Multiresolution Markov Models for Signal and

Image Processing

ALAN S. WILLSKY , FELLOW, IEEE

Contributed Paper

This paper reviews a significant component of the rich field NOMENCLATURE
of statistical multiresolution (MR) modeling and processing. These
MR methods have found application and permeated the literature g
of a widely scattered set of disciplines, and one of our principal ob-
jectives is to present a single, coherent picture of this framework. A
second goal is to describe how this topic fits into the even larger V),
field of MR methods and concepts—in particular, making ties to
topics such as wavelets and multigrid methods. A third goal is to
provide several alternate viewpoints for this body of work, as the
methods and concepts we describe intersect with a number of other‘g
fields. A,

The principle focus of our presentation is the class of MR Markov C
processes defined on pyramidally organized trees. The attractive- C
ness of these models stems from both the very efficient algorithmsg ¢ 4,
they admit and their expressive power and broad applicability. We 3704 ’ SCro. SCus
show how a variety of methods and models relate to this framework Ly 202, o
including models for self-similar anty/ f processes. We also illus- ~ *7
trate how these methods have been used in practice. sAt

We discuss the construction of MR models on trees and show
how questions that arise in this context make contact with wavelets, m
state space modeling of time series, system and parameter identifi-
cation, and hidden Markov models. We also discuss the limitations m(s)
of tree-based models and algorithms and the artifacts that they can A C R
introduce. We describe when these are of concern and ways in which (5), C(s), @(s), B(s)
they can be overcome. This leads to a discussion of MR models on
more general graphs and ties to well-known and emerging methodsz(s), ¥(s), w(s), v(s)
for inference on graphical models.
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Graph.

Node or vertex set of a tree or
graph.

Set of nodes in the subtree rooted
at nodes (i.e., nodes and all its
descendents).

Edge set of a graph.

Subsets of nodes in a graph.
Clique in a graph.

Set of all cliques of a graph.
Nodes on trees and graphs.
Children of nodes on a tree.
Parent of node on a tree.

Closest common ancestor to
nodess andt on a tree.

Index for scale in a MR represen-
tation.

Scale of node in a tree.

Matrices used to define MR
models on trees.

Random variables or vectors at
nodes in a tree or graph.
Collection or vector of the vari-
ables{xz(s)|s € A}.

Collection or vectors of variables
over an entire tree or graph.

Prior covariance of(s) inan MR
model.

Smoothed estimate of(s) in an
MR model.

Covariance of the error in the es-
timateZ;(s).

Estimate ofz(s) based on data in
V..

Covariance of the error in the es-
timateZ(s|s).

Estimate ofz(s) based on all of
the data i, except the measure-
ments at node s.
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P(s|s—) Covariance of the error in the es- scales [31], [112], [198], [219], [220], [352], [354]. Studies

timate Z(s|s—). of large classes of natural imagery also show characteristic

Z(s|sey) Estimate ofz(s) based on datain  variability at multiple scales [46], [47], [140], [157], [218],
Vsa; [243], [250], [261], [268], [281], [297]-[300], [333], as do

P(s|say) Covariance of the error in the es- mathematical models of self-similar or fractal processes
timate Z(s|sc;). [288] such as fractional Brownian motion (fBm) [30],

P, Prior covariance of the vectar. [83], [116], [232], [313], motivating examinations of the

z Optimal estimate of:. properties of the wavelet transforms of such signals and

P. Covariance of the error in the es- images [69], [83], [102], [114], [117], [154], [176], [191],
timatez. [235], [273], [293], [320], [346]-[350], [359].

T Spatial variable in two or three Second, whether the phenomenon displays MR behavior
dimensions. or not, it may be the case that trevailable dataare

1 Two-dimensional planar region. at multiple resolutions. While this might be the simple

z(r) Height of a surface over the 2-D  result of transforming the data—e.g., using wavelet trans-
regionl. forms—there are also many problems in which the collected

(p(r), q(r)) Gradient of the surface(r). data directly measure the quantities of interest at multiple

resolutions. For example, large-scale data assimilation
problems in the geosciences quite frequently involve the
fusion of several distinct sources of data, representing not

Multiresolution (MR) concepts and methods for the statis- ©ONlY very different measurement phenomenologies but also
tical analysis of phenomena and data have been and remai?"oPing a geophysical medium at very different resolutions.
topics of tremendous interest in a wide variety of disciplines On€ example is the fusion of satellite measurements [112],
(see, for example, two special issues devoted to this subject113]; [354] of oceanographic variables with measurements
[87] and [194] as well as the book [304]). The reasons for the made from surface ships [162], [227], [242], [331] and per-
intensity of activity and the dizzying variety of methods that Naps also data from oceanacoustic tomographic collections
have been developed are myriad, and itis not the intent of this[241], [253]. Similar examples can be found in a variety
paper to put this entire subject into one simple and coherent©f Other problems involving remotely sensed or probed
picture. Rather, our objective is to provide an introduction to data including the fusion of synthetic aperture radar (SAR)
one significant component of this vast field that has provided imagery [77] and geophysical inversion and data fusion [84],
fertile ground for both theory and application. Moreover, we [139], [198], [247]. In addition, advances in biomedical
have personally found that the perspective that this frame- Sensing [317] require the development of new methods
work yields provides a very useful platform for organizing for fusing data sets with very different characteristics
one’s understanding of the broader field of MR analysis and (€-9- Positron emission tomography (PET) and magnetic

. INTRODUCTION

processing. resonance imaging (MRI) images).
One of the distinguishing characteristics of the framework _ Third, whether or not the phenomenon or the data are MR,
we describe is that it does not start wishgorithms for it may be the case that thebjectivesof the user or users

processing or analyzing phenomena at multiple resolu- May be at multiple re.:solutions.. Thi's is cgrtair!Iy the case in
tions—e.g., as in the use of wavelet transforms to produce l2rge-scale geophysical mapping in which different scien-
decompositions of signals at multiple resolutions—but tific studies focus on behavior over different ranges of scales
rather begins with thenodelingof phenomena at multiple SO Fhat the variability of concern to one scientist is simply
resolutions. Much as in the development of methodologies ‘N0is€” to another. In addition, in many contexts other than
for modeling time series or random fields, the intent is th(_)se of pure scientific inquiry, the objective of dz_ita assimi-
to construct statistical models that: 1) are rich enough to lation can be stated at very high levels: the mapping of an oil
capture large and important classes of phenomena of broad €Servoir to assess production rates and total yield or the char-
interest; 2) possess structure that can be exploited both toACterization of the threat of subsurface contaminants to pop-
gain insight into these phenomena and to design powerful ula_ted areas. One also _flnds this in m|I|t<_e1ry a_lpphcathns in
classes of algorithms; and 3) provide statistical tools for which maps of both enwron_mental and S|tu_at|onal variables
analyzing with precision both when these models are appro_(e.g., maps of terrain elevation and vegetation for the former

priate and how well the resulting algorithms perform. and of the disposition of friendly and unfriendly forces for
the latter) are required by multiple users: typically large-scale

. . maps at comparatively coarse scales by strategic planners and
A. Whatis it That is MR? much more localized finer-scale maps by tactical forces.

A principle objective of this modeling framework is cap- Finally, whether or not the phenomenon, the data, or the
turing the several important ways in which a data analysis or objectives are naturally described at multiple resolutions,
signal processing problem can have MR characteristics. Thethere may still be compelling reasons to consider developing
first is that thephenomenothat is to be modeled can exhibit  algorithmsat multiple resolutions. In particular, MR algo-
distinctive behavior over a range of scales or resolutions. Forrithms offer the promise of computational efficiency. This
example, many physical processes—e.g., geophysical fieldscan be seen in a variety of methods for the solution of large
such as atmospheric or oceanographic phenomena—possesystems of equations [e.g., representing discretizations of
behavior over vast ranges of spatial or spatio—temporal partial differential equations (PDEs)]. Multigrid methods
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[44], [45], [109], [190], [319] represent one class of exam-
ples in which coarser (and hence computationally simpler) sAt
versions of a problem are used to guide (and thus accelerate)
the solution of finer versions, with finer versions used in turn
to correct for coarsening or aliasing errors in the coarser ver-
sions. Multipole algorithms [115], [256], [280] approximate
the effects of distant parts of a random field with coarser
aggregate values, providing substantial computational gains
for many problems. Similarly, wavelet-based methods [37], s
[38], [89], [95], [215], [228], [247], [264], [276], [286],
[329], [335], [361] provide potentially significant speed-ups
for a variety of computationally intensive problems. $% %2
(@

B. Our Starting Point =

A key characteristic of MR methods or models is that they
introduce a one-dimensional (1-D) quantity, namely scale or
resolution, that can be exploited to define recursions or dy-
namics much as time is used for temporal phenomena. The
point of departure for this paper, and for our exploitation of
recursions in scale, is the investigation of statistical models
defined on MR trees. Two examples of such trees are de-
picted in Fig. 1. The dyadic tree in Fig. 1(a) is a prototyp-
ical structure used in MR representations of 1-D signals and
processes, i.e., of signals that are functions of a single inde-
pendent variable. Here, each level in the tree corresponds to
a distinct resolution of representation with finer representa-
tions at the lower levels of the tree. Similarly, the quadtree
in Fig. 1(b) is one example of tree structures used in the MR i Cir
representation of two-dimensional (2-D) signals, images, or T T
phenomena. While these two figures represent the structures '
that are most widely used, much of what we describe here (b)
does not require such regular tree structure and could, forFig. 1. Examples of MR trees, organized into resolutions. (a) A
example, work equaly well o trees in which the number of (3S(ie 25,y usee or e MR epscrtetonor Lo Sl
branches descending from each node was different from ei-sypsequent sections of the paper. (b) A quadtree, frequently used
ther two [as in Fig. 1(a)] or four [Fig. 1(b)] and, in fact, might  for MR representations of 2-D imagery and random fields. Here,
vary from node to node and resolution to resolution. we have used a pictorial repreie_ntat"ion that emphasizes that each

. . node on the tree represents a “pixel” or spatial region of spatial

In the models we describe, each nodéas associated  (esojution and at a spatial location corresponding to that node. The
with it a random variable or random vecto(s). Roughly shading of the two fine-scale pixels in this figure is associated with
speaking, each such variable represents some set of informag discussion in Section VI-B1.
tion relevant to the phenomenon or available data at the res-
olution and location corresponding to that node. However, nomenon under study and/or capturing more global quan-
what these variables actually are and how they are relatedtities whose estimation is desired. For example, in analogy
to the signals, images, phenomena, or data of interest varieswith stochastic realization theory [8], [9], [214] and the con-
considerably from application to application. For example, cept of state for dynamic systems, such variables may simply
in some situations, all of the fundamental, physical variables, play the role of capturing the intrinsic memory in the sig-
i.e., both the signals that are observed and the variables thahals that are observed or of primary interest. The models
we wish to estimate or about which we wish to reason, re- we describe also have close ties to hidden Markov models
side at the finest scale only. The coarser scale variables in(HMMs) [80], [222], [261], [265], [272], [281], [302], in
such a case might simply represent decompositions of thewhich the hidden variables may represent higher level de-
finest scale variables into coarser scale components, e.g., ascriptors which we wish to estimate, as in speech analysis,
in the use of wavelet decompositions or Laplacian pyramid image segmentation, and higher level vision problems [42],
[6], [47] representations of images. In other problems, some [53], [59], [175], [179], [180], [183], [199], [283], [323].
of these coarser scale variables may be measured directly, as Whatever the nature of the variables defined on such atree,
occurs in problems in which we wish to fuse data sets col- there is one critical property that they must satisfy, namely,
lected at differing resolutions. More generally, the coarser that collectively they define a Markov process on the tree, a
scale variables may or may not be directly observed and mayconcept we discuss in more detail in subsequent sections. As
or may not be deterministic functions of the finest scale vari- we will see, MR processes possessing such a Markov prop-
ables, and their inclusion in the representation may serve pur-erty make contact with standard Markov processes in time,
poses such as exposing the statistical structure of the phewith Markov random fields (MRFs) and with the large class
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of Bayes’ nets, belief networks, and graphical models [35], modeling of time series and linear algebra. Of course, not
[36], [89], [108], [123], [128], [143], [168]-[170], [197], everything that we describe for the linear case extends quite
[204], [236], [267], [294], [295], [302], [337], [339], [357].  so nicely to more general nonlinear models, and we have at-
It is the exploitation of this Markovian property that leads to tempted to make clear what concepts/algorithms extend di-

the efficient algorithms that we describe. rectly to more general models and what, if any, other issues
] ] arise in such cases.
C. Getting Oriented In Section IV, we describe the structure and illustrate the

A fair question to ask is: for whom is this paper written? application of the very efficient inference algorithms that
A reply that is only partially frivolous is: for the author. these MR models admit. We also take a detour to examine in
The reason is not self-promotion (although the author pleadsa bit more detail why these models do admit such powerful
guilty to frequently resorting to notation and examples from algorithms, making contact again with graphical models and
work with which he is most familiar) but rather an ambitious With the solution of large, sparse linear systems of equations.
set of personal goals for this paper. In particular, the field In SectionV, we take a step back and examine the question of
of MR analysis is sufficiently involved and interconnected how the models and methods of Sections Il and IV relate to
(forming something much more complex than the singly- wavelet-based methods and multigrid algorithms and in the
connected graphical structures in Fig. 1) and makes contactProcess also describe relationships with research in inverse
with so many other disciplines that the writing of this paper problems and image reconstruction. Our intent in so doing

has provided an opportunity for the author to sort some of is not to provide reviews or tutorials for these very impor-
this for himself from a particular point of reference (namely tantand substantial lines of research but rather to make clear

MR models on trees). The result is this paper, which is in- Where these methods intersect with those on which we focus
tended to reach several overlapping but distinct audiences:and where, how, and why they diverge.
scientists and engineers interested in applying these methods One of the principal conclusions from Section IV is that
for problems of complex data analysis; researchers in signalif @ problem can be modeled within the MR framework of
and image processing who are interested in understandingSection lll, then a very efficient solution can be constructed.
the current state of this active area of research as well as itsThat, of course, begs the question of whah be modeled
relationship to others; and researchers in other fields who effectively within this MR framework and how such models
may find the connections to their specialties of intellectual can be constructed. Examination of that question in Sec-
interest. tion VI uncovers further connections with a number of topics
To meet this rather ambitious objective, our presentation including state-space realization theory, HMMs, graphical
makes several detours along the way in order to touch onmodels, wavelets, maximum entropy modeling, and algo-
topics ranging from graphical models to stochastic realiza- fithms for constructing sample paths of processes that have
tion theory to solution methods for large systems of linear found use in both the theory of stochastic processes and in
equations. On several occasions, we also step back and profractal generation.
vide additional “navigation tools” for the reader, in particular ~ As with any useful modeling framework, this one has a
by explaining how the methods we describe relate to other nontrivial and extensive domain of applicability, and we re-
MR frameworks, most notably wavelets, multigrid/renormal- turn on several occasions to the applications introduced in
ization methods, and MR methods for inverse problems. In Section Il in order to provide insight into the classes of pro-
addition, throughout the paper, we provide pointers to areascesses that can be effectively modeled with MR models and
of current research and pointers, both forward and backward,also to illustrate the power of these methods and how they
to relationships among the concepts we describe that canno€an be used in practice. In addition, as must also be the case
be accommodated within the severe constraints of linearly for any truly useful modeling framework; its utility is not uni-
ordered text. As a result, the path followed in this paper is versal, and, in Sections IV and VI, we provide insights into
not optimized for any of the audiences we have in mind, but some of these limitations. In Section VI, we then take a brief
we hope that each finds the detours, pointers, and navigationlook at one of the characteristics that, not surprisingly, is crit-
aids interesting, or at least minimally distracting, diversions. ical both to the power of these models and to their limitations,
In the next section, we begin by providing an initial look and, by making ties to the richer class of graphical models not
at a sampling of applications that provide context, motiva- restricted to trees, we provide a brief glimpse into recent and
tion, and vehicles for illustrating the methods that we de- emerging extensions of our framework that expand its do-
scribe in later sections of the paper. In Section Ill, we then main of applicability. Section VIII concludes our paper with
introduce the class of MR models on which we focus, pro- some perspective on this framework and some prospective
vide a few initial simple examples of processes described by thoughts.
such models, and take a first look at ties to graphical models,
MRFS, f{ictoring sparse maFrices, and recursive model?ng of || A SAMPLING OF APPLICATIONS
time series. As is the case in much of the paper, our discus-
sion focuses in most detail (but not exclusively) onlinearand ~ The methods we describe in this paper have been em-
often linear/Gaussian models. Our reasons for doing this in- ployed in a wide variety of applications, including: low-level
clude: the importance of these models in many applications; computer vision and image processing problems (image
the simple and explicit form of many computations that allow denoising [59], [67], [80], [261], [281], deblurring [19],
certain points to be made more clearly; and the relationshipsedge detection [292], optical flow estimation [10], [223],
that this setting provides to fields such as linear state spacesurface reconstruction [111], texture classification [225],
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and image segmentation [42], [58], [199], [212], [324], to
name a few); higher level recognition and vision problems
[183], [323]; photon-limited imaging [188], [261], [263],
[322]; network traffic modeling [279]; oceanographic,
atmospheric, and geophysical remote sensing, data assim-
ilation, and data fusion [112], [113], [158], [184], [242],
[255], [326]; speech [42], [162], [175], [241], [249], [331];
multisensor fusion for hydrology applications [84], [139],
[198]; process control [18], [196], [306], [327]; synthetic
aperture radar image analysis and fusion [77], [119], [160],
[185], [309]; geographic systems [93], [189]; medical image
analysis [290]; models of neural responses in human vision sy

Latitude (North)
S
(=]

[274]; and mathematical physics [15], [94], [136]. In this 20]

section, we introduce several of these applications which s . ‘ ‘ ‘ , , . ‘ .
serve to provide context, motivation, and illustrations for the o e (Eawt) o F
development that follows, as well as to indicate the breadth

north Pacific Ocean. (Reprinted from [112].)

A. Ocean Height Estimation

A first application, described in detail in [112] and [113]
is to the problem of mapping variations in sea level based on
satellite altimetry measurements (from one or several satel-

typical wavenumber spectral models for sea-level variations
have fractal,l / 7 spectra [130], [3543.

The dimensionality of the sea-level estimation problem
and our desire to compute error variances as well as estimates

lites). Fig. 2 (from [112]) shows an example of a region of ) . :
the Pacific Ocean and the tracks over which the TOPEX/PO- present a daunting computational task, precluding brute force
solution methods. Further, because of the nonstationarity of

SEIDON satellite proyldes measurementg to pe used to estl—the phenomenon, the varying quality of the data, and the
mate sea-level variatiorisThe challenges in this as well as

i oth hic d imilat bl 097 sampling pattern of measurements, efficient methods, such
In other oceanographic gta assimi ation pro ems [227] ar€ 5s those based on the fast Fourier transform (FFT), are not
several. First, the dimensionality of such mapping problems

) i i ! S applicable. However, as we will see in Section 1V, by taking
can be enormous, involving estimates on grids o110 advantage of the fractal character of sea-level variations, a
points. Second, as Fig. 2 illustrates, the data that are col-

. X i surprisingly simple MR model yields an effective solution.
lected have an irregular sampling pattern. Third, there are
§ubsta_ntig| nonstationarities both in s_ea-level variatiqns andg g rface Reconstruction
in the fidelity of the measurements derived from the altimetry
data. For example, the statistical structure of sea-level vari-
ations in regions of strong currents, such as the Gulf Stream
or Kuroshio Current in the Pacific, are quite different than
they are in other ocean regions. Also, since the quantity to
be estimated is actually the variation of sea level relative to
the geoid (the equipotential surface of the Earth’s gravita-
tional field), the raw satellite data must be adjusted to ac-
count for spatial variations in the geoid. Since the geoid is
not known with certainty and, in fact, can have significant
errors near large features such as the Hawaiian Islands and 9x(r) dz(r)
extended subsurface sea mounts and trenches, the resulting Vz(r) = (p(r), o(r)) = <T’ T) 1)
adjusted altimetry measurements have errors with spatially ' 2

varying uncertainties. Fourth, there is a need to compute notdenote the gradient of the surface. Similarly,Jét) denote
only estimates of sea-level variations but also the statistical measurements of the surface aitd) = (u(r), v(r)) denote
quality of these estimates (e.g., error variances), as such stameasurements of the gradiéntiven that these measure-
tistics are needed to fuse these estimates with other infor-ments are likely to be noisy and may also be available only
mation (e.g., ocean circulation models) and to identify sta- at irregular locations (or have spatially varying quality), we
tistically significant anomalies. Finally, oceans display vari-

ations over an extremely large range of scales—indeed, the

2As these references indicate, the power law exponeman and gener-
ally does vary with frequency and spatially (i.e., the statistics of ocean height
YWhat is actually estimated is sea height, relative to the geoid, with ad- Variation are only locally stationary in space).
ditional corrections to remove effects such as tidal variations and, quite fre-  3More generally, we might have a measurement of the dot product of this
guently, the overall temporally averaged ocean circulation pattern (see [353] normal with a known vector, a situation that requires only a minor variation
and [354]). in the variational formulation.

A second closely related problem is one that has been
widely studied in the field of computer vision, namely that
of reconstructing surfaces from regular or irregularly sam-
pled measurements of surface height and/or of the normal to
the surface (as in the shape-from-shading problem [34], [53],
[152]). One well-known approach to reconstruction prob-
lems such as this involves the use ofariational formu-
lation. In particular, letl denote the 2-D planar region over
which the surface(r), r = (r1, r2) € I is defined, and let

1400 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002



take as our estimate of the surface and its gradient the quanimean-squared estimation error using only second-order
tities z(r) and(p(r), ¢(r)) that minimize the following func-  statistics of the images to be restored, have serious limi-

tional: tations for many applications in which the image or field
B 2 _ 2 to be restored has edges or areas of substantial high-fre-
/1 () [y(r) — 2(r)] dTJF/I ax(rllg(r) = Va(r)l” dr quency/high contrast behavior. In particular, the generally
low-pass nature of linear methods implies that they will
+/ as(r) ||Vz(r)||2 dr reduce noise at the expense of blurring or distorting such
4 important features. For example, Fig. 3(b) depicts a noisy
' 2 2 image of a scene [shown without noise in Fig. 3(a)] with a
dr. 2
+/1 @a(r) {HVP(T)H +IIVatnll } 4 @) great deal of edge-like, high-frequency behavior. As can be

The nonnegative coefficients (r) anda(r) inthe firsttwo ~ seen in Fig. 3(c) and (d), performing linear Wiener filtering
terms in (2) allow us to control how closely we wish the re- offers a comparatively poor tradeoff in the amount of noise
construction to follow the measurementsyhile the third ~ rejection versus the amount of blurring of features.
and fourth terms in (2) represestoothness penalties the Numerous approaches have been developed to combat
reconstructed surface. In particular, the first of these terms issuch problems—in essence, attempting to remove noise in
often referred to as thin membrangenalty, as it penalizes ~ regions of images away from such features while preserving
nonzero surface gradients, while the last term is referred tothose features with minimal distortion. Included in the
as athin platepenalty, as it penalizes curvature or bending literature are methods based on explicit modeling of edges
of the surface. By adjustings(r) anday(r), we can adjust ~ and other boundary-like features (see, for example, [132]
the relative strengths of these penalties. and [234]), approaches that use non-Gaussian models in
mentOne further complication is the integrability con- order to better capture the “heavy tail” nature of imagery (for
straint, namely, thatp(r), ¢(r)) is, in fact, the gradientof a ~ €xample, the generalized Gaussian models studied in depth
surface. In particular, from (1), it is clear that we must have in [41]) and an array of procedures using wavelet transforms
that (e.g., [2], [57]-59], [68], [80], [104], [192], [193], [261],
[281], [301], [330], and [333]). For this latter set of methods,
dp(r) _ Jq(r) : ! . - .
= . 3) the general idea is to exploit the localization properties of
Ir2 91 wavelets to allow much easier and more transparent adaptive
Minimizing (2) with the constraint (3) or variations of this processing in order to minimize distortion of important
problem, where, for example, the hard constraint (3) is re- image features while removing noise. As we will see, some
laxed and replaced by a quadratic penalty on the differenceof these methods explicitly involve the modeling framework
between the two sides of this equation, is a classic variationaldeveloped in this paper, while many others have close ties
problem [152]. to it.

Alternatively, as discussed in [111], [223], and [312] (see
also Section VI-B1), optimization problems such as this can D. Texture Discrimination
also be interpreted as estimation problems with “fractal”  Another problem of importance in computer vision and
priors. Computing the optimal estimates for such problems in other image processing applications is that of texture
involves solving PDEs [152], a computationally intensive discrimination. One well-known class of statistical texture
but not overwhelming task in itself. However, the compu- models is that based on MRFs [50], [71], [178], [233]. For
tation of the statistics of the errors in these estimades example, Fig. 4 shows two synthetic MRF textures, one
daunting task. As we discuss and illustrate in Section VI-B1, modeling pigskin and one sand. The problem of discrimi-
(and as is developed in much greater detail in [111]), an nating textures such as these given noisy measurements is a
alternative is to replace the smoothness penalties in (2),standard hypothesis testing problem whose solution hinges
which correspond to a prior model on the surface to be on the computation of the likelihood ratio for the two tex-
reconstructed, with a different MR prior model which has tures based on the observed imagery. However, calculating
the same qualitative fractal characteristics but which leads these likelihoods can be a prohibitively complex operation
to very efficient algorithms for the computation of estimates if the data correspond to irregularly spaced samples, if the
anderror statistics. region over which the data are available has an irregular
shape, or if the data have spatially varying statistics (so that
FFT methods are not applicable).

The problem of removing additive noise from images is  As we discuss in Section IV, likelihood calculations for
one that has been the subject of a vast number of studiesthe class of MR models on trees are far simpler and remain
Linear methods such as Wiener filters (for spatially sta- tractable even for very high-dimensional image processing
tionary models) or those based on Gaussian MRF modelsproblems. Further, as we describe in Section VI, it is pos-
have a long history (see, e.g., [13], [163], [343], and [345]). sible to develop MR models that capture the statistical vari-
However, such methods, which generally aim to minimize ability of textures such as in Fig. 4. These alternate models

4 . arenotidentical to the MRF models used to generate these

For example, if we do not have measurements of one type or the other

over subregions of, we simply setx,(r) or a2(r) to be zero over those examples, but they are suffit;iently close so that they repre-
subregions. sent equally valid mathematical models for real textures, at

C. Image Denoising
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(b)

(d)

Fig. 3. (a) A noise-free image. (b) Noisy version of the image. (c) Restored version of this image
using optimal Wiener filtering over & 3 image blocks. (d) Restored version using Wiener filtering
over 7 x 7 image blocks. (Reprinted from [282].)

least for the task of discrimination for which they admit very their solution or leading to suboptimal methods such as iter-

efficient solutions. ated conditional mode (ICM) [36]. These problems have led
_ a variety of authors to consider MR algorithms and models
E. Image Segmentation [14], [40], [42], [48], [53], [58], [59], [135], [144], [179],

Another image processing and low-level computer vision [180] We describe how some of these methods fall directly
problem that arises in many applications is that of Segmenta-int(? the framework on which we focus and how others relate
tion. Segmentation of images such as the multispectral imageto It.
or document page shown in Fig. 5 is a challenging and com-
putgtionally ir_1ten_sive _ta_sk, as it involves both accounting = Multisensor Eusion for Groundwater Hydrology
for image variability within each class as well as the poten-
tially combinatorially explosive set of candidate segmenta- As we mentioned in Section |, one of the motivations for
tions that must be considered. For example, MRF models using MR methods comes from applications in which the
such as those described in [132] and [234] include discrete available measurements are at multiple resolutions and/or in
hidden label variables whose estimation corresponds to thewhich the variables to be estimated may also represent aggre-
specification of a segmentation. However, the search for thegate, coarser-scale variables. One application in which this
optimal estimates for such models is computationally de- has been examined is in the field of groundwater hydrology
manding, requiring methods such as simulated annealing for[84].
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in particular, in [84]) assumed to be knowrFurther, the
local groundwater velocity(r) is a function of conductivity
and head, and, in particular, is proportional to the product of
conductivity and the gradient of the potential field

u(r) o STV, (5)

The data that are available generally come from a sparse
and irregularly spaced set of wells in which both log-conduc-
tivity and hydraulic head are measured. From these measure-
ments, we wish to estimate the travel time between two spec-
ified points (e.g., a point representing a central contaminant
source location and a point on the boundary of a containment
region). That travel time is in turn determined by the velocity
field in (5).

The complexity of this problem should be evident. As
discussed in [84], while our measurements of log-conduc-
tivity represent point measurements of the random field
f(r) at the well locations, the measurements of hydraulic
head are related t@(r) in @ much more complicated and
nonlocal manner through (4). In Section VI, we will see how
the MR framework we describe can be used to capture both
the statistical structure gf(r) as well as the nonlocal head
measurements. We will also see that the MR methodology
provides two alternative methods for the fusion of these
measurements for the estimation of travel time. In the first
of these, we simply model travel time as another nonlocal
quantity included explicitly in the MR model and thus
estimated directly by the MR estimation methodology de-
scribed in Section IV. An alternative approach involves the
widely used geostatistical conceptaafnditional simulation
[171]-[173], in which samples of the entire log-conduc-
tivity field are drawn from the distribution for the field
conditioned on the available measurements. As we will
see, drawing samples from MR models is also extremely
efficient—comparable in complexity to generating sample
outputs of a time-series model driven by white noise and
much more efficient than corresponding methods for many
other random field models.

(b)
Fig. 4. lllustration of two textures based on Markov random field G. Image Reconstruction and Inverse Problems

Is. (a) Pigskin. (b) Sand. (Reprinted from [225]. . . . L
models. (a) Pigskin. (b) Sand. (Reprinted from [225]. In the preceding section, we described an application in

which the data to be fused included both local measurements
The objective in this application is to estimate (and of the quantities of interest and nonlocal measurements re-
characterize the estimation errors for) the travel time of sulting from indirect probing of the medium or field to be
solutes (e.g., contaminants) traveling in groundwater. This imaged. Data of this latter type are the rule rather than the
travel time is highly uncertain because of the considerable exception in many applications, including tomographic re-
uncertainty, large dynamic range, and spatial variability in construction and deblurring or deconvolution problems. In
hydraulic conductivity, which controls the spatially varying the former, the observed data correspond to projections or
transport behavior of a groundwater system (see [84]). sets of line integrals through the field of interest. In the latter,
Specifically, let f(r) denote the log-conductivity fietdas the field to be estimated or reconstructed is blurred by the
a function of spatial location. Then, the basic governing measurement process. Such image reconstruction or inverse

equation is problems present challenges for a variety of reasons. One
e f @ _ such reason is purely computational: Performing a recon-

v [6 Vh(T)} = Qre(r) ) struction is a nontrivial task. Another is the ill-posedness of

whereh(r) is the potential field known dsydraulic heacand ~ Many such problems. For example, operations that involve
Q,.(r) is the so-calledecharge rate which is often (and,  integration or smoothing (as both tomography and convolu-

tion do) can significantly attenuate high-frequency features,
5Because of the large dynamic range of conductivity, it is common to use
log-conductivity as the fundamental variable. 6See [84] for a discussion of the boundary conditions that accompany (4).
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() (b)

Fig. 5. (a) Remotely sensed multispectral SPOT image (from [42]). (b) Document page
(reprinted from [58]).

and, as a result, some operators of this type may not be in-“top” of the tree, i.e., at the coarsest resolution. For this node,
vertible or their inverses may have very undesirable proper- we specify a marginal distributiop(x(0)).” For each node
ties (in particular, amplification of high-frequency noise). As s on the tree other than 0, ety denote its parent (i.e., the
a result, regularization methods, often interpretable as speci-node to which it is connected at the next coarser scale—see
fying a prior statistical model on the field to be estimated (as Fig. 1), and we then specify the one-step coarse-to-fine tran-
in Section 11-B), are often employed. In Section V, we will  sition probabilityp(x(s)|z(s7¥)). The initial distribution to-
see an example of such a reconstruction algorithm based orgether and the full set of these transition probabilities at all
an MR model of the type on which we focus in this paper.  nodes other than 0 completely together specify the joint prob-

ability distribution forz(-) over the entire MR tree.

