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In this paper, we develop a novel region-based approach to snakes designed to
optimally separate the values of certain image statistics over a known number of
region types. Multiple sets of contours deform according to a coupled set of curve
evolution equations derived from a single global cost functional. The resulting active
contour model, in contrast to many other edge and region based models, is fully
global in that the evolution of each curve depends at all times upon every pixel in
the image and is directly coupled to the evolution of every other curve regardless
of their mutual proximity. As such evolving contours enjoy a very wide “field of
view,” endowing the algorithm with a robustness to initial contour placement above
and beyond the significant improvement exhibited by other region based snakes over
earlier edge based snakes. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Curve evolution methods have been applied to a variety of problems in image process-
ing and computer vision including image smoothing, morphology, shape modeling, edge-
detection, and segmentation. Since the introduction of the snake methodology [10, 27]
active contours have become particularly popular for segmentation applications (see [1]
and the references therein for more general applications). A number of recent works [5, 6,
21, 29] have sought to combine curve evolution techniques with statistical approaches to
segmentation. Much of this work has been motivated by the earlier work of Ronfard [23]
as well as Zhu and Yuille [31, 32].

1 This work was supported by ONR Grant N00014-91-J-1004, by subcontract GC123919NGD from Boston
University under the AFOSR Multidisciplinary Research Program on Reduced Signature Target Recognition, and
by ARO Grant DAAH04-96-1-0494 through Washington University.
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In [29, 30], Yezzi et al. proposed a new class of active contours, combining curve evolution
and statistics in a natural way for images consisting of a known number of region types.
In contrast to other snake algorithms, multiple sets of contours, evolving via separate but
coupled curve evolution equations, are employed to segment an image into multiple region
classes. The coupling between the evolution equations, which does not depend upon the
mutual proximities of each set of contours, causes every single pixel in the image to influence
the flow of every individual contour. This fully global approach to segmentation is, thus, even
more robust to initial contour placement when compared to other region based approaches
[6, 23, 31, 32] (in which the evolution of a boundary depends only upon the pixels within
regions which share the given boundary) which are already more robust than local edge-
based approaches [2, 3, 7, 10, 11, 16, 26–28] (in which the evolution of a curve depends only
upon nearby pixels). See [4, 5, 21] for some heterogeneous approaches which blend both
region and boundary information. Standard level set implementations (see Osher and Sethian
[20, 25] and the references therein) of these coupled curve evolutions involve separate level
set functions for each set of curves. This offers a simple mechamism to treat triple points
and other multiple junctions. Some other recent level-set, coupled snake algorithms [22,
24], though different, enjoy many of the same advantages as our model.

The key idea behind the coupled curve evolution model presented in [29, 30] was to design
curve evolution equations which “pull apart” the values of one or more image statistics (e.g.,
means, variances, textures) within each region. In this paper, we introduce a new constraint
which guarantees that the relevant statistics evolve “away from each other” as opposed
to just “apart.” This constraint will be treated in Section 4. We first present the original
model in Section 2, followed by a comparison in Section 3 with other recent region-based
models. In Section 5 we discuss the numerical implementation of both the original and the
constrained models using level set techniques [20, 25] followed by simulations in Section 6.

2. COUPLED CURVE EVOLUTION MODELS

In this section, we present the original coupled curve evolution models outlined in [29, 30].
These are based upon gradient flows designed to “pull-apart” the values of two or more image
statistics and are therefore useful for segmenting images in which regions are differentiated
by the values of a known set of statistics. We start out with the simple case of bimodal
imagery in which there are two types of regions, foreground and background. In this case, a
single set of curves (and a single statistic) is sufficient to delineate the boundaries between
foreground and background. We refer to the resulting gradient flows as binary flows. For
trimodal imagery, we use two sets of curves to distinguish two different foreground classes
from a common background (or vice-versa), explaining our reference to these techniques as
coupled curve evolution models. We conclude this section by discussing a general approach
for more than three region classes (by employing more than two sets of curves).

2.1. Binary Flows

We begin by considering images which consist of just two region types. The most trivial
case is that of a binary image I (x, y) consisting of a single foreground region R of intensity
I r and a complementary background region Rc of intensity I c �= I r . We wish to determine
an evolution that will continuously attract any initial closed curve �C toward the boundary
∂ R of R. Given that �C will enclose some portion of R and some portion of Rc, the average
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intensities u and v inside and outside the curve respectively are bounded above and below
by I r and I c. Consequently, using the distance between u and v to measure how well �C
has separated the foreground from the background will ensure an upper-bound of |I r − I c|
that is uniquely attained when �C = ∂ R. A related strategy, which also assumes no previous
previous knowledge of I r or I c, would be to minimize the following energy:

E = −1

2
(u − v)2. (1)

Let Su = ∫
Ru I d A and Au = ∫

Ru d A, where Ru denotes the interior of �C . By expressing
their gradients (in the space of curves) as ∇Su = I �N and ∇ Au = �N (see Appendix 1 in
[29] for a derivation), where �N denotes the outward unit normal of �C , allows us to compute
the gradient of u = Su/Au as follows:

∇u = Au∇Su − Su∇ Au

A2
u

= Au I − Su

A2
u

�N = I − u

Au

�N . (2)

By a similar computation, we may express the gradient of v as

∇v = − I − v

Av

�N , (3)

where Av denotes the area of Rv (the exterior of �C). Note the minus sign due to the fact that
�N is the outward normal with respect to Ru and so the outward normal with respect to its

complement Rv is − �N . We may use these expressions to compute the gradient flow for E

d �C
dt

= −∇E = (u − v)

(
I − u

Au
+ I − v

Av

)
�N , (4)

which optimally separates the mean intensities inside and outside the curve �C .
An attractive property of this flow is that it automatically proceeds in the correct direction

without using an inflationary term common to earlier snake algorithms. An initial contour
encompassing the region R will flow inward toward the boundary; a contour inside R will
flow outward; and a contour which overlaps R will flow in both directions toward the bound-
ary. Thus, no prior knowledge of the evolution direction is required, making initial contour
placement less restrictive (a property shared by many other region-based snake algorithms
[5, 6, 21, 23, 32], constituting a significant improvement over edge-based algorithms).

