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Abstract. Computing the linear least-squares estimate of a high-dimensional random quantity
given noisy data requires solving a large system of linear equations. In many situations, one can
solve this system efficiently using a Krylov subspace method, such as the conjugate gradient (CG)
algorithm. Computing the estimation error variances is a more intricate task. It is difficult because
the error variances are the diagonal elements of a matrix expression involving the inverse of a given
matrix. This paper presents a method for using the conjugate search directions generated by the CG
algorithm to obtain a convergent approximation to the estimation error variances. The algorithm
for computing the error variances falls out naturally from a new estimation-theoretic interpretation
of the CG algorithm. This paper discusses this interpretation and convergence issues and presents
numerical examples. The examples include a 105-dimensional estimation problem from oceanography.
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1. Introduction. The goal of finite-dimensional linear least-squares estimation
is to estimate an l-dimensional random vector x with a linear function of another m-
dimensional random vector y so as to minimize the mean squared error [11, Chapter 4].
That is, one minimizes E[‖x−x̂(y)‖2] over x̂(y) to find the linear least-squares estimate
(LLSE).

Write the relationship between x and y as y = z+n, where n is noise, uncorrelated
with x, and

z = Cx(1.1)

for a matrix C reflecting the type of measurements of x. In the Bayesian framework, x,
z, and n have known means and covariances. The covariance matrices are denoted by
Λx, Λz, and Λn, respectively, and, without loss of generality, the means are assumed
to be zero. The LLSE of x given y is

x̂(y) = ΛxC
TΛ−1

y y,(1.2)

where Λy = Λz + Λn = CΛxC
T + Λn is the covariance of y.

Direct computation of x̂(y) is difficult if x and y are of high dimension. In par-
ticular, the work in this paper was motivated by problems in which x represents
a spatially distributed phenomenon and y represents measurements encountered in
applications ranging from image processing to remote sensing. For example, when x
and y represent natural images, they typically consist of 256 × 256 = 65536 pixels.
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In problems from physical oceanography, the dimensions of x and y are typically
upwards of 105 and 104, respectively (e.g., see [7]). Furthermore, in applications such
as remote sensing in which the measurement sampling pattern is highly irregular, Λz

is typically a full matrix that is far from Toeplitz. This prevents one from solving
the linear system (1.2) by spectral or sparse matrix methods. However, Λy often
has a considerable amount of structure. For example, the covariance, Λx, of the full
spatial field, is often either Toeplitz or well-approximated by a very sparse matrix in
an appropriate basis, such as a local cosine basis [12]. The measurement matrix C is
often sparse, and the noise covariance Λn is often a multiple of the identity. Thus,
multiplying vectors by Λy is often efficient, and an iterative method for solving linear
systems that makes use of multiplications by Λy, such as a Krylov subspace method,
could be used to compute x̂(y).

For linear least-squares estimation problems, one is interested not only in com-
puting the estimates but also some portion of the estimation error covariance matrix.
The covariance of the estimation error,

Λex(y) = Λx − ΛxC
TΛ−1

y CΛx,(1.3)

is the difference between the prior covariance and the error reduction. The terms on
the diagonal of this matrix are the estimation error variances, the quantities most
sought after for characterizing the errors in the linear estimate. A natural question to
ask is whether a Krylov subspace method for computing the linear estimate x̂(y), such
as the method of conjugate gradients (CG), could be adapted for computing portions
of the error covariance matrix. This paper presents an interpretation of CG in the
context of linear least-squares estimation that leads to a new algorithm for computing
estimation error variances.

Many researchers in the geosciences have used CG for computing LLSEs. In
particular, Bennett, Chua, and Leslie [1, 2, 3] and da Silva and Guo [4] use CG
for computing LLSEs of atmospheric variables. The structures of these estimation
problems are very similar to the ones considered here. In particular, the quantities to
be estimated, x, are spatially varying processes, and the measurement matrices, C,
are sparse. However, they do not consider using a Krylov subspace method for the
computation of error variances. We not only propose such a method in this paper but
also provide a detailed convergence analysis.

Paige and Saunders [13] and Xu et al. [19, 20, 21, 22] have developed Krylov
subspace methods for solving statistical problems that are closely related to linear
least-squares estimation. The LSQR algorithm of Paige and Saunders solves a regres-
sion problem and can compute approximations to the standard errors. The regression
problem is a more general version of linear least-squares estimation in which a prior
model is not necessarily specified. In the special case of linear least-squares estima-
tion, the standard errors of the regression problem are the estimation error variances.
Thus, LSQR can compute approximations to the error variances. The novelty of our
work is that it focuses specifically on linear least-squares estimation and takes advan-
tage of the structure inherent in many prior models for image processing problems.
In particular, many such prior models imply a covariance of the data, Λy = Λz +Λn,
in which the signal covariance matrix, Λz, has eigenvalues that decay rapidly to zero
and the noise covariance matrix, Λn, is a multiple of the identity. Such properties
are exploited by our algorithm. These assumptions were also made in the work of
Xu, Kailath, et al. for signal subspace tracking. For that problem, one is interested
in computing the dominant eigenvectors and eigenvalues of Λz. Although computing
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the dominant eigenvectors and eigenvalues of Λz is sufficient to compute an approx-
imation to the estimation error variances, it is not necessary. We do not explicitly
compute eigenvectors or eigenvalues. This provides us with the opportunity to exploit
preconditioning techniques in a very efficient manner.

Section 2 discusses our interpretation of CG as used to compute LLSEs. This
naturally leads to the presentation of a new iterative algorithm for computing estima-
tion error variances. Section 3 proposes two alternative stopping criteria. The main
convergence result is presented in section 4. Techniques for accelerating convergence,
including preconditioned and block algorithmic forms, are discussed in section 5. The
main convergence result is proved in section 6. Finally, section 7 illustrates the pro-
posed techniques with various numerical examples.

2. The estimation algorithm. The primary difficulty in computing the LLSE
x̂(y) in (1.2) is the large dimension of the data y. The signal in the data, however,
typically lies in a much lower dimensional subspace. One can take advantage of this
fact to compute an approximation to x̂(y) by computing, instead of x̂(y), the LLSE
of x given a small number of linear functionals of the data, pT1 y, p

T
2 y, . . . , p

T
k y. For a

particular sequence of linearly independent linear functionals, pT1 , p
T
2 , . . . , p

T
k , let x̂k(y)

denote the LLSE of x given pT1 y, p
T
2 y, . . . , p

T
k y. If most of the signal components in y

lie in the span of p1, p2, . . . , pk, then the estimate x̂k(y) approximates x̂(y). In this
case, the covariance of the error in the estimate x̂k(y), Λex,k(y) � Cov(x − x̂k(y)),

approximates the optimal error covariance, Λex(y) � Cov(x− x̂(y)).
The principal novelty of the algorithm we propose in this paper is the use of linear

functionals that form bases for Krylov subspaces. The use of Krylov subspaces for
solving linear algebra problems is not new, but the application of Krylov subspaces
to the computation of error covariances is new. A Krylov subspace of dimension k,
generated by a vector s and the matrix Λy, is the span of s,Λys, . . . ,Λ

k−1
y s and is

denoted by K(Λy, s, k) [8, section 9.1.1]. The advantage of using linear functionals that
form bases for Krylov subspaces is twofold. One reason is theoretical. Specifically,
one can consider the behavior of the angles between K(Λy, s, k) and the dominant
eigenvectors, ui, of Λy: arcsin ‖(I−πk)ui‖/‖ui‖, where πk is the orthogonal projection
onto K(Λy, s, k). As noted in [16], these angles are rapidly decreasing as k increases.
Thus, linear functionals from Krylov subspaces will capture most of the dominant
components of the data. Another reason for using functionals from Krylov subspaces
is computational. As discussed in the introduction, the structure of Λy in many
problems is such that multiplying a vector by Λy is efficient. A consequence of this
fact is that one can generate bases for the Krylov subspaces efficiently.

