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Abstract. In this paper we develop a stochastic realization theory for multiscale autoregressive (MAR)
processes that leads to computationally e�cient realization algorithms. The utility of MAR processes has
been limited by the fact that the previously known general purpose realization algorithm, based on
canonical correlations, leads to model inconsistencies and has complexity quartic in problem size. Our
realization theory and algorithms addresses these issues by focusing on the estimation-theoretic concept of
predictive e�ciency and by exploiting the scale-recursive structure of so-called internal MAR processes.
Our realization algorithm has complexity quadratic in problem size and with an approximation we also
obtain an algorithm that has complexity linear in problem size.
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1. Introduction

The power of the multiscale autoregressive (MAR) framework [5, 6] resides in its ability

to compactly model a rich class of phenomena [10, 26, 37] and to e�ciently address

complications that arise in many one- and multi-dimensional signal processing problems

(e.g., spatially irregular data, non-stationarities, and others). Fast and ¯exible signal

processing algorithms have been developed for MAR models [5, 38] and the utility of

the framework has already been established in a wide variety of applications [9, 11, 14±18,

21, 25, 28±31, 33, 36, 41, 42]. To harness this utility, of course, requires that the phenom-

ena of interest be e�ectively modeled in the MAR framework. However, prior attempts

[10, 22, 24, 26] to develop systematic MAR model-building methodologies have su�ered

from theoretical inconsistencies and computational intractability. In this paper we

develop a conceptually complete realization theory for a class of MAR processes that

leads to computationally e�cient model realization algorithms.

A MAR process is a collection of random vectors fx�s�g, called states, indexed by the

nodes of a tree which are organized into scales (see Figure 1). MAR states are coupled

with a�ne coarse-scale to ®ne-scale dynamics that generalize those of a state-space

process (see (1)). It is perhaps already evident to the reader that a MAR model is a
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particular type of graphical model. As such, MAR models, and their associated algo-

rithms, possesses properties that are similar to more general graphical models. We will

highlight such similarities as they arise in the body of this paper and we also include a

discussion of this point in the conclusion.

The theory and algorithms we develop in this paper address the problem of choosing

the parameters for the dynamics of a MAR process to model the second-order statistics

of any given ®ne-scale one- or multi-dimensional random process. We call this the MAR

stochastic realization problem and our approach to it relies on the concept of internality.

Internality is a familiar and important concept in state-space modeling:1 an internal

state-space process is one for which each state is a linear function of the observed process

[35]. The corresponding de®nition of an internal MAR process is one for which each state

x�s� is a linear function of the states indexed by leaf nodes that descend from s.

Internal MAR processes and models are important for a variety of reasons [12]; they

admit exact inclusion of non-local linear functions at coarser-scale nodes and thereby

permit the statistically optimal fusion of multiresolution measurements, a point we will

illustrate in our examples. Internality also plays a role in overcoming the computational

burdens of previous model building approaches. The precise development of internality is

a primary contribution of this paper and it represents a signi®cant advancement in the

theory underlying the MAR framework.

Previous work [10, 22, 24, 26] also attempted to focus on internal realizations but is

inconsistent in the following sense. While the computation of model parameters is based

on assuming that the model under construction is internal, the model resulting from these

computations is not guaranteed to be internal (and usually is not). Speci®c examples of

this phenomenon are found in [12, 19, 22]. This inconsistency has also been noted but not

resolved in [26].

The methods for constructing MAR models developed in [10, 22, 24, 26] scale poorly

with problem size, making them prohibitive for many problems of interest. The compu-

tational burden of these methods stems from two sources. First, they are not scale-

recursive and, therefore, do not take advantage of the natural e�ciency of tree data

structures. Second, they are based on canonical correlations, a burdensome approach

involving the inversion and singular value decomposition of large matrices.
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Figure 1. (a) A dyadic tree. The root node is indexed by s � 0. The parent of node s is denoted s�. The
children of node s are labeled from left to right by s�1, s�2. (b) For a q-adic tree the children of node s are
labeled from left to right by s�1; s�2; . . . ; s�q.
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Consequently, the approach developed in [22, 24, 26] is quartic in problem size while that

of [10] is cubic in problem size.2

In contrast, our approach has a quadratic complexity because it is scale-recursive and is

not based on canonical correlations. With respect to the former, the theoretical basis for

our scale-recursive realization algorithm stems from a thorough analysis of (wide-sense)

Markovianity for internal tree-indexed processes. In addition to internality,

Markovianity is another important concept in the state-space setting that generalizes

to MAR processes and that plays a central role in the stochastic realization problem.

