation, computation, and storage
of various estimates and error covariances of the state at each
node in the tree [e.g., see (20), (24)–(26), (35), and (36)],
and in general each of these covariance matrices will be full.
The key to the method described in this section is an alter-
native form for estimation equations known as theinforma-
tion filter, in which the quantities that are stored and com-
puted directly areinformation matrices, , i.e., inverses
of covariances, andinformation states, i.e., , where the
covariances and estimates here could be any of the pairs ap-
pearing in the algorithm in (20)–(37). As is well known for
time series [174], the information filter algorithm has a form
analogous to (20)–(37), in which it is these information quan-
tities that are recursively computed.

At first glance, this approach seems to have bought us
nothing, since, in general, there is no guarantee that the com-
putations involved in this alternate form will be any less de-
manding than (20)–(37), and we now have additional com-
putations to perform, namely, to recoverfrom . How-
ever, as pointed out in Section III-C, the inverse of a covari-
ance matrix can be interpreted as specifying a model for a
random vector or process, and this is the key to an alternate
form of approximation for cutset models to that considered
in Section VI-B2. In particular, consider the set of variables
corresponding to the values of a first-order Gaussian MRF
along the center, red row of Fig. 14. What we would like
to do is to think of this set of values as a 1-D signal. How-
ever, while the inverse of the entire covariance of the full
2-D process is sparse (thanks to the graphical structure of
the model), the inverse of the covariance matrix of this center
row alone is generally full, implying that the graphical model
associated with this 1-D signal is fully connected. On the
other hand, as discussed and illustrated in [82], [166], and
[316], in many cases, e.g., in particular for many first-order
MRFs, these information matrices are nearly banded, i.e., the
dominant nonzero values are in a relatively narrow diagonal
band around the main diagonal of the matrix. Consequently,
if we were to approximate such matrices by setting to zero
the values that are deemed to be small,59 we obtain an ap-
proximation for the inverse covariance of this 1-D signal that

59In particular, as discussed in [143] and [204], it is relatively easy, with
local computations, to compute what is known as the partial correlation co-
efficient corresponding to a particular edge, namely the conditional corre-
lation between the nodes connected by that edge conditioned on all the rest
of the variables in the entire graph. Removing edges corresponding to small
partial correlations is one approach taken in [166].

is banded. This corresponds to pruning edges from the fully
connected graphical model to produce an approximate 1-D
Markov model of order equal to the width of the nonzero di-
agonal band.

This suggests the structure of an MR modeling algo-
rithm—and of the corresponding estimation algorithm as
well—in which we recursively compute banded approxima-
tions to information matrices and information states for each
of the cutset states in a tree model on the lattice of Fig. 14.
Since the approximate information matrices have small
numbers of nonzero elements, the computations involved
in each step are much simpler (e.g., only linear or at worst
quadratic in state dimension). As a result, this approximate
algorithm has total complexity that is at worst [166].
Moreover, the recovery at each node offrom is also
straightforward—and, in fact, corresponds precisely to a
1-D Kalman filter/Rauch–Tung–Striebel smoother—thanks
to the banded structure of our approximation to . We
refer the reader to [82], [166], and [316] for examples and
details. In addition, these same principles can be applied to
discrete-state and nonlinear graphical models, although the
criterion for pruning edges must obviously take a form other
than examination of elements of the inverse of a covariance
matrix (see, e.g., the references in the following discussion
of DBNs).

The method just described has close relationships both
to well-known methods for the numerical solution of PDEs
[106], [138] and to algorithms and ideas for space–time pro-
cesses and DBNs. In particular, as described in [81] (see also
[181]), suppose that, instead of beginning with the middle
red row in Fig. 14, we begin either with the top row or the
leftmost column and then “march” either downward row by
row or from left to right column by column, where in ei-
ther case we propagate an approximate version of the inverse
covariance, i.e., an approximate 1-D Markov model for the
values of the field along each successive row or column. Note
that such an approach effectively treats one of the two spa-
tial dimensions as a time-like variable for the row-to-row or
column-to-column recursion, and this in turn provides a di-
rect connection to space–time processes, e.g., processes on
grids such as in Fig. 14 in which one of the two independent
variablesis time.