In a more general bimodal image consisting of light regions and dark regions (i.e., not
strictly binary) contaminated by noise (see Fig. 1), a contour may tend to weave around

FIG. 1. Flow (6) captures regions with different mean greyscale intensity values.
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or encircle extremely small regions due to noise in order to fully separate the interior and
exterior means, taking on a fractal appearance in the process. To counter such effects, we
follow the lead of Mumford and Shah [17, 18] by adding to our functional (1) a penalty on
the arclength of the curve.

E = −1

2
(u − v)2 + α

∫
�C

ds (5)

This geometric penalty regularizes the gradient flow through a curvature-based term

d �C
dt

= (u − v)

(
I − u

Au
+ I − v

Av

)
�N − ακ �N (6)

which exerts its strongest influence at contour points with significant curvature. This dis-
courages the contour from wrapping around tiny pieces of noise, with the tradeoff that sharp
corners of image objects may be rounded off by the final contour.

We may readily generalize our model to bimodal vector-valued data (e.g., color or mul-
tispectral imagery) by employing the following more general energy functional

E = −1

2
‖u − v‖2 + α

∫
�C

ds, (7)

where u and v are now vector-valued averages of the data inside and outside the curve re-
spectively. In the case of n-dimensional measurements, u = (u1, . . . , un), v = (v1, . . . , vn),
and I (x, y) = (I1(x, y), . . . , In(x, y)), the gradient flow is given by

d �C
dt

=
n∑

i=1

(ui − vi )

(
Ii − ui

Au
+ Ii − vi

Av

)
�N − ακ �N . (8)

Note that the data components I1, . . . , In in (8) do not have to represent intensities (as in a
color image) but may represent wavelet coefficients, filter responses, or other measurements.
The wood grain textures, oriented in two different directions in Fig. 2, for example, were
captured via (8) by using two-dimensional unit vectors aligned with the gradient of the
greyscale image.

We may further generalize the bimodal model by letting u and v denote statistics other
than means. The image in Fig. 3, for example, contains two regions with identical means
but different variances. In this case, the following energy functional

E = −1

2

(
σ 2

u − σ 2
v

)2 + α

∫
�C

ds (9)

FIG. 2. Flow (8) captures two different wood grain textures with opposite orientations.
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FIG. 3. Flow (10) captures two regions with identical means but different variances.

(where σ 2
u = 1

Au

∫
Ru (I − u)2 d A and σ 2

v = 1
Av

∫
Rv (I − v)2 d A denote the variances inside

and outside �C) was used to capture the boundary via the gradient flow

d �C
dt

= (
σ 2

u − σ 2
v

)(∇σ 2
u − ∇σ 2

v

) − ακ �N

=
{(

σ 2
u − σ 2

v

)( (I − u)2 − σ 2
u

Au
+ (I − v)2 − σ 2

v

Av

)
− ακ

}
�N . (10)

2.2. Ternary Flows

We now extend our methodology to the problem of segmenting images with three region
classes by utilizing two different sets of curves with separate evolution equations. The flows,
however, will be derived from a common energy functional, giving rise to a global coupling
regardless of the positions of the curves.

We begin by considering an image I (x, y) whose domain consists of two disjoint, simply
connected, foreground regions Ra and Rb and a background region Rc (the complement of
Ra ∪ Rb) with mutually distinct intensities I a , I b, and I c, respectively. A closed curve �Cu

in the domain of I will generally enclose some portion of each region; thus, the average
intensity u inside �Cu can be written as a convex combination of I a , I b, I c (i.e., u =
α I a + β I b + γ I c, where 0 ≤ α, β, γ ≤ 1 and α + β + γ = 1). Unfortunately, if I ∈ R,
this combination is not unique. Uniquness requires geometric independence (noncollinearity
in this context) which is not possible for three values in R, we must move to Rn where n ≥ 2.
Let us therefore assume that I is a vector-valued image with at least two components (such
as the image in Fig. 4 containing red and green channels) and that I a = (I a

1 , . . . , I a
n ), I b =

(I b
1 , . . . , I b

n ), and I c = (I c
1 , . . . , I c

n ) are geometrically independent. We may now represent
u = (u1, . . . , un) as a unique convex combination of these three values. The same situation
applies to the average vector intensity v within the interior of a second curve �Cv and to the
average vector intensity w within the mutual exterior of �Cu and �Cv . Our segmentation goal
is to construct coupled flows that will continuously attract �Cu toward one of the boundaries
∂ Ra or ∂ Rb (of Ra and Rb respectively) while simultaneously attracting �Cv toward the
other.