The specific linear functionals used in this paper are the search directions gen-
erated by standard CG for solving a linear system of equations involving the matrix
Λy. The conjugate search directions, p1, . . . , pk, form a basis for K(Λy, s, k) and are
Λy-conjugate [8, section 10.2]. The Λy-conjugacy of the search directions implies that
Cov(pTi y, p

T
j y) = δij ; so, these linear functionals of the data are white. Thus, we can

draw the novel conclusion that CG whitens the data. The whiteness of the linear
functionals of the data allows one to write

x̂k(y) =

k∑
j=1

(
ΛxC

T pi
)
pTi y,(2.1)

Λex,k(y) = Λx −
k∑

j=1

(
ΛxC

T pi
) (
ΛxC

T pi
)T

,(2.2)
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which follows from Cov(pT1 y, . . . , p
T
k y) = I.1 One can now write recursions for the

estimates and error variances in terms of the quantities by,k = ΛxC
T pk. We call

these the filtered backprojected search directions because the prior covariance matrix
Λx typically acts as a low-pass filter and CT is a backprojection (as the term is used
in tomography) since C is a measurement matrix. In terms of the by,k, the recursions
have the following form:

x̂k(y) = x̂k−1(y) + by,kp
T
k y,(2.3)

(Λex,k(y))ii = (Λex,k−1(y))ii − ((by,k)i)
2,(2.4)

with initial conditions

x̂0(y) = 0,(2.5)

(Λex,0(y))ii = (Λx)ii,(2.6)

where i = 1, . . . , l. Unfortunately, the vectors p1, p2, . . . generated by standard CG
are not Λy-conjugate to a reasonable degree of precision because of the numerical
properties of the method.

The numerical difficulties associated with standard CG can be circumvented using
a Lanczos iteration, combined with some form of reorthogonalization, to generate the
conjugate search directions [8, sections 9.1 and 9.2]. The Lanczos iteration generates
a sequence of vectors according to the following recursion:

αk = qTk Λyqk,(2.7)

hk = Λyqk − αkqk − βkqk−1,(2.8)

βk+1 = ‖hk‖,(2.9)

qk+1 =
hk

βk+1
,(2.10)

which is initialized by setting q1 equal to the starting vector s, q0 = 0, and β1 = 0.
The Lanczos vectors, q1, q2, . . . , are orthonormal and such that

[
q1 q2 · · · qk

]T
Λy

[
q1 q2 · · · qk

]
(2.11)

is tridiagonal ∀k. Let Ty,k denote this tridiagonal matrix, and let Ly,k denote the
lower bidiagonal Cholesky factor. Then, the vectors defined by

[
p1 p2 · · · pk

]
=
[
q1 q2 · · · qk

]
L−T
y,k(2.12)

are equal, up to a sign, to the conjugate search directions generated by CG in exact
arithmetic. That Ly,k is lower bidiagonal allows one to use a simple one-step recursion
to compute the pi from the qi. Note also that the by,k = ΛxC

T pi can be computed
easily in terms of a recursion in ΛxC

T qi. These latter quantities are available since
the computation of qk+1 requires the product Λyqk = C(ΛxC

T )qk + Λnqk.

One of the main advantages to using the Lanczos iteration followed by the Cholesky
factorization is that one can use a variety of reorthogonalization schemes to ensure

1Specifically, (2.1) and (2.2) follow from (1.2) and (1.3) with the substitution of I for Λy and
pT1 C, . . . , pTk C for the rows of C.
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that the Lanczos vectors remain orthogonal and, in turn, that the associated conju-
gate search directions are Λy-conjugate. The simplest scheme is full orthogonalization
[5, section 7.4]. This just recomputes hk as

hk := hk − [q1 · · · qk
] [

q1 · · · qk
]T

hk(2.13)

between the steps in (2.8) and (2.9). This is typically sufficient to ensure orthogonality
among the qi. However, one can also use more complicated schemes that are more
efficient such as selective orthogonalization [15]. A discussion of the details can be
found in [18, Appendix B]. We have found that the type of orthogonalization used
does not significantly affect the quality of the results.

Although one must use an orthogonalization scheme in conjunction with the Lanc-
zos iteration, the added complexity is not prohibitive. Specifically, consider counting
the number of floating point operations (flops) required to perform k iterations. We
will assume that full orthogonalization is used and that the number of flops required
to multiply vectors by Λy is linear in either the dimension m of the data or the dimen-
sion l of the estimate. Then, the only contribution to the flop count that is second
order or higher in k, l, and m is from the orthogonalization, 2mk2. For comparison,
consider a direct method for computing the error variances that uses Gaussian elimi-
nation to invert the symmetric positive definite Λy. The flop count is dominated by
the elimination, which requires m3/3 flops [8, p. 146]. Thus, our algorithm typically
provides a gain if k < m/6. For many estimation problems, a reasonable degree of
accuracy is attained for k � m. Some examples are given in section 7.

A summary of the steps outlined above to compute an approximation to the
optimal linear least-squares estimate and associated estimation error variances is as
follows.

Algorithm 2.1.
1. Initialize x̂0(y) = 0, (Λex,0(y))ii = (Λx)ii for i = 1, . . . , l.
2. Generate a random vector s to initialize the Lanczos iteration.
3. At each step k,

(a) compute the conjugate search direction pk and filtered backprojection by,k
using a reorthogonalized Lanczos iteration, and

(b) update

x̂k(y) = x̂k−1(y) + by,kp
T
k y,(2.14)

(Λex,k(y))ii = (Λex,k−1(y))ii − ((by,k)i)
2 for i = 1, . . . , l.(2.15)

3. Stopping criteria. A stopping criterion is needed to determine when a suf-
ficient number of iterations has been run to obtain an adequate approximation to the
error variances. Two alternative stopping criteria are proposed in this section. The
first is a simple scheme that we have found works well. However, there is no system-
atic method for setting the parameters of the criterion to guarantee that a specified
level of accuracy is achieved. The second stopping criterion is a more complicated
scheme for which one can establish bounds on the approximation error. However,
the criterion tends to be overly conservative in establishing the number of iterations
needed to achieve a specified level of accuracy.

3.1. Windowed-maximal-error criterion. Under this first criterion, the al-
gorithm stops iterating after k steps if

τk,εmin � max
k−Kwin≤j≤k

max
i

((by,j)i)
2

max((Λex,k(y))ii, εmin)
< εtol,(3.1)
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where Kwin, εmin, and εtol are parameters. This criterion guarantees that no compo-
nents of the error variances have been altered over the last Kwin+1 iterations by more
than εtol relative to the current approximation to the error variances. The motiva-
tion for this criterion is the theorem in section 4 which implies that the vectors by,k,
representing the contribution to error reduction from pTk y, get smaller as k increases.
However, this behavior is not always monotone; so, the criterion takes into account
gains over a window of the last few iterations.

3.2. Noiseless-estimation-error criterion. The second stopping criterion ex-
amines how well the Krylov subspace at the kth step, K(Λy, s, k − 1), captures the
significant components of the signal z, as defined in (1.1). The motivation for such a
criterion is the convergence analysis of section 4. A portion of the analysis examines
the optimal error covariance for estimating z from y, Λez (y), and its relation to the
optimal error covariance for estimating z from pT1 y, . . . , p

T
k y, Λez,k(y). The implica-

tion is that as Λez,k(y) − Λez (y) gets smaller, the difference between Λex,k(y) and
Λex(y) also decreases, albeit possibly at a slower rate. So, a relatively small difference
between Λez,k(y) and Λez (y) implies a relatively small difference between Λex,k(y)
and Λex(y). This fact motivates the interest in efficiently computable bounds for
Λez,k(y) − Λez (y). One such bound can be written, as follows, in terms of the error
covariance for the noiseless estimation problem of estimating x from z.