One such class of MR models, which we will use to il-

1. MR M ODELS ONTREES lustrate many of the concepts in this paper, is the class of
linear-Gaussian models in whial{0) is a Gaussian random
vector and the values of the process at finer scale nodes are

The general class of models of interest to us are Markov specified via coarse-to-fine linear stochastic dynamics as fol-
processes defined on trees organized into levels or resolujgws:

tions, such as in Fig. 1. In Section IlI-C, we review the con-

cept of Markovianity for more general graphs, but it suffices 2(s) = A(s)z(s7) + w(s) (6)

here to point out that the Markov property for trees is par-

ticularly simple. If we condition on the value of the process where A(s) is a matrix, specified at each node other than 0
at any nodes on the tree other than a leaf node (e.g., other gng possibly varying from node-to-node, and whets) is

than one of the nodes at the finest scale in Fig. 1), the setsa Gaussian white noise process, i.e., a set of mutually inde-
of values of the process on each of the disconnected compopendent Gaussian random vectors defined at each node other
nents formed by removing nodeare mutually independent.  than 0. Such a model is a simple generalization of the usual

One way in which to specify the complete probabilistic de- |inear state space model for temporal processes and systems.
scription of such a process is the following generalization of
the specification of a temporal Markov process in terms of 7_Here,p(.)_ denotes a probability density functiorif0) is a continuous
e s . . e ... variable, adiscrete probability mass function(f)) takes on only a discrete
an initial distribution and its transition probabilities. Specifi-  sot of values, and a combination of the twari)) is a hybrid continuous-
cally, let 0 denote theoot node namely the single node atthe  discrete quantity.

A. Basic Model Structure
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In an analogous manner, one can define other classes of A second observation isthat (7) corresponds to perhapsthe
processes such as the generalization of finite-state Markovsimplest coarse-to-fine interpolation process: interpolation
chains to trees [42], [80], [199], [261]. On numerous occa- consists simply of copying the value at the coarser node [the
sions, we will find the comparison with temporal Marko- first term on the right-hand side of (7)] and then adding inde-
vianity useful both to interpret results and to identify places pendent “detail.” This interpretation of multiscale dynamics
in which the extension to trees introduces issues not encoun-as coarse-to-fine interpolation combined with the addition

tered for time series. of new detail at each resolution clearly rings of concepts
) common in other areas of multiresolution analysis, most no-
B. A First Few Examples tably wavelets. We will have more to say about relationships

To help gain some initial intuition about these models and to wavelets later. However, as the next point makes clear, the
about their breadth and variability, we present a few initial tie to wavelets or other ideas in interpolation requires con-
examples. siderably more thought.

Example 1: Perhaps the first example of an MR model of In particular, for any standard MR decomposition of a
the form of (6) is that introduced in [67] in the context of signal or image, the values of the variables at coarser nodes
image denoising (see also [355]). Specifically, suppose we are simply functionals (i.e., weighted averages or smoothed
are interested in modeling a 2-D random field defined over differences) of the values at finer scales. Indeed, that is cer-
a square region, where, for simplicity, we assume that the tainly the case for wavelet analysis. However, note that for
number of pixels along each edge of the square is a powerthe process defined by (7), it is certainipt the case that
of 2, allowing us to use the simple quadtree structure of z(s7) is the average of its four descendent values (since the
Fig. 1(b). In this case, the indexat each node can be thought  four white noise values added to these children are indepen-
of as a 3-tuple(m(s), i(s), j(s)), wherem(s) denotes the ~ dent). As a consequence, if our primary interest is in the
scale of node, and the paiti(s), j(s)) specifies the spatial ~ random field at the finest scale, the values at coarser scales in
coordinates of the coarsened spatial region corresponding tdhis model represent true hidden variables, as they are not de-
s (note that the root node node 0 does not need spatial co-terministic functions of that finest scale process. As in other
ordinates; also, we number resolutions consecutively, with contexts, among the reasons for building models with such
m(0) = 0, and with increasing scale corresponding to finer hiddgn variablgs is_ that they Ieaq to effic!ent algorithms. In
resolutions). Le:(0) be a scalar, Gaussian random variable, addition, later in this paper we will also discuss the class of

and define the entire process via the following tree recursion: SO-callednternalMR models in which the coarser scale vari-
ables arenot hidden.

z(s) = z(s7) + w(s). (7) Example 2:In [224], a class of MR models is intro-
duced for 1-D Gauss—Markov processes and for 2-D Markov
Here,w(s) is a scalar Gaussian white noise process on the random fields. The simplest example of this uses Paul Lévy's
tree, andr(s) can intuitively be thought of as a coarse-scale construction of Brownian motion via midpoint deflection
representation of the random field being modeled at the scale[211]° Specifically, suppose that we wish to construct a
and spatial location corresponding noede sample path of a Brownian motion proce3§&) over a time
Even this very simple model allows us to introduce some interval, say{Ty, 71|, of lengthZ” = 1p — 73. To begin, we
of the concepts and issues that arise with MR models. Thefirst generate samples of the 2-D Gaussian random vector
first concerns the choice of the varianceufs). One simple  (B(Zo), B(T1))*. As illustrated in Fig. 6(a), we then draw

choice is a constant variance over the entire tree. Note that,@ Straight line between the generated values of our process
in this case, if we examine the 1-D sequence of values cor- at these two endpoints. This represents the best estimate of

responding to the path in the tree from the root node to any € values of the process at every point betw&gmnd T

leaf node, we see that this sequence is a simple constant-varid'Ve" the _values at the end_p_omts_. C_on_sequently, the error
ance Gaussian random walk. If, on the other hand, we choose" this estimate at any specific pom_t IS |_ndepende_nt of the
the variances ofu(s) to be constant at each scale but to de- values at the end points. At the ”.“'dpo'”t of the interval,
crease geometrically from scale to scale (e.g., variances thag;)n;rora/ 3&}';;5;; gjn;;gt)eweiltr;] '\?adr?gfcn:iml’laﬁgo;?eean
decrease with scale by a factordof™), the resulting process error variance in theoestimate BTy + T/2) bage d on the
has a rudimentary type of self-similarity or fractal character:

h ) fh o le h law d two endpoint values. If we then “deflect” the straight line
the variance of the variation at any scale has a power law de-p¢ ;g midpoint by adding this new random variable, we

pendence on scale. We will have more to say about self-simi- |, havethreesamples B(Tp), B(T}), andB(Tp + T/2)
larity and fractal processes later and will also see a somewhaty, 5t have the desired joint distribution of a sample path of
different example next. Brownian motion.

8As is also true for standard temporal models and signals, while for sim- 1 N€ Process gontinue_zs, t_aking advantage of a Critic_a_l fact.
plicity we assume that the variables in the model (6) are Gaussian, all of the Because Brownian motion is a Markov process, conditioned
results _and concepts for _these models that make use o_nIy of second—orderon the value at the midpoint, the values of the Brownian
properties (means, covariances) hold more broadly as wide-sense concepts. . . .
For example, if we only assume thats) is uncorrelated from node to node ~ Motion on the two half-intervals are mutually independent,

(i.e., is wide-sense white noise on the tree), then the estimation algorithm in
Section IV-B represents the best linear estimator. 9See [129] for related constructions for the so-called Brownian bridge.
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Fig. 6. (a) lllustrating the midpoint deflection construction of samples of Brownian motion. (b) The
MR tree model structure corresponding to the midpoint deflection construction.

Y . .
B(Ty)  B(T, +T/8) B(T, +T/4)

and, thus, the subsequent deflection of midpoints of eachbest estimate of a midpoint value given the two endpoint
of these half-intervals can be carried out independently. values will in general be a more complex linear function
The result is a procedure for generating denser and densepnf the endpoint values, depending on the correlation struc-
samples of Brownian motion, which is depicted in Fig. 6(b). ture of the field. Note also that because of the fact that in-
As this figure suggests, the procedure we have describedcrements of Brownian motion have variances that scale lin-
corresponds to a linear-Gaussian MR model of the form in early with the length of the interval over which the increment
(6): here, the three-dimensional (3-D) “state(’s) at any is taken, the MR model depicted in Fig. 6 has self-similar
node s consists of the two endpoint and midpoint values scaling behavior (i.e., the variances of the midpoint deflec-
of B(t) over the subinterval identified with node The tions decrease geometrically as we move to finer scales). In
coarse-to-fine dynamics are precisely the midpoint deflec- addition, as in Example 1, each step in the Brownian motion
tion scheme we have just described. Each node correspondsonstruction does indeed involve coarse-to-fine interpolation
to half of the interval associated with its parent node. As a plus the addition of independent detail (to deflect midpoints),
result, two of the components of the 3-D state at each child although the nature of the interpolation and the detail are very
node are simply copied from the parent node (namely, one differentin this example, as is the fact that the state of the MR
of the two endpoints of the parent interval and its midpoint process at each node does not represent a spatial average of
value), and a new midpoint value is generated for the child the process but rather a different type of coarse-scale repre-
interval by taking the average of its endpoints and adding sentation, namely a simple three-point piecewise linear ap-
an independent zero-mean Gaussian random variable withproximation to the Brownian motion sample path, as illus-
variance equal to that of the error in the estimate of that new trated in Fig. 6(a). Finally, note that, in contrast to Example
midpoint given the endpoint values. 1, the MR model for Brownian motiois internal, as the state

It is a straightforward calculation to write down the dy- ateach node is a completely deterministic function of its chil-
namics of (6) for this example (see [224]), but even without dren.
doing that explicitly we can make several important observa- Example 3: A class of nonlinear MR models that plays
tions. The first is that the procedure we have just described just as important a role in theory and practice as the linear
works equally well for other Gauss—Markov processes, in- model in (6) is the class of MR Markov chains on trees. In
cluding those of higher order. The only difference is that the such a model, each of the variablgs) on the tree takes on
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one of a finite set of values (where the nature and cardinality In general, one can distinguish between directed graphs in
of that set may vary from node to node or from scale to scale). which an edg€s, ¢) is directed from node to nodet (so
As described previously, such a model can be completely that the edgeés, ¢) and(¢, s) represent different objects) or
specified in terms of the distributigi{(0)) at the root node  an undirected graph in whidfs, ¢) and(¢, s) do not repre-
and the parent—child transition distributiop&e(s)|z(s7¥)) sent different objects (so that inclusion of one of thesé& in
for every nodes # 0. is equivalent to inclusion of the other or both). For our pur-
Such models have a long history, extending back to studiesposes, it is sufficient to focus on the latter for the moment
in statistical physics [26], dynamic programming [32], artifi- and to make a few comments about the former shéttly.
cial intelligence and other investigations of graphical models  Consider an undirected gragh and a random process
[7], [89], [128], [169], [267], [294], [295], and signal and  x(s), s € V, defined over the index s&t. Of particular im-
image processing [42], [58], [59], [80], [175], [199], [213], portance to us is the class of MRFs over the grdpBpecif-
[261], [281], [283]. Later in this paper we will illustrate ex- ically, for each node € V, let N'(s) denote the set afeigh-
amples of such models for two different purposes. One is aborsof s, i.e., the set of all nodes other thaiitself that are
class of image segmentation problems [42], [58], [199], asin- connected ta by an edge. Then(s) is Markov ong if for
troduced in Section II-E in which the discrete variable at each each nodes
node represents a coarse-level label for the image region cor-
responding to the resolution and location of that node. Astan- P (z(s)| {z(t), t € N(s)}) = p(a(s)[{z(t), t # s}). (9)
dard example used in such problems is a multiscale variant
of the Potts model [26], [132] in which each child node takes
on the same value of its parent with some probability and is
equally likely to take on any value different from its parent,

That is, conditioned on the values of the process at all its
neighbors,z(s) is independent of the remaining values of
the process at other nodes. An alternative characterization
of Markovianity requires a bit more graph-theoretic termi-

€., nology. A pathin the graphgG is a sequence of nodes 1
Opn(s): i=j such that there is an edge corresponding to each successive
pla(s) =ilz(s7) =) =4 1— 6 ®) pair in this sequence. A subsdtof V cutsthe graph if the
i) , TF] remaining nodes i (i.e.,V/.A) can be partitioned into two
N-1 disconnected subsetsand, i.e., two subsets so that any

path inG from anyw € U to anyw € Y includes an element
of A. Also, we introduce the notatiarx for the set of values
{z(s)|s € S} for any subsef (although, forS =V, we will
generally denotey, simply asxz). Then,z(s) is Markov if,
for any subset that cutsV into disconnected subseétsand
W, then

where the label index set for each nodg1s ..., N} and
where we allow the probabilitg,, of the child label equaling
the parent to vary with scate (e.g., as described in [42], one
may wish to increase this probability at finer scales).

The second example in which we will see such discrete
models is in the context of wavelet-based image denoising
problems [59], [80], [261], in which the MR Markov chain
represents hidden variables used at each node to control the
distribution of a wavelet coefficient at that same node. As we That is, conditioned on the values of.) on A, the set of
will see, such a model can capture the “cascade” behaviorvalues ofz(.) oni{ is independent of the set of valuesigf)
seen in real imagery in which large wavelet coefficients on W. Note that, if A actually separate¥ into K discon-
occur in localized patterns across scale corresponding to thenected subsets andaf_.) is Markov, then the sets of values
locations of abrupt changes, edges, or other high-frequency,of the process over each of these subsets are mutually inde-
high-contrast signal or image features. Including these pendent given the values ok
hidden variables then leads to denoising algorithms that The specification of Markov models on general graphs
automatically adapt to the presence of edges, alleviatingrequires some care. In particular, in contrast to temporal
the blurring that occurs if space-invariant linear filtering is Markov processes (or, as we will see, tree models as well),
performed. Markov models on graphs are not, in general, specified in

terms of the marginal density at a single node and transition
C. Some First Ties to Graphical Models, Time Series, and probabilities between pairs or small groups of nodes, thanks
Matrix Factorization to the fact that a general graph hia®ps or cyclesi.e.,

As we have indicated, MR models on trees are a special Nontrivial paths that begin and end at the same node. Such
class of graphical models [35], [36], [89], [108], [123], [128], loops imply that there are constraints (typically complex and
[143], [168]-[170], [197], [204], [236], [267], [294], [295], numerous) among such marginal and transition probabilities,
[302], [337], [339], [357]. With an eye toward some of the SO that they. do.not represent a simple parametrization of
generalizations we describe later and to lay the foundation for Markov distributions.
relating our framework to other work, we briefly summarize ~ Theé Hammersley—Clifford theorem [35], however, pro-
some of the basic graph-theoretic concepts associated withVides such a parametrization in terms of so-called clique

p(zu, swlza) = p@ulza) p(zwlza) . (10)

this larger class of models. potentials. In particular, aeliqueC of V is a fully connected
A graphg = (V, 8) cons_ists ofa geti Of.vertices and a 10For simplicity, we assume throughout tigais connectedi.e., that there
set& of edges between pairs of vertices (i&.C V x V). exist paths of edges that connect every pair of nodas in
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subset ofV (so that(s, t) € &£ for every pair of distinct

nodess, t € C). Let C denote the set of all cliques i@. £
Then, the Hammersley—Clifford theorem states thaj is
Markov with respect tdq7 if its probability density can be s 0
written in the following formtt
@ (b)
1 . )
— . 11 Fig. 7. (a) A typical example of a tree. (b) The tree of part (a)
p(z) Z exp { Z <Pc($c)} (11) redrawn as it appears when the node labeled “0” is taken as the
cec root node.

Here, ¢oc(z¢) is a function of the values of(.) over the
cliqgueC and is known as elique potential Also, Z is a nor- and also Section VI-A for more insight into this). For a tree,
malizing constant, often referred to as fretition function however, the construction of a directed graphical model from

Several points are worth noting. Firstyif.) is a Gaussian  an undirected one is straightforwatdand in fact does not
process, then we know that the exponentin (11) is a quadraticchange the nodes of the graph nor the graphical structure (ex-
form in the vectorz minus its mean, where the matrix ap- cept that edges become directed rather than undirected).
pearing in that quadratic form is the inverse of the covariance  Specifically, consider an undirected graphical model over
matrix P of . An examination of the Hammersley—Clifford a tree and choose any node to designate as the “root” node.

theorem for such a process yields the observationithats Consider then “hanging” the tree from this node—i.e., re-
Markov with respect t@ if and only if draw the graph with the root node at the top level, with its
neighbors at the next level, etc. For example, in Fig. 7(a), we
Ps,t)=0 V(s t)gE (12) have labeled one node, 0, as the root node, with its neighbors

denoted as nodest, andu. In Fig. 7(b), we have redrawn the

where, for any matrixd/ whose blocks are indexed by the tree as it appears when we hang it from 0. It is then straight-
nodes inY, M(s, t) denotes itgs, t)-block. forward to see that the overall distribution for this graphical

In general, the specification of a Markov process ac- model can be specified, exactly as we did in Section IlI-A,
cording to (11), while providing a natural and unconstrained in terms of the marginal distribution at the root node and the
parametrization, leads to significant computational chal- setof parent—child transition distributions. In particular, note
lenges. For example, recovering the marginal probability that for an acyclic graph any single node other than a leaf
distributions of the process at any individual node from this node cuts the graph into disconnected components. As a re-
specification has complexity that can grow explosively with Sult, foran MRF on the graph in Fig. 7, the processes on each
the size of the graph, even in the Gaussian éasgimi- of the subtrees _r_ooted at t, andw are mutually indepen-
larly, estimating parameters of such models or performing dentwhen conditioned on the value«d). Thus, the overall

estimation of the process given measurements can also b@robability distribution forz(.) can be factored in terms of
extremely complex. the individual marginal distribution far(0) and the condi-

The situation, however, is far simplergfis acyclic (i.e. tional distributions for each of the three subtrees rooteq at

loop-free), such as the tree illustrated in Fig. 7(a). One way t, and conditioned OF‘?(‘))- ant!nuing this process, E.}‘F."Ch.
in which to see why this is the case is to consider the rela- of these subtree conditional distributions can be specified in

tionship betweemnlirectedgraphical models and undirected terms of the_ individual transition dens_i'_[ies ﬁc(rs),_a_:(t), and

ones. In a directed graphical model, the quantities that mustx(“) conditioned orx(O) gnd thetrgnsmon densities for each

be specified include the conditional distribution at each node Of\t/cﬁi:gatLgOeriggi?]dIt:jcigsgsg%gsis}:)?r:;zd in araph-theo-

s given the values of all of its parents (whéris a parent of icl P he id g here b ite g‘l' P h

s if there is a directed edge fronto s). It is straightforward .re“ﬁ an_guaiqe, t ; deas here become q.;“te ‘Zm' |a_rbt0 th ose
. . L . t t t t

to convert a directed graphical model into an undirected one :2 ¢ e?nflsgg? tS| rr?g s?r/isesergﬁ dC(mrtr:;:(n:‘gcltowzeatigﬁgn Sepeceifr-n

(e.g., see [169]), but the construction of a directed graphical '

el val di q _ I ically, consider a discrete-time Gauss—Markov process
model equivalentto an undirected one Is generally very com- (g.a1ar valued for simplicity)y[n] defined over the interval

plex and, in fact, requ.ires defi.ning.new node and edge S?tS[NO, N,], and form the vector by ordering the values of
yvhere the nodes consist of entire cliques of nodes (_)f the orlg—x[_] sequentially. In this case, the graph of interest is simply
inal undirected graph (see the references on graphical modelspe set of integers in the intervalNo, V], with edges
bl 1
1INote that the exponential form in (11) implies that:) > 0 for all between consecutive 'nt_egers- Thaﬂks .tO. (12), we know that
« and, in this case, (11) is a necessary and sufficient condition for Marko- the inverse of the covariand@ of z is tridiagonal. Such a
vianity. There are conditions for Markovianity that can be stated if that is tr|d|agona| inverse covariance Corresponds to an undirected

not the case; however, that detail is unnecessary for our exposition. We refer . - .
the reader to the references at the start of this section for more on this anclrepresema’[Ion of the statistical structure of this process.

other aspects of graphical models. However, we also know that such a process has a simple
12For discrete-state processes, the complexity can be combinatorially ex- sSequential, i.e., airected representation with the same

plosive, while in the linear-Gaussian case the complexity of the linear-alge-

braic computations grows polynomially. In either case, the required compu-  13Discussions of this can be found in or inferred from many of the graph-

tations can be prohibitive for Markov processes on arbitrary graphs. We will ical model references given at the start of this section. Other discussions of

have more to say about this in subsequent sections and also refer the readethis can be found in [156] and in the discussion of so-called reciprocal pro-

to the references at the start of this section. cesses on trees in [101].
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graphical structure connecting each time point to its suc- As a final point, it is interesting to note that the proce-
cessor. Specifically, if we take the poiiy as the root node  dure we have outlined here to convert an undirected graph-
of the (acyclic) graph for this process, the corresponding ical model on a tree into a directed representation of the type
directed representation of this Markov process is the familiar we specified in Section I1l-A allowed us to chocseynode

first-order autoregressive (AR) model as the root node and then to define recursions relative to that
choice. One of the implications of this for standard temporal
zln] = aln]z[n—1]+wln],  n=~No+1,.... N (13) Markov processes is well known: we can define a recursive

model either forward or backward in time. However, what

tjs perhaps not as widely known or at least as widely used is
the fact that we also can define a recursive model that pro-
ceeds from the center (or any interior point) out toward the
two ends of the interval (see [321]).

where w[Ny + 1], ... w[N;] are a set of independent
Gaussian random variables, which are also independent o
the initial condition, i.e., the value of[NVo] at the “root”
node. The representation in (13) is precisely in the form of a
directed model.

The matrix interpretation of this representation is equally

simple. Specifically, define the vectar = [[No], w[No + IV. ESTIMATION AND INFERENCEALGORITHMS FORMR
1], ... w[N]]¥, which as we have just seen has a diagonal MODELS ONTREES
covariance which we denote by. If we then collect the As the preceding discussion suggests and as is well known
set of equations in (13), together with the trivial equation in fields such as graph theory, theoretical computer science,
x[No] = x[No], we obtain a vector equation of the form artificial intelligence, and linear algebra, computations on
tree structures can be performed very efficiently. In this and
Fr=w (14) subsequent sections, we will see that the implications of

this efficiency for statistical signal and image processing
and large-scale data assimilation are substantial, and this in
turn leads to our asking different questions than those that
typically arise in other contexts involving tree-structured

where the matrix# is lower bidiagonal, reflecting the fact
that each equation in (13) involves a single value|ef and

its predecessor (while the trivial first equation we have added
involves only the initial value:[Vy]). Note that a simple cal-

X ) computations.
culation using (13) reveals that
pl=FTQtR (15) A. Computation of Prior Statistics and Simulation
of MR Models
which corresponds to a very simpdgjuare root-factoriza- Before discussing optimal estimation and other inference

tion of the tridiagonal inverse covariance matrix (which also problems for MR models, we examine two related problems,
in this case is in the form of BIDL-factorizatior). Several namely the computation of the prior statistics of an MR
points are of particular note. The first is that the upper and processr(.) and the generation of a sample path—i.e., the
lower triangular factors in (15) are bidiagonal and thus have simulation—of such a process. These computations are
no fill** compared to the tridiagonal structure®f !, which not only important in their own right but also provide an
is equivalent to the statement that the graph for the corre-initial look at the computational challenges in performing
sponding causal recursion in (13) has the same first-order di-statistical calculations and how these challenges are met
rected graphical structure as that for the original undirected effectively if we have an MR model on a tree. For each of
graphical model (corresponding to the tridiagonal inverse co- these problems, we focus primarily on the linear-Gaussian
variance). Further, the computation of these factors is very model (6) and comment on the analogous issues that arise
simple, as can be seen from (13): the calculatioa[of and for discrete-state models.
the variance ofu[n + 1] involve only the joint statistics of As discussed in Section IlI, the specification of a Gaussian
z[n] andz[n + 1]. model that is Markov on a general graph corresponds directly
In contrast, for a general Gaussian graphical model, calcu-to specifying the inverse of the covariance of that process.
lating a square-root factorization &~ is computationally However, calculating the actual elements of the covariance
involved and results in additional fill in the square root (im- from such a specification, i.e., calculating the marginal and
plying in particular that a directed version of such a model joint statistics of the values af(.) at individual or pairs of
has a more complicated graphical structure). However, for anodes, is far from a computationally easy task for a general
Gaussian—Markov model on atree, the procedure we outlinedgraph. In particular, a naive approach to this would simply
for hanging the tree from a root node and then proceeding re-be to invert the inverse covariance, a computation that has
cursively down the tree implies that: 1) the calculation of the complexity possibly as large #&3((Nd)*), whereN is the
parameters analogous to those in (13) from one node to itsnumber of nodes in the graph adds the dimension of the
child are as simple as those for a temporal Markov process“state” z(s) at any node in the graph. Such complexity,
and 2) there is again nofill. It is precisely these special prop-
erties of tree models that lead to efficient algorithms such as

those we describe in the next section. 18I0 some situations, the dimension of states at different nodes may vary.
In this case, the dimension of the vector of all states is simply the sum of
14That is, there is no element @ that is nonzero for which the corre- the dimensions of these variables (which reduces daf all states have the
sponding element aP—* is zero. same dimensior).
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however, can be prohibitive and, in fact, is for the appli- It is interesting to note that (17) is a strict generalization of
cations we describe in this paper and for many contexts in the formula for temporal models. In the temporal context in
which graphical models are used. For example, consider anwhich the index set is completely ordered) ¢ equals ei-
MR model on a quadtree as in Fig. 1(b). A simple calculation thers or ¢, and, as a result, a nonidentity state transition ma-
shows thatV in this case is roughly 4/3 times the number of trix appears on only one side or the other in (17). However,
pixels at the finest scale. Thus, for a 54512 image N is for MR models on more general trees, both of these will ap-
on the order of 350 000, while for remote sensing problems, pear in general. Also, note that the calculation of (17) for any
such as that introduced in Section |I-A,can easily beinthe  particular value ok andt is computationally simplé with
millions. For such applications, computations that scale any complexity bounded by)((log N)d?), where the factor of
worse than linearly withV, i.e., that have more than con- log N comes from the fact that the path fronor ¢ to s A ¢
stant complexity per pixel for spatial estimation problems, can have this lengtH.
are prohibitive. Moreover, for applications such asinremote  While we have described the computation of statistics for
sensing, one would never be able to store or even look at thethe linear-Gaussian case, the same concepts and conclusions
full covariance which contains billions or trillions of distinct  hold as well for more general models. For example, consider
elements. However, what weould like to be able to dois  the case in whiche(.) is a finite-state process, taking on
to compute, in an efficient manner, selected elements of theany of d values at each node. As we discussed in the pre-
covariance, e.g., the diagonal blocks corresponding to the co-ceding section, the computation of marginal distributions at
variances of the variables at individual nodes and perhaps aindividual nodes or joint distributions at small sets of nodes
small number of off-diagonal blocks capturing the correla- can be extremely complex for a loopy graph (i.e., a graph
tion in space and scale among selected variables. with cycles). In particular, in this case, the distribution of
To be sure, more efficient methods can be devised thatthe process over the entire graph involves a state set of size
exploit the structure of particular graphs, but it is for trees d¥, i.e., that growxponentiallywith N, and explicit com-
that we obtain especially simple and scalable algorithms putation of projections of this distribution corresponding to
[23], [60], [61], [225], [226] for such computations. In  particular marginals or joints has been shown to be NP-Hard
particular, consider the linear model (6), wherés) is a for general graphs [76]. However, for an MR process on a
white noise process, with covarian€¥s), independent of  tree,z(.) represents a generalization of a Markov chain, and
the statec(0) at the root node whose covariance we denote computations of marginals at all nodes can be computed

by P..(0). From (6), we then see that the covariance:@f) by a coarse-to-fine tree recursion generalizing the usual
satisfies a coarse-to-fine recursion itself as follows: Chapman—Kolmogorov equation for recursive computation
of distributions in Markov chains [266]. Similarly, joints for
Py(s) = A(s)Po(s7) AT (s) + Q(s) (16)  one node and several of its descendants can be calculated

efficiently, and then by averaging over that ancestor node
we can obtain joints for any set of nodes [yielding the
counterpart to (17)]. In each of these cases, the complexity
of computation grows at most linearly with. and expo-
nentially in the number of nodes whose joint distribution is
required. As in the linear case, computing or even storing
all such joints is prohibitively complex. Typically, one is
interested in calculating only a modest number of very
low-dimensional joint probabilities, and such computations
can indeed be performed efficiently.

MR models also admit very efficient simulation methods.
For example, generation of a sample path for the linear MR
model (6) is a simple generalization of the straightforward
simulation of a linear state space model driven by white
noise. We need only to generate a sample of the Gaussian
random vector corresponding to the root nadé) and in-
dependent samples of each of th&), and then perform the

Po(s, t) = B(s, s AP, (s A )BT (2, s A1) 17) coarse'—to—fine computation corresponding to (6). Similarly,
for a discrete-state MR model, we draw a sample from the
where for any two nodes andu, in which« is an ancestor  distribution forz(0) and then, in a coarse-to-fine manner,
of s, we have thaf(s, u) denotes the state transition matrix draw samples from the distribution for each nodgs)
from nodeu to its descendent, which satisfies a rg(_:ursmn i 16Note that, essentially with a bit of additional storage and a modest level
in scale analogous to that for the usual state transition matrix of additional computation, the calculation of (17) for a particular pair of

which is nothing more than the generalization of the usual
Lyapunov equation for the evolution of the state covariance
of temporal state space systems driven by white noise [12],
[174], [182]. Note that this computation directly produces
the diagonal blocks of the overall covariance matrix for
and the total complexity of this calculation@ Nd?). The
quadratic dependence on the dimension of egehreflects

the matrix multiplies and additions in (16), while the linear
dependence oV reflects the fact that the recursion passes
through each node on the tree only once.