By virtue of their geometric independence, I a , I b, and I c form the vertices of a triangle
Tabc. As convex combinations of these three values, u, v, and w lie within this triangle,
forming another triangle Tuvw completely contained in Tabc. (This is true even if the interiors
of �Cu and �Cv overlap, providing a flexibility to our approach that is not provided by other
region-based approaches). As such, the area of the triangle Tuvw will always be less than
or equal to the area of the triangle Tabc, with equality holding if and only if �Cu = ∂ Ra and
�Cv = ∂ Rb or vice-versa. We may therefore attract �Cu and �Cv toward the desired boundaries
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FIG. 4. The coupled ternary flows (13)–(14) drive two different contours toward separate regions, even if the
initial contours overlap (b,c). Separate level set functions enable simple capturing of triple points (c,d) and confine
topological changes to contours in the same set (d).

without any prior knowledge of I a , I b, or I c by trying to maximize the area of Tuvw (given by
1
2‖u − w‖‖v − w‖ sin θ , where θ denotes the angle between u − w and v − w). To simplify
matters, we seek to minimize the following energy functional, utilizing the squared area
(which is unsigned and does not explicitly involve θ ) and incorporating arclength penalties
as we did in the binary case.

E = −2 area2(Tuvw) + α

(∫
�Cu

ds +
∫

�Cv

ds

)
(11)

4 area2(Tuvw) = ‖u − w‖2‖v − w‖2 − ((u − w) · (v − w))2

Coupled evolution equations for �Cu and �Cv may now be obtained by computing the gradient
flow for each curve. Since these computations are rather involved, we will only present some
of the key formulas used to obtain the final expressions.

The gradients of the components of u and v may be derived along the lines presented in
the beginning of Section 2.1

∇ �Cu
ui = Ii − ui

Au

�N u, ∇ �Cv
ui = 0,

∇ �Cv
vi = Ii − vi

Av

�N v, ∇ �Cu
vi = 0,

where �N u and �N v denote the outward unit normals of �Cu and �Cv , respectively, while Au

and Av denote their areas. The gradients of the components of w are more tricky since the
interiors of �Cu and �Cv may overlap. In this case, the gradient directions are no longer given
by smooth, or even continuous, variations of �Cu and �Cv . The following expressions are
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derived in Appendix 2 of [29]

∇ �Cu
wi = − Ii − wi

Aw

(1 − χv) �N u, ∇ �Cv
wi = − Ii − wi

Aw

(1 − χu) �N v,

where χu and χv denote the characteristic functions over Ru and Rv (the interiors of �Cu

and �Cv , respectively). If we define ∇u, ∇v, and ∇w as vectors of gradient flows for the
components of u, v, and w respectively (where ∇ denotes either ∇ �Cu

or ∇ �Cv
) we may

express the gradient of the area (squared) of Tuvw as

∇(2 area2(Tuvw)) = w̄ · ∇u + ū · ∇v + v̄ · ∇w, (12)

where ū, v̄, and w̄ are functions of u, v, and w defined as follows:

ū = ũ − ṽ ũ = û(v̂ · ŵ) û = u − v

v̄ = ṽ − w̃ ṽ = v̂(ŵ · û) v̂ = v − w

w̄ = w̃ − ũ w̃ = ŵ(û · v̂) ŵ = w − u.

Using expression (12) (and noting that ∇ �Cu
v = ∇ �Cv

u = 0) we obtain the following coupled
gradient flows (demonstrated in Fig. 4 on a two-channel red/green image)

d �Cu

dt
=

{
n∑

i=1

(
w̄i

Ii − ui

Au
− v̄i (1 − χv)

Ii − wi

Aw

)
− ακu

}
�N u, (13)

d �Cv

dt
=

{
n∑

i=1

(
ūi

Ii − vi

Av

− v̄i (1 − χu)
Ii − wi

Aw

)
− ακv

}
�N v, (14)

where κu and κv denote the signed curvatures of �Cu and �Cv , respectively.

2.3. More General Coupled Flows

In general, one may develop fully global, coupled flows to segment an image into m
different types of regions, where m is arbitrarily large. Generalizing the intuition behind
the binary and ternary models, one associates the preferred segmentation with a maximal
separation of the values of some statistic over each region. To obtain geometric independence
(which allows the desired global coupling), we require a vector-valued statistic U with at
least m − 1 components and assume that the image to be segmented contains m region
classes characterized by distinct, geometrically independent values U 1, . . . , U m of this
statistic. Given m − 1 initial curves (or sets of curves) we may compute m values of this
statistic u1, . . . , um (one value within each curve and the background), which are unique
convex combinations of U 1, . . . , U m . We then evolve the curves in order to maximize the
to the volume of the m − 1 dimensional simplex whose vertices are given by u1, . . . , um ,
which will be less than or equal to the volume of the m − 1 dimensional simplex whose
vertices are given by U 1, . . . , U m (with equality holding if and only if the curves have
captured m regions in the image). The corresponding gradient flow equations will yield
m − 1 fully global, coupled curve evolutions.
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3. COMPARISON WITH OTHER REGION BASED METHODS

In this section we compare and contrast our coupled curve evolution models with other
region based approaches to segmentation. A number of approaches that combine both region
and edge-based information have been considered recently [4, 5, 21, 22]. Since our models
are strictly region based we will restrict our comparisons to other approaches that are strictly
region based as well.