The idea of propagating approximate graphical models
in time is a topic of significant current interest [43], [134],
[254], and we refer the readers to these references for de-
tails. We note in particular that in [43] the authors confront a
problem of considerable concern not only for DBNs but for
the approximate MR modeling methods described in this and
previous sections, namely the issue of how approximation er-
rors propagate and accumulate over time. In particular, these
authors obtain results that show that, as long as the temporal
dynamics of the process of interest have sufficient “mixing,”
the Kullback–Leibler (K–L) divergence between exact and
approximate models decreases with temporal propagation,
which implies that, if comparable approximation errors are
made at each time step, the accumulation of these errors over
time (as measured by K–L divergence) remains bounded. De-
veloping comparable results (and possibly stronger ones in
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the linear case) for MR tree models remains an open topic
whose resolution would provide a way in which to relate
local approximations at each node in a tree with the impact
on global model accuracy.

We also refer the reader to [54]–[56] for related research
in space–time estimation in which the spatial phenomenon
can be 2-D or 3-D, and for which the objective is to propa-
gate an MRF model (e.g., a first-order or higher order MRF
on a grid such as Fig. 14), and to [147] and [342] for ap-
proaches to direct temporal propagation of an MR tree model
for a space–time process. An important issue that [147] be-
gins to address is that of the temporal “mixing” of spatial
scales, i.e., features at one scale at one point in time can in-
teract through the temporal dynamics to produce features at
different scales as time evolves. This characteristic implies
that the statistical relationships, e.g., between a parent and
child node, at one point in time depend on the relationships
at the previous time among nodes that may be at several dif-
ferent scales. The resulting structure consists of a temporal
sequence of MR models on trees with directed edges between
nodes in the tree at one time to nodes in the tree at the next
time in order to capture temporal dynamics and mixing.

B. MR and Tree-Based Algorithms for Graphs with Loops

In this section, we describe approaches that relax the
requirement that the MR model live on a loop-free graph,
thereby reducing the decorrelation burden on (and hence
the dimension of) coarse-scale nodes by allowing additional
paths between finer scale nodes. For example, rather than
using MR models on trees such as in Fig. 1(a), one might
consider MR models on pyramidal structures such as in
Fig. 23, in which there are edges between pairs of nodes at
various scales, in essence providing a short circuit between
nodes that would otherwise be far apart, as measured by
distance along the MR tree.

Other examples of MR graphs with loops, e.g., ones in
which each node is connected to several parent nodes (e.g.,
see [42], [110], and [156]) have been mentioned previously.
With the use of any such graph, however, one must confront
the problem of inference, which, as we discussed in Sec-
tion IV-D, is a challenging problem that is the subject of
considerable current interest. Indeed, the graphical model
and turbocoding literature contain important results on the
behavior of belief propagation algorithms (e.g., [123], [278],
[332], and [337]), including results for linear-Gaussian
models [285], [332], [338], as well as the introduction
of new classes of iterative algorithms (e.g., [332], [334],
and [357]). It is not our intention to describe or review
this vast and active area of research. Rather, we refer the
interested reader to the references just given and the others
on graphical models cited previously and limit ourselves
here to brief descriptions of several investigations that have
been directly motivated by MR models and tree algorithms,
beginning with the following example.

Example 10: In this example, we return to the problem of
image segmentation introduced in Section II-E and, in par-
ticular, to an approach introduced in [42] and subsequently

(a)

(b)

(c)

Fig. 23. (a) An example of an MR (loopy) graphical structure,
including several direct connections across what are major
boundaries of the underlying MR tree. (b) and (c) Two spanning
trees of this graph are shown.

employed in a variety of other contexts (see, for example,
[53], [183], [289], [290], and [323]). For simplicity, we de-
scribe the idea in the context developed in [42], which em-
ploys an MR discrete-state Potts model, as introduced in Ex-
ample 3 and (8), to describe the coarse-to-fine dynamics of a
hidden Markov tree representing segmentation labels at a se-
quence of resolutions. The observed data in [42] consists of
image measurement at the finest scale which are assumed to
be conditionally independent when each measurement pixel
is conditioned on the value of the hidden discrete label at that
pixel (where the form of the conditional distribution is taken
to be Gaussian or a Gaussian mixture in the examples in [42]
or a generalized Gaussian in other references (e.g., [289] and
[290]).