Calculation of any individual off-diagonal block of the co-
variance ofr can also be performed in an efficient manner.
In particular, for any two nodesandt on the tree, lek A ¢
denote the closest common ancestos tind¢. Then, using
the statistical structure of the model, we find that the covari-
ance between(s) andz(t) is given by

for state space models nodess andt also yields the values for the covariances for any other pairs
of nodes on the path fromto ¢.
D(s, s) =1 1This assumes a more or less balanced tree such as in Figs. 1 or 7 in which
’ the diameter of the tree (i.e., the length of the longest direct path between
D(s, u) = A(s)P(s7, u). (18) any pair of nodes) i©)(log N).
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conditioned on the previously drawn sample value for its  Let #,(s) denote the optimal estimateof x(s) given
parent. In contrast, the simulation of MRFs on graphs with all of the data in (19) throughout the tree [i.¢y(s)|s €
loops can be very complex. For example, for discrete-state VV}, whereV denotes the set of all nodes in the MR tree],
processes, iterative procedures such as the Metropolis orand letP.(s) denote the covariance of the error in this es-
Gibbs sampling algorithms [35], [132], [234], [339] must timate. As developed in detail in [60], the computation of
often be employed. Such procedures generally require manythese quantities throughout the entire tree can be accom-
revisits of each node of the graph, compared with the single plished using a two-pass algorithm analogous to the two-pass
pass through each node for MR mod#ls. Rauch-Tung-Striebel (RTS) smoother [12], [174], [277] for
As a final comment, it is important to note that the temporal state space modélsThat smoother consists of
complexity of the MR algorithms we have described here a two-sweep algorithm. The first sweep, forward in time,
and that we will describe in the rest of this section scale yields the optimal causal estimate (i.e., the optimal estimate
extremely well with problem size as measured /By the at each timet given all data before and including tinig
number of nodes in our MR tree. However, it is also the a computation performed using a Kalman filter [12], [174],
case that these algorithms scale polynomiallyZjrwhich [182]. At the end of the time interval;, the forward sweep
measures the “size” of the variables stored at each node ofyields the optimal estimate at that final point given all of the
the tree, e.g., the dimension of the state in a linear model data, i.e., this is the optimal smoothed or noncausal estimate
or the cardinality of the state set in a finite-state model. at this terminal point as well, since there are no data beyond
Consequently, the utility of all of these methods depends timeZ’. That smoothed estimate then serves as the initial con-
critically on d being quite small compared t¥, and it is dition for a second sweep backward through the data to com-

this observation that in essence provides the “acid test” to Pute the optimal smoothed estimate at every pointin time. At
see if any particular problem can be successfully addressedime?, this backward sweep combines the optimal causal es-
using the methods described in this section. The issuestimate at timef, computed during the first sweep, with the
of constructing models with manageable state sizes andSmoothed estimate just computed at titne 1, in order to

characterizing processes for which that is or may be possibledetérmine the optimal smoothed estimate at that tifrie-
is the subject of Section VI. gether with the covariance of the error in this estimate.

For more general trees, such as those in Fig. 1, the situa-
tion requires a modest amount of additional care and nota-
] _ ) o tion. First of all, while the RTS algorithm for time series can

In this section, we consider the problem of estimating an pe equally well applied from either end of the interval (i.e.,
MR process given noisy measurements of some or all of its e could just as easily start with a Kalman filter that runs
values. Aswe did in the preViOUS section, we begin with a dis- in reverse time, Starting from tim#, followed by a sweep
cussion of the linear case, i.e., with an MR model as specified forward in time), there is an asymmetry between the fine-to-
by (6), where, for simplicity of exposition only, we assume coarse and coarse-to-fine directions in MR trees, as shown in
thatz(s) is zero mean. The problem to be considered is that Fig. 1. As a result, the generalization of the RTS smoother to
of estimating this MR process given a set of linear measure- such a tree must begin with a fine-to-coarse, child-to-parent
ments sweep, starting at the finest nodes, followed by a coarse-to-

fine, parent-to-child sweef). The first fine-to-coarse sweep,

y(s) = C(s)z(s) + v(s). (19) whose computational flow is illustrated in Fig. 8(a), is a gen-

eralization of the temporal Kalman filter. The objective of
Here,v(s) is a zero-mean white noise process on the tree, this sweep is the computation, at each ned &(s|s), the
independent ofu(s) and with covariance?(s), while the optimal estimate of(s) based on all of the data i¥,, the
matrix C(s) specifies what is measured at each node of the subtree rooted at node(i.e., nodes and all of its descen-
tree. Note that, in principle, this model allows measurements dants), together witl(s|s), the covariance of the error in
at multiple resolutions and, thus, the estimation algorithm we this estimate. As in the temporal Kalman filter, the recursive
describe here provides a means for seamlessly fusing suctfomputation of these estimates involves several steps and
MR data. In addition, even if we only have measurements at intermediate quantities. In particular, suppose that we have
the finest scale [i.e., even &(s) = 0 for all nodes other ~ COmMputed the best estimaites|s—) and corresponding error

than those at the finest scale], the algorithm we describe has 190ptimality here is defined in the least-squares sense, so that the optimal

substantial computational advantages. estimate is simply the conditional mean based on the available data.
20n addition, there are other smoothing algorithms for graphical models

18There are classes of Gaussian graphica| models on |oopy graphs foron trees which have S(.)meWhat different Computational structures, with the
which simulations can be performed with efficiency approaching or com- Same general complexity. See, for example, [169], [259], [267], [285], [332],
parable to the)(V) complexity for tree models. For example, FFT-based [334], [338], and, in particular, [110] for the general characterization of any
methods can be used to simulate spatially stationary random fields with algorithm that yields the optimal smoothed estimates in a finite number of
O(N log N) operations (this follows directly from the fact that the Fourier ~ Steps.
transform whitens stationary processes [266]). Alternatively, efficientsparse  21Actually, one can equally well define a smoothing algorithm that takes
matrix methods (e.g., those used to solve elliptic PDEs) can often be ex- any node as its “root” and which then first sweeps from leaf nodes to the
ploited for loopy but sparsely connected graphs, resulting in procedures for root node, followed by a root-to-leaf sweep. Note that any such procedure
sample generation that also haVéN') complexity (see Section IV-D for a has the property that data from each node do in fact find their way into the
related discussion). computations of the smoothed estimate at every other node in the tree.

B. Two-Pass Estimation Algorithms
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Fig. 8. lllustrating the recursive structure of statistical processing
algorithms on MR trees. (a) The fine-to-coarse “upward” sweep
of the optimal estimation algorithm [see (20)—(32)]. (b) The
coarse-to-fine “downward” sweep producing optimal smoothed
estimates [see (33)—(37)]. (c) The hybrid recursive structure

for the whitening of MR data (see Section VI-C); the upward,
fine-to-coarse portions of these computations comprise the
Kalman filtering upward sweep shown in (&) to produce partially
whitened measurement residuals; the downward portion of these
computations complete the whitening based on a particular total
ordering of nodes on the tree that is compatible with the partial
order implied by the tree itself. (Adapted from [225].)

covarianceP(s|s—), at nodes, given all of the data it¥, ex-
cept for the measurement at nogléself. The computations

r1 (s|s—) =

Fusion of Subtree EstimatesSiven i(s|sc;) and
P(s|s«;) for all ¢ (where we letK; denote the number of
descendants of nodg, we have

K,

Z (s|s—) =P(s|s—)z Pt (s|sa;) 2 (s]sey) (25)

K,
(s)+ Y [P (slse) — Pr2(s)] (26)

=1

Pt
whereP, () is the prior covariance at nogecomputed from
(16).

The third step of the recursion involves the computation of
the estimate$(s|sa;) (and error covariances) for each child
of nodes. This step is identical in nature to the one-step pre-
diction step in the usual Kalman filter (in which we predict
the state at timébased on data through time- 1). The only
difference in detail is that the “prediction” we must do here is
from fine to coarse, while the MR model (6) is specified in a
coarse-to-fine manner. As a result, the form of the following
step involves a so-called “backward” model analogous to that
for temporal models [328].

Fine-to-Coarse Prediction:Given & (sc;|so;)
P(sa;lsa;), we have

and

F(sa;)T (sag|say) (27)
F(sa;)P (sag|sai) F¥ (sap) + U(say) (28)

to produce the updated estimate (and associated error covarivhere

ance) that incorporates the measurement at sade iden-
tical in form to the analogous equations for the usual Kalman
filter.

Measurement UpdateGiven #(s|s—), P(s|s—), and
y(s), we have

Z (s|s) = & (s|s—) + K(s)v(s) (20)
wherer(s) is the measurement innovations
v(s) = y(s) — C(s)i (s5-) (21)
which is zero-mean with covariance
V(s) = C(s)P (s|s—) C*(s) + R(s) (22)

and where the gai#(s) in (20) and the updated error co-
varianceP(s|s) are given by

K(s) =P (s|5—) CT(s)V (s)
P(sls)=[1 — K(s)C(s)] P (s|s—).

(23)
(24)

F(s) = Po(s7)AT ()P (5) (29)
U(s) = Pu(s7) = Pu(s7) AT ()P, (s) A(s) Pu(57). (30)

Finally, this recursion must be initialized, where, in con-
trast to the temporal Kalman filter, we must provide initial
conditions agll of the finest scale leaf nodes of the tree. This
is done by setting the initial estimate at each leaf node to the
prior mean (here assumed to be 0) and the initial covariance
to the prior covariance.

Initialization at the Finest Scalefor each finest scale leaf
nodes, we have

Z(sls—)=0

P (s|s—) = P.(s).
Note also that as for temporal Kalman filters the gain and
covariance matrices can be precomputed, and, in fact,
(22)-(24), (26), (28)—(30), and (32) together form the MR

tree generalization of the Riccati equation for the error
covariance [61].

(31)
(32)

The second component of the fine-to-coarse recursionis a \ynhen the fine-to-coarse sweep reaches the root node, the

step that has no counterpart in temporal Kalman filtering, as
it involves the fusion of estimates that come from all of the
immediate children of node. Specifically, letz(s|s«;) de-
note the optimal estimate for nodéased on all of the datain
Vs« the subtree rooted at node;, and letP(s|sc«;) denote

the corresponding error covariance. Fusing all of these esti-

mates produces the estimate (and error covariance) at node

s based on all of the data at nodes descendent framfol-
lows.

1412

estimate and covariance computed at that node provide initial
conditions for the second coarse-to-fine sweep, exactly as in
the temporal RTS algorithm as follows:

5(0) = (0]0)
P.(0) =P (0]0).

(33)
(34)
As derived in [60], the computations in this second sweep
are identical in form to those in the temporal RTS algorithm.
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In particular, the computation at noden the tree involves The first is that (39) can be solved very efficiently via the
fusing together the optimal smoothed estimate and covari- tree-structured generalization of Gaussian elimination (the
ance just computed at its paresit with the statistics com-  fine-to-coarse Kalman filtering sweep) followed by back-
puted at node during the first Kalman filtering sweep. The substitution (the RTS smoothing step), yielding théN)
only difference in the case of trees is that the negiehas complexity discussed previously. To be sure, other methods
several children, so that the following computation is carried of numerical linear algebra (e.g., conjugate gradient or multi-
out in parallel [as illustrated in Fig. 8(b)] at each of the chil- pole methods [138], [256], [280]) could be used to solve this
dren of nodes?: equation with this same order complexity. However, what is
particularly important about the MR algorithm are both its

2s(s) =2 (s|s) +J(s) [#:(s57) — 2 (s7]s)]  (35) noniterative nature and especially the fact that it also yields
_ _ the diagonal blocks of the error variance matfx as part
P.(s)=P J(s)[P. - P 36 . ) i L
() (s]s) + J(s) [Pe(57) ()] (36) of this same computation. Since these error statistics are ex-
where tremely important in many applications (see Examples 4, 5,
8, and 9 to follow in this and subsequent sections), this is a
J(s) = P(s|s) FL(s)P~ (s7]s). (37) major benefit of the use of MR tree models.

The second implication of the tree structurerpf!, which

Note again that the covariance computations (34), (36), anddirectly generalizes known results for temporal models [17],
(27) can be precomputed. [27], [28], [226], is that this implies that the error process

As with the computation of prior statistics described e(s) = z(s)—,(s)isan MR process on the same tree, with
in Section IV-A, the smoothing algorithm just described parameters (i.e., matrices analogoud{e) andQ(s) for the
has very significant computational advantages. In partic- original process) that are automatically available as a result
ular, note that the computations at any node on either theof the RTS smoothing computations. Since those computa-
upward or downward sweep involve matrix—vector and tions already yield the covariance of the error at each indi-
matrix—matrix multiplies, as well as matrix inversions, vidual node, the method described in Section IV-A (in partic-
where the matrices and vectors involved have dimengion ular, equations analogous to (17) and (18) for the smoothing
(or perhaps less for those involving the measuremént error model) can be used to compute any of the covariances
and its associated matrices). In addition, each node in thebetween errors at different nodes. More importantly, we see
tree is visited twice—once in each sweep. Consequently that the result of the smoothing process produces a model for
the total complexity of this algorithm is at worét(Nd?), the remaining errors that has the same form as the original
which does scale linearly with the number of nodes in the model and which therefore can be used directly for the fu-
tree. Furthermore, the result of this computation produces sion of any subsequent measurements that become available.

both estimateandtheir error covariances.
To understand the significance of this result a bit more

Moreover, this error model provides the basis for extremely
efficient conditional simulation of MR processes, a feature

deeply, consider an alternate vector form of the estimation that is illustrated in Example 9.

equations. Specifically, as before, letlenote the vector of
values ofz(s) throughout the tree, and Iét, denote its co-
variance. Similarly, lety andv denote the corresponding vec-

It is interesting to note also that there are connections of
the preceding development (and, for that matter, much of the
discussion in this paper) to problems arising in the field of

tors of measurements and measurement noises, respectivelglecentralized control. In such problems, different “nodes”

so that

y=Czx+wv (38)
wherewv has covariancd? and whereC' and R are block-
diagonal matrices formed, respectively, from the values of
C(s) and R(s) throughout the tree. Then one form for the
equations for the optimal estimate is the following:

(P;'+C"R'C) 2, =C"R™y (39)
wherez, denotes the vector of optimal smoothed estimates,
which has corresponding error covariance given by

P t=pPt4+CT'R'C. (40)

Thanks to the fact that(s) is Markov on the MR treep, !

in a network correspond to different “agents” or controllers
who observe and can influence the behavior of a dynamical
system. If all of the data collected by these agents could be
centralized, in principle, one could determine the optimal es-
timate of the system given all of the measurements as well
as determine the optimal coordinated control policy for all
of the agents. However, because of constraints that might in-
clude computation but in many cases are dominated by other
issues (such as communication constraints or the geographic
separation among agents), such centralization of information
is not possible, and instead one must consider alternative
strategies for coordination that, in particular, may produce
estimates that are suboptimal. While there are many issues
in decentralized control that do not arise in the processing
problems considered he#eijt is worth noting that one case

in which relatively simple solutions can be found is that in

has a tree-structured pattern of nonzero elements. FurtherWhich the agents have what are referred to in [148] and [149]

sinceC andR are block-diagonal, the matrix on the left-hand
side of (39), namely>1, also has the same tree structure.
There are two implications of this observation.

WILLSKY: MR MARKOV MODELS FOR SIGNAL AND IMAGE PROCESSING

22For example, a significant complication arises due to the indirect “com-
munication” that occurs when each agent's control actions influences the
subsequent measurements of other agents.
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aspartially nested information patterns construct that is
directly related to the singly connected structure of our MR
models and of MRFs on acyclic graphs more generally.

Example 4: As a first example, consider the optimal esti-
mation of sea-level variations given satellite altimetry mea-
surements such as in Fig. 2, as briefly described in Sec-
tion lI-A and in much more detailin [112] and [113]. As men-
tioned in Section II-A, sea-level variations have a fractal-like
spectrum. Thus, the model (7), with variances of the noise
processu(s) that decrease geometrically at finer scales, rep-
resents a simple MR model that captures statistical behavior
with this type of spectral fall-off. The finest scale in this
representation corresponds to pixels of the same size as the
resolution of the satellite data. These data, then, are simply . —m— -
modeled as measurements at those finest scale nodes cor- Longiucts [Easg
responding to locations along the tracks in Fig. 2 (so that
C(s) = 0in (19) except for this irregular pattern of finest
scale nodes). Fig. 9 shows the results of applying the MR
estimation algorithm described in this section to data along
the tracks shown in Fig. 2. Fig. 9(a) shows the optimal esti-
mates of sea-level variations, while Fig. 9(b) shows the cor-
responding error variances over the entire field.

There are several clarifying remarks to make about this
example. The first is simply the observation that the dimen-
sionality of this example is nontrivial: we are attempting to
estimate roughly 250 000 pixels from approximately 20 000
measurements and at the same time calculate the diagonal
elements of the 250 00 250 000 error covariance matrix.
Using the MR estimation algorithm and this simple model,
this is a relatively modest computational task. A second point
is that, as described in [112], the measurement noise model (b)
used in this case is highly nonstationary, due to the fact that
errors in knowledge of the geoid were known to be much
larger in regions in which there were significant gradients in 550
the geoid, due, for example, to significant bathymetric fea-
tures (i.e., variations in the sea floor, such as sea mounts, %
trenches, etc.). Indeed, one of the advantages of having the
error variances computed by the MR estimation algorithm is
that we can use these to detect statistically significant anom-
alies, that is, differences between measurements and esti- B F Lk xF
mates that are large compared to what the estimation algo- 35;;%% . '
rithm would expect based on the computed error variances. 3 e A :
Fig. 9(c) shows the locations of the set of the detected anom-
alies superimposed on a map of ocean bathymetry, showing
substantial correlation with significant features of the ocean N B o
floor. This suggests, among other things, using these anoma- ~ ®e™ 185~ teo  1e5 200 205 210 216 220
lies, together with maps of bathymetry, to provide localized ronotuae (Ees)
corrections to the geoid. ©

A third point is that having error variances at multiple Fing- 9. t(a:)TEgtFi’“E“;f/%% Osf é’fggr&lhrﬁight (rfeﬁﬁ\r’]‘t? tolthne gtﬁOi‘tir) biS‘?g
spales aI_Iows oneto ide_ntify thg optimal sca_le for reconstruc- gigézs, e(b()) Estimation error variancZE;sausgoc?atesdaV\zthgtheees?i(r:nésltles
tion at different points in the field. In particular, it Seems in(a). Both of these maps were computed using an MR estimation
reasonable that one would have greater confidence in higheralgorithm. (c) An overlay of ocean bathymetry contours with
resolution reconstructions nearer to the regions covered bythe locations of statistically anomalous measurement residuals.
satellite measurements than in regions farther from any such
satellite track. One method for quantifying this is to identify,
at each finest scale pixel, its coarser resolution ancestor withestimation of optical flow in image sequences), is given in
the smallest error variance. Thus, at that location, estimation[223].
at finer resolutions leads to an increase in uncertainty. Anex- It is also possible to use the MR algorithm together
ample of this, applied to a different application (namely, the with more sophisticated models that attempt to capture

Bathymetry Contours with Large Residual Overlay
T T T 7 o R
%G

Latitude (North)
S
o

(Reprinted from [112].)
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what is known about the ocean surface more accurately.the algorithm described previously in this section can be
For example, as discussed in [112], knowledge of spatial viewed as solvingeveralproblems simultaneously: it pro-
inhomogeneities such as the Kuroshio current can be usedvides the overall joint conditional distribution for the entire
to adapt the model locally, e.g., by increasing the variancesMR process (implicitly specified as a tree model itself); it
of the w(s) in particular spatial regions and at particular also yields the individual marginal conditional distribution
scales. In addition, it is also possible to use higher order for each individual nodeand it yields estimates that not
models, such as those that have been developed for surfacenly are the least-squares optimal estimates but also are the
reconstruction problems (see Example 8 in Section VI-B1). individual node maximuma posteriori (MAP) estimates
Further, using the likelihood function computation method- andthe overall MAP estimate of the entire MR process. For
ology described in the next section, we can also tune our discrete processes, however, computing the node-by-node
models by finding the maximum-likelihood (ML) estimates MAP estimates or computing the overall MAP estimate for
of the parameters in the model, e.g., the rate of geometricthe entire process are quite different, and, depending on
fall-off in noise variances in (7) (see [113]). the application, one or the other of these may be prefer-

Finally, it is important to note that the results shown in able. For example, for image segmentation applications,
Fig. 9 are not obtained quite as simply as the discussion tostrong arguments can be made [234] that the computation
this point might imply. In particular, as we discuss in Sec- of individual node estimates rather than an overall MAP
tion VI-B1 and as has been pointed out by other authors [67], estimate is decidedly preferable as it reflects directly the
[188], [261], [281], [322], MR models on trees and espe- objective of minimizing the number of misclassified pixels.
cially very simple models such as (7) can produce results Nevertheless, both of these criteria (as well as a third that we
that have significant artifacts across major tree boundariesbriefly discuss in Example 10) are of considerable interest,
(i.e., at points at the finest scale that are close together spaand, for graphical models on trees, algorithms for each have
tially but far apart as measured by the path from one to the been studied and developed by many authors.

other along the tree). There are several approaches to dealing |n particular, a variety of algorithms have been developed
with this, including those described in Section Vi and alsoin for the computation of the conditional marginals at individual
Section VII. What was used to produce the results in Flg 9 nodes. One class, name|y, the so-called “message passing”
is the same simple method used by others [72], [270], and algorithms, are briefly described in Section IV-D. Another,
[298], namely, averaging the estimation results using severalwhich can be found explicitly or implicitly in several places
different tree models, each of which is shifted slightly with (e.g., [7], [169], [199], [205], [267], [294], [295], and [332])
respect to the others, so that the overall average smoothes ouhvolves a structure exactly as that described previously for
these artifacts. We refer the reader to Section VI-B1 for fur- the linear-Gaussian case (see, in particular, [199] for a de-
ther discussion of this important isstie. tailed development). As a preliminary step, we first perform a

While the preceding discussion is couched in the context coarse-to-fine Chapman—Kolmogorov computation to com-
of linear-Gaussian models, the same two-sweep structurePute the prior marginal distribution at each node. The algo-
for optimal estimation holds foany Markov model on rithm then proceeds first with a fine-to-coarse step, analo-
an MR tree, although, instead of propagating means and90Us to the MR Kalman filter in (20)~(32), for the compu-
covariances in the upward and downward sweeps, we nowtation of the distribution at each node conditioned on all of
propagate probability distributions. For example, consider the m_easurements in the subtree rooted at that node. Finally,
a finite-state MR process as discussed in Example 3, angthere is a coarse-to-fine sweep, analogous to the RTS sweep

suppose that we have observatioyfs) which we assume in (33)—(37), which yields the marginals at each node condi-
are conditionally independent measurements of the MR tioned on data throughout the entire tree. Choosing the mode

variables at individual nodes. That is of each of these marginals yields the so-called mode of the

posterior marginals (MPM) estimate. Furthermore, as in the

p(y(s), s € V|z(s), s€ V) = H p(y(s)|x(s)). (41) linear-Gaussian case [225], the distribution of the entire MR
sCV process conditioned on all of the data has the same tree struc-

. . . ture, and the model parameters of this conditional model, i.e.,
The discrete case raises a number of issues not encountere@ .. A ;
e conditional distribution at the root node and the condi-

in the linear-Gaussian case, one of which is the specific . " o . .
o . . . . tional parent—child transition distribution, are also immedi-
objective of processing. In particular, in the Gaussian case, . S
ately available as a result of the two-sweep estimation algo-
23Note that, as discussed in [188], [261], [262], [281], and [322], ob- rithm [332].

taining shift-invariant algorithms (WhICh are devoid of the artifacts noted in The Computatlon Of the MAP estlmate for the entlre
the text) requires, in principle, considering a full set of possible shifts of the

MR tree. Such models can be thought of as mixtures of trees [237], [240], process involves somewhat different gc_)mputauohs but with
i.e., a probabilistic draw is made of one of these tree models. Note that, while very much the same structure and spirit, something that has

straight averaging of the estimates from all of these trees does result in apeaan emphasized in several investigations [7] [169] [294]
shift-invariant algorithm, it is technically not the optimal Bayesian estimate. ' ’ ’

In particular, the optimal Bayesian estimate would require weighting each [_295]' Computing the M_AP (T:'Stima.te involves a generaliza-
tree estimate by the conditional probability (based on the observed data) thattion of the well-known Viterbi algorithm [118], one that can

particular tree was the one drawn from the mixture. While itis certainly pos- pe traced at least back to the study of so-called “nonserial
sible to do this using the likelihood computation methods described in the

next section, to our knowledge this has never been used. Further, the benefildyn?-r_nm_ programmlng” [32] and to the work of others in
of this additional complexity is, we believe, negligible. artificial intelligence and graphical models [7], [89], [169],
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[267], [294], [295]. A description of the algorithm that alternate method computes quantities that can be of value for
mirrors very closely the two-pass structure of the estimation other problems (such as anomaly detection) and also brings
algorithms we have described so far (and that also makesout interesting and important similarities and differences
clear how this algorithm generalizes standard dynamic with well-known ideas in state space estimation for temporal
programming procedures) can be found in [89] and [199]. A processes. In particular, one of the keys to the computation of
first fine-to-coarse sweep is performed in which two func- likelihood functions for temporal state models—and, in fact,
tions are computed at each node. One of these specifies th@ne of the key concepts more generally for temporal models
optimal estimate at that node given the optimal estimate atitsof other forms [216], [217]—is the concept @fhitening
parent. The second is the optimal “cost-to-go,” nhamely, the the measurements, i.e., of recursively producing predictions
maximum value of the conditional distribution for the entire of each successive measurement (using a temporal Kalman
subtree rooted at that node given both the data in the subtredilter), which, when subtracted from the actual measurement
and the state value at the parent node. This latter quantity isvalues, yield a sequence of independent random vectors,
passed back to the parent node for use in the computationreferred to as thénnovations whose covariance depends
of the analogous pair of quantities at that node. When thein a known way on the temporal state model. Since these
top of the tree is reached, the optimal estimate at that nodewhitened measurements are informationally equivalent to
is easily computed, initiating a coarse-to-fine recursion in the original ones, the likelihood function can be written in
which the estimate of each parent node, together with theterms of the joint distribution for the innovations, which
function computed on the upward sweep, yield the optimal is nothing more than the product of the marginals for the
estimate at each child. As with the MPM algorithm and the innovations at each successive time point.

computation of likelihoods described in the next section, the  The estimation algorithm described in the preceding sec-
key to the existence of this very efficient structure is the fact tion—and, in particular, the fine-to-coarse MR Kalman fil-
that the conditional distribution of an MR process on a tree tering sweep—does produce a set of measurement “predic-

can be recursively factored. tion” errors, namely/(s) in (21). However, because of the
o . tree structure, this processistwhite over the entire tree. In
C. Likelihood Functions particular, thanks to the structure of the fine-to-coarse sweep

In addition to the optimal estimation algorithms described [as depicted in Fig. 8(a)], each value of this process involves
in the preceding section, very efficient algorithms also exist predictingy(s) based only on the data in the subttesow
for the computation of likelihood functions, quantities that nodes. For that reason, it is not difficult to see thats) and
are needed in the solution of problems such as hypothesis~(t) are most certainly independentiandt are on the same
testing and parameter estimation. Specifically, by exploiting Path from a leaf node to the root node (i.e., if one of these
recursive factorizations of MR processes, one can develop annodes is a direct descendent of the other),.gu) andw(t)
algorithm for computing the likelihood functigi(y(s), s € are generally not independent otherwise.
V) that involves a single fine-to-coarse sweep through the As described in [225], to complete the whitening operation
data (see, e.g., [169], [267], [333], and [336]). Such an algo- (So that the overall likelihood can be written as a product of
rithm follows from the following equalities, displayed here distributions for the individual innovation values), we define

for the discrete-state case: a total ordering orV, extending the partial order of the tree
B (in essence placing orders on cousik# cousinsn times
p(y(t), t € Vslz(s7)) removed, uncles, etc.) and then complete the whitening op-

eration. By choosing this ordering in a systematic fashion,
e.g., as illustrated in Fig. 8(c), we can accomplish this re-

=D ), t € Vilz(s)) p(z(s)e(s7))  (42)
) maining whitening very efficiently, in fact using a somewhat

z(s

p(u(t),t € Vela(s)) different coarse-to-fine sweep complementing the Kalman
K, filtering fine-to-coarse computation. The result, again, is an
=p)|z(s) [[ pW(®),t € Veailz(s)).  (43)  algorithm with total computational load that scales linearly
i=1 with N.
Note that, fors = 0, the root nodesy does not exist, Example 5: One application of the MR likelihood func-

and at this node the right-hand side of (42) is simply the tion computations is to the texture discrimination problem
overall likelihood function, while the transition probability ~ introduced in Section [I-B and developed more thoroughly
p(x(s)|z(s7)) is simply the prior marginal for:(0). Also, in [225]. As mentioned in Section I, many textures, such
in the case of continuous variables, the summation in (42) @s those shown in Fig. 4, can be modeled effectively using
becomes an integral, which reduces to simple matrix/vector MRF models. However, likelihood function computations for
equations in the linear-Gaussian case. MRFs can be highly nontrivial, so that suboptimal methods
While the fine-to-coarse application of (42) and (43) is (such as those in [50]) are often used.

quite efficient and most likely the method of choice if the ~ Another approach starts with the simple and obvious state-
sole objective is the computation of likelihoods, there is an ment that such MRF models do not represent “truth” but
alternative two-pass method for the linear-Gaussian case,

W_hiCh also has total complex_ity th_at is linear/\, although ] 24As discussed in [225(.) represents anartingale incremenprocess
with a slightly larger proportionality constant. Further, this on the partially ordered set defined by the tree.
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Fig. 10. (a) Comparison of the probabilities of correct
classification (as a function of a parameter Here, the dashed

line represents the optimal performance using the exact Gaussian
Markov random field (GMRF) likelihood ratio test (LRT); the solid
line corresponds to the performance using a MR model (MM)-based
LRT [using what is referred to in [225] asz&roth-order model
(corresponding to keeping only a scalar state at each node in the
guadtree model)], and the dashed—dotted line is the performance
using the suboptimal minimum-distance (MD) classifier from

[50]. The results in (a) are for a 32 32 image chip at an SNR of

0 dB. (b) lllustrating how performance approaches the optimal
achievable as we increase the order of the approximate MR model
(these results are for a 26 16 image chip at an SNR of 0 dB).
(Reprinted from [225]).

Fig. 10(a) shows that discrimination performance using
very simple approximate MR models for these textures is
significantly better than the suboptimal method of [50] and
nearly as good as the performance achieved if likelihoods
using the exact MRF models are employed. Fig. 10(b) shows
how the MR-based algorithm’s performance varies as the
order of the MR model is increased (see Section VI for a de-
tailed discussion of modelingj.As this figure indicates, the
use of low-order MR models results in performance essen-
tially as good as that achieved using the exact MRF models
for these textures.