Proposition 3.1. Suppose Λn = σ2I for σ2 > 0. Let Λez,k(z) be the optimal
estimation error covariance for estimating z from pT1 z, . . . , p

T
k z. Then, the difference

between the error covariance for estimating z from y and z from pT1 y, . . . , p
T
k y is

bounded by

Λez,k(y)− Λez (y) ≤ Λez,k(z) + fkf
T
k ,(3.2)

where

‖fk‖2 ≤ ‖Λzpk−1‖2 + ‖Λzpk‖2 + ‖Λzpk+1‖2 + ‖Λzpk+2‖2.(3.3)

Proof. The proof makes use of the Lanczos vectors qi discussed at the end of
section 2. The Lanczos vectors are useful because they form bases for the Krylov
subspaces, and they tridiagonalize both Λy and Λz since Λn = σ2I, by assumption.
Since the Lanczos vectors tridiagonalize Λy, q

T
i y is correlated with qTj y if and only

if i and j differ by at most one. Let Λrz,k+1(y) denote the error reduction obtained
from estimating z with qTk+2y, q

T
k+3y, . . . . Furthermore, let Λ

⊥
rz,k+1(y) denote the error

reduction obtained from estimating z with the random variable formed by making
qTk+1y uncorrelated with qTi y for i 	= k + 1. Then,

Λez (y)− Λez,k(y) = Λrz,k+1(y) + Λ
⊥
rz,k+1(y).(3.4)

Since y is simply a noisy version of z, Λrz,k+1(y) ≤ Λrz,k+1(z), where Λrz,k+1(z)
is the error reduction obtained from estimating z with qTk+2z, q

T
k+3z, . . . . Furthermore,

Λrz,k+1(z) ≤ Λez,k(z) because Λez (z) = 0 and qTi z is uncorrelated with qTj z if i and j
differ by more than one. Combining the last two inequalities with (3.4) yields

Λez,k(y)− Λez (y) ≤ Λez,k(z) + Λ
⊥
rz,k+1(y).(3.5)

The matrix Λ⊥
rz,k+1(y) in (3.5) is bounded above by the optimal error reduction

for estimating z from qTk y, q
T
k+1y, and qTk+2y since Λ

⊥
rz,k+1(y) is the error reduction
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for an estimator that is linear in these three functionals of y. Furthermore, Λ⊥
rz,k+1(y)

is bounded above by the optimal error reduction for estimating z from pTk−1y, . . . ,

pTk+2y since qk, qk+1, and qk+2 are linear combinations of pk−1, . . . , pk+2. Now, write

the rank-one matrix Λ⊥
rz,k+1(y) as fkf

T
k . Then, the latter bound on Λ

⊥
rz,k+1(y) implies

(3.3).
Although Proposition 3.1 provides a bound on ‖fk‖2, the argument in the proof

suggests that the bound is very weak. Recall from the proof that fkf
T
k = Λ⊥

rz,k+1(y),
the error reduction obtained for estimating z from the random variable formed by
making qTk+1y uncorrelated with qTk y and qTk+2y. Both qk and qk+2, as vectors from

a Krylov subspace generated by Λy, are such that qTk y and qTk+2y are significantly

correlated with z. Thus, making qTk+1y uncorrelated with qTk y and qTk+2y will often
significantly reduce the correlation of the resulting quantity with z. As a result,
Λ⊥
rz,k+1(y) is typically much smaller than the error reduction for estimating z from

qTk+1y alone, which, in turn, is smaller than the right-hand side of (3.3). Thus, the
bound on ‖fk‖2 is weak, and Λez,k(z), the dominant term in (3.2), could be used
alone as the basis of a stopping criterion.

One of the main advantages of the bound in Proposition 3.1 is that the diagonal el-
ements of Λez,k(z) are easily computable. As discussed in the proof of Proposition 3.1,
the Lanczos vectors q1, q2, . . . generated by Algorithm 2.1 not only tridiagonalize Λy;
they also tridiagonalize Λz:[

q1 q2 · · · qk
]T
Λz

[
q1 q2 · · · qk

]
= Tz,k.(3.6)

Let Lz,k be the lower bidiagonal Cholesky factor of Tz,k, and let the vectors r1, r2, . . .
be defined by [

r1 r2 · · · rk
]
=
[
q1 q2 · · · qk

]
L−T
z,k .(3.7)

Then, the linear functionals of the signal rT1 z, r
T
2 z, . . . are white. So, a simple recursion

can be used to compute Λez,k(z):

(Λez,k(z))ii = (Λez,k−1(z))ii − ((bz,k)i)
2(3.8)

with the initialization

(Λez,0(z))ii = (Λz)ii,(3.9)

where i = 1, . . . ,m and bz,k = Λzrk. Note that bz,k can be computed without an
additional multiplication by Λz since Algorithm 2.1 computes Λzqi. The computations
for calculating Λez,k(z) are summarized as follows.

Algorithm 3.2.
1. Initialize (Λez,0(z))ii = (Λz)ii.
2. At each iteration k:

(a) compute bz,k using qk and the one-step recursion specified by LT
z,k, and

(b) update

(Λez,k(z))ii = (Λez,k−1(z))ii − ((bz,k)i)
2.(3.10)

Stopping Algorithm 2.1 when a function of (Λez,k(z))ii falls below some threshold
has a variety of advantages and disadvantages. Although it may appear that one of
the main disadvantages is the requirement that Λn must be a multiple of the identity,
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this is not the case. There is an extension to the nonwhite case that makes use
of preconditioning ideas, as discussed in section 5. In fact, the main disadvantage
stems from the bound in Proposition 3.1 being based on the noiseless estimation
problem (i.e., Λn = 0). If Λn is not small, the bound may not be tight. Thus, a
stopping criterion based on Λez,k(z) may be conservative in determining the number
of iterations needed to guarantee a specified level of accuracy. On the other hand,
the bound is easy to compute and provides a good indication of the fraction of error
reduction that has been attained by a specific iteration.

4. The main convergence result. In this section, we state the main conver-
gence result. It establishes a bound on the rate at which the approximation to the
error variances, in exact arithmetic, converges to the optimal estimation error vari-
ances. The result leads naturally to a consideration of the two acceleration techniques
discussed in the next section. The proof of the main result is left for section 6.

Establishing the convergence result requires making a few assumptions concerning
the estimation problem and starting vector for the algorithm. The first is that the
starting vector s in Algorithm 2.1 is a zero-mean Gaussian random vector. This
assumption is needed to guarantee the independence of uncorrelated components of
s. The covariance matrix of s, Λs, is assumed to equal Λy or to be proportional to the
identity. As regards the estimation problem for the purposes of this section, Λn is not
necessarily a multiple of the identity. However, we do assume that Λy and Λz have the
same eigenvectors u1, u2, . . . , um and that the corresponding eigenvalues λy,1 ≥ λy,2 ≥
· · · ≥ λy,m and λz,1 ≥ λz,2 ≥ · · · ≥ λz,m satisfy the inequality, λz,i/λy,i ≤ λ̄i/σ

2

for some σ2 > 0 and sequence λ̄i. Note that both of these statements would hold
for λ̄i = λz,i if Λn were σ2I. The conditions are stated this generally because Λn

may not be a multiple of the identity if some of the preconditioning techniques of
section 5.1 are used. We also assume that the eigenvalues of Λy are distinct and
have a relative separation (λy,i − λy,i+1)/(λy,i+1 − λy,m) that is bounded below by
a constant λsep > 0. Furthermore, the λy,i are assumed to decrease slowly enough
(not faster than a geometric decay) that one can find constants ζ > 0 and 0 < Γ < 1
of reasonable magnitude (ζ not much larger than ‖Λy‖) for which 1/(λy,kγ

k) < ζΓk,
where

γ � 1 + 2
(
λsep +

√
λsep + λ2

sep

)
.(4.1)

This last assumption is a very weak assumption that is almost never violated. All
of these assumptions concerning the estimation problem are not restrictive because
they can be guaranteed using appropriate preconditioning techniques, as described in
section 5. The assumptions are summarized as follows.

Assumptions.
1. The starting vector s in Algorithm 2.1 is a zero-mean Gaussian random vector,
and Λs = Λy or Λs ∝ I.

2. There exist constants ζ > 0 and 0 < Γ < 1 such that 1/(λy,kγ
k) < ζΓk.

3. Λy and Λz have the same eigenvectors.
4. There exist a constant σ2 > 0 and a sequence λ̄i such that λz,i/λy,i ≤ λ̄i/σ

2.
5. There exists a constant λsep > 0 such that (λy,i − λy,i+1)/(λy,i+1 − λy,m) ≥

λsep > 0.
These assumptions lead to the main convergence result, as stated next in Theo-

rem 4.1. The theorem consists of two bounds, one concerning the error variances for
estimating x, and one concerning the error variances for estimating only the measured
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components of x, z = Cx. Two bounds are given because one may need fewer itera-
tions to obtain a good estimate of z than of x. Moreover, the rate of convergence of
the error variance for estimating z is of interest since z is often a subsampled version
of x.2

Theorem 4.1. If Assumptions 1–5 hold, then

m∑
j=1

(Λex,k(y)− Λex(y))jj ≤
‖s‖2ζη‖Λx‖‖Λy‖

σ2(1− 1
γ2 )(1− 1

4
√
γ )

γ−k/4 +
‖Λx‖
σ2

m−1∑
i=k

(i− k + 4)λ̄� i
4


(4.2)

and

(4.3)
m∑
j=1

(Λez,k(y)− Λez (y))jj ≤
‖s‖2ζη‖Λy‖

(1− 1
γ2 )(1− 1√

γ )
γ−k/2

+

m−1∑
i=k

(i− k + 4)min

(
λ̄� i

4
λz,� i
4


σ2
, λ̄� i

4

)
,

where γ is given by (4.1) and η is a random variable whose statistics depend only on
λsep, γ, and Γ.