Some early region-based strategies for active contours were put forth by Ronfard in
[23]. Shortly thereafter Zhu and Yuille, building on the work of Leclerc [13], proposed an
MDL-based (minimum description length) system consisting of a smoothing term based on
Euclidean curve shortening and a data driven term to affect the motion of a point on the com-
mon boundary of two regions via a likelihood force. Using known parametric forms for the
probability density functions within each region, their algorithm consists of two alternating
steps: first, fix the evolving regions and choose maximum likelihood estimates for the density
parameters; next, us these estimates to evolve the region boundaries via the resulting likeli-
hood forces. For the special case of two regions and Gaussian densities with equal variances,
their algorithm leads to the following curve evolution for the shared region boundary �C

d �C
dt

= (u − v)(I − u + I − v) �N − ακ N . (15)

Flow (15) also arises as the gradient flow for a special case of the Mumford–Shah
functional in which piecewise constant (as opposed to piecewise smooth) functions are
chosen to model the image data. This is known as the minimum partition problem and is
the motivation behind the recent work of Chan and Vese in [6] who consider variants of the
following energy functional,

E2 =
∫

inside( �C)
|I − c1|2 d A +

∫
outside( �C)
|I − c2|2 d A + arclength-term, (16)

where c1 and c2 are constants which are chosen to best approximate the image data inside
and outside a partitioning curve �C .

Note that flow (15), although different, has a similar structure to the binary flow (6)
developed in Section 2.1. Initially this may seem a bit strange since the MDL based models
of Zhu and Yuille region competition and the Mumford–Shah based models of Chan and
Vese are quite different from our models designed to deterministically “pull apart” vector-
valued statistics. However, the similarity of the resulting flows only arises in the case of
exactly two regions. When more regions are involved, we will see that the formats of these
flows diverge considerably.

Note that the boundaries between three regions can no longer be described by a single
curve. For this reason, the Zhu–Yuille region competition algorithm (for more than just two
regions) is not amenable to standard level set implementations. This is probably the reason
why Chan and Vese, who do in fact use level set techniques, restrict their discussion in [6]
to two region types (foreground and background) even though their Mumford–Shah based
energy functional can easily be extended to more than two regions. The three-region version
of (16) would be given by

E3 =
∫

R1

|I − c1|2 d A +
∫

R2

|I − c2|2 d A +
∫

R3

|I − c3|2 d A + arclength-term. (17)
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Our coupled curve evolution models, in contrast to region competition, treat curves, not
regions, as the objects to be deformed. Region statistics are then computed over the interiors
of each curve (and their mutual exterior). This distinction leads to some interesting conse-
quences. First, regions are allowed to overlap during the evolution process as demonstrated
in Fig. 4. Second, by embedding each set of curves into separate level set functions we are
able to handle triple points and other multiple junctions with no additional effort. The key is
that more than one curve runs through every junction, each with its own tangent vector and
curvature. Thus, the curve evolution equations remain well-defined at these junctions, al-
lowing us to employ standard level set techniques instead of specialized multiphase variants.

When three or more regions are involved, our coupled curve evolution models, are also
more global than other region based models (including the hybrid models [4, 5, 21] which
incorporate edge information). In most other models the evolution of the boundary between
two regions depends only upon the image data inside the two given regions. In coupled
curve evolution models, the evolution of any such boundary depends upon all of the image
data, not just the data within neighboring regions. In the coupled ternary flows (13)–(14)
for example, we see that the evolution of curve �Cu depends upon the statistics u and w

within its interior and within the background region, but also upon the statistics v inside
the second curve �Cv regardless of its proximity to �Cu , and vice-versa. These coupled curve
evolution equations therefore comprise a truly global model for segmentation.

Consider the three-region version of the region competition flow (15) corresponding to
the energy functional (17) above. The evolution equations for the region boundaries are as
follows (if we ignore the curve shortening term),

�Ct = (u − w) · [(I − u) + (I − w)] �N u, between Ru and Rw

�Ct = (v − w) · [(I − v) + (I − w)] �N v, between Rv and Rw

�Ct = (u − v) · [(I − u) + (I − v)] �N u, between Ru and Rv,

(18)

where �N u and �N v denote unit normals pointing away from regions Ru and Rv and where
u, v, and w denote the means inside Ru , Rv , and Rw, respectively. If we use this model to
segment an image with three different regions we must be careful not to place both initial
contours near the same region. If we do, both contours may be attracted to that region
(over-segmenting one region) and will completely miss one of the other regions (under-
segmenting the background) due to the lack of coupling between the evolving curves. This
is demonstrated in Fig. 5. A similar phenomenon would occur with other region based
methods, including [4, 5, 21, 23].

Even if we modify the implementation of the original region competition algorithm,
employing the same energy functional (17) but utilizing separate contours with separate

FIG. 5. The sensitivity of the region competition flow (18) to initial contour placement is shown by placing
two contours near the same object. Both contours flow into the green object.
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FIG. 6. A multiple level set implementation of the region competition flow via (19)–(20) still does not prevent
both contours from flowing into the same object.

evolution equations as we have done in our coupled curve evolution model, we must still
initialize carefully. In this case the evolution equations become

∂ �Cu

∂t
= ∇ �Cu

E = {u · (2I − u) − w · (2I − w)(1 − χv)} �N u (19)

∂ �Cv

∂t
= ∇ �Cv

E = {v · (2I − v) − w · (2I − w)(1 − χu)} �N v, (20)

where �Cu and �Cv denote two distinct curves. We may now employ level set techniques to
this “modified” region competition algorithm (which also corresponds to the three region
generalization of the Chan–Vese algorithm) However, both contours still flow toward the
same object as illustrated in Fig. 6, they just overlap each other instead of splitting the object
in two. The only coupling between flows (19)–(20) is through the background statistic w.
The coupling in the ternary flows (13)–(14) from Section 2.2, however, involves all three
statistics u, v, and w. This fully global coupling prevents the same two initial contours from
flowing into the same region as seen in Fig. 7. The blue contour is forced out of the green
object as the red contour flows into it, even though the contours do not initially touch each
other. We therefore see how geometrically independent statistics are exploited our algorithm
for this added robustness to initial contour placement.