Moreover, and most importantly for our purpose, we show that, for internal processes,

this Markov property has an equivalent scale-recursive de®nition that is vastly simpler to

work with and leads to e�cient model realization. Because of the structure it reveals and

e�ciency to which it leads, the development of this scale-recursive Markov property is

one of the important contributions of this paper.

The e�ciency of our realization approach stems also from the fact that it is based on

the estimation-theoretic concept of predictive e�ciency [3, 40] rather than on canonical

correlations. In brief, predictive e�ciency is the idea of ®nding and prioritizing the best

(in a minimum mean-square error sense) linear functionals of one random vector for the

purposes of linearly estimating another.

An important feature of predictive e�ciency is the asymmetric way in which it treats

data and variables to be estimated. A consequence of this for our approach to the

stochastic realization problem is that state variables are chosen to provide maximal

total reduction in estimation error variance. This is in contrast to the canonical correla-

tions approach which provides maximal fractional error variance reduction and is there-

fore equally concerned with low- and high-variance features. Another important

advantage of predictive e�ciency's asymmetry is that it avoids the costly inversion and

singular value decomposition of large matrices, steps which cannot be avoided in the

canonical correlations approach.

While our scale-recursive, predictive e�ciency-based realization algorithm is relatively

e�cient, it is still too computationally burdensome for many practical problems, parti-

cularly those arising in image (or higher-dimensional) processing. A major objective of

our work has been to develop realization approaches that scale well with problem size. In

this paper we provide an approximation with complexity that scales linearly with problem

size and illustrate in several examples the degree of approximation error relative to the

exact method. All of our theory and algorithms are applicable to signal processing

problems of any dimension. However, for clarity of presentation and visualization, we

often provide a detailed development in one-dimension only. Generalizations to higher

dimensions are discussed and image processing examples are also provided.

This paper is organized as follows. In Section 2 we review MAR processes. A problem

statement and overview of our theoretical development is found in Section 3. Internality

and several notions of Markovianity for tree-indexed processes are the subjects of Section

4 and Section 5, respectively. Predictive e�ciency is reviewed in Section 6. Our realization

theory is then applied in Section 7 which develops an algorithm with complexity quad-

ratic in problem size and, with an approximation, an algorithm with complexity linear in

problem size. Examples are provided in Section 8 and concluding remarks are found in

Section 9.
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2. MAR Processes Background

In this section we provide our notational conventions and a brief review of MAR pro-

cesses. A MAR process is a generalization of a discrete-time state-space process. Both are

graphical models with a�ne dynamics. However, a MAR process may be indexed by the

nodes of any tree and it reduces to a state-space process in time when the tree is monadic.

Precisely, a zero-mean3 MAR process x��� has dynamics

x�s� � A�s�x�s�� � w�s� �1�
where s� is the parent of node s (see Figure 1) and w�s� is white, uncorrelated with the

root-node state x�0� and has auto-covariance Q�s�.
For our purposes, it su�ces to consider MAR processes indexed by nodes of q-adic

trees. Our notation for referring to nodes of a q-adic tree is indicated in Figure 1. The

root node is labeled 0 and the children of a node s are, from left to right, s�1; s�2; . . . ; s�q.

There is a natural notion of scale associated with q-adic trees. The root node represents

the coarsest scale (scale zero) while the leaf nodes constitute the ®nest scale (scale M).

More generally, the nodes fs j s�n � 0g reside at scale n. We denote the scale of node s by

m�s�. For dyadic trees, q � 2 and scale n indexes a one-dimensional vector-valued signal

of length 2n. For quad-trees, q � 4 and scale n indexes a two-dimensional vector-valued

®eld of size 2n � 2n. Extensions to higher dimensions (q > 4) are straightforward.

Our goal is to build MAR models for ®ne-scale random signals which we view as

indexed by the leaf nodes of q-adic trees. In developing the theory and describing our

algorithms, we frequently refer to other scales and other subsets of nodes. So, for sim-

plicity of our subsequent presentation, we make the following de®nitions for frequently

referred to subsets of the set of nodes of a q-adic tree:

SsX ft j t � s or t is a descendent of sg � nodes in subtree rooted at s;

ScsXS0 ÿ Ss � nodes other than those in subtree rooted at s;

T s�n�X ft 2 Ss j m�t� � ng � nodes at scale n descending from s;

T c
s�n�X T 0�n� ÿ T s�n� � nodes at scale n not descending from s:

Again, to simplify our development, we make the following de®nitions for frequently

referred to sub-processes of a tree-indexed process fx�s�gs2S0 :
xns X fx�t�gt 2 T s�n� � process at scale n that descends from node s;

xnsc X fx�t�gt 2 T c
s�n� � process at scale n that does not descend from node s:

We often interpret these sub-processes as vectors.4 Also, when referring to a sub-process

at an entire scale we often drop the 0 subscript. For instance xM � xM0 is the ®nest-scale

sub-process. Some of this notation is summarized in Figure 2.