The bounds in Theorem 4.1 provide a characterization of the difference between
the optimal error variances and the computed approximation. The bounds are a sum
of two terms. The first terms on the right-hand sides of (4.2) and (4.3) characterize
how well the Krylov subspaces have captured the dominant components of Λy. The
bigger λsep is, the larger γ is, and the smaller the first terms in (4.2) and (4.3) become.
Thus, the more separated the eigenvalues (as measured by λsep) are, the better the
algorithm will perform. The second term is a sum of bounds λ̄i on the ratio of
eigenvalues λz,i/λy,i. The sum is over those λ̄i corresponding to eigenvectors of Λz

that are not well captured by the Krylov subspaces at step k. Note that the sum is
over the more rapidly decreasing λ̄iλz,i in (4.3).

The bounds are useful principally for two reasons. First, they indicate how the
errors will scale as s, σ2, ‖Λx‖, ‖Λy‖, and the eigenvalues of Λz change. In particular,
note that the only dependence on the starting vector s is through the norm ‖s‖. Thus,
the performance of the algorithm does not depend strongly on s. Second, the bounds
indicate that the rate of convergence can be increased by transforming the estimation
problem in order to make γ big enough so that the second terms in (4.2) and (4.3)
dominate. Such transformations are discussed next in section 5.1.

5. Techniques for improving convergence properties. This section presents
two different techniques for improving the convergence properties of the proposed al-
gorithm for computing error variances. These techniques can be used to guarantee
convergence in the case that a given estimation problem violates any of the assump-
tions of Theorem 4.1. One can also use these techniques to increase γ so as to improve
the theoretical convergence rates.

5.1. Preconditioning. In the estimation context, preconditioning consists of
determining an invertible transformation B such that estimating x from the trans-
formed data By can be theoretically done more efficiently by the proposed algorithm

2That the two bounds differ is a consequence of the fact that, for a given number of iterations
k, we are not computing the best k linear functionals of the data for estimating x.
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than estimating x directly from y. This will be the case if the covariances of the
transformed data, BΛyB

T , and of the transformed signal, BΛzB
T , satisfy Assump-

tions 3 and 5 of Theorem 4.1 but Λy and Λz do not. The convergence properties
will also be improved if γ for the transformed problem is higher than for the untrans-
formed problem. The principal novelty of the preconditioning approaches described
here is that they focus on these particular goals, which are very different than those
of standard CG preconditioning and differ significantly from those of preconditioning
for eigenvector algorithms [17, Chapter 8]. Although the goals of the preconditioning
discussed here are different than for standard CG, the implementation details are very
similar. In particular, explicit specification of a transformation B is not necessarily
required for preconditioning techniques because preconditioning can be implemented
in such a way that only multiplications by BTB are needed instead of multiplications
by B and BT .

There are three different implementations of preconditioning, each of which is
mathematically equivalent in exact arithmetic. Symmetric preconditioning simply
consists of applying the Krylov subspace algorithm to estimating x from By =
BCx + Bn. Essentially, x is estimated given linear functionals from Krylov sub-
spaces K(BΛyB

T , Bs, k) applied to By. There are also left and right preconditioning
techniques. The following discussion focuses on right preconditioning, and analogous
statements can be made concerning left preconditioning. Right preconditioning differs
from symmetric preconditioning in that it involves estimating x given linear function-
als from the Krylov subspaces K(ΛyB

TB, s, k) applied to BTBy. Note that this is
equivalent to the estimation performed in the case of symmetric preconditioning. Al-
though ΛyB

TB is not symmetric, it is self-adjoint with respect to the BTB inner
product. As in Algorithm 2.1, we do not compute the conjugate search directions for
the preconditioned estimation problem using a standard preconditioned CG iteration.
Instead, we use Lanczos iterations that compute a series of BTB-conjugate vectors
that tridiagonalize BTBΛyB

TB, as follows:

αk = tTkΛytk,(5.1)

hk = Λytk − αkqk − βkqk−1,(5.2)

dk = BTBhk,(5.3)

βk+1 =
√

dTk hk,(5.4)

qk+1 =
hk

βk+1
,(5.5)

tk+1 =
dk

βk+1
,(5.6)

where t1 = BTBs, q1 = s, q0 = 0, and β1 = 0. The qk are the BTB-conjugate
Lanczos vectors that tridiagonalize BTBΛyB

TB, and the tk = BTBqk tridiagonalize
Λy. This latter tridiagonal matrix can be factored, as in Algorithm 2.1, to compute
the Λy-conjugate search directions pk. The only difference is that the tk replace the
qk in (2.11) and (2.12). Moreover, one can compute the filtered backprojected search
directions by,k = ΛxC

T pk as a by-product. Overall, the steps of the preconditioned
Krylov subspace algorithm are the same as those in Algorithm 2.1 except that a
preconditioned Lanczos iteration replaces the normal Lanczos iteration. Note that
the Lanczos method for tridiagonalizing a left-preconditioned system is the same as
the generalized Lanczos algorithm for solving generalized eigenvalue problems [14,
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section 15.11]. What follows are some examples of preconditioners in squared up
form, BTB, that one can consider using in various contexts.

One choice for a preconditioner when the noise covariance Λn is not a multiple
of the identity but is invertible is to choose BTB = Λ−1

n . This choice of precon-
ditioner will effectively shape the noise covariance to be a multiple of the identity.
The transformed data covariance, BΛyB

T , and signal covariance, BΛzB
T , will then

satisfy Assumption 3. Multiplying a vector by Λ−1
n is often easy because Λn is often

diagonal.

If the noise covariance is, or has been transformed to be, a multiple of the identity,
one can consider preconditioners that will maximally separate the eigenvalues of Λy.
Such preconditioners can guarantee that the transformed data covariance, BΛyB

T ,
satisfies Assumption 5 and can increase γ to improve the bounds in Theorem 4.1.
Note that such preconditioning will do little to change the bound λ̄i on λz,i/λy,i in
Assumption 4 because the preconditioner will transform both λz,i and λy,i. The ideal
preconditioner would simply operate on the spectrum of Λy and force a geometric
decay in the eigenvalues to the noise level σ2. The geometric decay guarantees a
constant relative separation in the eigenvalues as measured by the ratio in Assump-
tion 5. However, operating on the spectrum is difficult because one doesn’t know the
eigendecomposition of Λy. When the rows of C are orthogonal (which is often the
case in the applications mentioned in the introduction) and the eigendecomposition of
Λx is known, one practical preconditioner is the following. Let Λp be a matrix whose
eigenvectors are the same as those of Λx and whose eigenvalues decay geometrically.
Then, let the preconditioner be given by BTB = CΛpC

T . Although this precondi-
tioner has worked well in practice, as described in section 7, we have no theoretical
results concerning the properties of the transformed estimation problem.

One can use extensions of each of the stopping criteria of section 3 in conjunction
with preconditioning; however, the preconditioner must satisfy certain assumptions
for the extension of the noiseless-estimation stopping criterion of section 3.2 to be
used. What follows is a discussion of the extension and the underlying assumptions
concerning the preconditioner for the right-preconditioned case. Recall that the dis-
cussion in section 3.2 assumes that the noise covariance is a multiple of the identity.
This assumption ensures that the Lanczos vectors tridiagonalize both Λy and Λz so
that one can compute Λez,k(z) efficiently. Now, suppose one is using a preconditioning
transformation B. Let Λn′ = Λn−(BTB)−1. Assume that Λn′ is positive semidefinite
so that it is a valid covariance matrix. Let n′ be a random vector with covariance
Λn′ and uncorrelated with z. Then, z′ = z + n′ has covariance Λz′ = Λz + Λn′ . One
can compute Λez,k(z

′) efficiently because the tk in (5.1)–(5.6) tridiagonalize both Λy

and Λz′ . For Λez,k(z
′) to be useful, the pseudosignal z′ should not have any signif-

icant components not in z. Note that an example of a preconditioner satisfying the
above two assumptions is given by BTB = Λ−1

n . For this preconditioner, Λn′ = 0; so,
Λez,k(z) = Λez,k(z

′). Thus, one can use Λez,k(z
′) as part of a stopping criterion in

conjunction with preconditioning provided that the preconditioner satisfies the two
assumptions outlined above.