4. GLOBAL CONSTRAINTS

We begin this section by observing the performance of our models on three images.
The two rows in Fig. 8 illustrate successful uses of the binary flow (6) and the coupled
ternary flows (13)–(14) to segment a noisy bimodal image of an Apache helicopter and a
trimodal color image of a coal train. The last frames depict the final segmentations and final
mean intensities. In Fig. 9 we see the famous 1950 Oregon U.F.O. image, which is clearly

FIG. 7. The coupled ternary flows (13)–(14) do not allow both contours to flow into the green object. As one
curve moves in, the other is forced out, even before they touch each other.



A FULLY GLOBAL APPROACH TO IMAGE SEGMENTATION 205

FIG. 8. (top) Original binary and (bottom) ternary flows successfully segmenting a (top) bimodal and (bottom)
trimodal image.

bimodal and much less noisy than the helicopter image in Fig. 8. However, the binary flow
(6), illustrated in the top row, does not capture the boundary of the object, but only a few of
the dark pixels inside.

The unexpected behavior in the first row of Fig. 9 may be explained by noting that means
both inside and outside the curve decrease as it moves past the boundary and into the interior
of the object. However, the more rapid decrease of the interior mean (as the curve converges
onto the darkest pixels inside the object) outweighs the slower decrease in the exterior mean
so that overall, the two means move further apart, just as the binary model dictates. If we
constrain the two means to move in opposite directions, we avoid this problem as shown in
the bottom row of Fig. 9. In the following section, we discuss the implementation of this
constraint.

FIG. 9. (bottom) A constrained binary flow outperforming the (top) original binary flow.
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4.1. Constrained Binary Flows

Let d �C
dt and d �C ′

dt denote two admissible variations for a curve �C taken from the Hilbert
space of all smooth curve evolutions with the following inner product:

〈
d �C
dt

,
d �C ′

dt

〉
=

∮
�C

(
d �C
dt

· d �C ′

dt

)
ds. (21)

We may express time derivatives of the statistics u and v under a binary flow as

u′ = 〈∇u, −∇E〉 = (u − v)(�(u, u) − �(u, v)) (22)

v′ = 〈∇v, −∇E〉 = (u − v)(�(v, u) − �(v, v)), (23)

where −∇E denotes the gradient (descent) flow and where �(u, v) denotes the inner product
〈∇u, ∇v〉. If u and v represent mean intensities, ∇u and ∇v are given by (2) and (3),
respectively, allowing us to express the inner products as

�(u, u) = 1

Au Au

∮
�C
(I − u)(I − u) ds

�(u, v) = −1

Au Av

∮
�C
(I − u)(I − v) ds (24)

�(v, v) = 1

Av Av

∮
�C
(I − v)(I − v) ds.

The statistics move in opposite directions when u′v′ < 0 or, equivalently, when

�(u, v)(�(u, u) + �(v, v)) < �(u, u)�(v, v) + �2(u, v). (25)

We use the unconstrained binary flow −∇E so long as (25) is satisfied. Otherwise we
keep the statistic u or v fixed (depending upon which one is moving the wrong way) by
subtracting from the evolution the component along the gradient direction for that statistic.
This leads to the following constrained binary flows,

d �C
dt

= −∇E + 〈∇E, ∇u〉
〈∇u, ∇u〉 ∇u = u − v

Av

((I − u) + γu(I − v)) �N (26)

d �C
dt

= −∇E + 〈∇E, ∇v〉
〈∇v, ∇v〉 ∇v = u − v

Au
((I − v) + γv(I − u)) �N (27)

which preserve the value of u (26) or v (27). The constants γu and γv are given by

γu =
∮

�C (I − u)(I − v) ds∮
�C (I − u)(I − u) ds

and γv =
∮

�C (I − u)(I − v) ds∮
�C (I − v)(I − v) ds

. (28)

4.2. A More General Constraint

For the binary flows, we want the statistics u and v to move in opposite directions. To
generalize this constraint to models, such as the ternary model, which involve more than two
statistics we must not think in terms of “oppoiste directions” but as follows. In the binary
case, we want each statistic to evolve in a direction that would increase the distance between
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the two statistics if the other statistic remained fixed. In the general case, when n statistics
are involved, we want each statistic to evolve in a direction that would increase the volume of
the n − 1 dimensional simplex (whose vertices are given by the values of the n statistics, see
Section 2.3), if the other n − 1 statistics remained fixed. An equivalent geometric statement
is that each vertex must move away from the opposite face of the simplex.

4.3. Constrained Ternary Flows

Here we apply the general constraint, outlined above, to our ternary model, which involves
three statistics u, v, and w. In this case, the constraint is that u′ (the time derivative of u)
must be directed away from the line connecting v and w (to increase the area of the triangle
Tuvw if v and w were held fixed). We employ similar constraints for v′ and w′. First, we
derive expressions for u′, v′, and w′.