While the model described in the previous paragraph is
essentially identical in structure to others we have described
(e.g., see Example 6), there are two significant additional
components of the complete approach developed in [42] that
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distinguish it and lead to inference algorithms with a very
different structure. First, rather than using either an MAP or
MPM criterion for optimal estimation of the discrete label
set, the authors suggest an alternative measure aimed in part
at overcoming the problematic use of MAP estimation for
segmentation [234] and also at exploiting the structure of
MR models. In particular, using the argument that errors
at coarser scales are geometrically more expensive (since
they correspond to misclassifications over geometrically
larger regions), the authors derive a criterion that puts
exponentially larger weights on errors that occur at coarser
scales (see [42] for the precise formulation). The result is a
criterion whose precise optimization is rather complicated.
However, the authors demonstrate that a very good approxi-
mation to the criterion to be optimized at each scale results
in a very simple and intuitively appealing structure: a first
fine-to-coarse sweep, much as in the two-sweep algorithms
we have described previously, is performed to compute at
each node the conditional log-likelihood for the data in the
subtree below that node conditioned on the discrete-state
value at that node. That is, if we let denote the discrete
state at node and denote the data at the finest scale
nodes descendent from, the coarse-to-fine sweep computes

(58)

at each node and for each value that can take on. At
the root node, we can then compute the optimal estimate as

(59)

The approximate estimation algorithm then proceeds in a
coarse-to-fine manner where at each stage we essentially as-
sume that the estimate at the parent node is correct. That is,
the approximate coarse-to-fine recursion is given by

(60)

However, as we have pointed out, and as is also pointed
out in [42], use of such a tree model can lead to artifacts,
and this leads to the introduction in [42] of an alternative to
the tree-based Potts model of Example 3, namely, a directed
graphical model from coarse-to-fine scales in which the dis-
crete state at any node s depends on the values atthree
nodes at the preceding, scale, namely, the parent nodeand
two of its neighbors at the same scale, where for simplicity
here we denote this set of three nodes as . The model
used is a straightforward variation of (8) in which the state

is influenced by all three of its parents (see [42] for de-
tails). As a result of adopting this nontree model, the compu-
tation of the likelihood in (58) and in fact the entire structure
of the computation of optimal estimates becomes much more
complex thanks to the loopy structure of the graph corre-
sponding to this three-parent model. In principle, maximiza-
tion cannot be performed node by node at each scale; rather,
all nodes at each scale need to be considered simultaneously,
a combinatorially explosive requirement at finer scales.

Thus, as with any inference problem on a complex graph
with loops, an approximation or iterative scheme is needed.
The approach taken in [42] is to define a noniterative,
two-pass algorithm that is motivated by the perspective

of MR processing but that is decidedly different from
approaches found in the general graphical model literature.
In particular, [42] assumes thatboth a tree-based Potts
model as in Example 3and a three-parent nontree model
are available for the discrete state process. The tree-based
model is used on the fine-to-coarse sweep, computing the
likelihoods in (58). The optimal root node estimate is then
computed as in (59), and the estimates at other nodes are
computed node by node in a coarse-to-fine sweep using the
following recursion in place of (60):

(61)
Comparing (60) with (61), we see that the only difference is
the conditioning on the set of three parents rather than simply

in the transition distribution. As discussed in [42], at
each scale what this algorithm resembles (but does not equal)
is the optimal estimate based on using a three-parent Potts
model for coarser scales but a tree-based Potts model for finer
scales.

Fig. 24(a) shows the result from [42] of applying this al-
gorithm to the multispectral image in Fig. 5(a), in which
the data at each pixel consists of a vector of multispectral
measurements, and the image is segmented into five regions,
the pixels in each of which are modeled as a multivariate
Gaussian mixtures. Fig. 24(b) shows corresponding results
for the segmentation of the document page in Fig. 5(b) into
three regions (text, picture, and background). The algorithm
used for this second example and developed in [53] uses
the same structure (tree for fine-to-coarse likelihood com-
putation and nontree for coarse-to-fine estimation) but much
more sophisticated and involved data and model structures.
We refer the reader to [53] for details.60

Finally, we briefly describe research motivated both by
MR loopy graphs as in Fig. 23 and also by the efficient algo-
rithms described in Section IV for inference on trees. Specif-
ically, consider estimation for a graphical model on a (con-
nected, loopy) graph , based on noisy measure-
ments of variables at some (or all) of the nodes on the graph.
The basic idea behind the algorithms in [332] is to carry
out this estimation process using inference on tree models
as a basic engine. In particular, suppose that we identify a
set ofspanning trees, for the graph . That is,
each of these trees connects all of the nodes inand has a
set of edges that is a subset of the edge setof . For ex-
ample, Fig. 23 (b) and (c) depict two spanning trees for the
graph in Fig. 23(a). The general structure of the algorithms
in this class involve iterative application of tree-based infer-
ence using the statistical structure implied by using each of
these trees individually.