5.2. Using multiple starting vectors. Another technique for improving con-
vergence properties in the case where Λy has repeated eigenvalues is to use a block
form of Algorithm 2.1. Block Krylov subspace algorithms have been developed for
other computations, particularly eigendecompositions [8, section 9.2.6]. The principal
novelty of the algorithm we present here is the application to estimation.

Now consider the subspace spanned by the columns of
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[
S ΛyS Λ2

yS · · · Λk−1
y S

]
,(5.7)

where S is an m × r matrix of independent identically distributed random starting
vectors whose marginal statistics satisfy the restrictions for Algorithm 2.1 starting
vectors. Denote this subspace by K(Λy, S, k). Then, one can consider forming m ×
r matrices P1, . . . , Pk whose columns form bases for K(Λy, S, k) and which satisfy
PT
i ΛyPj = δijI. As for the single starting vector case in section 2, the LLSE of x
given the random vectors PT

1 y, . . . , PT
k y and the associated error variances can be

computing using a recursion:

x̂k(y) = x̂k−1(y) +By,kP
T
k y,(5.8)

(Λex,k(y))ii = (Λex,k−1(y))ii −
r∑

j=1

((By,k)ij)
2,(5.9)

with initial conditions

x̂0(y) = 0,(5.10)

(Λex,0(y))ii = (Λx)ii,(5.11)

where i = 1, . . . , l and By,k = ΛxC
TPk.

The Pi and By,i can be computed using a reorthogonalized block Lanczos al-
gorithm [8, section 9.2.6]. The block Lanczos iteration generates, according to the
following recursions, a sequence of orthogonal matrices Qi that are orthogonal to
each other:

Ak = QT
kΛyQk,(5.12)

Hk = ΛyQk −QkAk −Qk−1Rk,(5.13)

Qk+1Rk+1 = Hk (QR factorization of Hk),(5.14)

where Q1 and R1 are a QR factorization of the starting matrix S, and Q0 = 0. The
Qi block tridiagonalize Λy; so, one can write[

Q1 · · · Qk

]T
Λy

[
Q1 · · · Qk

]
= Ty,k,(5.15)

where Ty,k is a block tridiagonal matrix. Let Ly,k be the lower block bidiagonal
Cholesky factor of Ty,k. Then, the Pi are defined by[

P1 · · · Pk

]
�
[
Q1 · · · Qk

]
L−T
y,k .(5.16)

Thus, the Pi can be computed from the Qi using a one-step recursion. Moreover, the
Bi = ΛxC

TPi can be computed as a by-product, as with a single starting vector.
As for the single starting vector case in section 2, the block Lanczos iteration

must be combined with some form of reorthogonalization. Unlike the previous case,
however, there are not as many methods for reorthogonalizing the block Lanczos
iteration. Full orthogonalization is very common and is the method we have used.
This simply recomputes Hk as

Hk := Hk − [Q1 · · · Qk

] [
Q1 · · · Qk

]T
Hk(5.17)

between steps (5.12) and (5.13).
The algorithm is summarized as follows.
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Algorithm 5.1.
1. Initialize x̂0(y) = 0, (Λex,0(y))ii = (Λx)ii for i = 1, . . . , l.
2. Generate a random m× r matrix S to initialize the block Lanczos iteration.
3. At each step k,

(a) compute the block of search directions Pk and filtered backprojections
By,k using a reorthogonalized block Lanczos iteration, and

(b) update

x̂k(y) = x̂k−1(y) +By,kP
T
k y,(5.18)

(Λex,k(y))ii = (Λex,k−1(y))ii −
r∑

j=1

((By,k)ij)
2 for i = 1, . . . , l.(5.19)

The advantage of using the block form is that there may be small angles between
the subspaces K(Λy, S, k) and multiple orthogonal eigenvectors of Λy associated with
the same repeated eigenvalue, even in exact arithmetic. This is because each of the
columns of S may have linearly independent projections onto the eigenspace associ-
ated with a repeated eigenvalue. The following theorem establishes convergence rates
for the block case when there may be repeated eigenvalues. It is an extension of
Theorem 4.1 to the block case. The proofs of both theorems are very similar, so the
proof of Theorem 5.2 is omitted.3

Theorem 5.2. Suppose the following.
1. There exists a constant λsep,r > 0 such that (λy,i − λy,i+r)/(λy,i+r − λy,m) ≥

λsep,r.
2. There exist constants ζ > 0 and 0 < Γ < 1 such that 1/(λy,iγ

i
r) < ζΓi, where

γr � 1 + 2
(
λsep,r +

√
λsep,r + λ2

sep,r

)
.(5.20)

3. Λy and Λz have the same eigenvectors.
4. There exist a constant σ2 > 0 and a sequence λ̄i such that λz,i/λy,i ≤ λ̄i/σ

2.
5. (λy,i−λy,i+)/(λy,i+ −λy,m) is bounded away from zero, where i+ is the index

of the next smallest distinct eigenvalue of Λy after i, and then,

m∑
j=1

(Λex,k(y)− Λex(y))jj ≤
η‖Λx‖‖Λy‖

σ2(1− 1
γ2
r
)(1− 1

4
√
γr
)
γ−k/4
r +

‖Λx‖
σ2

m−1∑
i=k

(i− k + 4)λ̄� i
4


(5.21)

and

(5.22)
m∑
j=1

(Λez,k(y)− Λez (y))jj ≤
η‖Λy‖

(1− 1
γ2
r
)(1− 1√

γr
)
γ−k/2
r

+

m−1∑
i=k

(i− k + 4)min


 λ̄� i

4
λ
2
z,� i

4

σ2

, λ̄� i
4



 ,

where the statistics of the random variable η depend on the starting matrix S.
There are two key differences between the statements of Theorems 4.1 and 5.2.

The first addresses the possibility of repeated eigenvalues. Specifically, the bounds in

3A proof may be found in [18, Appendix A].
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Theorem 5.2 depend on the eigenvalue separation through λsep,r, which measures the
relative separation between eigenvalues whose indices differ by r. Thus, the proposi-
tion establishes a convergence rate in the case where there may be groups of up to
r repeated or clustered eigenvalues. The second key difference is that the bounds in
Theorem 5.2 may have a strong dependence on the starting matrix. This contrasts
with the bounds in Theorem 4.1 which depend on the starting vector s only through
the norm ‖s‖. However, our numerical results have not indicated that the block
algorithm’s performance depends strongly on the starting matrix S.

One can use natural extensions of the preconditioning techniques and either of the
stopping criteria of section 3 with Algorithm 5.1. Thus, Algorithm 5.1 is a simple re-
placement for Algorithm 2.1 that can be used to obtain better convergence properties
when Λy has repeated eigenvalues.

6. Convergence analysis. The bounds in Theorem 4.1 are proved in this sec-
tion in several steps. The first few steps place bounds on the norms of the filtered
backprojected conjugate search directions, ‖ΛxC

T pi‖ and ‖CΛxC
T pi‖. The bounds

are proved using Saad’s convergence theory for the Lanczos algorithm [16]. These
bounds are stated in terms of an extremum of independent random variables. The
extremum arises because the starting vector affects the angles between the Krylov sub-
spaces and the dominant components of Λy. However, we prove that the extremum
is part of a sequence of extrema that are converging in probability to a finite random
variable (η in Theorem 4.1). Thus, the starting vector has no strong effect on the
quality of the approximation to the error variances. This result is the principal nov-
elty of our convergence analysis. After establishing the convergence of the extrema,
we prove Theorem 4.1.