If θi denotes the i th component of one of the n-dimensional statistics u, v, or w, its time
derivative θ ′

i under the coupled flows −∇ �Cu
E and −∇ �Cv

E given by (13) and (14) may be
computed as

θ ′
i = θ ′

i
u + θ ′

i
v = −〈∇ �Cu

θi , ∇ �Cu
E

〉 − 〈∇ �Cv
θi , ∇ �Cv

E
〉
,

where θ ′
i
u and θ ′

i
v denote the derivatives of θi strictly due to the evolutions of �Cu and �Cv

respectively. If we ignore the curvature terms in (13–14), we obtain

θ ′
i
u =

n∑
j = 1

〈∇ �Cu
θi , w̄ j∇ �Cu

u j + v̄ j∇ �Cu
w j

〉

θ ′
i
v =

n∑
j = 1

〈∇ �Cv
θi , ū j∇ �Cv

v j + v̄ j∇ �Cv
w j

〉
u′u = ��Cu

(u, u) w̄ + ��Cu
(u, w) v̄, v′v = ��Cv

(v, v) ū + ��Cv
(v, w) v̄

w′u = ��Cu
(w, u) w̄ + ��Cu

(w, w) v̄, w′v = ��Cv
(w, v) ū + ��Cv

(w, w) v̄,

where � �Cu
and � �Cv

denote matrices whose entries are given by the inner product of the gra-
dients of the respective components of each statistic. For example, the entry �

i j
�Cu

(u, w) in the
i th row and j th column of � �Cu

(u, w) would be given by 〈∇ �Cu
ui , ∇ �Cu

w j 〉. In the case that u, v,
andw represent means of a vector-valued image I = (I1, . . . , In), the� matrices are given by

� �Cu
(u, u) = 1

Au Au

∮
�Cu

(I − u)(I − u)T ds,

� �Cv
(v, v) = 1

Av Av

∮
�Cv

(I − v)(I − v)T ds,

� �Cu
(u, w) = −1

Au Aw

∮
�Cu

(I − u)(I − w)T (1 − χv) ds,

� �Cv
(v, w) = −1

Av Aw

∮
�Cv

(I − v)(I − w)T (1 − χu) ds,

� �Cu
(w, w) = 1

Aw Aw

∮
�Cu

(I − w)(I − w)T (1 − χv) ds,

� �Cv
(w, w) = 1

Aw Aw

∮
�Cv

(I − w)(I − w)T (1 − χu) ds.
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FIG. 10. Visualization of ternary constraint.

We now state our constraints more precisely as (refer to Fig. 10)

u′ · hu > 0, v′ · hv > 0, w′ · hw > 0 (u′ = u′u, v′ = v′v, w′ = w′u + w′v) (29)

where u′, v′, and w′ denote the derivatives of u, v, and w, and where hu , hv , and hw

denote vectors perpendicular to the edges of the triangle Tuvw (represented by v̂ = v − w,
ŵ = w − u, and û = u − v) and directed toward the vertices u, v, and w when starting
from the opposite edges. The following vectors constitute such a set.

hu = u(v̂ · v̂) + v(v̂ · ŵ) + w(v̂ · û)

hv = v(ŵ · ŵ) + w(ŵ · û) + u(ŵ · v̂) (30)

hw = w(û · û) = u(û · v̂) + v(û · ŵ).

As in the binary case, we start out using the unconstrained flows −∇ �Cu
E and −∇ �Cu

E
given by (13) and (14) so long as conditions (29) are satisfied. Otherwise we use one or
both of the following constrained ternary flows which restrict the motion of the problematic
statistic so that its distance from the opposite edge of the triangle Tuvw remains fixed (and
therefore does not alter the area of Tuvw).

d �Cu

dt
= −∇ �Cu

E +
{

γ u
u ∇ �Cu

(u · hu), u′u · hu < 0

γ u
w∇ �Cu

(w · hw), w′u · hw < 0
(31)

d �Cv

dt
= −∇ �Cv

E +
{

γ v
v ∇ �Cv

(v · hv), v′v · hv < 0

γ v
w∇ �Cv

(w · hw), w′v · hw < 0.
(32)

The constants and the gradient terms in (31) and (32) are defined as follows:

γ u
u =

〈∇ �Cu
(u · hu), ∇ �Cu

E
〉

〈∇ �Cu
(u · hu), ∇ �Cu

(u · hu)
〉 = hu · u′u

hu · ��Cu
(u, u)hu

γ u
w =

〈∇ �Cu
(w · hw), ∇ �Cu

E
〉

〈∇ �Cu
(w · hw), ∇ �Cu

(w · hw)
〉 = hw · w′u

hw · ��Cu
(w, w)hw
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γ v
v =

〈∇ �Cv
(v · hv), ∇ �Cv

E
〉

〈∇ �Cv
(v · hv), ∇ �Cv

(v · hv)
〉 = hv · v′v

hv · ��Cv
(v, v)hv

γ v
w =

〈∇ �Cv
(w · hw), ∇ �Cv

E
〉

〈∇ �Cv
(w · hw), ∇ �Cv

(w · hw)
〉 = hw · w′v

hw · ��Cv
(w, w)hw

∇ �Cu
(u · hu) =

n∑
i=1

hu
i ∇ �Cu

ui =
n∑

i=1

hu
i

Ii − ui

Au

�N u

∇ �Cu
(w · hw) =

n∑
i=1

hw
i ∇ �Cu

wi = −(1 − χv)
n∑

i=1

hw
i

Ii − wi

Aw

�N u

∇ �Cv
(v · hv) =

n∑
i=1

hv
i ∇ �Cv

vi =
n∑

i=1

hv
i

Ii − vi

Av

�N v

∇ �Cv
(w · hw) =

n∑
i=1

hw
i ∇ �Cv

wi = −(1 − χu)
n∑

i=1

hw
i

Ii − wi

Aw

�N v.