Specifically, let be a zero-mean, Gaussian, graphical
process on with covariance matrix , and suppose that

60The algorithm in [53] involves the use of Haar wavelets to transform
the raw measurements into detail coefficients, an affine class-dependent MR
model for the scale-to-scale dynamics for these coefficients, and a directed
graph model for the multiscale class labels with transition probabilities that
are in general much more complex than those used in [42]. All of these
aspects of the model are learned by training on a small set of sample images.
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(a) (b)

Fig. 24. Segmentation results on the images in Fig. 5: (a) from [42] using the technique described
in Example 10 (each multispectral pixel is classified into one of five region types); (b) from [53]
using a more sophisticated MR algorithm building on the framework described in Example 10 (here
each pixel is classified into one of three classes: text, picture, and background).

we have linear measurementsas in (38) with and the co-
variance of the measurement noiseblock-diagonal. As
discussed in Section IV-D, the optimal estimateis the so-
lution of (39), and the corresponding error covarianceis
given by (40). Further, as we also discussed previously,
has a nonzero element in the off-diagonal block only if

. If were a tree, this would allow us to apply the
fast estimation algorithm of Section IV-B to calculate both
and the diagonal blocks of . Since is not a tree, we cannot
do this; however, for each of the spanning trees ,
we can write

(62)

where the only nonzero off-diagonal blocks of corre-
spond to edges in the spanning tree, and has nonzero
elements only in blocks corresponding to edges eliminated
from in order to form (and possibly in the diagonal
blocks corresponding to nodes involved with the edges elim-
inated).61 As a result, has rank proportional to the number
of edges removed from.

Using (62), we can rewrite (39) as

(63)

61That is, if the edge(s; t) has been eliminated, the(s; t), (s; s), and
(t; t) blocks ofK may be nonzero.

which suggests an iterative algorithm of the following form.
Let denote a sequence that designates which of the
spanning trees is used at theth iteration (e.g., chosen to
cycle periodically through these trees or chosen randomly),
and let denote the approximation to the optimal estimate
at the th iteration, which is the solution to

(64)

Since the matrix on the left-hand side of (64) has a tree struc-
ture corresponding to the th tree, this equation can be
solved efficiently using the MR estimation algorithm in Sec-
tion IV-B.

In [334], examples are given demonstrating that such
embedded tree(ET) algorithms can lead to very efficient
methods for computing the optimal estimates. As with BP
[285], [338], if an ET algorithm converges, it does so to
the optimal estimate. Moreover, while BP does not yield
the correct error covariances, it is shown in [334] that the
computations performed in an ET algorithm can be used
to compute a sequence of approximations that do converge
to the correct error covariances. Furthermore, experimental
evidence reported in [310] and [334] indicates that ET
algorithms converge for a broader class of processes than
the general, local message-passing version of BP. Roughly
speaking, this is due to the fact that the algorithm takes
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advantage of much more global structure of the process,
as captured by each of the spanning trees. We refer the
reader to [310] and [334] for examples and theoretical
analysis including conditions guaranteeing convergence of
this tree-based algorithm.

We also refer the reader to [332] for the introduction and
investigation of a set of algorithms for discrete-state pro-
cesses that also use embedded trees but are much closer to
BP. Roughly speaking, the idea behind this work is to take
advantage of an interpretation discussed at the end of Sec-
tion IV-B, that exact computations of conditional probabil-
ities on a tree correspond to a refactorization of the proba-
bility distribution for a graphical model, essentially in terms
of a distribution at a root node and parent–child transition
distributions. The tree reparameterization algorithm devel-
oped in [332] then corresponds to iterative refactorization of
the entire distribution on a loopy graph, where at each step
the factorization involves only those edges corresponding to
one of the spanning trees used in the algorithm. We refer the
reader to [332] for the theoretical analysis of this algorithm
and for examples that show its promise for inference on loopy
graphs.62 While the methods in these references have only re-
cently been introduced, the results obtained so far and their
explicit use of global rather than local graph structure sug-
gests that there may be much more that will result from fur-
ther investigation over the next few years.

VIII. C ONCLUSION

In this paper, we have described a framework for MR mod-
eling and processing of signals and images. As we have seen,
this framework, based on Markov models on pyramidally
structured MR trees, admits efficient processing algorithms
and also is rich enough to capture broad classes of statistical
phenomena. As a result, these methods have found applica-
tion in a variety of very different contexts. Moreover, the
formalism on which this methodology is based is of deep
interest intellectually, as it makes contact with a variety of
topics, including wavelets, graphical models, HMMs, multi-
grid and coarse-to-fine algorithms, inverse problems, data fu-
sion, state space system theory, stochastic realization theory,
and maximum entropy modeling and covariance extensions.