6.1. Bounds on the filtered backprojected search directions. One is in-
terested in bounding the norms of the filtered backprojected search directions because
the quality of the approximation to the error variances depends on the norms as fol-
lows:

l∑
j=1

(Λex,k(y)− Λex(y))jj =

l∑
i=k+1

‖ΛxC
T pi‖2,(6.1)

l∑
j=1

(Λez,k(y)− Λez (y))jj =

l∑
i=k+1

‖CΛxC
T pi‖2.(6.2)

Proposition 6.1. Write the conjugate search directions in the basis of eigenvec-
tors of Λy as follows:

pi = υi,1u1 + · · ·+ υi,mum.(6.3)

Then

‖ΛxC
T pi‖2 ≤ ‖Λx‖

m∑
j=1

λz,jυ
2
i,j ,(6.4)

and

‖CΛxC
T pi‖2 =

m∑
j=1

λ2
z,jυ

2
i,j .(6.5)
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Proof. ‖ΛxC
T pi‖2 ≤ ‖Λx‖‖Λ1/2

x CT pi‖2 = ‖Λx‖
∑m

j=1 λz,jυ
2
i,j . This proves the

first inequality. The second inequality follows from Parseval’s theorem.
As we now show, one can bound the coefficients υi,j in terms of ‖(I−πi)uj‖/‖πiuj‖,

where πi is the operator that produces the orthogonal projection onto K(Λy, s, i) with
respect to the standard inner product.

Proposition 6.2. Write pi = υi,1u1 + · · ·+ υi,mum as in Proposition 6.1. Then

|υi+1,j | ≤ ‖Λy‖1/2

λy,j

‖(I − πi)uj‖
‖πiuj‖ .(6.6)

Proof. Note that

λy,j |υi+1,j | = |pTi+1Λyuj |
= |pTi+1Λyπiuj + pTi+1Λy(I − πi)uj |
= |pTi+1Λy(I − πi)uj |

(6.7)

since pi+1 is Λy-conjugate to vectors in the range of πi. Thus, λy,j |υi+1,j | ≤ ‖Λypi+1‖·
‖(I−πi)uj‖ ≤ ‖Λy‖1/2‖(I−πi)uj‖ because of the Cauchy–Schwarz inequality and the
fact that pi+1 is Λy-normal. The inequality in (6.6) then follows from ‖πiuj‖ ≤ 1.

The bound in Proposition 6.2 can be refined. In particular, a theorem due to Saad
[16, Theorem 1] implies the following result concerning the ratio ‖(I−πi)uj‖/‖πiuj‖,
which we state without proof.

Theorem 6.3. Let γ be defined by (4.1), and let Kj be defined by

Kj �
{ ∏j−1

k=1
λy,k−λy,m

λy,k−λy,j
if j 	= 1,

1 if j = 1.
(6.8)

Then

‖(I − πi)uj‖
‖πiuj‖ ≤ 2Kj

γi−j

1

‖π1uj‖ .(6.9)

Recall, from the definition of angles between subspaces given in section 2, that
‖(I−πi)uj‖/‖πiuj‖ is the tangent of the angle between the Krylov subspace K(Λy, s, i)
and the eigenvector uj . Theorem 6.3 bounds the rate at which these angles decrease
as the subspace dimension i increases. The bound has three components. The rate
of decay is γ, the relative separation between eigenvalues as defined in (4.1). The
constant in the numerator, 2Kj , depends on the eigenvalues according to (6.8). The
numerator, ‖π1uj‖, is the norm of the projection of the starting vector, s, onto uj .
The primary importance of the theorem is that it establishes the decay rate γ.

One can refine the bound in Proposition 6.2 by splitting the coefficients υi,j into
two groups: those that are getting small by Proposition 6.2 and Theorem 6.3 and those
that may be large but do not significantly affect ‖ΛxC

T pi‖ because the corresponding
eigenvalues of Λz are small. This idea leads to the following proposition.

Proposition 6.4.

‖ΛxC
T pi+1‖2 ≤ 4‖Λx‖‖Λy‖

� i
4
−1∑
j=1

K2
j

1

γ2(i−j)‖π1uj‖2

λz,j

λ2
y,j

+ ‖Λx‖
∞∑

j=� i
4


λz,j

λy,j
,(6.10)
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and

‖CΛxC
T pi+1‖2 ≤ 4‖Λy‖

� i
4
−1∑
j=1

K2
j

1

γ2(i−j)‖π1uj‖2

λ2
z,j

λ2
y,j

+

∞∑
j=� i

4


λ2
z,j

λy,j
.(6.11)

Proof. The first term in each of (6.10) and (6.11) follows immediately from Propo-
sitions 6.1 and 6.2 and Theorem 6.3. The second term follows from Proposition 6.1
and the fact that pTi+1Λypi+1 =

∑m
j=1 λy,jυ

2
i+1,j = 1.

The first terms in the bounds of Proposition 6.4 may get large if 1/(γi‖π1uj‖2)
or Kj are not well behaved. However, the standing assumptions concerning the eigen-
values of Λy, Λz, and Λs imply that Kj and 1/(γ

i‖π1uj‖2) are bounded by quantities
of a reasonable magnitude, as we now show.

6.2. Convergence of infinite products and extrema of independent se-
quences. The main result regarding the convergence of infinite products and extrema
of independent sequences is the following.

Proposition 6.5. Let Fi(v), i = 1, 2, . . . , be a sequence of functions such that
1. 1 − Fi(v) is a cumulative distribution function, i.e., right-continuous and

monotonically increasing from zero to one;
2. for every interval [V,∞) over which 1− Fi(v) are positive, there exist a con-

stant A(V ) and an absolutely summable sequence F̄i(V ) such that Fi(V ) ≤
F̄i(V ) ≤ A(V ) < 1 ∀i; and

3. limv→∞
∑∞

i=1 Fi(v) = 0.
Then, F (v) =

∏∞
i=1(1− Fi(v)) is a distribution function. Moreover, F (v) is positive

over every interval such that 1− Fi(v) is positive ∀i.
Proof. For F (v) to be a distribution function, it must be right-continuous and

monotonically increasing from zero to one.
Consider the interval [V,∞). Now,

∑I
i=1 log(1 − Fi(v)) is right-continuous for

each I since each Fi(v) is right-continuous. Furthermore,

∣∣∣∣∣log(F (v))−
I∑

i=1

log(1− Fi(v))

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
i=I+1

log(1− Fi(v))

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑
i=I+1

log(1− F̄i(V ))

∣∣∣∣∣
(6.12)

=

∣∣∣∣∣
∞∑

i=I+1

∞∑
j=1

F̄ j
i (V )

j

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑
i=I+1

F̄i(V )

1−A(V )

∣∣∣∣∣ .
Since F̄i(V ) is absolutely summable,

∑I
i=1 log(1− Fi(v)) converges to log(F (v)) uni-

formly for v ∈ [V,∞). Thus, log(F (v)) and, in turn, F (v) are right-continuous.
That F (v) is monotonic follows from the monotonicity of the 1 − Fi(v). Now,

limv→−∞ F (v) = 0 since limv→−∞(1− F1(v)) = 0. Moreover,

lim
v→∞ log(F (v)) ≥ lim

v→∞

∞∑
i=1

−Fi(v)

1−A(V )
= 0,(6.13)

where V is such that 1− Fi(v) is positive over [V,∞) ∀i. So, limv→∞ F (v) = 1.
Furthermore, if 1− Fi(v) is positive ∀i over an interval [V,∞), then

log(F (v)) ≥
∞∑
i=1

−F̄i(V )

1−A(V )
> −∞.(6.14)



1856 MICHAEL K. SCHNEIDER AND ALAN S. WILLSKY

Hence, F (v) is positive over every interval such that 1− Fi(v) is positive ∀i.
A particular example of such a sequence of functions Fi(v) satisfying the assump-

tions of Proposition 6.5 is

Fi(v) =




1, v < 0,
(1− v)i, 0 ≤ v ≤ 1,

0, v > 1.
(6.15)

Thus, any product of numbers converging geometrically fast towards one is bounded
away from zero, and the product is continuously varying from zero to one as the
geometric rate changes from one to zero. This fact is used in the proof of the following
proposition, which bounds the constants Kj .

Proposition 6.6. There exists a function K(v) which is continuous and mono-
tonically decreasing from infinity to one as v ranges from zero to infinity and satisfies

Kj ≤ K(λsep).(6.16)

Proof.