D. Further Ties to Graphical Models

To provide some additional perspective on the algorithms
described in the preceding sections, we now take a brief
glimpse at inference algorithms for models on more general
graphs, a topic which has been and remains the subject of
numerous investigations (see, e.g., [35], [36], [128], [132],
[164], [169], [170], [200], [204], [208], [222], [267], [269],
and [339]) and to which we return again in Section VII. To
begin, consider the estimation of the stafe) (assumed
to be zero-mean for simplicity) of a Gaussian graphical
model on a possibly loopy grapfi, given a set of linear
measurements, as in (18)As we did in Section IV-B, if
we collect all of the state values into a single vecatowith
covariancel,., and similarly collect all of the measurements
into a vectory, so that the measurement equation is as in
(38), then the optimal estimafig is once again the solution
to (39), and the error covariance matrix is given by (40).
Moreover, just as in the analysis in Section IV-B, we see that
the block-diagonal structure @f” R~ C implies that the
structure ofP?~! is the same as that ¢t 1, i.e., off-diagonal
blocks are nonzero only for those blocks corresponding
to edges in the grapi. As a result, the estimation error
also is Markov with respect to the same graph, a result
that can be found in a number of places in the literature
(e.g., [208]) and that generalizes the results for time series
and MR trees discussed in Section IV-B. The same is also

it is reasonable to seek alternate models that lead to muchcongitioning an MRF with independent measurements at

simpler likelihood computations resulting in performance es-

individual nodes yields a conditional distribution that is also

sentially as good as what one would be able to achieve usingyjarkov over the same graph.

the original MRF models. Fig. 10 illustrates the results of

As the results in Section IV-B indicate, if the gragh

such a texture discrimination system, that is, one based notis |oop-free, there are efficient methods for computing esti-

on MRF models but rather on MR models constructed using

reduced-order “cutset” models of the type described subse-

quently in Section VI-AL. This figure depicts the probability
of error in texture discrimination between two models, where
one of these models is the MRF model for the sand texture
in Fig. 4, while the other model is parameterized by a scalar
parametet, wherew = 0 corresponds to the model for the
pigskin texture in Fig. 4 = 1 corresponds to the sand tex-
ture, and intermediate valueswofcorrespond to MRFs with
parameters that are a weighted average of the parameters f

mates and error covariances in the linear-Gaussian case and
marginal conditional distributions in the more general non-
linear case. The reason for this efficiency can be explained
in terms of the existence @limination ordersi.e., orders

25Here, the “order” of the MR model refers to the dimensiaof the state
at each node.

26n the graphical model literature, there is often no distinction made be-
tween measurements and the variables defined at nodes on the graph; we
simply have knowledge of some of these variables and wish to perform in-

Oference (estimation or likelihood calculation, for example) based on this in-

the pigskin and sand textures (so that the two textures beingformation. This is a cosmetic rather than substantive difference, as we can

discriminated are the most different for= 0 and become
increasingly similar as increases toward 1, at which value
they are identical).

WILLSKY: MR MARKOV MODELS FOR SIGNAL AND IMAGE PROCESSING

easily add nodes to our graph corresponding to each nodal measurement
y(s) and a single edge for each such node connecting it to the corresponding
original nodes. We then wish to perform inference based on observation of
the variables at these new nodes.
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in which variables are eliminated in a first sweep and then
added back in the second sweep, for which there is n#fill.

the parameters of the graphical model, e.g., of the clique
potentials in (11). Indeed, in the linear-Gaussian case, in

From a random field/graph-theoretic perspective, the lack which the partition function is proportional to the square

of fill for such elimination orders has a simple interpreta-
tion: if we subsampldghe random field or graphical model
by eliminating a set of variables, this restricted mourel
mainsMarkov with respect to a graph on the remaining nodes
with the same neighborhood (and fill) structure as the orig-
inal graph (see [164], [200] and, in particular, [269] for dis-
cussions of this issue for general graphical models).
Similarly, and as we saw in Section IV-C, the compu-
tation of likelihoods for loop-free models can also be per-
formed efficiently. While this can be interpreted in terms of
the existence of elimination orders without fill, it can also be
directly tied to factorizations of the probability distribution

root of the determinant of the process covariance, this has
been known at least since the work of Whittle [340], [341]
(see also [344]) on 2-D random fields, Thus, while the com-
putation of likelihoods and optimal parameter estimates for
models on loop-free graphs is computationally tractable and
straightforward, the absence of simple factorizations and the
dependence of the partition function on model parameters
make optimal parameter estimation and hypothesis testing
far more challenging computationally. Analogous chal-
lenges arise in solving estimation problems, i.e., computing
conditional marginal distributions for general nonlinear
and discrete-valued models or, in the linear-Gaussian case,

over such graphs (e.g., in terms of a root node marginal andsolving (39) and determining at least the diagonal elements
parent—child transition densities or as in (42) and (43) in Sec- of the error covariance whose inverse is given in (40). In
tion IV-B). In particular, the existence of such factorizations particular, in general, for such graphical models, successive

implies that the partition functio# in (11) is not a function

elimination of variables in any order induces fill, implying

of the values of the parameters of the model on a loop-free both that the set of variables remaining after such an elimi-

graph (e.g., the matrice$(s) andQ)(s) in a linear-Gaussian
MR model), a fact that greatly simplifies ML estimation of
parameters for such models.

nation step is Markov with respect to a graph with additional
(and frequentlymany additional) edges (see [269]) and
that subsequent stages of computation may be increasingly

In addition to the MR models on which we focus here, complex.
there are other loop-free graphs and processes that have been As a result of these complications, there has been consider-
examined in the literature, primarily in the context of image able interest in developing either exact or approximate com-
processing. One such class that received much early attenputationally feasible methods for such inference problems.
tion in the investigation of recursive estimation algorithms For example, for simple graphs consisting of a single loop,
for random fields (see, e.g., [163], [343], [345] and the refer- very efficient noniterative algorithms exist that are closely re-
ences therein) involves imposing a complete order on a reg-lated to methods for solving two-point boundary value prob-
ular 2-D grid of points—typically a “raster scan” order in lems. One first performs two-sweep computations analogous
which the “past” of each point in the lattice consists of all to RTS computations but ignoring the boundary conditions,
points in previous lines of the 2-D lattice plus the points on e.g., the fact that the two endpoints of the sweep are linked.
the same line that come earlier in the scan order. Another A subsequent correction step, taking these boundary condi-
example is the class so-called “Markov mesh” models (for tions into account, then produces the correct estimates and
both Gaussian and discrete-state processes), which imposeovariances or the correct likelihood functi®nAlso, as de-

a partial order on pixels in 2-D [1], [78], [88], [98], [213]. scribed in Section VI-A, it is always possible in principle
However, in many problems, imposing such total or partial to construct exact noniterative algorithms for inference on
orders is clearly artificial. Moreover, often very high-order loopy graphs, essentially by converting them to problems
models of these types are needed to capture accurately then loop-free graphs with nodes that correspond to groups of
statistics of random fields of interest. As a result, there has nodes in the original graph. Such methods, which correspond
been considerable work in developing stochastic models for to eliminating groups of variables at once, also can be found
images that do not impose orderings of pixel locations. For in the linear algebra literature (e.g., so-called nested dissec-
example, MRF models, such as so-calfiest-order MRFs tion methods [133]). However, such exact methods are not
on the nearest-neighbor graph associated with a regular 2-Dcomputationally feasible for many graphs, and, as a result,
lattice [132], [234], represent one widely studied class of this there has been considerable interest in developing approxi-
type. Consequently, the investigation of inference on loopy mate and/or iterative algorithms as well.

graphs, which are the rule rather than the exception in many For the linear estimation problem in (39), a variety of
other fields including artificial intelligence and turbo coding, methods exist, especially when the underlying graph, while
is also of great interest in image processing. loopy, is far from fully connected so that the matdk !

As we have indicated previously, distributions for Markov on the left-hand side of (39) is sparse. For example, solving
models on loopy graphs do not admit elimination orders such an equation [208] for a first-order MRF essentially
without fill or simple factorizations in terms of local mar-  corresponds to solving (a discretized version of) an elliptic
ginal distributions. Furthermore, the partition function for PDE [208] for which extremely fast algorithms (conjugate
such a graphical model is generally a complex function of gradient, multipole, etc. [138], [256], [280]) exist. However,

27In particular, when such an order is used to solve (39) by Gaussian elim-  28See [4], [5], [141], [210], [258], and [260] for a methodology applied to
ination and back-substitution, no new nonzero elements are introduced intotime series, [101] for analogous results for MR trees, and [337] for results
the matrix on the left-hand side as variables are eliminated. for discrete-state graphical models on single loops.
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these methods doot compute the error covariances (i.e., The key to the algorithm is the method for incorporating
either the diagonal blocks af. or any of the off-diagonal  successive messages from a set of neighbors and then gener-
blocks), a difficulty that we briefly discussed in Section IV-A  ating the next messages to be passed back to the same set
and that also implies that such methods do not allow one to of neighbors. Intuitively, a BP message-passing algorithm
compute likelihood functions. incorporates each such message, assuming that the new in-
The graphical model literature also contains a variety of formation it contains is independent of previously incorpo-
iterative methods that apply to both linear and nonlinear/dis- rated information as well as the information provided by
crete models and that directly yield approximations to the messages from other neighbors. This is the case as long as
conditional distributions (i.e., estimates and covariances in messages do not propagate around loops of the graph. For
the linear-Gaussian case) and in some cases to the compua tree, such an algorithm yields the optimal estimate after a
tation of likelihoods. Among these are the methods based number of iterations equal to the diameter of the tree (so that
on generating samples from the conditional distribution for information propagates from each node to every other node).
the entire process using techniques such as the Metropolis oiThus, for a linear or nonlinear MR model on a tree, this local
Gibbs sampling algorithms [35], [132], [234], [339], which message-passing version of BP represents an alternative to
can be used either to estimate marginal distributions at indi- the two-sweep algorithms described in Section IV-B, with
vidual nodes (from which approximate MPM estimates can a total computational load that is slightly greater than that
be obtained) or as part of a simulated annealing procedureof the two-sweep algorithm (roughly speaking, each of the
for the computation of the MAP estimate. Also, a variety of N nodes performs computations during each iteration, with
alternative deterministic methods exist. One is the method of the number of iterations corresponding to the diameter of the
iterated conditional modes (ICMs) [36] in which the value at tree, which, for a balanced tree such as in Fig. 1, is on the
each node is iteratively modified to maximize the conditional order oflog V). Furthermore, as elucidated in [332], for a
distribution for that node given the current iteration’s values tree, BP also provides all of the parameters needed to con-
at its neighbors [a method that reduces to Gauss—Seidel it-struct factorizations of the distribution of the entire graph-
eration for the solution of (39)]. Others include so-called ical process, providing the basis for both efficient likelihood
mean-field methods [359] and the rich class of variational function computation and the construction of equivalent di-
methods [169], [170]. Another method that deserves mention rected models for any choice of root node.
is that developed in [351] using the so-called Bethe tree ap- When BP is applied to a graph with loops, the sets of in-
proximation. In this approximation, the computation of sta- formation provided by different neighbors and on successive
tistics at a specific individual node is approximated by re- iterations areotindependent, since, for example, a message
placing the original graph by a tree rooted at that node, wheresent by some node will be incorporated into a succession of
each path away from the node in the original graph is re- messages that eventually make their way back to the orig-
placed by a path in the tree. If the path in the original graph inating node through a loop in the graph. Such dependen-
contains a loop and thus goes through some node a secondies are not accounted for in the BP inference computations,
time, the corresponding path in the Bethe tree passes througtso that, roughly speaking, information is counted multiple
a “distinct” node corresponding to a second “copy” of the ac- times as it propagates around loops in the graph. As a re-
tual node in the original graph. Tree algorithms can then be sult, BP may not converge, and if it does converge it will
used to compute approximations to the desired statistics.  typically not converge to the correct statistical answers. Nev-
Several alternate methods for setting boundary conditionsertheless, empirical success of this algorithm in a number
on such a tree are described in [351]. If one uses the par-of applications, including turbo-decoding [7], [236], [278]
ticular approach of extending the tree without terminating and artificial intelligence, as well as known failures of BP in
it at some finite point, the concept explored in [351] inter- other cases, has led to an intensification of efforts to analyze
sects with a very important class of iterative methods that is BP and to develop enhancements and variants of it [285],
widely known in the graphical model literature and that is [332], [334], [337], [338], [357]. For example, as shown in
the subject of considerable current interest, both as an ob-[285] and [338], BP applied to the approximate solution of
ject of analysis in itself and as a point of departure for devel- the linear-Gaussian estimation problem in (39) and to the si-
oping and understanding other emerging methods. This is themultaneous approximate computation of the diagonal error
class of so-calle@elief Propagatior(BP) [267] algorithms, covariance blocks aF. may or may not converge. If it con-
originally developed in the context of discrete models. While verges, the estimate, will, in fact, converge to the exact so-
there are a variety of forms for BP, especially for trees, one lution to (39). However, the computed approximations to the
version that is introduced in [267] and that applies to loopy error covariances doot converge to the correct values (and
graphs as well is a “message passing” iterative algorithm, in typically underestimate the size of the estimation errors.)
which each node iteratively passes messages to and incorpo- As this discussion indicates, the complexity of inference
rates messages from its neighbors. After a single step of theon graphs with loops has sparked a considerable body of re-
iteration, each node has information from its nearest neigh- search and very active lines of inquiry, both to develop new
bors, while the next step includes information from nodes algorithms and also to analyze the performance of existing
that are a distance two from the node in question, etc., pro- procedures. In Section VII, we return briefly to this topic
viding an expanding “sphere of influence” for each node as to describe several lines of current inquiry that exploit the
the iteration proceeds. efficiency of inference on trees in order to develop new al-
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gorithms for and insights into inference on more complex coefficients associated with that scale and shiftOnce

graphs. again, takingA(s) = 0 implies that the coefficients are
independent from node to node. If we also take the covari-
INVERSE PROBLEMS literature), we then have that each of the coefficients at each

) _ _ node is independent of the others.

As we pointed out in Section I, MR methods span avery  hile the class of MR models described in the preceding
broad array of concepts and approaches, and in this sectionyaragraph have degenerate coarse-to-fine dynamics, it serves
we examine several other components of this large field. Our 55 5 yseful point of departure for the examination of other
objective in doing this is to help the reader both navigate \yayelet-based model constructs. A first of these involves an
through this larger domain and understand how these otherigg e of greatimportance in image processing applications in

lines of inquiry relate to the MR models and algorithms on yaticular, in which wavelet coefficients, while often nearly

which we focus. decorrelated, are most definitely neither Gaussian nor inde-
pendent. In particular, as discussed by many authors (e.g.,
A. Wavelets [46], [157], [218], [250], [299], and [300]), the distribution

The use of wavelets [86], [228], [329] to ana|yze stochastic of wavelet coefficients tends to be hlgh'y kurtotic and have
processes is, perhaps, the most familiar concept that comes tdieavy tails—resulting from the fact that many coefficients
mind when the idea of MR analysis of stochastic processes iscome from relatively smooth regions of an image and thus
raised. Much of the reason for this stems either from analysesare quite small, while others, corresponding to locations of
that demonstrate that wavelet transforms provide substantialedges, can be very large. Furthermore, as is also discussed in
decorrelation of important classes of processes such as fBrthe literature (e.g., [46], [80], [296], [299], [300], and [333]),
[69], [83], [100], [102], [114], [117], [137], [146], [154], large wavelet coefficients generally foroascadeghat are
[176], [191], [235], [273], [293], [320], [346], [360], or from localized in space and propagate across scale, reflecting the
constructions of processes using wavelet synthesis [62], [80],Presence of edges. Indeed, so-called embedded zerotree ap-
[83], [100], [114], [151], [275], [346]-[350], [358]. In this ~ Proaches to image coding [296] take explicit advantage of
section we take a brief look at some of the relationships be- these properties of wavelet coefficients.
tween wavelets and MR models on trees, a subject we have A class of MR models that captures the non-Gaussianity
divided into two components. The first of these describes a Of wavelet coefficients but not their dependence involves a
set of important examples that are explicitly in the form of Simple modification to the model described previously. In
MR models on trees with variables at nodes corresponding toparticular, we still use (6) withd(s) = 0, but we use a
individual detail or scaling coefficients of a wavelet decom- hon-Gaussian distribution fas(s). One possibility is a dis-
position of asigna| or image_ The second focuses on the inter-tribution from the class of so-called generalized Gaussian
pretation of wavelet synthesis as a coarse-to-fine, scale-dy-distributions [41], [250] of the formkK exp{—|z|*}, with
namic system, a viewpoint that has also received significant0 < a < 2. An alternative is the class ohixture distribu-
attention in the literature but whose explicit connection to tions[80], [218]. For example, one of the simpler models in-
tree models (a topic we defer to Section VI-B) is not as ob- troduced in [80] consists of modeling wavelet coefficients as
vious. independent with distributions consisting of finite weighted

1) Elementary Wavelet Models on Trees, HMMS, and Gaussian mixtures. Such a model, while not truly heavy-
Wavelet CascadesThe fact that wavelet coefficients of tailed (since the Gaussian fall-off is still presentels— oc),
many stochastic processes are nearly decorrelated lead§an capture a substantial range of non-Gaussian behavior. For
directly to a first, elementary method for MR modeling €Xxample, a very simple two-component mixture (consisting
in which we S|mp|y assumethat these coefficients are of low-variance and high—variance Gaussians) isusedin [80]
Comp|ete|y decorrelated. Such an approach' for examp|e'N0te that, in this case, we can think of each node of the tree as
was proposed and developed in [346], [347], and [350] for having a hidden variable in 1-D or a set of three hidden vari-
the modeling of fractal Gaussian processes. Such modelsables in 2-D, corresponding to the random choices of which
can be trivially identified with simple MR models on trees, Mixture component is used for each wavelet coefficient. Al-
in which individual detail coefficients serve as the variables ternatively, as discussed in [333] (see also [46], [300], and
that populate nodes at different levels of the tree. For [308]), one can obtain arich variety of truly heavy-tailed dis-
example, for a 1-D signal and the dyadic tree of Fig. 1(a), tributions as so-called “scale mixtures,” i.e., by multiplying
each nodes corresponds to a particular scateand shiftr, a unit mean Gaussian random variable by a positive random
and the coefficient placed at that node would be the detail variable, generated as a nonlinear function of a second in-
coefficient corresponding to that scale and shift. Identifying dependently drawn Gaussian random variable. Both of these
that variable with the state(s) of a linear MR model leads ~ Gaussians are, in essence, hidden variables, as it is only the
to a model as in (6) withi(s) = 0, capturing the fact that in heavy-tailed product that is observed. Optimal estimation for
this very simple model all coefficients are independent and
Gaussian. In the 2-D case, using the quadtree in Fig. 1(b), 29As is standard in wavelet analysis of images, these three coefficients
each node corresponds again to a scale and a 2-D Shiftcorrespondto:l) high-frequency detail in both dimensions; 2) low frequency

) . in the horizontal and high frequency in the vertical; and 3) high frequency
and the variables resident at each node are the three detaih the horizontal and low in the vertical.
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any of the choices of distribution mentioned in this para-
graph corresponds to performing nonlinear operations on in-
dividual wavelet coefficients. Among the algorithms that re-
sult from such models are so-called wavelet shrinkage algo-
rithms [2], [49], [57], [68], [104], [192], [193], [251], [301],
[330].

As described in [80], such independent mixture models
result in very simple nonlinear operations on individual
wavelet coefficients for optimal estimation. Moreover, both
the discrete-state hidden models as well as the continuous
ones in [333] open the door to building MR models on
trees that not only capture the non-Gaussianity of wavelet
coefficients but also the dependencies displayed by these
coefficients in real imagery. A number of approaches to
capturing such dependency have been developed (see, e.g.,
several contributions in [251]). One method is described
in [155], where wavelet shrinkage is first used to obtain
a coarse estimate of denoised wavelet coefficients, and
once these denoised coefficients are subtracted from the
observed data a linear MR model is used, together with the Fig- 11. Denoised version of the noisy image shown in Fig. 3(b)

. . . . using a hidden Markov MR tree model and complex wavelet
two-sweep algorithm in Section IV, to estimate smaller-scale yocomposition. (Reprinted from [282].)
fluctuations. Other approaches attempt to capture directly

cascade behavior in which the occurrence of a large wavelet ] ]
coefficient at one scale implies that nearby coefficients c@ptured through the use of a linear MR Gaussian model as

at other scales are also likely to be large. The following in (6) for the hidden state, where the measurement model
example illustrates one important method for accomplishing involves multiplying a nonlinear function of this hidden
this. state with a white noise sequence to produce a model for
Example 6: In a series of papers [59], [80], [261], [281], the actual wavelet coefﬁpients. These coe_fficients, .then,
[282], a methodology is developed for signal and image pro- a&ré uncorrelated but not independent and, in fact, display
cessing applications based on so called hidden Markov treesthe same type of cascade behavior seen in real imagery.
The basic idea behind these models builds on the Gaussiarfurthermore, as mentioned previously, such a model can
mixture model just described. In particular, the MR model in Ccapture truly heavy-tailed distributions. Estimation for this
this case is a finite-state model as described in Example 3.nonlinear model, however, requires iterative relinearization.
In the basic version of this model, each stafg) consists Thanks to the linear MR model for the hidden variables, each
of either a single binary random variable (for 1-D signals) iteration can be performed efficiently using the two-sweep
or a set of three binary random variables (for 2-D), which algorithm described in Section IV.
correspond to choices of low- or high-variance Gaussians The idea of using multiplicative models to capture cas-
for the corresponding wavelet coefficients. In order to cap- cades in MR decompositions actually has its own rich lit-
ture cascade effects of large wavelet coefficients, one canerature in areas ranging from mathematical physics and the
choose the parent-to-child transition probabilities so that the study of random cascades and multifractals [15], [94], [136]
choice of “high” at a parent node makes it likely that “high” t0 multiscale models for counting processes [188], [261],
will be chosen at a child node. The wavelet coefficients are [263], [322] to multifractal cascade models for communi-
then modeled as being conditionally independent given the cation network traffic [279]. One example of such a model
value of the corresponding discrete state). Given such (in which the state variables at each node are scaling rather
a model, the discrete-state version of the two-sweep estima-than wavelet coefficients) is described in Example 7 in Sec-
tion algorithm described in Section IV can be directly ap- tion V-C.
plied in order to perform image denoising. Fig. 11 depicts  The lack of shift-invariance associated with decimated
the result of applying this methodology to the noisy image wavelet representations has led a variety of authors [72],
depicted in Fig. 3(b) using a set of complex-valued wavelets [203], [270], [282], [298], [333] to consider alternatives
[186] chosen to minimize the problem of nonshift-invariance generally involving the use of overcomplete, undecimated
that arises with the use of decimated wavelet decompositionswavelet representations in 1-D and overcomplete “steerable”
[282]. Comparing Fig. 11 with the Wiener filtering results pyramids in 2-D that allow one to avoid artifacts due to
in Fig. 3(c) and (d), we see visually that the nonlinear pro- a lack of rotational invariance as well. The use of such
cessing inherent to the MR hidden Markov tree model leads overcomplete representations, however, implies that any
to excellent noise rejection without the blurring evident in faithful statistical model must capture the fact that there are
the linear Wiener filter. constraints among the coefficients in this representation.
Since including such constraints greatly complicates any
We also refer the reader to [333], in which the cascade statistical model, it is common in practice to ignore them
and heavy-tailed behavior of image wavelet coefficients are and thus to use a model that produces estimates of sets of
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variables that are inconsistent in that they do not correspondcursive Kalman filter with state at scale corresponding to
to the coefficients in the overcomplete representation of the entire vector of scaling coefficients,,. Note that this
any signal. In practice, a variety of methods for projecting model allows the direct fusion of nonlocal measurements as
such estimates onto a consistent set—aor, equivalently, forlong as they correspond to observations of individual wavelet
directly reconstructing a signal given these estimates—haveor scaling coefficients [62], [100], [151].
been developed, and we refer the reader to the references Second, one can do better than this in both modeling and
cited previously in this paragraph. Note also that this incon- estimation by taking any residual correlation into account.
sistency is closely related to the concept of internal models Indeed, several authors have considered methods for doing
first introduced in Example 1 and discussed further later in this [85], [146], [275], [358], and (44) suggests a very simple
this section and in Section VI-B. method of this type, similar to an approach described in

Finally, there is also a substantial body of work on Section VI-B. In particular, suppose that the objective is to
so-called adaptive representations (e.g., [52], [73], [192], construct a model as in (44) so that the finest scale process
[193], [228], and [229]) using entire families or “dictio- has covariance that closely approximates a given covariance
naries” of bases, which taken together generally form vastly (e.g., of fBm). Since the coefficients,, andw,, are the
overcomplete sets. The objective in each of these methods isscaling and wavelet coefficients of the finest scale process
to select one basis from this collection that leads to the “best” z»;, we can directly use the specified, desired statistics
representation—in terms of maximal decorrelation among of this fine-scale process to determine the statistics of the
and/or sparsity in the resulting expansion coefficients for the coefficients at coarser scales. For example, such a computa-
signal in question. The argument can be made that such artion can be used to determine the variances of the wavelet
approach produces a tree-structured signal decomposition ircoefficientsw,,. If we then ignore any correlations, i.e., if
which the correlation or dependence among coefficients in we use these computed variances but otherwise assume that
the tree is minimized. As a result, using such an optimized the w,, are white, we obtain an approximate model of the
representation can improve the accuracy of a resulting MR type we have already described. However, it is easy to obtain
model for the signal—e.g., the trivial linear model (with a more accurate approximation analogous to (44) without
A(s) = 0) or a more complex model such as one using any increase in dimensionality. Specifically, suppose that,
hidden Markov trees. rather than assuming that the,, are white, we make the

2) Scale-Recursive Models Based on Wavelet Syn-weaker assumption that,, forms a Markov sequence in
thesis: We now turn to an alternate approach to using scale. In this case, we can capture any correlation between
wavelets in scale-dynamic models. A first method, de- w,, andx,, by writing
scribed by several guthors _[62], [100_],_ [137], is based on w0y = Lo + fimn (45)
the wavelet synthesis equation. Specifically,4gf denote
the vector of all scaling coefficients at theth scale in an where L, z,, is the best estimate af,,, based onz,,, and
orthogonal wavelet decomposition, and 1et, denote the  wherey,, is uncorrelated withe,,, and, in fact, is a white
corresponding vector of wavelet coefficients at the same sequence in scale under the assumptionthats Markov.
scale. Then, assuming that we use a compactly supportedFurther, bothL,,, and the covariance gf,,, are directly com-
wavelet, corresponding to a particular pair of wavelet and putable in terms of the target fine-scale statistics. Substituting
scaling filters [86], [228], [329], the wavelet synthesis (45) into (44), we obtain the following dynamic model:
equation can be written as a scale-to-scale recursion

LTm+1 = (Hrn + GrnLrn)xrn + Grnﬂrn (46)

Tl = Hinm + Grtom (44) which represents a more accurate approximation as it cap-
) _ tures some of the residual correlation among wavelet and
whereH,, andG,, are matrices corresponding to the con- scaling coefficients. Of course, one can consider higher order
jugate filter pair for the particular wavelet decomposition approximations (e.g., modeling, as a higher order Markov
chosen, and where the first term on the right-hand side COr-process in scale), although such approximations will require
responds to the coarse-to-fine interpolation of scaling coeffi- defining a “state” for recursive estimation that consists of
cients and the second to the insertion of the additional detail ge\eral successive resolutions of scaling coefficients. Simi-
at that next finer scal®. larly, by attaching a hidden Markov tree tg,, we can, in
Equation (44) is the starting point for severalimportantob- principle, cpmbine the approach described here with that in-
servations and investigations. The first involves its direct use roduced in Example 6, a possibility that to date has not been
in both multiscale modeling and estimation when the wavelet ayamined in the literature.
coefficients are modeled as being white noise. In this case, |y addition, other nonlinear variations of this type of struc-

estimation based on such a model given noisy measurementgre can be found in [124] and [125] in which the estima-
of the wavelet coefficients corresponds to a standard scale-re+jgn of 4, based ont,, takes on a form that is in some

30Note that, in the representation of 1-D signals, ., has twice the di- sense both more general and more restrictive than (46). In
mension as:,,,, each corresponding to the full set of variables at the corre- particular, in the models in these references, the individual
sponding level of a pyramidal representation. In 2-D, the number of coeffi- Jetail coefficients comprisingjm are assumed to be condi-
cients increases by a factor of four as we move from one scale to the next . . . " .
finer scale. For this reason, the linear operaféys andG,, are rectangular tionally independent when each is conditioned on a speci-
and also have dimensions that vary with scale. fied window of neighboring scaling coefficients (i.e., a cor-
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responding subvector af,,). Both the dependence of each for this apparent complexity is that the models (44) and (46)
such coefficient on only a local window of scaling coeffi- do not correspond to MR models on trees, while (47) does
cients and the resulting conditional independence of the en-only for the case of the Haar wavelet. Fortunately, however,
tire vector of coefficients represent what in principle are re- a more careful, component-by-component look at the struc-
strictions compared to the general form of (46), although ture of the wavelet synthesis equation—and a very different
such restrictions are generally required in order to obtain definition of the MR state—does indeed allow us to construct
computationally tractable models (e.g., we will see some- MR models on trees such as in Fig. 1. The construction of
thing similar in Section VI-B). What is more generalin [124] such wavelet-based models is described in Section VI-B3.
and [125] is that the conditional distribution for each compo-
nent ofw,, is modeled as Gaussian, with mean and variance B. Multigrid and Coarse-to-Fine Algorithms
that arenonlinearfunctions of the window of neighboring
scaling coefficients (see Section VI-C3 for a further brief dis-
cussion).

Note that both of the models (44) and (46) represent con-
sistent models in that the values of the vectegsandw,,
are, with probability 1, the scaling and wavelet coefficients of
the finest scale process,. However, as discussed in [62], it
is also possible to specify models that do not have this consis-
tency but which still exploit wavelet structure. In particular,
a model studied in [62] is the following variant of (44):

In this section, we discuss several classes of algorithms
using multigrid and coarse-to-fine algorithmic structures.
With the exception of the last few approaches we describe,
these methods are fundamentally different from those on
which we focus in this paper. For that reason, we will be
rather brief in our descriptions and not as exhaustive in our
review of the literature.