We believe that the theory and methodology that we have
described can be of value to researchers and practitioners in
many different fields. In addition, we also believe that this
area remains fertile ground for further basic research. For
example, while the MR methods that have been developed
have been successfully applied to many problems and much
is known anecdotally about the problems to which they can
be applied, there is still more that can be done to deepen our
understanding of the problems for which these methods are
appropriate and the limits to their applicability. In particular,

62Note that the tree reparameterization algorithm developed in [332] is
fundamentally different than the ET algorithm in [310] and [334], as the
specialization of the former to linear-Gaussian models does not yield the
ET algorithm. Further, as shown in [332], BP itself can be viewed as a very
special variant of tree reparametrization in which very simple embedded
(but not spanning) two-node trees in the graph are used at each step of the
iteration.

in many signal and image processing problems (such as the
texture discrimination and groundwater hydrology examples
discussed in the paper), while the underlying phenomenon
may be extremely complex, the available dataand the in-
ference objectives are much simpler and lower dimensional.
This suggests (and these examples support) the idea that, for
such inference problems, it may be acceptable to use rela-
tively simple and therefore crude MR approximations which
nevertheless yield near-optimal performance for specific in-
ference problems of interest. Formalizing this idea and devel-
oping more general methods for constructing models suited
for particular processing tasks remain to be accomplished.

There are many other theoretical topics that also remain to
be explored. One of these is the development of data-driven
algorithms for model construction analogous to the ones we
have described based on explicit knowledge of the covariance
structure of the process to be modeled. Here we are motivated
by the fact that standard temporal modeling methods (e.g.,
for AR or autoregressive moving average (ARMA) models)
have versions that work directly from covariance specifica-
tions and other versions that work recursively from data.
We expect that data-driven algorithms can be developed that
have considerable computational advantages, and we refer
the reader to [167] and [325] for some initial efforts in this
direction.

In addition, for a variety of reasons, it is of considerable
interest to develop methods for MR modeling on graphs with
cycles. One of these reasons is the recently developed set
of algorithms for loopy graphs described in Section VII-B,
which show that one can make use of the power of tree-based
algorithms for many graphical models on loopy graphs such
as in Fig. 23(a). How do we build such models? Are there
variations on the stochastic realization or covariance ex-
tension methods described in Section VI-B for such loopy
graphs? For example, the covariance extension results in
[121] that are described in Section VI-B4 assume that the
known covariance elements form a chordal graph among
the variables to be modeled. However, in many applications,
especially in remote sensing, that will almost never be the
case. In particular, in such applications, we are likely to
have knowledge of correlations among fine-scale variables
(e.g., temperature variations in the ocean) that are in close
proximity spatially as well as correlations among coarser
spatial averages of these variables across longer distances,
forming a nonchordal graph of known covariance values.
Such a problem, in which we have both local fine-scale
and more distant coarse-scale statistical characterizations
that are of importance, is reminiscent of the structure that
is exploited in multipole algorithms [256], [280] for the
solution of PDEs. We refer the reader to [115] for a first
attempt to adapt multipole ideas to MR estimation and also
to [22], [167], and [325] for some results on MR modeling
and covariance extension on graphs with cycles.

Other directions for further research can be found in vir-
tually every corner of this paper. One is the investigation of
what we have called noninternal MR realizations, a topic that
offers the possibility of additional flexibility not present if we
constrain ourselves to internal models (see [325] for some
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initial results along these lines). Another is the further inves-
tigation of methods for space–time problems, either in which
time is treated in an MR fashion as well (e.g., as is found in
so-called multirate Kalman filtering and estimation theory
[51], [79], [96], [150], [151], ) or, as in the methods dis-
cussed in Section VII-A, in which time is treated as a sequen-
tial variable but space is treated in an MR graphical manner.
The results we have presented (and others in the literature,
such as [274]) represent a start to this very important area
which extends well beyond MR modeling to the investiga-
tion of DBNs.

As this discussion and the results summarized in the pre-
ceding sections illustrate, MR statistical modeling and infer-
ence remains a fertile, active, and important area of inves-
tigation. It is the author’s hope that this paper will help to
stimulate further use of the methods that already exist and
inquiry into extensions that can enhance our understanding
of these methods as well as the range of problems to which
they can be successfully applied.
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