1

Kj
=

j−1∏
k=1

λy,k − λy,j

λy,k − λy,m

≥
j−1∏
k=1

(
1−

(
1

1 + λsep

)k
)
,

(6.17)

where the inequality follows from Assumption 5. By Proposition 6.5, the product is
monotonically decreasing to a limit as j tends to infinity. The limit is a continuous
function of λsep that varies monotonically from zero to one as λsep increases from zero
to infinity. Denote the limit by 1/K(λsep). Then, Kj ≤ K(λsep), as desired.

The bound on 1/(γi‖π1uj‖2) is stochastic because π1 = sT /‖s‖, where s is the
starting vector. By Assumption 1, one can write ‖π1uj‖2 = λs,j |wj |2/‖s‖2, where
λs,j are eigenvalues of Λs and wj are independent, zero-mean, unit variance Gaussian
random variables. Thus,

1

γi‖π1uj‖2
≤ ‖s‖2 max

1≤k≤m

1

λs,kγk|wk|2(6.18)

for m ≥ i ≥ j. Suppose that the λy,k satisfy

1

λy,kγk
< ζΓk(6.19)

for constants ζ > 0 and 0 < Γ < 1. Then, (6.19) holds for λs,k for the same ζ and Γ
if Λs = Λy and for a different ζ and Γ = 1/γ if Λs ∝ I. Let

µk = max
1≤j≤k

Γj

|wj |2 .(6.20)

The quantity µk is an extremum of an independent, nonidentically distributed se-
quence of random variables. Bounding the rate at which extrema grow is a classic
problem in statistics [10]. The following result states that the µk do not grow without
bound but converge in probability.
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Proposition 6.7. Suppose w1, w2, w3, . . . is an independent sequence of zero-
mean, unit variance Gaussian random variables. Let µk be as in (6.20). Then, the µk

converge in probability to a finite-valued random variable.

Proof. First, we show the µk converge in distribution.

P{µk ≤ M} =
k∏

i=1

P

{
|wi| ≥

√
Γi

M

}
.(6.21)

Let

Fi(M) = P

{
|wi| ≥

√
Γi

M

}
.(6.22)

Then

Fi(M) ≤
√
2

π

√
Γi

M
,(6.23)

which satisfies the conditions of Proposition 6.5. Thus, limk→∞ P{µk ≤ M} = F (M)
for some distribution function F .

To show that the µk converge in probability, consider the following. For n > k
and ε > 0,

P{µn − µk > ε} =
∫
P{µn > ε+ v|µk = v}dGk(v),(6.24)

where Gk is the distribution of µk. Now

P{µn > ε+ v|µk = v} = P

{
max

1≤j≤n−k+1

Γj

|wj |2 >
ε+ v

Γk−1

}

≤ 1− F

(
ε+ v

Γk−1

)
.

(6.25)

Let V be such that 1− F (V ) < ε/2, and let N be such that

1− F

(
ε+ v

Γk−1

)
<

ε

2
for k ≥ N .(6.26)

For n > k ≥ N ,

∫
P{µn > ε+ v|µk = v}dGk(v) =

∫ V

0

P{µn > ε+ v|µk = v}dGk(v)

+

∫ ∞

V

P{µn > ε+ v|µk = v}dGk(v)

≤
∫ V

0

ε

2
dGk(v) +

∫ ∞

V

dGk(v) < ε.

(6.27)

Thus, the µk satisfy the Cauchy criterion and converge in probability to a random
variable whose distribution function is F [6, pp. 226–227].
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6.3. Proof of Theorem 4.1. The results of the preceding two subsections com-
bine to form a proof of Theorem 4.1 as follows.

Proof. By Propositions 6.4 and 6.6,

(6.28)

m∑
j=1

(Λex(p
T
1 y, . . . , p

T
k y))jj − (Λex(y))jj =

m∑
i=k+1

‖ΛxC
T pi‖2

≤ 4‖Λx‖‖Λy‖‖s‖2K2(λsep)ζµm

m−1∑
i=k

� i
4
−1∑
j=1

λz,j

λ2
y,j

1

γ(i−2j)
+ ‖Λx‖

m−1∑
i=k

m∑
j=� i

4

λz,j

λy,j
,

and

(6.29)
m∑
j=1

(Λez (p
T
1 y, . . . , p

T
k y))jj − (Λez (y))jj =

m∑
i=k+1

‖ΛxC
T pi‖2

≤ 4‖Λy‖‖s‖2K2(λsep)ζµm

m−1∑
i=k

� i
4
−1∑
j=1

λ2
z,j

λ2
y,j

1

γ(i−2j)
+

m−1∑
i=k

m∑
j=� i

4


λ2
z,j

λy,j
.

By Assumptions 4 and 2, λz,j/λy,j ≤ λ̄j/σ
2 and λ̄j/(γ

jλy,j) ≤ ξ for a constant ξ.
Moreover, λz,i/λy,j ≤ 1, in general. Thus

(6.30)
m∑
j=1

(Λex(p
T
1 y, . . . , p

T
k y))jj − (Λex(y))jj =

m∑
i=k+1

‖ΛxC
T pi‖2

≤ 4‖Λx‖‖Λy‖‖s‖2K2(λsep)ζµmξ

σ2(1− 1
γ2 )

m−1∑
i=k

1

γi/4
+

‖Λx‖
σ2

m−1∑
i=k

(i− k + 4)λ̄� i
4
,

and

(6.31)
m∑
j=1

(Λez (p
T
1 y, . . . , p

T
k y))jj − (Λez (y))jj =

m∑
i=k+1

‖CΛxC
T pi‖2

≤ 4‖Λy‖‖s‖2K2(λsep)ζµm

(1− 1
γ2 )

m−1∑
i=k

1

γi/2
+

m−1∑
i=k

(i− k + 4)min

(
λ̄� i

4
λz,� i
4


σ2
, λ̄� i

4

)
.

The increasing µm converge in probability to a random variable µ by Proposition 6.7.
Equations (4.2) and (4.3) follow immediately from (6.30) and (6.31).

The analysis presented here predicts actual convergence behaviors, as illustrated
next with the numerical examples in section 7.

7. Numerical examples. The following numerical examples illustrate the ac-
tual performance of the algorithm in relation to the theory of the previous sections.
There are four different examples. Each one illustrates a different aspect of the theory.
The estimation problems in each of the examples is different. The breadth of estima-
tion problems provides a glimpse at the range of applicability of the Krylov subspace
estimation algorithm. For each of the following problems, full orthogonalization was
used, except as noted.
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Fig. 7.1. The four curves plotted here show the convergence behaviors when computing error
variances for estimating two different quantities in two slightly different estimation problems. One
of the quantities to be estimated is a 1-D process, x, and the other is a subsampled version of the
same process, z. Both quantities are estimated from measurements consisting of z embedded in
additive noise. The only difference between the two estimation problems is the variance of the noise,
σ2, which is 1 in one case and 10−8 in the other. The curves indicate that convergence is slower
for lower σ2 and for estimating x, as predicted by Theorem 4.1.

The results in Figure 7.1 illustrate the relationship between the actual perfor-
mance of the algorithm and that predicted by Theorem 4.1. The estimation problem
consists of estimating 1024 samples of a stationary process, x, on a 1-D torus from
512 consecutive point measurements, y. The power spectral density (PSD) of x has a
geometric decay, Sxx(ω) ∝ (0.3)|ω|, and is normalized so that the variance of x is one.
Depicted in Figure 7.1 are the fractions of error reduction obtained for estimating x,∑l

i=1(Λex,k(y)− Λex(y))ii∑l
i=1(Λx − Λex(y))ii

,(7.1)

and z, ∑l
i=1(Λez,k(y)− Λez (y))ii∑l

i=1(Λz − Λez (y))ii
,(7.2)

where Λn = σ2I for σ2 = 1 and σ2 = 10−8. Note that the numerators in (7.1) and (7.2)
are the terms bounded in Theorem 4.1 and that the denominators are independent
of the iteration index, k. The reference values Λex(y) and Λez (y) are computed
using direct methods in MATLAB. The numerical errors in these direct methods
tend to dominate after several iterations especially for σ2 = 10−8. Note that the
eigenvalues of Λx and Λz satisfy λx,i ≥ λz,i ≥ λx,l−m+i as a consequence of Cauchy’s
interlace theorem [9, Theorem 4.3.15] and the rows of the measurement matrix C being
orthogonal. Since the PSD (collection of eigenvalues) display a two-sided geometric
decay, Λz and, in turn, Λy = Λz+σ2I may have eigenvalue multiplicities of order two.
However, the plots show a geometric rate of convergence consistent with a geometrical
decay of Λy despite the fact that the block form of the algorithm is not used. A
block form is not necessary because roundoff error will introduce components of the
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Stopping Criteria for 1D Processes with Geometric PSD
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Fig. 7.2. The results plotted here indicate how the computable quantities making up the two
stopping criteria of section 3 relate to the difference between the computed approximation to the error
covariance for estimating x at iteration k and the optimal error covariance, Λex,k(y)−Λex (y). The
solid line is the maximal difference between the computed and optimal error variances for estimating
x, maxi(Λex,k(y) − Λex (y))ii. Each of the other two curves plot the quantities making up the two
stopping criteria. The dashed line is the maximal error variance for estimating z, maxi(Λez,k(z))ii,
and the dotted line is the maximum change made to the error variances at the current iteration,
τk,0, as defined in (3.1) for Kwin = 0.