Most of the algorithms that fall within the category on
which we focus here correspond to problems that can origi-
nally be described at a single, finest resolution—i.e., the data
(47) and desired estimates are only available or required at that

single resolution. For a variety of reasons, however, direct

wherew,, is white noise. We note here only that the addi- solution of that single-resolution problem is either too com-
tional DOFs in models such as (47) provide additional flex- Plex to consider directly or is subject to large numbers of
ibility—and, hence, the potential for greater accuracy—in local minima, many of which are far from the optimal so-
approximating the statistics of any process. However, while lution. The general idea of coarse-to-fine methods for such
examples exist demonstrating the potential of such modelsProblems is to construct approximate, coarser versions of the
(see, e.g., [111], [223], and the discussion in Section VI-B), problem (typically at multiple resolutions) and to use the
exploiting this flexibility in a systematic fashion remains an  Solution of the coarser, and hopefully simpler, problems to
open problem. What is true, however, is that estimation for guide solut_ions atfiner (and eventually the finest) scales. Per-
such models admits efficient solution in exactly the same haps the simplest examples of such approaches are to prob-
cases as for (44) and (46). lems in which the spatial phenomenon to be estimated is
In particular, note that the dimensions of the state vari- N0t modeled as a random field but rather is simply viewed
ables in (44) and (45) are substantial, correspondingjito @S an unknown, which is represented in an MR fashion to
of the scaling coefficients at a single scale. As a result, di- allow coarse-to-fine algorithms for ML estimation. One ex-
rect implementation of Kalman filtering equations is prohib- ample of such an approach is given in [63] in the context
itively complex for signals or images of even modest size. of an inverse conductivity estimation problem, in which the
However, as discussed in [62], if the data that are available Unknown conductivity field is modeled as piecewise con-
are either independent-noise-corrupted measurements of thétant at a sequence of resolutions from coarse-to-fine (corre-
wavelet or scaling coefficients or can be transformed into SPonding to Haar wavelet approximations), and the solution
this form, the Kalman filter can be implemented in decou- of the problem at one resolution is used as an initial condi-
pled, diagonalized form using the wavelet transform. One tion for the solution at the next finer resolution. Similarly,
case in which this occurs is if there are dense measurement§0arse-to-fine approaches for the detection and localization
of the process at one or more scales, corrupted by indepen®f significant anomalies (modeled as unknowns) in a back-
dent additive noise of variance that can vary from scale to 9round field (modeled as a random field) [120], [245] have
scale but is constant at each scale. In this case, application of€en developed to allow efficient zooming in on features of
the wavelet transform to these data transform them into inde- nterest.
pendent measurements of individual wavelet coefficiants, ~ There is also extensive literature on the use of MRF
On the other hand, if the available data are sparse or irregu-m0d9|§2 together with either full multigrid computational
larly samplecbr simply have varying noise variances within algorithms or purely coarse-to-fine algorithmic structures.
any scale, the wavelet transform does not yield such a simpli- Examples of the former can be found in [70], [109], [319],
fication, and the complexity of the Kalman filter associated @nd [356], where the treatment in [319] represents what to

with these models becomes prohibitive. One of the reasonsthe author’s knowledge is the first thorough examination
of the application of multigrid methods to image pro-
31\We refer the reader to [110] for a significant extension of these ideas to
a construction using wavelet packets [73] rather than wavelets and in which  32in some of these treatments, e.g., [319], MRF models are not explic-
taking the wavelet packet transform of dense measurements at one or moretly discussed. However, the regularization formulations used, which involve
scales transforms the problem into a set of almost-decoupled MR tree esti-variational penalties on the reconstructed field (e.g., on smoothness), have
mation problems, coupled only through a common root node. direct interpretations as MRF models. See Section VI-B1 for more on this.

LTm+1 = Hrnxrn + Wy,
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cessing/computer vision problems. Full multigrid methods, of at least some of the computations and representations
such as those used in [319] and discussed in much moreembedded in such algorithms. As a result, a number of
depth in references devoted to the subject such as [44] andauthors [164], [144], [200], [269] have looked in more detail
[45], involve both coarse-to-finand fine-to-coarse opera-  at the following question. Suppose we begin with an MRF
tions in an iterative algorithmic structure. The idea in the model at the finest resolution; what is the corresponding
coarse-to-fine step is essentially the same as for the methodstatistical structure of a coarsened version of the field (e.g.,
described in the preceding paragraph: we interpolate acorresponding to a coarse wavelet approximation or to a
coarser approximation of the estimate to the next finer scale subsampled version of the field)? As discussed in [140],
to provide a starting point for the optimization at that scale. [144], and [145] (and as can be inferred from the discussion
Various types of interpolation can be used. For example, in [40]), if one begins with a nearest-neighbor MRF in 2-D
there is the general class of wavelet-based interpolationand then uses Haar-based coarsening, i.e., block-averaging
schemes, in which the interpolation from one scale to the at a set of increasingly coarse scales, then each of these
next involves simply propagating a scaling coefficient from coarser fields is also a nearest-neighbor MRF.
one scale to the next finer one with the corresponding detail However, as discussed in detail in [164], [200], and [269],
coefficient set to zero (e.g., (44) with,,, set to zero). In in all but a special set of circumstances, coarser scale fields
other interpolation schemes, the coarser variables mightresulting from other coarsening procedures such as sub-
simply represent subsampled versions of the field, with sampling [195], [200] and so-called renormalization group
sparser subsamplings at coarser scales. In this case, thenethods [99], [131], [135], [257] do not have such simple
coarse-to-fine interpolation might correspond to replication exact descriptions—and indeed may correspond to graphical
or to something slightly more complicated such as bilinear models with fully connected graphs. In such cases, what are
interpolation. generally used at coarser scales approximationsto the

As discussed in [44] and [45], the fine-to-coarse opera- exact statistics of the coarsened representation that are much
tions in multigrid reflect the fact that, in most applications more tractable computationally. For example, methods for
of multigrid, the problem that is actually solved at a coarser constructing MRF models that represent optimized approxi-
scale represents approximationto the original problem. mations for such coarsened fields are described in [195] and
For example, in approximating the solution to PDEs (as often [200], while [135] and other renormalization approaches
arise in continuous-space MRF estimation problems [208]), use statistical methods as a means of averaging over finer
derivatives at each scale are replaced by differences. Such apscale fluctuations in order to construct approximate coarser
proximations suffer from aliasing errors which can, in prin- scale MRF models. Using such approximate models implies
ciple, be reduced once we have estimates at the next finerthat the problems being solved at coarser scales are only
scale. Indeed, as discussed perhaps for the first time in [209],approximations to (rather than constrained versions of) the
a general interpretation of multigrid algorithms as applied to finest scale problem. Of course, this is completely consistent
random field estimation is that, at each resolution, such an al-with the philosophy of multigrid, in which coarse scale
gorithm computes the optimal estimatesuming that there ~ computations are of no intrinsic interest in themselves but
is no finer scale detail in the field.e., that the coarse-to-fine  rather serve the purpose of helping to guide the finer scale
interpolation process is exact so that any finer scale detail computations.
coefficients are zero. For example, if we were to assume that As the preceding discussion makes clear, in all of the
an image is constant over a2 block of pixels, then noisy = multigrid/coarse-to-fine image processing and random field
measurements of those four pixels would simply be aver- estimation algorithms described so far (and in the vast
aged in computing the corresponding optimal estimate at thatmajority of such methods in the literature), coarse-scale rep-
resolution. However, if we subsequently have available finer resentations of the phenomenon of interest are introduced
scale estimates, which in general will vary over these coarserprimarily for computational purposes, and any explicit
2 x 2 blocks, this fine-scale detail could then be used to cor- or implied statistical structure is isolated from scale to
rect for the erroneous averaging at the coarser scale, allowingscale—i.e., there is no single, consistent statistical model
new, coarser scale estimates to be computed. This is exacthacross the scale. As a result, these methods are rather
what the fine-to-coarse multigrid correction step does. different from those on which this paper focuses. However,

In a number of other MRF estimation algorithms [40], there are several investigations that both fall into the general
[126], [135], [140], [144], [145], [195], [257] the full multi- category of multigrid or coarse-to-fine procedures and
grid structure is not used, and only coarse-to-fine operationsdo involve random quantities at multiple resolutions that
are performed. In some of these (e.g, see [40], [140], [144], are explicitly linked statistically across scale through a
and [145]), the problems that are solved at coarser scalesgraphical model. One such example using MR models on
correspondexactlyto the original problems but with a con-  trees for coarse-to-fine SAR segmentation can be found
strained set of allowed reconstructions (e.g., finding the op- in [119]. Another, which involves graphs other than trees
timal estimate among all fields that are piecewise constant atfor image segmentation, is that originally developed in
each resolution), while in others this is not the case.

While it is certainly possible to view such coarse-to-fine 33This is closely related to the fact, mentioned in the preceding para-

. . . graph, that these methods produce exact, solutions to the original estimation

algorlthms as purely ComPUtatlonally motivated constructs, problem at each resolution under the constraints that there is no finer scale
[209] makes clear that there are statistical interpretations detail present in the random field.
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[42] (see also [53], [183], and [323]), which we describe and methods in this field have no or at most tangential
and illustrate in Section VII. In addition, there are several connection with the MR statistical models and processing
other such modeling frameworks described in the literature, algorithms with which we are primarily concerned. Conse-
including those in [179] and [180], in which the basic quently, our discussion here is brief, focusing exclusively
graphical structure superficially resembles the quadtree on aspects of work in this area that intersect with the main
of Fig. 1(b), except that there are also edges within eachthemes of this paper.
resolution—so that each scale by itself has connectivity As a first comment, we note that MR methods for inverse
exactly as with an MRF (e.g., nearest-neighbor edges problems have significant overlaps with the topics of both
for first-order models or larger neighborhoods for higher of the preceding sections. For example, the use of multigrid
order dependencies at each resolution). Such a graph hasr coarse-to-fine algorithms for inverse problems in order
complexity4 that is considerably greater than a single-scale to combat problems of computational complexity and local
first-order MRF, and methods such as simulated annealingminima is well documented (with [63], [125], [126], [215],
need to be applied in order to obtain solutions. In fact, [289], [290], and [356] representing examples). As for the
the authors of [179] and [180] develop multitemperature, use of wavelets, the motivations include not only the fact
MR annealing algorithms and demonstrate that there arethat wavelets decorrelate many stochastic processes but also
potentially some advantages to this approach that resultthat in many cases they lead to significant sparsification of
from the usual multigrid/coarse-to-fine philosophy of using the nonlocal operator relating the measurements and the un-
coarser grids to guide solutions at finer ones. We also referderlying random field which we wish to reconstruct. For ex-
the reader to other MR models [74], [125], [127], [212], ample, a number of authors [38], [95], [264], [271], [276],
[213], [289], that involve structures other than trees, together [286], [287], [361] have exploited this fact in the specific
with algorithmic structures that are reminiscent of multigrid context of tomographic reconstruction in order to develop
and coarse-to-fine procedures. deterministic inversion algorithms that are either very effi-
One final point to make about the methods mentioned in cient or that allow fast high-resolution reconstructions of lo-
the preceding paragraph concerns the modeling of the mea<alized regions. Also, a number of authors [39], [103], [107],
surements. One of the critical properties of the graphical es-[246]-[248], [305], [335], [362] have used both the decorre-
timation problems and algorithms discussed in the precedinglation and sparsification properties of orthogonal wavelet de-
sections is the assumption that each observation consists o€ompositions in order to develop statistical reconstruction al-
a measurement of the state at a single node on the graph corgorithms for tomography, deblurring, and other inverse prob-
rupted by independent noise. If this is not the case, then thelems. For the most part, such methods involve the use of the
actual graphical structure of the estimation problem must re- simplest class of statistical models described in Section V-A,
flect the additional dependencies introduced by the measure-namely, those resulting from assuming that the wavelet coef-
ments. In some methods, such as that in [42], the assumptiorficients are uncorrelated random variables. If one were then
of conditional independence is clearly satisfied, as all of the also to assume that the wavelet transform truly diagonal-
measurements are of individual finest scale pixels. However, ized the measurement operator, the associated measurement
in others, such as [74], [179], [180], and [213], the original model would have the form of (19), corresponding to uncor-
finest scale measurements are transformed—e.g., simply byrelated measurements of individual wavelet coefficients.
replicating the same measurements at different resolutions, Given the discussion in Section V-A, an obvious vari-
by transforming the raw data using wavelet transforms, or ation of such methods is one in which we use wavelet
by extracting features at multiple resolutions. Furthermore, shrinkage techniqgues—e.g., corresponding to modeling
the algorithms in these papers implicitly assume that thesethe wavelet coefficients as independent but non-Gaussian
transformed data are conditionally independent, a condition random variables. Several such methods have been devel-
that in some cases (e.g., measurement replication) is clearlyoped (see, for example, [244]), but the predominant use
not true and in others represents an implicit assumption of of wavelet shrinkage for inverse problems, introduced and
whitening resulting from wavelet transformation or feature popularized by Donoho [105], uses a variation, known as

extraction. the wavelet—vaguelette decomposition (WVD). As shown
in [105] and in other references in this area (see, e.g., [3],
C. MR Algorithms for Inverse Problems [187], and [206]), WVDs can be designed for important

classes of inverse problems (including tomography). Such
problems, i.e., problems in which the measurements aredecomposmons correspond to using an orthogonal wavelet

nonlocal functions of the random field to be reconstructed. decomposmon for thg random field to be recons?ructed
Inverse problems span a broad array of applications andand ablorthogonalb.ass for. the measurement domain that
mathematical formulations, and the literature investigating toge_:ther e>§actly_ diagonalize the me_asurement operator.
their properties and developing methods for their solution is >'""kage in this transformed domain then corresponds

equally vast (see, for example, [33]). Many of the problems to projecting the .measu.rer.nents onto the nonorthogonal
measurement basis, shrinking component by component,

. . and then reconstructing using the orthogonal image domain
34WVhere “complexity” can be assessed in terms of the loop structure of basis. A ith oth hrink licati h | ith
the graph or, more precisely, in terms of the complexity of the associated asis. ! s with other shrin Qge app |ca_t|ons, t ese_ algorithms
junction tree (see Section VI-A). have important asymptotic optimality properties, many

In this section, we take alook at MR algorithms for inverse
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of which are related either explicitly or implicitly to the The models introduced in [188] and [322] make use
heavy-tailed nature of wavelet coefficients of imageérve of very simple properties of Poisson counting processes,
refer the reader to the references for detalils. namely the facts that: 1) the numbers of counts of such a
While some of the approaches described in the precedingprocess over nonoverlapping intervals are independent and
paragraphs can be interpreted as employing degenerate MR2) the sum of independent Poisson random variables is also
models (i.e., in whichA(s) = 0 in (6) and wherew(s) is Poisson. For a 1-D Poisson process over a time intdrval
modeled as either Gaussian or heavy-tailed), there are othethese properties suggest a simple “dyadic partitioning” [188]
statistical approaches to inverse problems that involve moreof the interval in which we construct an MR tree exactly
complex MR models. One that suggests itself based on theas in Fig. 1(a), in which each node is identified with a
development in Section V-A, but that to our knowledge has corresponding dyadic subinterval b{so that, for example,
not been explored, is to combine models that capture cas-the nodessa; andsas in Fig. 1(a) correspond to the two
cade behavior in wavelet coefficients (e.g., as in the hidden halves of the interval corresponding to their pargntThe
Markov trees described in Example 6) with the WVD decom- variablez(s) placed at each node is then simply the number
positions described in the preceding paragraph. A second thabf counts over that subinterval. These variables have an
has been studied in detail is thatin [124] and [125] which uses obvious fine-to-coarse relationship, i.e(s) is the sum of
nonlinear models (as briefly introduced in Section V-A and the two child valuesz(sa;) andz(sas), so that this model
again in Section VI-B) that relate wavelet and scaling coef- is what we have termed internal since the value at each node
ficients across scale in a pyramidal graphical structure thatis a deterministic function of its descendants. This leads
is generally more complex than a tree, leading the authorsdirectly to a coarse-to-fine model, reflecting the fact that
to employ an iterative estimation algorithm for the tomo- x(s«;) andz(saz) are complementary fractions of s)
graphic reconstruction problem on which they focus. Also,
while the random field model that is used in that work is an z(sa) =8(s)z(s)
MR model in the wavelet domain, the reconstruction for the z(saz) = [1 — 6(s)] x(s) (48)
tomographic reconstruction problem is performed directly in _ ) .
the in?agre)z domain (to ensureppositivity oFf)the reconstructign), Whereé(s_) is a random variable, independent from node to_
using the full nonlocal tomographic measurement operator so"'°d€: taking on values between zero and one. As discussed in
that the measurements are not local with respect to the node$1881. [263], and [322], the conditional distribution for each
of this graph (which implies that the estimation structure is child conditioned on its parent ISa F’,'”O”!'a' d'smb,L,Jt'on with
quite different than that described in Section #). a parameter corresponding to the “fractional rate” of counts

While the examples described so far in this section are only in one half interval versus the other. That is, if we M_E)
tangentially related to MR models on trees or can be inter- denote the mean of the number of counts over the interval
preted as involving degenerate MR models, there are alsocorrespondmg to node then
investigations that make much more explicit and substan- Asag
tive co%tact with the primary focus of thisppaper. One such? (Esan)la(s), As), Msm)) = B <$(3a1)|$(3)’ g\(s) )>
example involving Poisson data and multiplicative scale-to-

S ) : (49)
scale dynamics is illustrated in the following example.

Example 7: In this example, we take a brief look at MR whereB(m|n, p) is the binomial distribution
models introduced and studied in [188], [261], and [322] in n
the context of Poisson measurements and in [279] for the B(m|n, p) = < )pm(l —p) . (50)
modeling of traffic in communication networks. The idea of mn
modeling counting processes at multiple resolutions has a  Thus, if the rate function of the Poisson counting process
substantial history, including a number of examinations of Were known, (48) would be a simple MR tree model for
models for self-similar counting processes for a variety of #(s).3 However, of central interest for Poisson estimation
applications [165], [201], [202], [221], [231], [311], [318]. and imaging applications is the case in which the rate func-

tion A(.) itself is random and is to be estimated from the
3Note that shrinking individual coefficients of WVD decompositionsim-  Observations of the count proces§s). Since the mean of
plicitly corresponds to assuming that these transformed measurement coefthe sum of Poisson random variables is the sum of their in-

ficients are independent (see, e.qg., [206] for an explicit discussion of this and i, i ;
related issues). While this is a perfectly valid probabilistic model—and one dividual means, the count functlok(s) also has the same

that leads to impressive results for many applications—it is worth noting @dditivity property as the count process. Thus, we have the
that, if the measurements are corrupted by white noise, the coefficients of following parent—child relationships for the rate as well:
the measurement expansion are not exactly uncorrelated since the basis used

is not orthogonal (but rather is half of a biorthogonal pair). Asar) = p(s)A(s)
36n [289] and [290], some of these same authors develop an alternate MR
modeling framework that works directly with MR pixels as state variables Alsag) = [1 = p(s)] A(s) (51)

rather than wavelet and scaling coefficients. The approach to tomographic

reconstruction in these references involves a coarse-to-fine/multigrid algo-  37Actually, (48) is not quite a tree model @aésa ) andxz(sa-) are not
rithm in which the data are used at each resolution to perform estimation independent conditioned or(s), since their sum must equa(s). This is
assuming that the finer scale detail is absent, and a simple scale-to-scalehe same issue as mentioned in Section V-A concerning the relationship of
pyramidal MR model. This graphical structure and the algorithms used are (44) to tree models and which is examined and solved in Section VI-B by
closely related to the one introduced in [42], which is illustrated in Example very simple state augmentation (in particular, in this examgle) andd(s)

10 in Section VII. together become the state in the MR tree model).
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where p(s), which takes on values between zero and one, as a function of time or space, i.e., we have direct measure-
is precisely the fractional rate(saq )/ A(s) appearing as the  ments of counts for each time interval or each pixel. How-
binomial parameter in (49). ever, in many applications such as emission computed to-
To complete the formulation of the problem of estimating mography, the estimation problem is a true inverse problem
A(s) given observation ofc(s), we need to specify the inthatthe total countrecorded by each measurement detector
distributions for the independent random variaklés), as is the sum of counts corresponding to photons from each
well as the random variabl&(0) corresponding to the total  pixel in the field to be imaged that impinge on the detector.
mean count over the entire interval. As discussed in [188] At first glance, this problem seems to require very different
[263], and [322], a particularly judicious set of choices are solution techniques from the ones that we described previ-
to modelX(0) with a gamma distribution and eapls) with ously in this example, since we do not directly observe the
a beta distribution. In particular, this choice éenjugate  total number of photons emitted at each location in the image.
to the choice of a Poisson distribution for the total number However, in [263], the iterative expectation—-maximization
of countsz(0) and binomial distributions in (49). With  (EM) algorithn#e is employed, each step of which involves
these choices, the conditional distribution for the rates and MR algorithms of the type just described and which is guar-
fractional rates have the same forms as their priors and areanteed to converge to the optimal estimate. The key to this
simply obtained by updating the parameters of these distri- method is a clever choice of the so-called “complete informa-
butions using the observed count valu€s). The estimation tion” for the EM algorithm, namely the number of photons
problem can then be put exactly in the form considered jmpinging on each measurement detector from each indi-
in Section Ill, leading to a two-sweep algorithm. Thanks jqgualimage pixel. An example of the application of this pro-

to the internality and special structure of this model, the ~aqure to simulated emission computed tomographic (ECT)
upward, fine-to-coarse sweep consists simply of summing yata is illustrated in Fig. 12.

counts over intervals, i.e., computing the unnormalized Haar
scaling coefficients of the numbers of counts over dyadic As a final comment, we note that most of the methods for
intervals, followed by a nonlinear coarse-to-fine sweep to inverse problems described in this section—and certainly
specify the parameters of the conditional distributions and those that involve taking wavelet transforms of the observed
hence the optimal estimates at each node. We refer thedata—assume the availability of a regular set of nonlocal
reader to [188], [263], and [322] for details. measurements. For example, the near-diagonalization of
It is important to make several comments at this point. many such measurement operators using wavelet transforms
First, the use of Haar scaling coefficients in this case is rely on this regularity to transform the observed data into
critical, as the structure of this model depends crucially what can be modeled as measurements of individual wavelet
on the summing of independent Poisson random variables.coefficients. Of interest as well are problems in which
Hence, the same ideas do not work using other wavelets.we may have only a relatively few and irregularly spaced
Second, as mentioned in Section V-A, the multiplicative nonlocal measurements, e.g., as arises in data fusion prob-
form of the models in (48) and (51) makes contact with |ems such as described in Section II-F. In such a situation,
other research on wavelet cascades and multifractals (seewavelet-based methods do not apply (except in the very
e.g., [15], [94], [136], and [279]). Furthermore, by carefully special and unlikely case that the nonlocal measurements
choosing the parameters of the beta distributions{a) correspond exactly or approximately to measurements of
or by using mixture models instead, one can obtain a wide jndjvidual wavelet coefficients), and instead other methods
variety of count models, including ones with self-similar or gre required to invert and fuse these data together with
with bursty behavior, as well as estimation algorithms that gther measurements. In Section VI-B2 we describe away in

have shrinkage-like characteristics. We refer the reader toyhich this can be accomplished using MR models on trees.
[188] and [322] for details. Also, the extension of the models

to 2-D deserves some comment. In particular, the approach
described in [188], [263], and [322] uses an asymmetric . )
model in which a coarse-level square at one resolution is AS the developmentin Section IV makes clear, MR models
first split horizontally and then each half is split vertically. Offer the possibility of very efficient and scalable algorithms.
Each of these two steps corresponds to splitting a region” caveat to this, of course, is the requirement that the phe-
into two halves, resulting in models analogous to (48) and Nmenon and data of interest be well modeled within the MR
(51). As pointed out in [261] and [263], one could directly framework, where “well modeled” refers not only to cap-
consider a quadtree structure in which counts over a squareturlng the desired S'tatIStICS to the rqulred level of fldel|_ty
are split into four separate child counts over each of the PUt @lso to the parsimony of the resulting model. In partic-
quadrants. In this case, the conditional distributions for each Ular While the complexity of various MR tree-based com-
child given the parent becomes multinomial rather than putations scales "”eaf'y with p“’b'e”_‘ Size as me"?‘S“fed by
binomial, and the corresponding conjugate distributions for t_he nhumber (_)f nodes in the tree, estimation algonthms f(_)r
the fractional rates then become Dirichlet rather than beta. linear-Gaussian problems scale quadratically or cubically in

In either case, the resulting two-sweep estimation algorithm 'the dimension of the state of the model at each node, while

has exactly the same structure as in the 1-D case. inference algorithms for discrete-state processes are polyno-

. o : mial in the cardinality of the state set at each node. Thus,
Finally, the estimation problem we have considered so far
in this example is one in which we directly observe the counts  38See Section VI-C1 for a brief description of the EM algorithm.

MR M ODEL CONSTRUCTION AND IDENTIFICATION
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(d)

Fig. 12. (a) Noise-free image to be reconstructed from ECT measurements. (b)—(d) Three different
reconstructions from ECT measurements using three different MR models corresponding to different
parameter values and corresponding “strengths” of the prior models, ranging from weakest in (b) to
strongest in (d) (for details see [263] from which this figure is reprinted).

a requirement for asefulMR model is that its state dimen-  class that is available to us. For the former, we have several
sion or cardinality be comparatively small or increase at most possibilities, namely, sets of measurements of some or all of
modestly with problem size. the variables that we wish to model; an explicit and complete

The examples in the preceding sections make clear thatprobabilistic specification of the variables whose statistical
there is a substantial body of inference problems that can, in-variability we wish to capture in our model; or an implicit
deed, be well modeled and solved using MR models on trees.specification of that probabilistic specification in terms of a
In this section, we step back from specific examples and, for graphical model. (e.g., an MRF model). As for the specifi-
the most part, from predetermined notions of what variables cation of the class of models available to us, there are also
(e.g., wavelet coefficients) populate the nodes of our model several possibilities: models in which the nature of all of the
and take a more careful look at the topic of MR modeling variables at every node in the MR tree are already specified
from several different vantage and starting points. Modeling so that what is required for MR modeling is the identifica-
and model estimation are, of course, vast topics taking on ation of the coarse-to-fine probabilistic dynamics; models in
variety of guises in different fields, and we will make contact which the tree structure is specified but only some of the vari-
with several of these. While we certainly cannot explore all ables are already specified (so that we must determine both
of these connections in real depth, we hope that the following the nature of the “hidden” variables and then the MR tree dy-
serves not only to show the unigue blend of ideas that enternamics); and models in which not even the tree structure is
into MR modeling but also to provide points of entry for fur- specified so even that needs to be identified or learned. In-
ther exploration. terestingly, some of these possibilities are standard in some

The starting point for MR modeling has two components: fields (e.g., sighal processing, systems and control, or graph-
1) the available data or statistical information whose charac- ical models) and comparatively foreign to others, a point we
teristics we wish to capture in our model and 2) the model highlight on several occasions in what follows.
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A. From Graphical Model to Tree Model side, but this could easily be accomplished by a redundant
We begin with some ideas that are well known in the COPYINg of the values of(3), =(5), and«(7) to the finest
graphical models field but not nearly as common in the Scale. . o
fields of signals and systems, as not only do they involve one  Obviously, these models (corresponding to the solid lines
idea thaiis known in those fields (namely the aggregation of N Fig. 13(c) or the solid and dashed lines together) have
variables or state augmentation) but one that is not usuallyconsiderable redundancy, which may or may not be of value
considered, namely, a complete redefinition of the index N & representation but_ certainly do increase dlmensmnghty
set of the graph. For the purposes of discussions to follow, and thus raw computatlonal_complexny for algorlt_hms using
it is useful to describe two alternate viewpoints for such these models. Indeed, the simple fact of augmenting the state
graphical constructions, namely, one based explicitly on atag|ven.node with the full state at |t_s parentis generally un-
separators ocutsetsand one on the construct ofjanction necessarily complex. For example, if we examine the graph

tree [108], [128], [143], [168], [169], [204], [207], [291], in Fig. 13(a) or (b), we see that nodes 2 and 6 are indepen-
dent conditioned on less information than that contained in
[314], [339].

thel{-cutset{1} augmented with the full cutset. Indeed,
we only need to add tHeoundary valuegx(3), z(7)} [and
not the internal value(5)] to accomplish this. Similarly, we
only need augment thiéd/-cutset{ 8} with a single boundary
value z(3) in order to achieve the desired conditional in-

whereé; is the subset of of all edges between elements of dependence. Thus, a considerably more parsimonious tree

U), and thus we can repeat this process (i.e., finding cutsetsmOdel is that shown in Fig. 13(d). We refer the reader to

that partition graphs into disconnected subsets) on each 01{.156] for further d|scu§5|on r?md examples of the construc-
tion of such reduced-dimension tree models.

these two subgraphs and' contmqe until we reaE:h sufiluently Note that the model for Brownian motion described in Ex-
small subsets of nodes (i.e., until an ultimate “finest” scale

of singleton nodes).