5. NUMERICAL IMPLEMENTATIONS

In this section we address the numerical issues involved in implementing the coupled
curve evolutions presented in this paper. There are basically two problems that must be ad-
dressed. First, contours may change their topology as they evolve. Second, the data-driven
terms in these flows do not generally admit smooth solutions for all time. If we omit the
regularizing, curvature-driven term, singularities such as shocks may occur. At such points,
the evolving curve is no longer differentiable, and our flow no longer admits a classical
solution. If we reintroduce the curvature-driven term immediately before such singularities
occur and determine the limit of the resulting smooth solutions as we allow the weight
on the curvature term to vanish, we obtain a unique, physically meaningful weak solution.
This is known as the entropy solution in the theory of hyperbolic conservation laws [14, 19]
or the viscosity solution in the more general theory of Hamilton–Jacobi equations [8, 9, 15].
The level set methods of Osher and Sethian [20, 25], used with upwind, monotone dif-
ferencing schemes, [16, 19, 25] offer a natural implementation of these solutions while
automatically handling topological changes.

The basic idea of the level set approach is to embed the contour as the level set of a graph
� : R2 → R and then evolve � so that the level curve moves according to the prescribed
flow. The curve may develop singularities and change topology while � itself remains
regular. The correct evolution for � is found by solving

d�

dt
= �t + ∇� · d �C

dt
= 0

so that the interface (the level set of interest) maintains a constant value as � evolves. The
level set implementation of (6), for example, would look like

�t = −d �C
dt

· ∇� =
{

(v − u)

(
I − u

Au
+ I − v

Av

)
+ ακ

}
�N · ∇�.

If we define �C as the set where � = 0 and let � < 0 inside �C and � > 0 outside �C , then
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�N = ∇�/‖∇�‖ and κ = ∇ · (∇�/‖∇�‖), allowing us to write

�t =
{

(v − u)

(
I − u

Au
+ I − v

Av

)
+ α∇ ·

( ∇�

‖∇�‖
)}

‖∇�‖. (33)

The level surface evolution shown above must be interpreted carefully since the data
driven term should depend only upon the values of I along the curve itself (the zero level
set). Thus, for other level sets, we must utilize the values of I from a nearby points on
the the zero level set. Various techniques for this extension process are described in [25].
To keep the computational cost to a minimum, we employ localized level set techniques
known as narrowband methods [25] which only require computations (and extensions) at
the grid points near the evolving contour (allowing all of our simulations to run in less than
ten seconds on a Sparc-10).

When more than one set of curves is involved (such as in the ternary model) we generate
distinct level set functions �1, �2, . . . for each set of curves, allowing curves embedded in
the same level set function to merge and split, but not allowing such topological transitions
to occur between curves embedded in different level set functions (this feature is illustrated
in Fig. 4 and Fig. 13). The coupled ternary flows (13)–(14), for example, are implemented
through the following level set equations,

d�u

dt
=

{
n∑

i=1

(
−w̄i

Ii − ui

Au
+ v̄i (1 − χv)

Ii − wi

Aw

)
+ α∇ · ∇�u

‖∇�u‖

}
‖∇�u‖ (34)

d�v

dt
=

{
n∑

i=1

(
−ūi

Ii − vi

Av

+ v̄i (1 − χu)
Ii − wi

Aw

)
+ α∇ · ∇�v

‖∇�v‖

}
‖∇�v‖ (35)

where �Cu and �Cv are represented by the zero level sets of �u and �v , respectively.
Finally, we address the computation of the line integrals used in the constrained flows of

Section 4 and outline a simple strategy in the level set framework. Consider for example
the inner product �(u, u) in (24) whose expression we repeat below

�(u, u) = 1

Au Au

∮
�C
(I − u)(I − u) ds. (36)

This contour integral is difficult to evaluate in the level set framework since we do not have
a parameterized curve available to “follow.” One could attempt to extract an ordered set
of contour points, being careful to separate the points into distinct sets for each connected
component of the zero level set. This could be rather costly, however, and would become
exceedingly difficult during topological transitions. We may side-step almost all of these
difficulties by rewriting the integral (36) as

�(u, u) = L( �C)

Au Au
{(I − u)2} = L( �C)

Au Au

[{I 2} − 2u{I } + u2
]
, (37)

where L( �C) denotes the length of �C and where {I 2} and {I } denote the average values of
I 2 and I , respectively, along the curve �C . The latter two quantities may be approximated
by computing the average values of I 2 and I over the set of grid points where a sign change
in the level set function occurs (i.e., positive points that are neighbored by negative points
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and vice-versa). This does not require us to extract ordered contour points nor does it care
about topology. The computation of L( �C) is not so easy. Fortunately, however, we do not
have to compute it. This is because L( �C) becomes a common factor in �(u, u), �(u, v) and
�(v, v) when written in the manner of (37), and may be factored out of the inequality (25)
and the ratios used to express the constants γu and γv in the constrained binary flows (26)
and (27). Similar strategies may be employed for the constrained ternary model.