eigenvectors of Λy into the Krylov subspaces that are not present in the starting vector
[15, p. 228]. Note also that, as suggested by Theorem 4.1, the rate of convergence is
faster for the error variances at measurement locations, i.e., for estimates of z, than
away from measurement locations, i.e., for estimates of all of x. The theorem also
suggests that convergence is slower for smaller σ2, which is evident in Figure 7.1.
Thus, Theorem 4.1 accurately predicts convergence behavior.

Figure 7.2 depicts how the two stopping criteria relate to the difference between
the computed approximation to the error covariance for estimating x at iteration k
and the optimal error covariance, Λex,k(y)−Λex(y). The process to be estimated is the
same one previously described. The measurement locations are chosen randomly. At
any given location, the chance that there is a measurement is 50% and is independent
of there being a measurement at any other sample point. The measurement noise
covariance matrix is a diagonal matrix whose elements vary according to the following
triangle function:

(Λn)ii =

{
9 i−1
�m/2�−1 + 1 for 1 ≤ i ≤ �m/2
,

9 m−i
m−�m/2�−1 + 1 for �m/2
+ 1 ≤ i ≤ m.

(7.3)

A whitening preconditioner, Λ−1
n , is used. The figure contains plots of the maxi-

mal difference between the computed and optimal error variances for estimating x,
maxi(Λex,k(y)−Λex(y))ii. There are also plots of the two quantities making up each
of the two stopping criteria. One is of the maximal error variance for estimating z,
maxi(Λez,k(z))ii, and the other is of the maximum change made to the error vari-
ances at the current iteration, τk,0, as defined in (3.1). Note that Λez,k(z) is a bound
on Λex,k(y) − Λex(y), but that the rates of convergence of these two quantities are
different. The τk,0, on the other hand, are more erratic but decrease at a rate close
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Acceleration Techniques for a 2D Process with Hyperbolic PSD
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Fig. 7.3. The results plotted here indicate that various acceleration techniques can be used to
achieve nearly optimal performance. The curves depict the fraction of error reduction for estimating
x for different methods of choosing linear functionals of the data. The figure shows the results for the
standard Krylov subspace estimation algorithm (KSE), a block form with a block size of 2 (BKSE),
and a preconditioned block form (PBKSE), also with a block size of 2. For comparison, the figure
shows two additional curves. One (Start Vector) is of the results for Algorithm 2.1 modified to start
with a linear combination of the first 60 eigenvectors of Λy. The other (Bound on Gain) is of the
fraction of error reduction attained by using the optimal linear functionals of the data.

to Λex,k(y)−Λex(y). Stopping when τk,εmin falls below a threshold has been the most
successful criterion because the τk,εmin give a good indication of the rate of decrease
of maxi(Λex,k(y)− Λex(y))ii. However, stopping when maxi(Λez,k(z))ii falls below a
threshold is a preferable criterion when the noise intensity is small primarily because
maxi(Λez,k(z))ii provides a tight bound on maxi(Λex,k(y)− Λex(y))ii.

A comparison among various techniques to accelerate convergence is provided in
Figure 7.3. The estimation problem consists of estimating a stationary random field,
x, on a 32× 32 toroidal grid from point measurements, y, of equal quality taken over
one 32× 16 rectangle. The PSD of x is proportional to 1/(|ω|+1)3 and is normalized
so that the variance of x is one. The measurement noise covariance matrix Λn is 4I.
The plots are of the fraction of error reduction attained for estimating x, as defined
by (7.1), versus the Krylov subspace dimensions. Both a right-preconditioned and a
block form are considered. The preconditioner has the form CΛpC

T , as described in
section 5.1. A simple block algorithm (BKSE) with a block size of 2 does not do much
better than the standard algorithm (KSE). However, a preconditioned block form
(PBKSE) requires considerably fewer iterations to achieve a given level of accuracy
than the standard algorithm. The error reduction attained by using the optimal linear
functionals of the data is also plotted in Figure 7.3. The performance of PBKSE is
close to the optimal performance. Figure 7.3 also shows the results of an experiment
to determine whether one can gain much by picking a good starting vector. A starting
vector with components in each of the first 60 eigenvectors of Λy was used to start
a run. The results are plotted in Figure 7.3 and are comparable to those of BKSE,
indicating that one does not gain much by picking a good starting vector. That the
choice of starting vector should have little impact on the results is a consequence of
Proposition 6.7.
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Fig. 7.4. The number of iterations required for a practical 2-D problem of interest is not very
large and grows no more than linearly with the area of the region of interest.
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Fig. 7.5. These data are satellite measurements of sea surface temperature. Measurements are
taken only along satellite tracks with no obscuring cloud cover.

Lastly, Figure 7.4 shows how the number of iterations grows with the region size
for the problem of estimating deviations from mean sea surface temperature, x, from
the satellite data, y, in Figure 7.5 [7]. The temperature deviations are estimated on a
rectangular grid and are assumed to be stationary with a Gaussian-shaped covariance
function. The width of the Gaussian is 60 pixels, and the height is 9 × 104. The
measurements are very scattered because they exist only along the satellite tracks
where there is no obscuring cloud cover (see Figure 7.5). The measurement noise
covariance Λn is 400I. Figure 7.4 shows how the number of iterations needed to
satisfy τk,10−2 < 10−2 for Kwin = 8 grows as a region of interest grows. Note that
the measurement density in these regions varies from approximately 10 − 20%. The
growth in the number of iterations is less than linear as the area of the region grows.
One expects this behavior because one should need an increasing number of linear
functionals as the region grows, but the growth should be no more than linear in the
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Fig. 7.6. The Krylov subspace estimation algorithm generated these error variances on a 1/6-
degree grid.

area, provided that the process is stationary (as it is in this case). Figure 7.6 shows the
error variances for estimating sea surface temperature given all 42,298 measurements
in Figure 7.5. A selective orthogonalization scheme was used to generate this result
[18, Appendix B]. Although the number of iterations is growing with problem size, the
number of iterations needed for this moderately large 320,400-dimensional estimation
problem is 249. That only a relatively small number of iterations was used indicates
that the algorithm has found a very low-rank but very good estimator. Hence, the
algorithm described here can be used to solve high-dimensional, practical problems
with relatively few iterations.

8. Conclusion. In this paper, a statistical interpretation of CG has been used
to derive a Krylov subspace estimation algorithm. The algorithm computes a low-
rank approximation to the linear least-squares error reduction term which can be
used to recursively compute LLSEs and error variances. An analysis of the conver-
gence properties explains behaviors of the algorithm. In particular, convergence is
more rapid at measurement locations than away from them when there are scattered
point measurements. Furthermore, the analysis indicates that a randomly generated
vector is a good starting vector. The theory also suggests preconditioning methods
for accelerating convergence. Preconditioning has been found to increase the rate of
convergence in those cases where convergence is not already rapid.

The low-rank approximation to the error reduction term is a very useful statisti-
cal object. The computation of estimates and error variances is just one application.
Another is the simulation of Gaussian random processes. Simulation typically re-
quires the computation of the square root of the covariance matrix of the process, a
potentially costly procedure. However, the Krylov subspace estimation algorithm can
be adapted to generate a low-rank approximation to the square root of the covari-
ance matrix. Yet another application is the fusion of existing estimates with those
generated by additional data. The resulting fusion algorithm can also be used as the
engine of a Kalman filtering routine, thereby allowing the computation of estimates
of quantities evolving in time. This is the subject of ongoing research.
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