Equation (10) then allows us to construct a tree model.
For example, since;, andx,y are conditionally indepen-
dent givenz 4, we place the vectar 4 at the root node of our
tree and then continue the process using finer and finer cut-
sets and partitions. An example of this is depicted in Fig. 13.
As shown in Fig. 13(b), the sed = {3, 5, 7} is a cutset,
with &/ = {1, 2, 6} andW = {4, 8, 9}, and in Fig. 13(c)
we have indicated that 4 = {x(3), z(5), =(7)} plays the

1) Cutset Models:Consider a graphical mode(.) on a
graphG = (V, &), and suppose that is a cutset of the graph
(see Section I1I-C), so that/ A is partitioned into two dis-
connected subsetsandWV separated byl. Each of the sub-
setd/ andW has its own induced graph (e.§s, = (U, &1),

ample 2 is a cutset model, and we now see that that style
construction could be equally well used to construct an MR
model foranytemporal Markov chain or process. In this case,
the dimensions of the states do not depend on the level in the
MR representation nor on the extent of the time interval of
interest essentially because of the very simple structure of
minimal cutsets of the linear graph of a Markov chain. For
more complex graphs, however, state dimensions can vary
and, in particular, grow with the size of the original graph. For
. example, consider the regular 2-D nearest-neighbor graph
role of the state at the root node of the tree. Further, the sin- g, in Fig. 14. In this case, an obvious cutsetis the red line
gleton setS = {1} is a cutset for the subgraph o which ¢, des in the center of this grid: conditioned on the values
might lead one to take(1) as the state at the corresponding ¢ 5 graphical process on this cutset, the sets of values in the
second-level node. However(2) andx(6) are notindepen- 4 remaining halves of the graph are independetote,
dentwhen conditioned ar(1), since, in the full graph, there  po\ever, that in this case the cardinality of the cutset equals
are other connections between nodes 2 and 6. However, if Weihe |inear dimension of the grid which (for square grids) is
augmenthe value of the state at this second-level cutset with e square root of the total number of nodes, implying that the
the values at its parent, i.e., at the first level, then, conditioned gimension of the state of a linear-Gaussian MR model using
on all of these values;(2) andz(6) areindependent. There-  gych a cutset i©(v/N), while for a discrete-state model the
sultis a tree model as shown in Fig. 13(c) in solid lines. cardinality of the state set corresponding to this cutset is ex-

There are several pOintS worth nOting about this construc- ponentia”y |arge_ Consequenﬂy' the resumng MR represen-
tion. The first is that the individual values of the graphical tations, which are C|ose|y related to so-caltessted dissec-
process in the model in solid lines show up at nodes at dif- tion methods in scientific computing and numerical linear al-
ferent levels in the tree. It is straightforward, however, to ex- gebra [133], lead to inference algorithms with complexities
tend the model, as shown in Fig. 13(c) with the additional that do not scale linearly with problem size.
dashed lines, to a model in which all of the individual values Finally, as we develop in more detail in Section VI-B2, it
of the process do indeed appear at the finest scale. This coris often possible to construct reduced dimension approximate
responds simply to a deterministic copying of some of the models in which we keep only a lower dimensional projec-
variables from the parent node, much as the root node valuetion of the vector of cuset values at each node on the tree,
is copied to each of its children. Second, note that, when we
incorporate the dashed part of the model in this figure, the 39Note also that the choice of a somewhat larger cutset, e.g., taking both
resulting model is almost internal in the sense introduced in the red and blue lines in Fig. 14, leads to partitioning of the graphfato
Section Il. In particular, each of the states on the left branch disjoint components, which in turn leads to a quadtree MR structure. Obvi-

. S . ously one can find other sets of cutsets that lead to more general MR trees

of the tree (from root to leaf) is a deterministic function of

i ] ~  (e.g., unbalanced trees, trees with differing numbers of children at each node,
its finest scale descendants. The same is not true on the righgtc.).
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Fig. 13. lllustrating the construction of cutset tree models. (a) A graph over which a graphical
modelz(.) is defined. (b) lllustrating a particular choice of root cutsét,along with the disjoint

subseté/ and W separated byd. (c) The cutset tree model resulting from this choice of root cutset;

here the dashed lines indicate redundant values that can be added to the finest scale so that the entire
process resides at the finest scale. (d) A lower dimensional model in which unnecessarily repeated

variables are removed from various nodes.

neglecting the residual dependency that remains among dewavelet approximations of these sets of boundary values). As
scendent nodes when we condition only on this projection. shown in [224], such models can have artifacts across tree
A simple version of this approach was used in the texture boundaries (which can be reduced somewhat by more judi-
discrimination problem described in Section Il (Example 5) cious choice of lower dimensional projections, as described
and [225]. In particular, rather than assuming that the four in Section VI-B2), but they are more than adequate for tex-

quadrants in Fig. 14 are independent given the entire set ofture discrimination problems, as the results in Fig. 10 indi-

values of the field along the red and blue boundaries, we as-cate.

sume that they are independent given only a coarser version 2) Junction Tree ModelsA second viewpoint on con-

of the values along these boundaries (essentially coarser 1-Dstructing a tree model from a given graphical model involves
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should be equivalent to the statistical model of the variables
j | - on the original graph and thus must provide unambiguous
values for each of the variables in the original model. Conse-
S quently, variables such a$8) must, with probability 1, take

on the same value in each of the vectors of clique variables
involving node 8. This can be ensured if the junction prop-
erty is satisfied, e.g., the MR dynamics for Fig. 15(b) simply
copy the value ox(8) from the root node to its two children

1 T 1 T i that include node 8, and that value is then copied again to
4 L L1l the bottom-right node. This notion of consistency in an MR
model is very closely related to the idea of an internal MR
- model that we have introduced previously and which we ex-
plore in more depth in Section VI-B2.
i Note that the construction of a cutset model implicitly pro-
Fig. 14. A regular 2-D nearest-neighbor lattice, with a horizontal vides a triangulation of the graph (in particular the nodes in
cutset (in red) containing a number of nodes equal to the linear each separator set can be viewed as cliques in an augmented

dimension of the lattice. Taking this cutset together with the vertical

one (in blue) leads to a quadiree MR model structure. graph). Typically, there are many different ways in which to

triangulate a graph, and finding a triangulation that leads to
a junction tree with small maximal cliques can be a chal-
the concept of gunction tree The first step in the construc-  |enging graph-theoretic problem [169], [204], [207], [314],
tion of a junction tree representation is the addition of edges [315]42 Moreover, for some graphs, all triangulations have
in order totriangulatethe graph, resulting in what is also re- - maximal cliques that are quite large. For example, the trian-
ferred to as ahordal graph. In particular, such a graph is  gulation of the regular 2-D graph in Fig. 14 is nontrivial, re-
defined by the property that every cycle through the graph quiring much more than simply adding diagonal connections
passing through four or more nodes contains a chord (i.e., anacross each of the 2 2 blocks of nodes [e.g., there are cy-
edge in the graph that connects two nonconsecutive nodes Oftles that require triangulation much as the one that required
the cycle). For example, in Fig. 15(a), we have depicted one the inclusion of the dashed edge in Fig. 15(a)]. On the other
triangulation of the graph from Fig. 13(a). hand, for some graphs, the construction of low-dimensional
The second step in the construction is to identify a set of MR cutset or junction tree models is straightforward. One
maximal clique® of the triangulated graph that form ajunc-  such example is the MR model considered in [213] based on
tion tree# Such a tree is shown in Fig. 15(b). Note that each a quadtree structure as in Fig. 1(b) but with edges connecting
node of this graph corresponds to a maximal clique of the each of the four children of each of the parents. In this case,
graph in Fig. 15(a). Furthermore, the corresponding vectors each set of four children of a single parent form an elemen-

of values of the original graphical process that now popu- tary cutset, resulting in an MR model in which each such set
late thlSjUﬂCthﬂ tree do indeed form a Markov model on the of four variables is aggregated into a Sing|e node, resu|ting

tree. For example, it is straightforward to see from the orig- in an MR quadtree model.

inal graph that, conditioned gn:(3), x(5), z(6), z(8)}, the

vectors{x(5), (6), (7), z(8)}, {«(1), x(2), x(3)}, and B Methods for Constructing Linear MR Models
{z(3), z(4), (8)} are mutually independent. Further, the
clique tree in the figure has the property required for it to
be a junction tree: if a node of the original graph appears
in cliques corresponding to two of the nodes in the junction
tree, then it must also appear in the cliques of every node
on the path between those two junction tree nodes. For ex-
ample, node 8 of the original graph appears in both the root
node and the bottom-right nod®, 9}, and it also appears

in the intervening nod¢3, 4, 8. The reason for this is very
simple: the statistical model we wish to construct on this tree

In this section, we describe several general approaches to
linear MR model construction that make contact with the
examples and discussions in previous sections and that also
introduce several other important concepts. The perspective
pursued in this section is motivated by image and signal
processing applications in which the ultimate objectives,
namely, performing estimation or hypothesis testing, are
quite different than the objective of exact matching of a
statistical model. Indeed, in many such applications, the

implied or imposed prior model on the quantity to be
40A maximal clique is a clique that is not contained as a proper subset of estimated or analyzed is either Only known approxmately

any other clique. or represents statistical regularization rather than “truth”
41n some treatments of graphical models, the junction tree explicitly in-

cludes intermediate nodes, represensiagarator setghat is, sets of nodes 42Note that cutset models do not generally lead to the smallest maximal

that are common to the two cliques to which the separator is connected. clique sizes. For example, the MR model for samples of Brownian motion

For example, in Fig. 15, this would lead to including a node labéRdB} depicted in Fig. 6(b) corresponds to creating cliques consisting of subin-

between the root nodg3, 5, 6, § and the noddg 3, 4, 8. Including such terval endpoints and midpoints. In this case, the original graph, in which

nodes is often convenient, as it facilitates checking the junction tree prop- each time point is connected only to the points immediately before and after
erty and identifying the explicit form of the resulting factorization of the it, is already a junction tree. Thus, there is a modest increase in dimension-
overall distribution. However, such nodes are unnecessary probabilistically, ality using the MR cutset model. In other cases, such as cutting the grid in
since the coarse-to-fine dynamics can just as easily be defined on the modelig. 14 with vertical and horizontal lines, the resulting clique sizes are of
in Fig. 15(b). the same order as in optimal triangulations.
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Fig. 15. (a) A triangulation of the graph in Fig. 13. (b) The junction tree for this triangulation.

about the phenomenon of interest. Such contexts suggest the
idea of approximating or replacing such a prior model with
an MR model of (hopefully) modest dimension that serves
the desired purposes just as well in terms of capturing the
expected behavior of the phenomenon and much better in
terms of admitting efficient and scalable algorithms. This
line of inquiry has been the subject of considerable attention,
and in this section we describe four lines of thought that
have been pursued for linear models.
1) MR Variants of “Smoothness Priors”Some of the
earliest work on exploiting MR models resulted from a
simple observation concerning a class of image processing
algorithms based on variational formulations with what
are often termed “smoothness priors.” One example of
such smoothness priors is that introduced in Section II-D
(and revisited in Example 8 to follow) in the context of VAVAVAVAVAVAVAVAN
the problem of surface reconstruction. Another simpler
example is the problem of image denoising. In particular, Fig.16. A set of 1-D signals, each of which yields the same value
suppose that we obserwyérr), a noise-corrupted version of  for the 1-D version of the smoothness penalty in (52). Taken from
an underlying 2-D imagéf(r), both defined over the 2-D (223].
image domain- € I. One approach to denoising involves

choosing as our estimate the functitv) that minimizes ~ gued in [111] and [223], this penalty term corresponds to a
the following functional: Gaussian process with a fractalf? spectrum.

As is well known in the literature (see, e.g., [116], [117],

a/ y(r) — I dr +/3/ ViR A (52) [313], and [349]) and as we have discussed in Examples 1 and

I I 2 and already exploited in Example 4, the self-similar scaling
behavior exhibited by such fractal processes can also be cap-
tured through simple MR models, such as the scalar model
(7), with the variance ofu(s) taken to decrease geometri-
cally as we move to finer scales. While definitely not iden-
tical to the prior model implied by the smoothness penalty in
(52), this model has similar qualitatitve characteristics, and
its use instead of the smoothness prior in (52) allows us to use
the efficient two-sweep estimation algorithm of Section IV to
compute both estimates and associated error variances. This
should be contrasted with the computation of the optimal es-
timate corresponding to minimizing (52) which requires the
solution of an elliptic PDE for the computation of the optimal
estimates and essentially the inversion of the elliptic differen-
tial operator to calculate the corresponding error variances.

This same concept has been applied to somewhat more
complicated image processing and computer vision prob-
lems (optical flow [223] and surface reconstruction [111]),
433ee, for example, [284]. and, in Example 8 to follow, we provide one such illustra-

The first term in (52) is a data fidelity term, while the second
is a penalty on the size of the gradient/fd#) penalizing the
roughness of the reconstruction.

The first of these terms has a simple statistical interpreta-
tion, namely thay(r) consists of measurementsff-) over
I corrupted by 2-D white Gaussian noise of intendify.
The precise statistical interpretation of the second term re-
quires some car$,but, if we take the perspective that all we
are attempting to do is to capture timtent of this regular-
ization penalty, we can use a simple observation to replace
it with a very simple MR quadtree model. In particular, as
pointed out in [223] and [312], the second term in (52) can
be thought of as a (Gaussian) “fractal prior.” For example, in
1-D, each of the functions in Fig. 16 yields identical values
for the 1-D version of the second term in (52) and, thus, are
“equally likely” under this implied prior. Alternatively, as ar-

1432 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002



tion, including showing how the error statistics computed in Fig. 1(b), the nodes at each level of the tree correspond to
by the two-sweep estimation algorithm can be used to lo- nonoverlapping portions of the 2-D field being represented.
calize significant anomalies, i.e., spatial locations at which For example, the standard quadtree in this figure has nodes
the smoothness penalty should be relaxed (e.g., where thereorresponding to square regions of the field, each of which
is an edge or abrupt change in the image or field being im- is subdivided into four nonoverlapping subregions at the next
aged). finer scale. In the overlapping tree framework, each region is
The use of this simple MR model does, however, raise an subdivided into overlapping subregions at the next scale, so
issue that we have encountered previously (e.g., in Examplethat each of these subregions has linear dimensions some-
4) and revisit in more detail here, namely the possibility of what larger than half of the dimensions of its parent.
artifacts in the estimates produced using MR tree models. There are several consequences of this construction. The
In particular, consider the tree in Fig. 1(b), where the finest first is that an overlapping tree will always have more reso-
scale of this tree represents the actual image field to be re-lutions than a standard one, since the linear dimensions de-
constructed and on which we wish to impose a smoothnesscrease more slowly from level to level. As a consequence, the
or fractal penalty. The simple MR model (7) certainly ac- total number of nodes in an overlapped tree model is larger
complishes the latter but does a spatially variable job of the than that for a nonoverlapped tree model and, in fact, in-
former. In particular, consider the two finest scale shaded creases geometrically with the number of additional scales
nodes near the center of the image in Fig. 1(b) but on oppositethat are added, implying that the number of scales that can
main branches of the MR tree. In this case, the tree distanceb€ added (and hence the degree of overlap achieved) needs
between these nodes is far greater than the spatial distancé? be carefully controlled in order to maintain computational
and, as a result, reconstructions based on this MR modelféasibility. Second, each finest scale pixel in the image do-
can lead to noticeable discontinuities across such major tregmain actually corresponds severafinest scale nodes in the
boundaries. As argued in [223], whether this is of any sig- Overlapped tree. Indeed,. this is precisely the intention of the
nificance or not depends on the application. However, if it is construct, as the set of fine-scale nodes that correspond to a

of significance, this simple MR model is inadequate for the single real pixel are guaranteed to include elements that re-
desired purpose. side on different sides of major tree boundaries. Of course,

In this case, there are four alternatives that one can con-this then creates the question of howisesuch a tree when
sider. The first is relaxing the requirement of using a tree by the real data and desired estimates both reside in real image

allowing an edge between nodes across such tree boundarieépachpj' r'?s dﬁ;C’,ritr)]ed_ in [159], there is a strqightform:ard way
This, of course, leads to the requirement to solve estimation " Which to ift” the image domain estimation problem to

problems on loopy graphs, which, as we have discussed, carjfhe r_edundant overlapped domgin. This construct involve_s
be complex. However, we return to this possibility in Sec- two linear operators, one of which takes an image domain

tion VII. A second possibility is to increase state dimension E(I;(rila;/al)une d%ndtgiﬁg:atezl't_ﬁ:;:gzo? dtr:)e é?:tlé??aut.cr;]oge:
in order to capture the correlation across this major boundaryleft invgrse :Jfgthe first)%ﬁlle; ses the valuez at eacr\:vs;,t ofI re-
more accurately. In particular, note that, conditioned on the P

root node of the tree in Fig. 1(b), the two shaded nodes aredundant tree nodes into a single weighted average, which is

independent. Since smoothness dictates that these two pixeﬁhe.zn mapped to the corresponding 'mage pixel. An estimator
using an overlapped tree, then, consists of the application of

values are stronglgiependentthis suggests that the state at the first operator to lift the image domain measurements to

E'r(])en rgfotthnsogz n;ﬁg;igu_:_rﬁsa.us (:rr]stbfgzt.gengn;?ﬁgtap?r' the tree domain, followed by the application of the tree es-
' ' P IS Ic ! ' P~ timation procedure described in Section IV-B, and then by

Fhroaches deds_cnl:éed n :he4ne>;t tc|)p|c_. A third F}Otshs'p'“ty Its' the application of the second operator to project the tree es-
e one used in Example 4 and also in many of the investi- ;10 hack to the image domatn.

gations of other authors (see, e.g., [188], [261], [263], [28,1]' Example 8: One example of a successful application of

and [322]), namely, to construc_:t several MR models using this overlapping technique is to the surface reconstruction
trees that are spatially offset with respect to each other (S0, ohjem introduced in Section 11-D. The full development

that their major boundaries do not coincide) and then to com-; . [111] combines several important features. The first is
bine the results of estimation based on each of these trees. 14 construction of MR models that accommodadeh of

Using multiple shifted trees is one approach to overcoming the smoothness terms (thin membrane and thin plate penal-
the problem of placing some nodes on one side or anotherijes) in (2) simultaneously. The second is overcoming the
of a major tree boundary when we actually would like these e tg deal explicitly with the integrability condition men-

nodes to be orall sides of such boundaries. Another ap- isneq in Section I1-D and captured in the consistency rela-

proach aimed at this same objective but employing only a (5 (3). The method used to deal with these in [111] is to
single MR tree involves the use of so-called “overlapping

trees” [159]. In standard MR tree models, such as that shown
45Note that it appears that this approach “overcounts” each real measure-
44For 1-D signals, it is always possible to maintain continuity of the signal ment by replicating it at several tree nodes. As shown in [159], this is avoided
modeled by an MR model by using an approach as in Example 2 in which by modeling each of the resulting tree measurements as having measurement
endpoints of intervals are included in the states at each node in the tree. Innoise with covariance that is a multiple of the covariance of the real mea-
2-D, the problem is much more complicated, motivating the developmentin surement, where the multiple used is the cardinality of the set of tree nodes
Section VI-B2. that correspond to the real image pixel being measured.
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Fig. 17. (a) Ocean surface reconstruction from TOPEX/POSEIDON data such as in Fig. 2.

(b) Discontinuous surface to be reconstructed. (c) Reconstruction of the surface given noisy
measurements and using the MR estimation algorithm described in the paper employing thin-plate
and membrane priors which lead to smooth reconstructions across surface discontinuities. (d)
Distribution of locations and signs of statistically significant measurement residuals, providing clear
statistical evidence for the detection, localization, and estimation of the surface discontinuities.
(Reprinted from [120].)

construct a MR model with a 3-D state that approximates well-known problem that this as well as other smoothness-
both of the smoothness penalties as well as the consistencyased reconstruction methods have when there are disconti-
condition (3). The three state variables at each node corre-nuities in the actual field being reconstructed: the smoothness
spond to surface heiglatand surface gradieng( ¢) at each penalty leads to blurring or smoothing of the surface across
scale and spatial location. In addition, we replace the hard the discontinuity. However, because of the ready availability
constraint (3) with a softer one, consisting of an additional of error variances when using MR methods, we can employ
“measurement” at each node, corresponding to requiring thatthese statistics to identify regions in which the difference be-
the difference between the gradiénif » and the value ofthe ~ tween the raw surface measurements and the reconstructed
vector f, ¢) at each node is a zero-mean white noise processsurface are statistically anomalous. Fig. 17(d) illustrates the
on the tree, with small variance. Finally, the third component resultin this case, in which we have also indicated the sign of
of the model construction is the use of overlapping, which has these anomalies, which provide clear indication of the nature
the effect of modifying the geometric decay in the covariance of the discontinuous jumps in surface height in this example.
of the process noise(s) as one moves to finer resolutions.
Fig. 17 shows an illustration of this method to such sur-
face reconstruction problems. Fig. 17(a) illustrates the ef-
fectiveness of this method for the reconstruction of a rela-
tively smooth surface [namely ocean surface height as dis-

cussed in Example 4 but here using a more sophisticated.,,gjgering a more complex MR model, namely, one which
MR model based on (2)], while Fig. 17(b) and (c) shows the |o44s 15 estimates not only of surface height but also of an

46actually a discrete, multiscale approximation to the gradient (see auxiliary field [roughly Corre_Sponding tas(s) and au(s)
[111)). in (2)] that controls the spatially varying smoothness of the

The fact that MR error statistics allow us to localize dis-
continuities such as in Fig. 17(d) suggests that it should be
possible to develop an adaptive algorithm that performs op-
timal estimation without blurring across high-contrast edges
or discontinuities. One such method is developed in [292] by
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Fig. 18. lllustrating the role of the state in linear-Gaussian MR models. (a) In general, conditioned
on the value of the state(s), the three sets of variables indicated in dashed lines must be
uncorrelated with each other. (b) For internal MR models, the statgneed only decorrelate

x(say), z(saz), and the set of values in the single set of nodes encircled by the dotted red line—the
remaining decorrelation required as in (a) is automatically satisfied thanks to internality.

field.4” An alternate approach, developed in [324], addressesexamplet® to which we refer on occasion, is that shown in
this and other related problems using an expectation—-maxi-Fig. 18. Here we begin with a zero-mean Gaussian process
mization formalism. z[n], No < n < Nj, whose second-order statistics are
2) Internal Models and Approximate Stochastic Realiza- given and which we wish to realize, either exactly or approxi-
tion: In this section, we describe a more general and formal mately, at the finest scale of the MR tree shown in the figure,
construction of linear MR models [82], [85], [122], [161]. in which we have indicated that the finest scale nodes are
The approach makes use of concepts adapted from statenapped to consecutive integers over the interval in question.
space theory [8], [9], [16], [214]; however, the adaptation to Note that, with this ordering, each node at coarser scales cor-
trees uncovers some important differences with the temporalresponds to an interval of the process (e.g., the node labeled s
case. First, in contrast to the usual temporal state spacein the figure corresponds to the interyaly, Ny+ 3]), which
framework—and, for that matter, to the framework im- is exactly the type of correspondence we have seen before,
plicitly used in most graph-theoretic studies—we consider e.g., for Brownian motion in Example 2.
problems in which the random process or field whose sta-  With the graph structure fixed the problem of MR mod-
tistical behavior we wish to realize corresponds to variables eling bears a number of similarities—and some significant
on only a fraction of the nodes of the MR tree. In particular, differences—with state space modeling for time series. For
we focus initially (and primarily) on problems in which the example, we refer the reader to [29] for the development of
process to be realized, whose covariance or power spectrurra state space theory for deterministic MR dynamics on trees
is assumed to be given (and which, for simplicity, we assume and to [24], [25], [65], and [66] in which MR counterparts to
is zero-mean) resides only at the finest scale of the tree, i.e.,autoregressive modeling and efficient algorithms analogous
at the leaf nodes. In standard time series analysis, in whichto Levinson’s algorithm for time series are developed for the
the index set is a completely ordered interval of integers, class of isotropic processes on trees (i.e., processes in which
the set of “leaf” nodes is a singleton consisting of the single the covariance between variables at different nodes depends
point at one end of the interval. However, for dyadic trees only on the distance between the nodes). In this section, we
or quadtrees, as in Fig. 1, the finest scale can accommodatdocus on problems of approximate stochastic realization,
entire 1-D or 2-D processes. where, as in standard state space realization theory we must
Another issue that arises in constructing MR models is deal with two basic issues: 1) we need to define the “state”
specifying how to map the 1-D or 2-D process of interest of the process at each of the unspecified, coarser-scale nodes
to the finest scale of the MR tree, a specification that then of the tree and 2) we must then define the coarse-to-fine
also determines which finest scale values have common par-dynamics among these state variables, resulting in a model
ents, common grandparents, etc. The problem of estimatingthat is Markov with respect to the MR tree. Because of
or identifying this graph structure does not arise in standard the special property of trees, the first problem bears a
time series analysis but is an important problem in its own resemblance to the standard temporal problem for Gaussian
right both for trees and for more general graphs. We return processes [8], [9], [214] in which the role of the state at any
to this problem in Section VI-C3, but, for this discussion, pointin time is to decorrelate two sets of variables, namely,
we assume that this structure is fixed and given. A typical the values of the process in the past and the values in the
future. Referring to the tree in Fig. 18 (and the blue dashed

lines therein), the role, then, of the statg) in this example
47The formulation in [292] represents a relaxed version of the widely-
studied Mumford—Shah functional for image denoising and segmentation  “8For simplicity we illustrate these concepts using dyadic trees and 1-D
[11], [252]. examples; however, the same ideas work for quadtrees and 2-D fields.
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is to decorrelat¢hreesets of variables, namely those in the (6) must deterministically “copy” the information from each
subtree rooted at nodex;, those in the subtree rooted at parentto its children. This consistency, while different in de-
sae, and the large set of variables over the entire tree excepttail, is identical in purpose to the consistency requirements
for those in the subtree rooted at node for a junction tree as described in Section VI-A2.

Note that the definition of the state in this case is givenin  Note also that, once we have performed this fine-to-coarse
a manner that couples the definitions at distinct nodes, e.g.,process of defining the state at every node, we can imme-
x(s) in Fig. 18 must decorrelatg(t) from z(sa; ), afactthat ~ diately determine the coarse-to-fine dynamics, i.e., the ma-
makes the general analysis of realization more complex thantrices A(s) in (6) andQ(s), the covariance ofv(s) in (6).
its temporal counterpart, and a complete treatment still re- In particular, A(s)z(s7) is the best estimate af(s) given
mains to be developed. However, a considerable amount care(s7), andw(s) is simply the error in this estimate. Thus,
be said if we borrow another concept from temporal realiza- computingA(s) andQ(s) requires only the joint statistics of
tion theory, and one whose MR counterpart we have encoun-z(s7) andz(s). Since both of these states are linear func-
tered informally on several occasions already, namely, that of tions of the finest scale process (which, in our 1-D example
aninternal model For temporal systems, an internal model is in Fig. 18, is the procesgn] whose second-order statistics
one in which the state at each point in time is a deterministic have been specified), the joint statisticsagk) and z(s7)
function of the process being realized. In particular, the state c&n be computed in terms of the statistics of the finest scale.
of an internal model is typically taken to be a function of the ~ Let us return to the issue of constructing the states at in-
past of the process to be modeled, capturing the memory individual nodes. There are two points that make this problem
the process required to decorrelate past and futuidus, challen_glng even in this for_m. The first is that the re_qwred
an internal state does not introduce any additional random-State dimensionality to achieve complete decorrelation may
ness not present in the process to be realized. A very impor-P€ prohibitively high. For example, note that the state at the
tant result in standard state space realization theory [8], [9], 0Ot Of any of our trees must, in principle, completely decor-
[214] is that it is always possible to find internal state space '€laté the disjoint regions associated with each of the root
realizations that amminimal i.e., that have the smallest state N0d€’s children, a task that may require very high state di-
dimension possible, so that considering noninternal realiza- MeNSon (€.g., as we saw in Section VI-Al for the realization

tions does not buy us anything in terms of model dimension- ©f 2-D MRFs on regular nearest-neighbor lattices). Large
ality. state dimensionality, of course, is also a problem in stan-

By analogy, for our problem, we define the concept of an dard state space realization, and once again we adopt ideas

internal model as one in which the state of the made), at Lrom (tjhat(;:ontexg Irlé]part[mljéar, V‘{,e may wish :}0 cfpnstmﬂaet I
any nodes, is a deterministic, linear function of the values duced-order modeiat yield realizations at the finest scale

of the process at the finest scale in the subtree descendingat ©nly approximate the desired statistics of the process we
from o. For example, the state of an internal model at nede are attempting to model. In fact, suppose that we follow such

in Fig. 18 must be a linear function of the values:@] for aprocedure (yet to be defined) to define reduced-order states
n = No, No + 1, Ny + 2, andNo + 3. As shown in [122] in a fine-to-coarse manner, so that each state is still a linear

and [161], there are several very significant implications of function Off.'ts chlld:jen. In .th|s case, we cag st defme the
restricting attention to internal models. First, of course, these C0arseé-to-fine MR dynamic matrice$(s) andQ(s) using

models do not introduce additional randomness at coarsertN® Same procedure as previously described, and we can also

scales (and thus coarse-scale nodes, while technically not ob P€ @ssured that the *noisef(s) is uncorrelated with:(s7),
served, are not really “hidden”). Second, there is a poten- SINCew(s) is simply the error in an estimate basedudsy).
tial price to be paid by excluding noninternal models, as it However, since we have used reduced-order states, so that in

is sometimes possible to find noninternal models of smaller Particularz(s) may not completely decorrelate its two chil-

state dimension. However, third, and very importantly, inter- Arén. it will generally not be true that the values.afis) are

nality considerably reduces the complexity of constructing WNite over the entire re. This is also the case for standard
state variables. In particular, as shown in [122], in this case, state space modells, where the idea is to neglect. these residual
the states can be defined resolution by resolution, as it is Suf_correlatlorr:s, that is, we u;e tf:je momﬂlel dynamﬁ{;) and
ficient to design the state at each node simply by looking @(3) We have constructed and simply assume thed) is

at the nodes one scale finer. For example, the statgin white. The resulting model then yields a process that has sta-
Fig. 18 must be a linear function of the s'tates at its chil- tistics at the finest scale that do not completely match those
drenz(say) anda(san), and it is sufficient to choose that  ©f the target processin]. Specifically, the variance of indi-
linear function so thai:(s) decorrelates its two descendent Vidual samples af[n] will be captured exactly by this model,

values from each other and from the remaining nodes at that?ut the cross-covariances at different points in time may not

next finer scale (the red dotted region in the figure). Note P€ realized exactly.

tha.t, since ea(?h state is a linear functional of its Ch”dren, W€  50The noiseso(.) are guaranteed to be white on coarse-to-fine paths but

maintain consistency along paths from coarser to finer scales.not necessarily uncorrelated between nodes (sush-asndsa.) that are

In particular the fact that(s) consists of linear functionals not on the same path from the finest scale to the root node. As a result, when
. ', . . . . we construct our reduced-order model by neglecting this residual correla-

of its two children implies that the coarse-to-fine dynamics ton, we are guaranteed thsomeof the desired statistics are preserved in

this approximate model, e.g., the statistics along any coarse-to-fine path and,
49t is equally possible, however, to define the state of an internal model in particular, the covariances of the individual finest scale nodes, but not the
as a function of both the past and future. See, for example, [214]. complete statistical description of the finest scale process.
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It remains to specify precisely how state-order reduction are uncorrelated with respect to each other and are rank-or-
is to be carried out. For standard state space models, thidered in terms of the amount of variance reduction each of
is a well-developed field, particularly for time-invariant sys- these functionals provides toward the estimation0fif »;
tems [8], [9], [214] in which state definitions are identical represents the past of a time series anthe future, this pro-
across all points in time, so that the impact of the decision vides an alternative criterion for ranking possible state vari-
on how to define the state on global measures of fidelity can ables in a time series model.
be computed. In contrast, except in very special situations The computation of functionals for either the canonical
(e.g., in Example 2 or in the more general MR modeling of correlations or predictive efficiency criteria involves the sin-
self-similar Gaussian processes in [83]), the states at differentgular value decomposition (SVD) of a matrix derived from
resolutions in MR models represent very different quantities the covariance matrix of the two sets of variables. For time se-
and may, in fact, have varying dimension. Moreover, one of ries, both of these are typically of the same dimension, so that
the major domains of application of these methods involves there is not a computational advantage to either approach.
highly nonstationary phenomena. As a result, the use of stan-However, for MR tree models, this is generally not the case,
dard global measures of model accuracy (e.g., such as theand, in addition there are other important differences with the
Kullback-Leibler divergence) have not yet led to compu- time series case. For example, consider the sadé-ig. 18.
tationally tractable algorithms for model construction, and Note that in this case we wish to desig(s) to decorrelate
thus the methods that have been developed (and borrowedot two butthreerandom vectors, nameby(say ), z(sas),
from standard time series contexts) focus on local criteria for and the very large vector (call if) of values ofz(.) at the
defining states at individual nodes. In particular, the funda- remaining nodes at the same scaleas andscws. The first
mental objective in defining the statés) in Fig. 18 isto have complication is that we have three rather than two variables,
it decorrelates(say ), z(s«z), and the set of variables inside  making the problem of defining what we mean by the “best”
the dashed region in the figure. Consequently, it is natural to variables to include in:(s) more complex. Second, the di-
consider choosing approximations in terms of how well they mensions of the three vectors are quite different, and this

perform this decorrelation. asymmetry greatly favors using the concept of predictive ef-
In the context of standard state space systems, this idediciency, with y always playing the role of all or part af.
has led to the use of the statistical notiorcahonical corre- As described in [122], this then leads to a procedure in which

lations[9]. Roughly speaking, canonical correlation analysis we sequentially add variables to forags), first including
takes two random vectors andz, and identifies ranked-or-  some linear functionals af( s« ) of most value in estimating
dered pairs of linear functionals of each; {z1, d17 2), xz(saz) and x, then adding functionals of(sas) that are