6. SIMULATIONS

In this section we demonstrate the performance of our coupled curve evolution models
on a number of bimodal and trimodal images. We include images which are segmented
successfully by the original models from Section 2 as well as images for which the original
models fail, requiring the constrained models from Section 4.

The original, unconstrained binary flow (6) is used in Fig. 11, to capture a scorpion
sitting on a rock and a teapot. Note that the boundary of the rock, which constitutes a
very strong edge in the first image, initially attracts part of the contour, but is eventually
ignored as the evolution proceeds. The flow also ignores the shadow of the teapot handle
(which is darker than the four specular reflections on the teapot surface, posing a problem
for simple thresholding). The synthetic aperture radar (SAR) image of a forest’s tree line
in Fig. 12 constitutes a differnt type of bimodal image. The forest region in the lower left
and the grassy region in the upper right have approximately the same grayscale mean but
different variances. Flow (10), therefore, is able to segment the image quite successfully by
separating variances rather than means.

The original, unconstrained ternary flows (13) and (14) are demonstrated in Fig. 13 on
three different images. In the first two images, we begin with two overlapping curves which
eventually move apart to capture different regions in each image. Note in particular that
the final segmentation of the first image contains many triple points where the letters of
“Hollywood” (captured by the green curve) come in contact with both the terrain (captured
by the red curve) and the sky (the mutual background of both curves). The next two images
technically consist of four regions apiece. In both images, however, two regions are charac-
terized by a similar color (the light sand and the cloudy sky in the golf green; and the dark
leaves and the shadows in the Windsor Castle), allowing us to use the ternary model (which
lumps the two similar regions together). In the third image, we see a compelling demonstrat-
ing of the advantages of using two separate level set functions. Here, we initialized with not
just two contours, but two sets of contours. The red contours were allowed to merge together
to capture the castle and the yellow contours were allowed to merge together to capture the
sky. However, such topological transitions were not allowed between a red contour and a
yellow contour. As such, the outer edge of the castle is captured twice, both by the red and
yellow contours, allowing us to see a quadruple point in the final segmentation where this
edge forms a cusp making contact with the dark region on the left, the blue region on the
right, and two separate components of the grey region in the middle.

In the top row of Fig. 14 we see an example where the unconstrained binary flow (6)
fails. Instead of capturing the outline of the dog, the curve is attracted toward a very
bright area of fur on the hind leg. Both means inside and outside the curve increase, while
nevertheless moving further apart, as the bright region is captured. In the bottom row we
see the constrained binary flow yielding a more desirable segmentation with the same initial
contour. Figure 15 illustrates a reverse scenario in which the unconstrained flow performs



FIG. 11. The unconstrained binary flow (6) based on means applied to 2 bimodal images.

FIG. 12. The unconstrained binary flow (10) based on variances applied to a SAR image.

FIG. 13. The original ternary flows (13) and (14) applied to three different color images.

FIG. 14. (bottom) A constrained binary flow outperforming the (top) unconstrained flow.
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FIG. 15. (bottom) A constrained binary flow outperforming the (top) unconstrained flow.

FIG. 16. (bottom) Constrained ternary flows outperforming the (top) unconstrained flows.

FIG. 17. (bottom) Constrained ternary flows outperforming the (top) unconstrained flows.
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poorly as well. In this case the curve is attracted toward a very dark area of fur on the bear
(verses the very bright area of fur in Fig. 14) as illustrated in the top row, causing both
means inside and outside the curve to decrease as the dark region is captured. In the bottom
row we see the constrained binary flow yielding a more desirable result once again.

Finally, we illustrate the use of the constrained ternary flows to segment trimodal images
for which the unconstrained ternary flows (13) and (14) fail. In the top row of Fig. 16, we
see the unconstrained flows capturing the larger leaf but collapsing into the interior of the
smaller leaf. In the bottom row the constrained flows perform much better by capturing the
boundary of the smaller leaf (and also do a better job of capturing the boundary of larger
leaf). In the top row of Fig. 17, we see the unconstrained ternary flows collapsing into the
interiors of the airplanes and the contrails. In the bottom row, we see the constrained flows
doing a much better job.

7. CONCLUSIONS

We have presented in this paper a fully global approach to snakes for the segmentation
of images which consist of a known number of region types distinguishable by certain
statistics. This approach was derived based upon the deterministic principle of maximally
separating the values of these statistics within a set of curves and the background subject
to geometric constraints on the length of each active contour. This led to a coupled curve
evolution model in which the evolution of each curve depended very naturally upon every
single pixel in the image and was tied to the evolution of every other curve through a
common set of statistics. By introducing additional global constraints (Section 4) on the
evolution of the statistics, we were able to extend the applicability of these models to a
larger class of imagery.

A key attraction of these techniques is the fully global nature of the flows. This endows
the algorithm with an extensive capture range, exhibiting more robustness to initial contour
placement when compared to other region based snake algorithms. We are also able to
capture triple points and other multiple junctions with no addditional effort by employing
separate, distinct sets of curves.

To summarize, we have outlined a fully global, coupled curve evolution approach to
segmentation that clusters pixels in an image based upon both geometric and statistical
considerations. The performance of our algorithm depends upon how well the chosen set of
statistics is able to distinguish the various regions within a given image and can be greatly im-
proved in a number of cases by using the global constraints presented in Section 4. We point
out that these algorithms are more specialized than many other snake techniques which do
not require the same amount of prior information. However, our techniques exploit this infor-
mation, in a way that other methods do not, to yield improved performance and robustness.
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