(¢} 21, df »,), where each of these individual variables has of mostadditional value (i.e., taking into account the func-
unit variance, the functionals of; are all uncorrelated tionals already constructed), and then possibly alternately
with each other, as are the functionalszgf and the pairs  adding functionals of(s«;) andz(saz) to enhance the fi-

of functionals €I 21, d7 z2) have correlation\; > 0, with delity of the state desigh. The resulting approach to con-
A1 = Ay > -+ (so that €'z, d¥ 2;) represents the most  structing an MR model ha®(/N?) complexity. This com-
highly correlated functionals of the two vectors and 2o, plexity may not be prohibitive for some applications, since

(c} », d} 2,), the next most correlated). In the context of it need only be performed once to build the model. On the
time series,z; represents the past of the process and other hand, in many cases, the complexity is still too large
the future, and the functionalg’ »; form a rank-ordered  and, more to the point, is often wasteful. For example, in
set of natural state variables, providing a quantitative basis many time series problems, the primary correlation between
for choosing the state variables to keep in a reduced-orderthe past and future relative to some times captured in a
models! comparatively small interval around that time. This suggests,
As discussed in [16] and [122], one of the potential draw- for example, rather than using all of ti¥ V )-dimensional
backs of the metric corresponding to canonical correlations vectory in Fig. 18 in order to define:(s), we might safely
is that the rank-ordering is based on correlation coefficients replacey with an O(1)-dimensional vector of the values
(since the linear functionals are normalized to have unit vari- closest to the nodes sa;, and sae. Using this so-called
ance). As aresult, components of the past and future that conboundary approximatiogields an algorithm of complexity
tribute very little to the total variance of either of these may O(N).
rank higher than components that contain much more of the A number of examples illustrating the use of this method
process variance. This observation suggests an alternate criare given in [122]. For example, if applied to a Markov
terion referred to apredictive efficiencywhich, as opposed  process, such as Brownian motion, the algorithm does
to canonical correlations, treats the variables involved asym-indeed identify that the correct linear functionals to keep at
metrically: for the two random vectors andz, the objec- each node consist of the boundary points of the time interval
tive is to produce a set of scalar linear functiondgls; which corresponding to that node, as in Example 2. Similarly, for

2-D nearest-neighbor MRF s, in which each of the tree nodes
STypically this is done in one of two ways: 1) we fix the state dimension,

say at a valuel, and thus choose the functionals corresponding tadthe 52Note that for a quadtree there are five sets of variables that need to be
largest of the\; or 2) we set a threshold for residual correlation and keep as decorrelated by the state at any node, namely the variables at each of the
many functionals as needed so that the sum of the remakifalls at or four children and the vector of all other tree variables at the same scale as
below the threshold. those children.
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Fig. 19. lllustrating the result of applying the scale-recursive method for constructing internal
approximate MR stochastic realizations, in this case of fBm (with Hurst pararfieter0.7). (a)

Plot of the exact covariance matrix for a window of fBm. (b) Plot of the covariance achieved using an
MR model with state dimension four. (c) The difference between the covariances in (a) and (b),
plotted as an image. (d) A set of noisy measurements of this fBm process over the two ends of the
interval of interest. (e) The estimates using the MR algorithm and the four-dimensional state model
(solid line), the optimal estimates using the exact fBm statistics (dashed line almost completely
obscured by the solid line), and plus/minus one standard deviation error bars (dotted line). (f) Error
standard deviations given by the MR estimator (solid line) and based on the exact fBm statistics
(dashed line, again almost completely obscured by the solid line). (Reprinted from [122].)

corresponds to a square region of the 2-D image domain, thehighest in terms of predictive efficiency in estimating the

full state required to decorrelate one such region from the rest of the domaig?

rest of the image consists of the values around the boundary Fig. 19 illustrates another example, in this case to the ap-
of the region—exactly the type of construction we saw in the proximate modeling of fBm, a process that is not Markov but
cutset models in Section VI-Al. However, the framework

we have described here allows us to consider reducing the >°An altemate approach to reducing complexty of approximate cutset
models involves not reducing the dimension of the state corresponding to a

dlmeh3|onallty of the full cutset state by keerg Only those boundary in a 2-D MRF but rather to reducing the complexity ofrtfuelel
functionals of the process around the boundary that rankfor that state. We briefly discuss this idea in Section VIL.
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that does possess fractal, self-similar scaling properties thatthe choice of additional linear functionals is based on the
generalize those of Brownian motiéh As shown in [83], measure of predictive efficiency taking into account the in-
the optimal choices of linear functionals to keep in the state formation already provided by the prespecified functionals.
at each node also have approximate self-similarity in scale. As the next example illustrates, the ability to incorporate
In this figure, we show both the approximation errors in the particular functionals of the field in question as states of our
realized process covariance and also what is really the mostMIR model allows us to fuse MR measurements and estimate
important result, namely that the differences in estimation specific coarse-scale functionals using thgV) estimation
accuracy using the exact fBm statistics or the approximate algorithm described in Section 1V-B.
ones captured in the MR model are statistically insignicant  Example 9: An example of the construction and exploita-
(especially given that fBm itself represents a mathematical tion of MR models in which specific nonlocal variables are
idealization of real processes). included in the states at coarser scale nodes is the ground-
Finally, it is worth noting that the scale-recursive proce- water hydrology problem examined in [84] and introduced in
dure for state construction that we have described has an im-Section II-F. In particular, in this problem, the random field
portant extension [82] to problems in which we have specific modeled by the MR tree represents the log-hydraulic con-
functionals of the finest scale process that we would like to ductivity field of a region of interest. The measurements of
include as state variables at coarser scales in the tree. As dog-conductivity represent point, i.e., finest scale, measure-
simple example, consider a fine-scale procesg, Ny < ments of this process at a scattered set of fine-scale nodes cor-
n < Np, and suppose that we require that a particular linear responding to the locations of the well measurements. How-
functional of the finest scale, e.g., a linear combination of ever, as we discussed in Section II-F, hydraulic head, which

2(No), 2(Ng + 1), 2(No + 2), and z(Ng + 3), be avail- is also measured at each well location, is a strongly nonlocal
able as a component of the state at some node. In this caseand also nonlinear function of log conductivity. The approach
the first common ancestor of the poimg, ..., No + 3 is taken in [84] is to linearize this nonlinear relationship about

the nodes in Fig. 18. However, as discussed in [82], [122], a known background log-conductivity value over the region
and [161], placing the desired linear functional directly at of interest, resulting in a linearized model for hydraulic head
this node isnot generally advisable, as conditioning on this at each well location, namely as a weighted integral of log
linear functional can actuallyncreasethe correlation be-  conductivity. Using the method developed in [82] and just
tween the variables at the children of nogddn particular, described, an MR model was constructed in which each of
the correlation between two random vectors is always re- these nonlocal functionals was included in the state at indi-
duced if we condition on a linear functional of one or the vidual nodes of the tree.

other alone, but may, in fact, increase when conditioned ona As discussed in Section II-F, the real objective of the ap-
linear combination involvingpothvectors (e.g., two uncorre-  plication considered in [84] is the estimation of the travel
lated random variables are no longer uncorrelated when con-time for solute particles to migrate from one spatial point
ditioned on their sum). As a result, we actually plae® to another. This quantity is also a complex, nonlinear, and
nonlocal functionals at nodg namely, the separate func- nonlocal functional of log conductivity, and in [84] two al-
tionals of z(Ny), z(Ng + 1) and of z(Np + 2), 2(Ng + 3) ternate methods are described for its estimation. The first is
whose sum is the required linear functional. To maintain in- analogous to the method used to incorporate head measure-
ternality, then, we need to ensure that these individual linear ments: we linearize the relationship between travel time and
functionals can, in fact, be expressed as linear functionals oflog-conductivity, producing a model for travel time (or, more
x(say) andz(saw), respectively, and this, in general, will  precisely, the perturbation in travel time from its nominal
also specify several components of each of these states asalue as computed using the assumed background conduc-
well. tivity field) as a weighted linear functional of log-conduc-

In general, this purely algebraic process involves suc- tivity. This linear functional can then be augmented to the
cessive examination of each of the descendants of nodesMR model in the same manner as the linearized head mea-
at which nonlocal functionals have been placed. At each surements, so that the resulting MR estimation algorithm au-
such node, internality first requires that specific functionals tomatically estimates this travel time perturbation as well.
be available, while the requirement of reducing rather than  As discussed in [84] and as illustrated in Fig. 20, this ap-
increasing correlation among the children thfat node proach works as long as the perturbations from the back-
typically leads to each of these functionals be broken into ground conductivity are not too large. If this is not the case,
several separate functionals. Once we have completed thisan alternate method can be used that emphasizes another fea-
process, we can then begin the fine-to-coarse constructionture of the MR formalism. In particular, suppose we do not
of the full state at each node, except that now, when we augmentthe MR model with alinearized model of travel time
come to design the state at each node, we may already havéut simply use the available log-conductivity and head mea-
several components of that state prespecified. In this casesurements to estimate the log-conductivity field. As we dis-
the only change to the procedure that we have outlined is thatcussed in Section 1V-B, the result of this estimation process is

not just a best estimate of that log-conductivity field but also

54Fractional Brownian motion processes are characterized by the an MR model for the errors in that estimate. This model can
so-called Hurst parametéf, which controls the rate of spectral fall off. . . . .

then be used to perform conditional simulations, which, as

In particular, while fBm is nonstationary, its power spectral density is well ’ A g - :
defined over any band of frequencies [346] and falls off /g #+1, pointed out in Section II-F, is a well-known concept in geo-
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Fig. 20. lllustration of the effectiveness of the MR algorithm in
estimating travel time perturbations. In each figure, the dashed
line represents the distribution predicted by the direct estimation
of travel time perturbation modeled as a linearized functional of
log conductivity, which was directly incorporated into the MR
model as a state at a coarse-scale node, i.e., these dashed Gaussians
have means and variances corresponding to the resulting estimate
and error variance computed by the MR estimation algorithm.

The histogram in each figure depicts the result of conditional
simulation, in which we use the estimates of fine-scale conductivity
and the MR model of the errors in these estimates to draw sample
conductivity fields which are then used to drive the hydrologic
equations, yielding sample values for travel time. The figure in (a)
corresponds to the case in which the log-conductivity perturbation
from the background value is comparatively small, while it is an
order of magnitude larger in (b). (Reprinted from [84].)

physics [171]-[173}5 In particular, we can generate sam-

ples from this MR error model, add them to the best estimate,
and use the resulting log-conductivity field to solve the hy-

drology equation (4), which in turn yields the velocity field

(5), which can then be used to compute the travel time for

this particular log-conductivity field. By repeating this con-

ditional simulation process many times, we can estimate the
probability distribution for travel times. The key here is that,
thanks to the tree structure of our MR models, we can con-
struct such conditional realizations of the log-conductivity
field very efficiently.

S9\e refer the reader to [198] for another example of the use of MR
models for conditional simulation in geophysics.

1440

3) Linear MR Models and Wavelet Representatiolige
now return to the topic of MR models and wavelets. As men-
tioned in Section V-A, while wavelet synthesis can readily be
viewed as a dynamic recursion in scale (44), more is needed
to build MR models on trees based on wavelets. Consider first
the simple case of the Haar transform and suppose that we
wish to represent a stochastic procesg, Ny > n > Ny, at
the finest scale of a dyadic tree as in Fig. 18. In this case, the
use of the Haar transform might first suggest that the states
at each coarser scale node should be the corresponding (nor-
malized or unnormalized) Haar scaling coefficient, e.g., re-
ferring to Fig. 18, we might consider taking

#(sa1) = 3 (elVo] + 2[No + 1)
#(sa2) = 3 ([N +2] + 2[No +3)
#(s) = 7 (2[No] + 2[No + 1]+ 2[No + 2] + 2[No +3]).

(53)

However, note in this case that the dynamics of the Haar
wavelet synthesis imply that

x(sar) = z(s) + w(say)

z(saz) = x(s) + w(saz) (54)
where
w(son) = —w(saz) = % (2[No] + 2[No + 1]
—z[No+2] —2[No+3]). (55)

Thus, not only arev( s« ) andw(saz) notindependent, they
are in fact deterministically related.

One solution to this would simply be tassumethat
w(sai) andw(saz) are independent, corresponding to the
noninternal model in (7) and (47), in which case the vari-
ables in the MR model no longer correspond to the scaling
coefficients of the finest scale process (ex.s) will not
be the deterministic average of its children). Alternatively,
if we do wish to maintain internalitgnd the interpretation
of states as components of the wavelet representation of
the finest scale process, detail coefficients, such as in (55),
must also be included as components of the state at each
node (except for the finest scale at which we only need
the individual signal value). For example, the 2-D state at
node s in Fig. 18 consists of the scaling coefficients)
in (54) and the wavelet coefficient in (55). Note that, with
this definition of the state, the coarse-to-fine dynamics of
our MR model is partially deterministic. For example, as
(54) and (55) show, the first components (i.e., the scaling
coefficients) of the states at the two children of node
are deterministic functions (a simple sum and a simple
difference) of the two components of the state at nede
The other components of the states at these two nodes are
then the new wavelet coefficients that will then be used in
the next step of the coarse-to-fine synthesis. If the Haar
transform did indeed exactly whiten the proce$s], the
coarse-to-fine dynamics would simply insert a white noise
value for this detail coefficient. However, the structure
of our MR model allows us to do better than this if the
Haar transform does not perfectly whiten the process. In
particular, using the same procedure for constructing the
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A(s) and@Q(s) matrices as in Section VI-B2, we can define coarser scaling coefficients, say one located at node
dynamics that take advantage of the residual correlation inFig. 18, is a linear combination of a number of the finer scale
the wavelet coefficients to do the best job of predicting the scaling coefficients. If the model we construct is to be in-
finer scale wavelet coefficient from its parent scaling and ternal, we must then have that all of these required coeffi-
wavelet coefficients. This idea has been used, for example,cients must be resident at the two children of nedéc-
in [83] to obtain better approximations to fBm than methods complishing this requires some additional state augmenta-
that completely neglect this residual correlatn. tion, which at first blush might lead one to believe that it
The Haar case is a particularly simple and obvious one would then be necessary to revisit the synthesis side of the
in its connection to MR tree models, thanks to the nonover- problem in order to guarantee that we have everything we
lapping support of the shifted and scaled Haar scaling func- need at each node for consistent coarse-to-fine dynamics as
tions and wavelets that comprise a dyadically scaled orthog-in (6), and then to revisit the analysis side, etc. However, as
onal basis. For example, the scaling coefficients in (54) in- shown in [85], this is not necessary, as the combination of
volve only values of the fine-scale procegs] at pointsin g preliminary state definition for the synthesis dynamics fol-
the subtree below the corresponding nodes. However, if we jowed by a second augmentation to ensure internality leads to
consider more complex orthogonal or biorthogonal wavelets, a well-defined internal, linear, MR model in which the state at
e.g., ones with additional vanishing moments [86], [228], each node consists, with probability 1, of a vector of scaling
[329] and thus with higher degrees of smoothness, the sit-and detail coefficients of the finest scale process.
uation appears to be much more complicated. In particular, Not surprisingly, the dimension of the state of the re-

in this case, the synthesis of each signal value, gl&yo +1] sulting model grows linearly with the support of the wavelet
in Fig. 18, requires contributions froall of the waveletand  (or wavelets in the biorthogonal case), as typically does the
scaling functions whose support includes the pdigt+ 1. degree to which such a wavelet transform whitens a given

Thus, achieving a form for the coarse-to-fine wavelet syn- process such as fBm. In pure wavelet analysis, this often
thesis “dynamics” that has the structure of (6) requires that suggests the use of fairly high-order wavelets so that the
all of these required scaling and wavelet coefficients be part residual correlation can be safely neglected. However, using
of the statesa;. our coarse-to-fine dynamics, we do m#edto neglect the

As discussed in [85], this state augmentation can indeedresidual correlation and can in faekploit it to enhance
be done, but it is only half the story, since if only this condi- the fidelity of the resulting model. The result of this is that
tion were used to define the state at each node the resultindhigh-fidelity approximations of processes such as fBm can
model would not be internal. The implications of this lack be created using MR representations based on wavelets of
of internality in this case are severe. In particular, because of much smaller support than are typically used otherwise.
the need to augment the state at each node, individual scaling While the benefit described in the preceding paragraph is
and detail coefficients appear at multiple nodes. Suppose, forinteresting and while the rapprochement with wavelets is in-
example, that a particular coefficient appears in the state attellectually satisfying, neither of these by themselves make
two nodess and¢. The junction tree constraint (or, more pre- @ compelling case for why one would want to use such a
cisely, its counterpart for linear models) would then require representation. However, one good reason given in [85] is
that this coefficient also appears in (or, more precisely, be athat, once we have this model., we can consider estimqtion of
deterministic linear function of) the state at each of the nodes & Process based on sparse, irregular, and even multiresolu-
on the path betweesnandt. However, the augmentation done tion measurements_, ie., t(_) p(oblems in wh|ch the d.ata.them-
simply to make sure that everything needed for wavelet syn- selves are so erratically distributed that direct application of

thesis at a particular node is included in the state at that nodeVavelet analysis is not possible. Fig. 21 illustrates the use of
does not satisfy this condition. As a result of this violation an internal MR tree model based on the Daubechies six-tap
t orthogonal wavelet [86] to estimate an fBm process given

of the junction tree constraint, the multiple replicas of what " ¢ differi i h q
is supposed to be a single coefficient need not (and typically gappy measuremenFs ot ditiering qua Ity over t. etwo ends
of the interval over which the process is to be estimated. Note

with probability 1will not) be equal. that th i timate i v identical to th based
The key to see how to overcome this problem and recover at the resufting estima’e 1S nearly identical to the one base
on the exact fBm statistics, with deviations only a tiny frac-

internality is the examination of the fine-to-coarse wavelet A . )

. o . . . tion of one standard deviation of the errors in the optimal
analysisdynamics, in which wavelet and scaling coefficients estimates
at successively coarser resolutions are constructed as linear 4) Covériance Extensions. Maximum Entropy. and MR
combinations of scaling coefficients at the previous finer res- Models: We now examine aﬁother important tgsrg’ic in sta-
olution. Again, be_cause of t_he overlapping supports of the tistical signal processing with strong ties to graph theory
wavelets and scaling coefficients at each scale, each of these . 4 1o MR models. The problem is that of covariance ex-

StNote also that exploiting this residual lation i order to do the best tension. Specifically, in many applications, it is unreason-

ote also that exploiting this residual correlation in order to do the bes - - .

job possible of predicting finer scale wavelet detail coefficients is similar in able to expect to be Pro‘_"ded with the Complete g:ovanance
spirit to discussion in Section V-A and in particular to the model (46). The Of @ random process or field—or to have data available from
key difference is that the model in (46) allows the use of the entire vector of which such a complete specification could be estimated. For
scallr_lg coefficients at the preceding scale to be used to estimate each detalbxampk_:,, in dealing with Iarge-scale remote sensing prob-
coefficient at the next scale. In the tree-based approach described here forI h fiel fi h . ; l
the Haar transform, each detail coefficient is predicted based only on the [€MS, the random fields of interest can have dimensionality

state (single wavelet and detail coefficient) at its parent node. in the millions, making not only the availability but even the
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ficient, recursive computation of the covariance values not

o5l | specified originally.
Interestingly, that maximum entropy extension also has
2 1 important implications for MR modeling. In particular, the

resulting AR model is &th-order Markov process, wheke

1.51 is the number of covariance values that were originally spec-
1l ] ified. As a result, using a construction analogous to that for
Brownian motion in Example 2, we can, in principle, con-
0.5¢ struct an MR model for this process analogous to that shown
in Fig. 6, except that the number of boundary points kept
Or at each end of each subinterval would/eather than one.
05 | That construction, however, requires knowledge of what ap-
pears to be a considerable number of covariance values other
-1, 02 02 05 o8 ' than those that were originally specified. For example, refer-

ring to Fig. 6, for a first-order Markov process, specifying
@ the coarse-to-fine dynamics requires knowledge of the co-
1f ‘ ‘ ‘ N ] variance between points (namely end- and mid-points) that
are not near each other. In principle, these can be computed
from the AR model as mentioned in the preceding paragraph,
but that recursive method also calculates many elements of
the covariance sequence that are not needed to construct the
MR model. This raises the question, then, of whether the
needed elements can be computed much more directly and
efficiently, and that, in turn, leads to some important ties to
graph theory.

In particular, suppose thaP is a partially specified
covariance matrixi.e., only certain elements d@?, always
including its diagonal, are specified. Furthermore, we must
also have thaP is valid, namely, that any completely filled
02 04 06 08 1 principal submatrix (i.e., any submatrix consisting of the

) same choices of rows and columns/éfind for which all of
the elements are specified) is positive definite.eension
of P, then, corresponds to filling in some of the unspecified

Fig. 21. lllustrating the use of an internal MR tree model for fBm
(with Hurst parametef = 0.3) using the Daubechies six-tap

orthogonal wavelet. (a) We consider the problem of estimating valu_es _inP while ST[i" mainta_‘ining validity, Wh“_e ecom-
a sample path of fBm given noisy measurements of the process pletionis an extension in which every element is specified,
over subintervals at the two extreme ends of the overall interval of yielding a full, positive-definite covariance matrix.

interest. (b) The estimation results using both this MR model (solid T - tant ti foll
line) and also using the exact fBm statistics (dashed—dotted line), WO Important questions are as 1ollows.

as well ast one standard deviation bars (dashed line). (Reprinted 1) Does a given partially specified covariance matrix
from [85].) have extensions and completions?

2) If so, what is the maximum entropy extension?
storage of a full covariance matrix prohibitive. In such prob- Answers to both of these questions have important
lems, what is more likely to be the case is that only a compar- graph-theoretic interpretations. In particular, # is an
atively small part of the covariance matrix is specified, and x x N matrix, consider the undirected graph with nodes
what we then seek is a model that is consistent with that par-|apeled 1, 2, ..., N, where we include the edgéi, 5)
tial specification. between distinct nodessand ; if the ;th element ofP has

This idea of modeling from partial specifications is well peen specified. Then, the following results hold [21], [75],
known in the signal processing field. In particular, consider [142].

the construction of a stochastic model for a stationary time
series that matches a partially specified correlation function
consisting of the first few values of that correlation func-
tion. If this partial specification is valid (i.e., if it does in-
deed correspond to the first few values of a completely spec-
ified correlation function), then it is indeed possible to find
models that match that partial specification, one of which,
namely themaximum entropgxtension, corresponds to an
AR signal model whose coefficients can be efficiently calcu-
lated from the specified portion of the correlation function,
using, for example, the celebrated Levinson recursions (se

fqr example, [307]) Further, although not typically empha- st the graph is not chordal, the existence of extensions and completions
sized, the resulting AR model can then be used for the ef- depends on the specific numerical values of the specified elemefts of

1) Given a particular graph of this type, extensions and
completions exist for any valid partially specified co-
variance with this graph structure if and only if the
graph is chordal?

2) If a completion exists for a given partially specified
covariance, then the maximum entropy extension is
Markov with respect to the graph determined By

One typical example in which 1) holds is if a consecutive
set of diagonal bands d? are specified—this is simply the
egeneralization of the usual AR modeling framework to allow

1442 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002



for the time series to be nonstationary (so that each of theC. Estimation of Model Parameters and Learning of MR
diagonals within the band need not have constant values).Models
In this case, the resulting maximum entropy model is, as we
have saidkth-order Markov, which is identical to the process
being Markov with respect to the graph determinedrby

Suppose that the graghof P is chordal. The question of . .

. - : following sections.
then calculating particular elementsBfor, more precisely, - i '
the possible recursive orders in which these elements can be 1) Estimation of MR Model Parametersthe first class
P of problems involves the estimation of parameters of MR

calculated also has a graph-theoretic interpretation, as shown ) ) . i
in [121]. Specifically, letP, be an extension P (so that models of fixed and known structu¥®As discussed in Sec

P.agrecs it wherevr? 1 dena), and g bethe (9% V12, e compiten of ko ctons o be
graph corresponding t&. (so thatGg C G.). Then, ifG. b y - IMPlyIng, Pie,

is also chordal, we can calculate the additional elements ofthalt one can use these computations as the basis for ML pa-
. ' rameter estimation. Examples of this for linear models can be
P, without having to calculate any other elements beyond

those inP.. Moreover, this can be accomplished recursivel found in [113] and [114] for both the estimation of the Hurst
- ' P y parameter of fBm and for the estimation of noise correlation
by constructing a&hordal sequence

structure and parameters for models used in oceanographic
GCcG CcGC---CG. (56) remote sensing.

For discrete or hybrid MR models, e.g., as in the MR seg-
where each step in this sequence corresponds to adding @nentation model in [42] or the hidden Markov tree models
single edge to the preceding graph. This sequence then proiljustrated in Example 6 and developed in detail in [59],
vides arecursive ordering for the computation of the required [80], [261], [281], and [282], a very effective approach to
elements off’... parameter estimation involves the use of the EM algorithm

In [121], it is also shown that each step of this recursion [97] The empioyment of EM requires the specification
defines a range of values for the new element of the exten-of the so-calledcomplete datawhich includes not only
sion, providing, in essence, a complete characterization ofthe actual measured data but also some additional hidden
all possible extensions much as reflection coefficients do for variables, which, if available, make the computation of
standard time series models [307]. In particular, it is shown parameter estimates much easier. For example, as described
in [121] that the required computations for each of the steps in [80], for hidden Markov tree models, the clear choice for
in the sequence involves a submatrix corresponding to thethe complete data consists not only of the actually observed
new maximal clique formed by the addition of the new edge. wavelet coefficients but also the hidden discrete states at
This submatrix has a single new element to be computed.each node, where for the following discussion we et
Choosing any value that makes the submatrix positive def- ands denote the vectors of all of the wavelet coefficients
inite is valid, and choosing the particular value that maxi- and discrete state variables, respectively. We also denote
mizes the determinant of this submatrix Corresponds to the by ¢ the vector of parameters to be estimated, Consisting of
maximum entropy extension. In some cases, the maximalthe probabilities defining the discrete-state hidden Markov
clique size can grow as the recursion progresses, apparentlynodel and the means and variances for each wavelet co-
implying that the required computations also grow. How- efficient conditioned on each of the possible values of the
ever, we refer the reader to [121] for an additional set of corresponding discrete state. The E or expectation step
graph-theoretic conditions on the chordal sequence in (56)then consists of computing the conditional expectation of
that in essence guarantee that most of the computations rethe log-likelihood functionlog[p(w, s|#)] conditioned on
quired at each stage of the recursion have already been perpoth w and on the previous iteration’s estimate6ofThis
formed at previous stages. This result provides a nontrivial corresponds to averaging over the possible values of
extension of Levinson-like recursions. given the conditioning information. The maximization (or

Finally, let us examine the Specific extension required to M Step) then involves maximizing the function Computed
form the MR tree model when we begin with a partial co- during the E step in order to compute the next iteration’s
variance consisting df diagonal bands on either side of the  estimate ofd. Note that the vectos, consisting of choices
main diagonal. In this case, as described previously, the addi-for all of the discrete states at every node in the tree, has a
tional elements of the maximum entropy extension that must number of possible values that is exponential in the number
be computed are unusually distributed (and, in fact have aof nodes in the tree. Thus, as discussed in [222] and also in
fractal pattern—see [121]). Moreover, they are an extremely Section VI-A, the computation of such expectations for gen-
sparse subset of the elementgbthavingO(V) elements).  eral graphical models can be prohibitively complex, while
Surprisingly, however, the graph corresponding to this exten- for trees such computations can be performed extremely
sion is chordal. Moreover, when the corresponding chordal efficiently. As a result, the implementation of EM-based

sequence is constructed to compute these needed elementgjgorithms for parameter estimation for MR models on trees
we find that the resulting sequence of new maximal cliques

remains bounded in size. so that the total computational load 58n many cases, the quantities to be estimated are often referred to as
’ hyperparametergypically a small number of unknowns, where the actual

to construct the resulting M_R model is al&g.V). We refer parameters of the model, e.g., the elements of the matd¢esandQ(s)
the reader to [121] for details. in linear MR models, are (typically nonlinear) functions of these unknowns.

In this section, we take a brief look at the problem of es-
timating or learning MR models from data. There are three
separate classes of problems we describe, as detailed in the
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are computationally attractive. We refer the reader to [42]
and [80] for further discussion and examples.

2) Learning MR Models:An alternative to the para-
metric estimation methods discussed in the preceding
paragraph is the use of a nonparametric or machine learning
philosophy in building such models. We briefly describe two
lines of investigation, in each of which wavelet transforms
are used to populate the variables in such an MR model and
then MR models are learned from training data.

The first of these, described in [124] and [125], involves
the construction of nonlinear coarse-to-fine statistical
models for wavelet transforms, i.e., models much as in (45)
and (46) except that the estimate of each wavelet coefficient
is allowed to be a nonlinear function of a window of nearby
scaling coefficients. Specifically, the wavelet coefficients at :
each scale are modeled as being independent when each is &=
conditioned on its own local window of scaling coefficients, £l
and the conditional distribution for each coefficient is | il
assumed.t_o be G.au,SSiEfm' HOWGVEI’, the me,an (Ve_lriance) 0f:ig. 22. An example of the method developed in [91] for
that conditional distribution is modeled as a piecewise affine nonparametric estimation of MR models of steerable wavelet
(constant) function of the window of scaling coefficients. pyramids of a sample image. The small region included within the
For any such “piece,” we have a linear parametric model as glr?ﬂ(é)%gg;mg: Ig?ggd?%lﬂﬁﬁ;’?ﬁg:!&i,gne;Jrgmir"é’R,'Ch
in (45). However, determining how many such linear pieces synthetic, using this learned model, except for this one small region
there should be and specifying the region over which each in which the real image is located. (Based on [90] and [91].)
linear function should be applied require nonparametric
estimation techniques. We refer the reader to [124] and The way in which this is done is to assume an interesting vari-
[125] for details and also for the application of these models ation of stationarity, namely, that each nodzt a given scale
to problems of tomographic reconstruction. Finally, we has the same conditional distribution (57) as all other nodes
note that, since each wavelet coefficient depends on severaht that scale. What this implies is that, even with a single
scaling coefficients, the question arises as to whether theimage from which to learn the distribution, we will have a
resulting MR model forms a tree or, more precisely, if state significant number of samples from which to estimate these
augmentation methods such as described in Section VI-B3densities at finer scales (at which there are many nodes), al-
can be applied to transform this model into a tree model. though the resulting learned densities at coarser scales will
In some cases, this will certainly be the case. However, in be less certain. Note also that the distributions in (57) do not
others, the result will be a more complex graph that does notcorrespond to a Markov model on the tree £9s), since, if
yield a junction tree or cutset tree model with acceptably that were the case, conditionings) on z(s7) would make
small state dimension. further conditioning on more distant ancestors of no infor-

Another very interesting approach to MR modeling for mational value. However, just as in time series analysis, it is
image processing is that developed in [90]-[92]. The basic simple to turn such a higher order Markov description into
idea behind this approach is quite simple. Given a samplea first-order representation by state augmentation, i.e., by
image, we form an MR pyramid by performing an MR de- defining the state at each node to consist of a vector of the
composition of the image—the specific decomposition used values ofz(.) at the ancestors of that node. As with hybrid
in [91] is an overcomplete steerable pyramid [298]. Thus, and nonlinear wavelet-based methods, such as in [59], [80],
at each node, on a quadtree, we have a vector of coeffi- [261], [281], [282], and [333], the motivation for this mod-
cients, denoted by(s), sensitive to variations in different  eling methodology is to capture both the non-Gaussian nature
directions at the location and scale corresponding to sode of wavelet statistics and the cascade behavior characteristic
From this one image sample—or perhaps from a small setof wavelet decompositions of natural images. Fig. 22 illus-
of images [20]—we wish to learn non-Gaussian, nonlinear, trates one example, suggesting the promise of this approach
coarse-to-fine statistical dynamics. In particular, what is done for the modeling of natural imagery.
in [20] and [90]-[92] is to use nonparametric density estima-  3) Learning MR Tree StructureThroughout the discus-
tion methods to estimate both the distribution of the vector sions in this entire section, we have focused on aspects of the
of values at the root node and the conditional distributions MR modeling problem other than identifying or learning the
for every other node given all of its direct ancestors. That is, structure of the MR tree; that is, we have focused on iden-
for each nodes other than the root node 0, we estimate the tifying the variables to place at particular nodes on a pre-
density specified tree and/or the problem of determining the param-

eters of a model once those variables have been specified. A
p(2(s)| 2(s7), z (s7°) , ..., 2(0)) . (57) strong argument can be made that this is reasonable for signal
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and image processing applications, since the nodes and varialternative algorithms and approximations that reduce com-
ables at these MR nodes have at least rough intuition asso-plexity but allow us to keep higher dimensional or higher car-
ciated with them related to the representation of phenomenadinality states; and 3) consider MR models on graphs with
at different scales and spatial locations. Nevertheless, it isloops.
worth noting that the topic of identifying the structure of the In the preceding sections, we described a variety of
tree has received some attention [64], [177], [230], [238], approaches to the first of these alternatives. In some cases
[239], [303], mostly in fields other than signal and image pro- (e.g., with the smoothness-based models described in Sec-
cessing. tion VI-B1), reduction of state size can be accomplished
Perhaps the best known work in this area is that of Chow by replacing one model with another that serves essentially
and Liu [64]. The idea in this work is that we are given an the same purpose. In others (e.g., with the approximate
index setV, a set of random variablds(s)|s € V}, and a stochastic realization methods in Section VI-B2) the
number of independent realizations of this set of variables. method used is to reduce state dimensionality by keeping
We assume that the joint distribution of these variables is a limited-dimensional projection of the full state at each
given by a tree distribution, i.e., that thés)’s form a graph- node, chosen to minimize the residual correlation be-
ical model with respect to a tree with node $ttHowever, tween variables that the full state completely decorrelated.
we neither know which of the many trees with this index set Alternatively, as discussed at the end of Section VI-B1,
is the correct one nor the distribution for these variables. The one could use the method based on overlapping trees to
objective, then, is to use the available measurements to de-overcome the severe burden, especially at coarser scales,
termine the ML estimate of both the tree and the distribution that is placed on the state of a tree model, namely providing
with respect to that tree. Since for any a specific choice of complete conditional mutual independence to the sets of
tree structure the ML estimate of the distribution over that variables in the separate subtrees descendent from that node.
tree is simply the empirical factored distribution based on the However, as we also indicated, one of the prices for using
observed data, the central problem reduces to identifying thean overlapping tree is that the total number of tree nodes
best choice of tree structure. As shown in [64], this problem N increases by a factor of two for a dyadic tree and by a
can be solved very efficiently. factor of four for a quadtree with every additional scale.
The special nature of trees is reinforced by the obser- Thus, the amount of overlap that can be accommodated
vation that the solution to this problem in which we allow while maintaining computational efficiency of the resulting
graphs other than trees is much more difficult and, in fact, inference algorithms also has limits.
is NP-Hard [303]. An important recent advance in this area  As a result, there is considerable motivation to consider
is the work reported in [177] and [303] which focuses on the other two alternatives mentioned previously. In the next
chordal graphs with bounded tree width (so that maximal section, we take a brief look at an approach that keeps
clique sizes are bounded). Even for this limited set of graphs state size large but reduces the computational burden of the
optimal identification is prohibitively complex, but the resulting inference algorithms, and in this context we also
results in [177] and [303] show that it is possible to develop make contact with the very important field of space—time
computationally feasible algorithms that have ranks (with processes and algorithms and its counterparts, e.g., dynamic
respect to maximizing the likelihood) that are provably Bayes nets (DBNs), in the graphical model literature. In
bounded relative to the optimal. The significance of these Section VII-B, we then take a brief look at several recently
results for MR modeling have yet to be developed, but some introduced methods that have been developed to deal with
additional motivation for considering graphs that are in estimation on graphs with loops. While these methods were
some sense “close” to trees is given in the next section. originally motivated by inference problems for MR pyra-
midal structures, they can be applied to arbitrary graphical
models and thus are of independent interest to the graphical

VIl. M OVING BEYOND TREES model community.

As the preceding sections make clear, MR models on trees ) ] )
have many attractive properties that lead to powerful and ef- A Reduced-Complexity Cutset Models and Time-Recursive
ficient signal and image processing algorithms that have ex- APProximate Modeling
tensive domains of application. The fact that these models In this section, we return to the cutset models discussed
are Markov ortrees i.e., graphs without loops, leads both to in Section VI-Al, and while the ideas we describe can (and
the power of these algorithms and also to the apparent limi- have) been applied to more general graphs and to nonlinear
tations on their applicability. In particular, as we discussed in models, for illustrative purposes we frame our discussion
Section VI, while it is always the case that any process (e.g., in terms of a linear-Gaussian, nearest-neighbor MRF on a
any MRF or graphical process on aloopy graph) can be mod-regular 2-D lattice as in Fig. 14. As we discussed in Sec-
eled (exactly or approximately) using an MR model on atree, tion VI-Al, an exact MR model can be formed by taking
in many cases the resulting dimensionality or cardinality of as the state at the root node either the full set of variables
the state of that tree model is large. Since the complexity of along either the red row or blue column of the grid in Fig. 14
the algorithms we have described grows polynomially with (leading to a dyadic tree structure in which, for example,
state dimension or cardinality, we have three alternatives: 1) we alternatively bisect regions horizontally and vertically) or
reduce the dimension or cardinality of the state; 2) develop where we take the root node state to be the set of variables
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alongboththe red row and blue column in the figure (leading is banded. This corresponds to pruning edges from the fully
to a quadtree model). In either case, the dimension of the stateconnected graphical model to produce an approximate 1-D
at the root node i©(N'/2), whereN is the number of nodes ~ Markov model of order equal to the width of the nonzero di-
in the 2-D grid. Note that the dimensions of nodes at succes-agonal band.
sively finer scales are only half the dimension of their par-  This suggests the structure of an MR modeling algo-
ents, so that the overall complexity of inference algorithms rithm—and of the corresponding estimation algorithm as
is not as bad as if every state had dimengiiv'/?), but well—in which we recursively compute banded approxima-
it is still the case that large state dimension at even a smalltions to information matrices and information states for each
number of nodes leads to problems for procedures such a®of the cutset states in a tree model on the lattice of Fig. 14.
the estimation algorithm described in Section IV-B. Since the approximate information matrices have small
In particular, the dynamic model (6) and the estimation numbers of nonzero elements, the computations involved
algorithm given by (20)—(37) are written in a form that re- in each step are much simpler (e.g., only linear or at worst
quires the explicit representation, computation, and storagequadratic in state dimension). As a result, this approximate
of various estimates and error covariances of the state at eaclalgorithm has total complexity that is at wor3{V) [166].
node in the tree [e.g., see (20), (24)—(26), (35), and (36)], Moreover, the recovery at each nodetdfom P13 is also
and in general each of these covariance matrices will be full. straightforward—and, in fact, corresponds precisely to a
The key to the method described in this section is an alter- 1-D Kalman filter/Rauch—-Tung—Striebel smoother—thanks
native form for estimation equations known as th®@rma- to the banded structure of our approximationfto!. We
tion filter, in which the quantities that are stored and com- refer the reader to [82], [166], and [316] for examples and
puted directly arénformation matricesP~!, i.e., inverses  details. In addition, these same principles can be applied to
of covariances, anisiformation statesi.e., P, where the discrete-state and nonlinear graphical models, although the
covariances and estimates here could be any of the pairs aperiterion for pruning edges must obviously take a form other
pearing in the algorithm in (20)—(37). As is well known for than examination of elements of the inverse of a covariance
time series [174], the information filter algorithm has a form matrix (see, e.g., the references in the following discussion
analogous to (20)—(37), in which itis these information quan- of DBNS).
tities that are recursively computed. The method just described has close relationships both
At first glance, this approach seems to have bought usto well-known methods for the numerical solution of PDEs
nothing, since, in general, there is no guarantee that the com{106], [138] and to algorithms and ideas for space—time pro-
putations involved in this alternate form will be any less de- cesses and DBNs. In particular, as described in [81] (see also
manding than (20)—(37), and we now have additional com- [181]), suppose that, instead of beginning with the middle
putations to perform, namely, to recoveirom P~1%. How- red row in Fig. 14, we begin either with the top row or the
ever, as pointed out in Section IlI-C, the inverse of a covari- leftmost column and then “march” either downward row by
ance matrix can be interpreted as specifying a model for arow or from left to right column by column, where in ei-
random vector or process, and this is the key to an alternatether case we propagate an approximate version of the inverse
form of approximation for cutset models to that considered covariance, i.e., an approximate 1-D Markov model for the
in Section VI-B2. In particular, consider the set of variables values of the field along each successive row or column. Note
corresponding to the values of a first-order Gaussian MRF that such an approach effectively treats one of the two spa-
along the center, red row of Fig. 14. What we would like tial dimensions as a time-like variable for the row-to-row or
to do is to think of this set of values as a 1-D signal. How- column-to-column recursion, and this in turn provides a di-
ever, while the inverse of the entire covariance of the full rect connection to space—time processes, e.g., processes on
2-D process is sparse (thanks to the graphical structure ofgrids such as in Fig. 14 in which one of the two independent
the model), the inverse of the covariance matrix of this center variablesis time.
row alone is generally full, implying that the graphical model ~ The idea of propagating approximate graphical models
associated with this 1-D signal is fully connected. On the in time is a topic of significant current interest [43], [134],
other hand, as discussed and illustrated in [82], [166], and [254], and we refer the readers to these references for de-
[316], in many cases, e.g., in particular for many first-order tails. We note in particular that in [43] the authors confront a
MRFs, these information matrices are nearly banded, i.e., theproblem of considerable concern not only for DBNs but for
dominant nonzero values are in a relatively narrow diagonal the approximate MR modeling methods described in this and
band around the main diagonal of the matrix. Consequently, previous sections, namely the issue of how approximation er-
if we were to approximate such matrices by setting to zero rors propagate and accumulate over time. In particular, these
the values that are deemed to be srifallye obtain an ap-  authors obtain results that show that, as long as the temporal
proximation for the inverse covariance of this 1-D signal that dynamics of the process of interest have sufficient “mixing,”
the Kullback-Leibler (K-L) divergence between exact and
59n particular, as discussed in [143] and [204], it is relatively easy, with approximate models decreases with temporal propagation,
local computations, to compute what is known as the partial correlation co- which implies that, if comparable approximation errors are
efﬁcient corresponding to a particular edge, namely th(_e_conditional corre- made at each time step, the accumulation of these errors over
lation betyveen t_he nodes_ connected by thgat edge conditioned on all the resttim m red by K—L diveraen remains bounded. De-
of the variables in the entire graph. Removing edges corresponding to small e (as measured by ergence) remains bounde e
partial correlations is one approach taken in [166]. veloping comparable results (and possibly stronger ones in
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the linear case) for MR tree models remains an open topic
whose resolution would provide a way in which to relate
local approximations at each node in a tree with the impact
on global model accuracy.

We also refer the reader to [54]-[56] for related research
in space—time estimation in which the spatial phenomenon
can be 2-D or 3-D, and for which the objective is to propa-
gate an MRF model (e.qg., a first-order or higher order MRF
on a grid such as Fig. 14), and to [147] and [342] for ap-
proaches to direct temporal propagation of an MR tree model
for a space—time process. An important issue that [147] be-
gins to address is that of the temporal “mixing” of spatial
scales, i.e., features at one scale at one point in time can in-
teract through the temporal dynamics to produce features at
different scales as time evolves. This characteristic implies
that the statistical relationships, e.g., between a parent and
child node, at one point in time depend on the relationships
at the previous time among nodes that may be at several dif-
ferent scales. The resulting structure consists of a temporal
sequence of MR models on trees with directed edges between
nodes in the tree at one time to nodes in the tree at the next
time in order to capture temporal dynamics and mixing.

@

(b)
B. MR and Tree-Based Algorithms for Graphs with Loops

In this section, we describe approaches that relax the
requirement that the MR model live on a loop-free graph,
thereby reducing the decorrelation burden on (and hence
the dimension of) coarse-scale nodes by allowing additional
paths between finer scale nodes. For example, rather than
using MR models on trees such as in Fig. 1(a), one might
consider MR models on pyramidal structures such as in
Fig. 23, in which there are edges between pairs of nodes at
various scales, in essence providing a short circuit between
nodes that would otherwise be far apart, as measured by (c)
distance along the MR tree. Fig. 23. (a) An example of an MR (loopy) graphical structure,
Other examples of MR graphs with loops, e.g., ones in including several direct connections across what are major
which each node is connected to several parent nodes (e.ggg:gdoe}r;ﬁfsogrr:h“;iesrmrﬁn"\”R tree. (b) and (c) Two spanning
see [42], [110], and [156]) have been mentioned previously.
With the use of any such graph, however, one must confront
the problem of inference, which, as we discussed in Sec-employed in a variety of other contexts (see, for example,
tion IV-D, is a challenging problem that is the subject of [53], [183], [289], [290], and [323]). For simplicity, we de-
considerable current interest. Indeed, the graphical modelscribe the idea in the context developed in [42], which em-
and turbocoding literature contain important results on the Ploys an MR discrete-state Potts model, as introduced in Ex-
behavior of belief propagation algorithms (e.g., [123], [278], @mple 3 and (8), to describe the coarse-to-fine dynamics of a
[332], and [337]), including results for linear-Gaussian hidden Markov tree representing segmentation labels at a se-
models [285], [332], [338], as well as the introduction duence of resolutions. The observed data in [42] consists of
of new classes of iterative algorithms (e.g., [332], [334], image measurement at the finest scale which are assumed to
and [357]). It is not our intention to describe or review be conditionally independent when each measurement pixel
this vast and active area of research. Rather, we refer theiS conditioned on the value of the hidden discrete label at that
interested reader to the references just given and the Other§iX6| (Where the form of the conditional distribution is taken
on graphical models cited previously and limit ourselves 0 be Gaussian or a Gaussian mixture in the examples in [42]
here to brief descriptions of several investigations that have Or a generalized Gaussian in other references (e.g., [289] and
been directly motivated by MR models and tree algorithms, [290]).
beginning with the following example. While the model described in the previous paragraph is
Example 10: In this example, we return to the problem of essentially identical in structure to others we have described
image segmentation introduced in Section II-E and, in par- (e.g., see Example 6), there are two significant additional
ticular, to an approach introduced in [42] and subsequently components of the complete approach developed in [42] that
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distinguish it and lead to inference algorithms with a very of MR processing but that is decidedly different from
different structure. First, rather than using either an MAP or approaches found in the general graphical model literature.
MPM criterion for optimal estimation of the discrete label In particular, [42] assumes thdioth a tree-based Potts
set, the authors suggest an alternative measure aimed in parnodel as in Example &nd a three-parent nontree model
at overcoming the problematic use of MAP estimation for are available for the discrete state process. The tree-based
segmentation [234] and also at exploiting the structure of model is used on the fine-to-coarse sweep, computing the
MR models. In particular, using the argument that errors likelihoods in (58). The optimal root node estimate is then
at coarser scales are geometrically more expensive (sincecomputed as in (59), and the estimates at other nodes are
they correspond to misclassifications over geometrically computed node by node in a coarse-to-fine sweep using the
larger regions), the authors derive a criterion that puts following recursion in place of (60):
exponentially larger weights on errors that occur at coarser
scales (see [42] for the precise formulation). The result is a #(s) = arg max {£, (k) +log p(x(s) = k[i(t),t € P(s))} -
criterion whose precise optimization is rather complicated. (61)
However, the authors demonstrate that a very good approxi-Comparing (60) with (61), we see that the only difference is
mation to the criterion to be optimized at each scale results the conditioning on the set of three parents rather than simply
in a very simple and intuitively appealing structure: a first Z#(s7¥) in the transition distribution. As discussed in [42], at
fine-to-coarse sweep, much as in the two-sweep algorithmseach scale what this algorithm resembles (but does not equal)
we have described previously, is performed to compute atis the optimal estimate based on using a three-parent Potts
each node the conditional log-likelihood for the data in the modelfor coarser scales but a tree-based Potts model for finer
subtree below that node conditioned on the discrete-statescales.
value at that node. That is, if we lets) denote the discrete Fig. 24(a) shows the result from [42] of applying this al-
state at nodes andY; denote the data at the finest scale gorithm to the multispectral image in Fig. 5(a), in which
nodes descendent fromthe coarse-to-fine sweep computes the data at each pixel consists of a vector of multispectral
measurements, and the image is segmented into five regions,
£o(k) = logp(Yo|z(s) = k) (58) the pixels in each of whichgare mo%eled as a multiva?iate
at each node and for each valué thatz(s) can take on. At Gaussian mixtures. Fig. 24(b) shows corresponding results
the root node, we can then compute the optimal estimate as for the segmentation of the document page in Fig. 5(b) into
arON three regions (text, picture, and background). The algorithm
#(0) = arg i fo(k). (59) used for this second example and developed in [53] uses
The approximate estimation algorithm then proceeds in athe same structure (tree for fine-to-coarse likelihood com-
coarse-to-fine manner where at each stage we essentially agputation and nontree for coarse-to-fine estimation) but much
sume that the estimate at the parent node is correct. That ismore sophisticated and involved data and model structures.
the approximate coarse-to-fine recursion is given by We refer the reader to [53] for detaif.

#(s) = argmax {£,(k) +logp(z(s) = k| 2(s7))} . (60) Finally, we briefly describe research motivated both by
MR loopy graphs as in Fig. 23 and also by the efficient algo-
rithms described in Section 1V for inference on trees. Specif-
ically, consider estimation for a graphical model on a (con-
nected, loopy) graptf = (V, £), based on noisy measure-
ments of variables at some (or all) of the nodes on the graph.
The basic idea behind the algorithms in [332] is to carry
out this estimation process using inference on tree models
as a basic engine. In particular, suppose that we identify a
set ofspanning treessSy, ..., Sy for the graphG. That is,
each of these trees connects all of the nodes and has a
set of edges that is a subset of the edgefset G. For ex-
ample, Fig. 23 (b) and (c) depict two spanning trees for the
graph in Fig. 23(a). The general structure of the algorithms
in this class involve iterative application of tree-based infer-
ence using the statistical structure implied by using each of

However, as we have pointed out, and as is also pointed
out in [42], use of such a tree model can lead to artifacts,
and this leads to the introduction in [42] of an alternative to
the tree-based Potts model of Example 3, namely, a directed
graphical model from coarse-to-fine scales in which the dis-
crete stater(s) at any node s depends on the valuethege
nodes at the preceding, scale, namely, the parentstpdad
two of its neighbors at the same scale, where for simplicity
here we denote this set of three nodesP4s). The model
used is a straightforward variation of (8) in which the state
x(s) is influenced by all three of its parents (see [42] for de-
tails). As a result of adopting this nontree model, the compu-
tation of the likelihood in (58) and in fact the entire structure
of the computation of optimal estimates becomes much more
complgx thanl§s to the loopy structure of the graph COITe- 1 oo trees individually.
sponding to this three-parent model. In principle, maximiza-

tion cannot be performed node by node at each scale; rather Specifically, letz be a zero-mean, Gaussian, graphical
P y . . ' rocess or; with covariance matrix@,, and suppose that
all nodes at each scale need to be considered simultaneously,

a Comb'nator'_a”y exploswe requirement at finer scales. 60The algorithm in [53] involves the use of Haar wavelets to transform
Thus, as with any inference problem on a complex graph the raw measurements into detail coefficients, an affine class-dependent MR

with |00pS an approximation or iterative scheme is needed. model for the scale-to-scale dynamics for these coefficients, and a directed
' graph model for the multiscale class labels with transition probabilities that

The approach taken in [42] is to define a noniterative, 5re'in general much more complex than those used in [42]. All of these
two-pass algorithm that is motivated by the perspective aspects of the model are learned by training on a small set of sample images.
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Fig. 24. Segmentation results on the images in Fig. 5: (a) from [42] using the technique described
in Example 10 (each multispectral pixel is classified into one of five region types); (b) from [53]
using a more sophisticated MR algorithm building on the framework described in Example 10 (here
each pixel is classified into one of three classes: text, picture, and background).

we have linear measurementas in (38) withC' and the co-
varianceR of the measurement noiseblock-diagonal. As
discussed in Section IV-D, the optimal estimates the so-
lution of (39), and the corresponding error covariatitds
given by (40). Further, as we also discussed previouty,
has a nonzero element in the off-diagogalt) block only if

(s, t) € €. If G were a tree, this would allow us to apply the
fast estimation algorithm of Section I1V-B to calculate béth
and the diagonal blocks @t.. Sinceg is not a tree, we cannot
do this; however, for each of the spanning trées. . . , Sr,

we can write

Pt=P"'-K,

where the only nonzero off-diagonal bIockstl corre-
spond to edges in the spanning tege and K; has nonzero

i=1,...

which suggests an iterative algorithm of the following form.
Leti(n) denote a sequence that designates which oflthe
spanning trees is used at th¢h iteration (e.g., chosen to
cycle periodically through these trees or chosen randomly),
and letz,, denote the approximation to the optimal estimate
at thenth iteration, which is the solution to

(Pzzi) + CTR_IC) In = Kigyin—1 +CTR™1y. (64)

Since the matrix on the left-hand side of (64) has a tree struc-
ture corresponding to th&n)th tree, this equation can be
solved efficiently using the MR estimation algorithm in Sec-
tion 1V-B.

In [334], examples are given demonstrating that such
embedded tre€ET) algorithms can lead to very efficient
methods for computing the optimal estimates. As with BP

elements only in blocks corresponding to edges eliminated [285], [338], if an ET algorithm converges, it does so to

from G in order to forms; (and possibly in the diagonal

the optimal estimate. Moreover, while BP does not yield

blocks corresponding to nodes involved with the edges elim- the correct error covariances, it is shown in [334] that the

inated)ét As aresultK; has rank proportional to the number

of edges removed frorg.

Using (62), we can rewrite (39) as
(P~*+CTR™IC) 2, = Kiz, + CTR™y

61That is, if the edgés, t) has been eliminated, th8, t), (s, s), and
(¢, t) blocks of K; may be nonzero.
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computations performed in an ET algorithm can be used
to compute a sequence of approximations that do converge
to the correct error covariances. Furthermore, experimental
evidence reported in [310] and [334] indicates that ET

algorithms converge for a broader class of processes than
the general, local message-passing version of BP. Roughly
speaking, this is due to the fact that the algorithm takes
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advantage of much more global structure of the process,in many signal and image processing problems (such as the
as captured by each of the spanning trees. We refer thetexture discrimination and groundwater hydrology examples
reader to [310] and [334] for examples and theoretical discussed in the paper), while the underlying phenomenon
analysis including conditions guaranteeing convergence of may be extremely complex, the available datal the in-
this tree-based algorithm. ference objectives are much simpler and lower dimensional.
We also refer the reader to [332] for the introduction and This suggests (and these examples support) the idea that, for
investigation of a set of algorithms for discrete-state pro- such inference problems, it may be acceptable to use rela-
cesses that also use embedded trees but are much closer tively simple and therefore crude MR approximations which
BP. Roughly speaking, the idea behind this work is to take nevertheless yield near-optimal performance for specific in-
advantage of an interpretation discussed at the end of Secference problems of interest. Formalizing this idea and devel-
tion 1V-B, that exact computations of conditional probabil- oping more general methods for constructing models suited
ities on a tree correspond to a refactorization of the proba- for particular processing tasks remain to be accomplished.
bility distribution for a graphical model, essentially interms ~ There are many other theoretical topics that also remain to
of a distribution at a root node and parent—child transition be explored. One of these is the development of data-driven
distributions. The tree reparameterization algorithm devel- algorithms for model construction analogous to the ones we
oped in [332] then corresponds to iterative refactorization of have described based on explicit knowledge of the covariance
the entire distribution on a loopy graph, where at each step structure of the process to be modeled. Here we are motivated
the factorization involves only those edges corresponding to by the fact that standard temporal modeling methods (e.g.,
one of the spanning trees used in the algorithm. We refer thefor AR or autoregressive moving average (ARMA) models)
reader to [332] for the theoretical analysis of this algorithm have versions that work directly from covariance specifica-
and for examples that show its promise for inference on loopy tions and other versions that work recursively from data.
graphsi2 While the methods in these references have only re- We expect that data-driven algorithms can be developed that
cently been introduced, the results obtained so far and theirhave considerable computational advantages, and we refer
explicit use of global rather than local graph structure sug- the reader to [167] and [325] for some initial efforts in this
gests that there may be much more that will result from fur- direction.

ther investigation over the next few years. In addition, for a variety of reasons, it is of considerable
interest to develop methods for MR modeling on graphs with
VIIl. CONCLUSION cycles. One of these reasons is the recently developed set

. . of algorithms for loopy graphs described in Section VII-B,
In this paper, we have described a framework for MR mod- which show that one can make use of the power of tree-based

eli_ng and processing of signals and images. As we hav_e Seenalgorithms for many graphical models on loopy graphs such
this framework, based on Markov models on pyramidally as in Fig. 23(a). How do we build such models? Are there

strgctijreq MRhtrees, ?]dtm'ts etfflmetr:t pr(;)c:assmg a]lg(t)rltt_h?"ns variations on the stochastic realization or covariance ex-
and also 1S rich enough fo capture broad classes of statis ICatension methods described in Section VI-B for such loopy

phenomena. As a result, these methods have found apphca'graphs? For example, the covariance extension results in

tion in_a variety .Of very different conte_xts. More_over, the [121] that are described in Section VI-B4 assume that the
formallsr_n on which this methodology 'S ba;ed IS Of deep known covariance elements form a chordal graph among
interest intellectually, as it makes contact with a variety of the variables to be modeled. However, in many applications,

topC;cs,éncludlngtw?veleﬁs, g;?]phlcgl models, EMMS’(;mtjlt'f' especially in remote sensing, that will almost never be the
grid and coarse-to-fin€ algorithms, INVErse problems, datalu- ., qq - 1n particular, in such applications, we are likely to

sion, stat_e space system theo_ry, stochastic_realization theoryhave knowledge of correlations among fine-scale variables
an\(ljvmgx Il'mumtr? nttrt'(r)]pytrr]nodelln%andtﬁm(;arllanc?he?tensrllons.(e_g.' temperature variations in the ocean) that are in close
¢ believe that the theory and methodology that we have roximity spatially as well as correlations among coarser

described can be of value to researchers and practitioners "Epatial averages of these variables across longer distances,

many different fields. In addition, we also believe that this forming a nonchordal graph of known covariance values
area remains fertile ground for further basic research. For g\, 4 problem, in which we have both local fine-scale

example, while the MR methods that have been developed, 146 gistant coarse-scale statistical characterizations

_have been successfully applied to many problems and muchthat are of importance, is reminiscent of the structure that
is known anecdotally about the problems to which they can is exploited in multipole algorithms [256], [280] for the
be applied, there is still more that can be done to deepen our, '

derstandi tth bl ¢ hich th thod solution of PDEs. We refer the reader to [115] for a first
understanding ot the problems for which these methods area\ttempt to adapt multipole ideas to MR estimation and also
appropriate and the limits to their applicability. In particular,

to [22], [167], and [325] for some results on MR modeling

o , , . and covariance extension on graphs with cycles.
62Note that the tree reparameterization algorithm developed in [332] is Other di . for furth h be f din vi
fundamentally different than the ET algorithm in [310] and [334], as the ther directions for L_'rt er researc ; can .e Ou.n '.n vir-
specialization of the former to linear-Gaussian models does not yield the tually every corner of this paper. One is the investigation of

ET algorithm. Further, as shown in [332], BP itself can be viewed as a very \yhat we have called noninternal MR realizations, a topic that
special variant of tree reparametrization in which very simple embedded

(but not spanning) two-node trees in the graph are used at each step of theofferS th_e possibility of a_dditional ﬂeXibi"ty not present if we
iteration. constrain ourselves to internal models (see [325] for some
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initial results along these lines). Another is the further inves- researchers and authors who have worked and are working
tigation of methods for space—time problems, either in which in this area, the author owes both a profound thank you for

time is treated in an MR fashion as well (e.g., as is found in research that makes this field as interesting and rich as it is
so-called multirate Kalman filtering and estimation theory and an apology both to those authors whose work the author

[51], [79], [96], [150], [151], ) or, as in the methods dis-

has cited for his undoubtedly imperfect retelling of their work

cussed in Section VII-A, in which time is treated as a sequen- and to the authors whose work the author has inadvertently
tial variable but space is treated in an MR graphical manner. omitted due to his own ignorance or forgetfulness.

The results we have presented (and others in the literature,
such as [274]) represent a start to this very important area

which extends well beyond MR modeling to the investiga- RererRENCES

tion of DBNs.

As this discussion and the results summarized in the pre-
ceding sections illustrate, MR statistical modeling and infer-
ence remains a fertile, active, and important area of inves-
tigation. It is the author’'s hope that this paper will help to
stimulate further use of the methods that already exist and
inquiry into extensions that can enhance our understanding
of these methods as well as the range of problems to which
they can be successfully applied.
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