AMAR process can be viewed as an implicit representation of a covariance matrix. The

elements of PxM , the covariance matrix5 for the leaf-node states of aMAR process x���, are
completely characterized by theMARparametersA���,Q���, and the root-node covariance
Px�0�. As a speci®c example, the block-diagonal elements ofPxM are obtained by recursively
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solving the Lyapunov equation resulting from (1) using Px�0� as the initialization:

Px�s� � A�s�Px�s��A�s�T �Q�s� : �2�

We emphasize that, in general, A�s� and Q�s� vary as a function of node s 2 S0. As

mentioned in the Introduction, the concept of Markovianity is important for tree-indexed

processes:

De®nition 1 (Markov Property). A tree-indexed process x��� has the Markov property if

for all s 2 S0 ÿ T 0�M�, conditioned on x�s�, the sub-processes indexed by the sets of

nodes in the sub-trees separated by s, namely, fx�t�gt2Ss�1 , fx�t�gt2Ss�2 ; . . . ; fx�t�gt2Ss�q
and fx�t�gt2Scs , are conditionally uncorrelated.

That MAR processes have the Markov property is easily shown [8, Appendix A]. If a

MAR process is Gaussian6 then it has the (equivalent) properties of ``pairwise

Markovianity,'' ``local Markovianity,'' and ``global Markovianity'' from the graphical

modeling literature [34]. The Markov property of De®nition 1 is a wide-sense equivalent

to these notions of Markovianity.

The Markov property leads to fast statistical signal and image processing algorithms.

Sample-path generation (with complexity quadratic in state dimension and linear in the

number of ®nest-scale nodes) is accomplished using (1). Also, a linear least-squares

estimator [5, 6] and likelihood calculator [38] have been developed based on a measure-

ment model analogous to the classical state-space one:

y�s� � C�s�x�s� � v�s� �3�

where v�s� is white and uncorrelated with x��� and w���.The estimator and likelihood

calculator have computational complexity cubic in state dimension and linear in the

number of ®nest-scale nodes. This linear scaling with the number of leaf nodes is of

great importance in two- and higher-dimensional problems, contexts in which the

much higher complexity of other algorithms (e.g., those for Markov random ®eld models)

is often prohibitive. The cubic scaling in state dimension provides strong motivation for

keeping state dimensions small. The MAR statistical inference algorithms just described

are special cases of more general algorithms (like the junction-tree algorithm) that are

familiar in the graphical modeling community [7].
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3. Problem Statement and Overview

The ultimate objective of this paper and the motivation for the theoretical development of

subsequent sections is the MAR stochastic realization problem, which we now describe in

detail. Suppose we are given the covariance matrix PfM for the length N random vector

f M which may represent a one-dimensional signal or a multi-dimensional ®eld, lexico-

graphically ordered. For convenience only, suppose that f M has length N � dqM , for

some positive integer d. Thus, we can view the elements of f M as the ®ne-scale sub-

process of a random process indexed by the nodes of an �M � 1�-scale q-adic tree

where each leaf-node indexes d consecutive elements of f M . Our goal is to build an

internal MAR process x��� (where internality is to be de®ned) so that the ®nest-scale

sub-process xM is an exact or approximate model for the random signal f M , i.e., so that

PxM � PfM .

Building such a MAR model requires designing the states at all of the ``hidden'' coarse-

scale nodes. Additionally, because an exact model (i.e., one for which PxM � PfM ) typi-

cally requires impractically large state dimension,7 we seek a criterion for choosing the

``best'' state variables if a reduced-order, approximate model is desired. Our criterion,

predictive e�ciency, is developed in Section 6.

Before we develop this criterion and apply it to the realization problem, we need to take

a step back to consider tree-indexed processes more generally. There are two basic con-

cepts, the ®rst of which is internality which we develop in Section 4. Internality has both

intellectual and practical importance. First, as described in the Introduction, it is a

natural extension of the well-studied time-series concept. Second, internal MAR models

have coarse-scale states that include non-local linear functions of ®ne-scale states.

This allows for e�cient fusion of non-local and local measurements with no increase

in computational complexity as compared to the case o� using only ®ne-scale data [9].

Lastly, while non-internal MAR processes can be constructed, their states have

exogenous random components, a property that is not suitable in many problems

such as the fusion of multiresolution data [9]. For an internal model, all the statis-

tical properties can be derived from the signal being modeledÐthere is no exogenous

randomness.

The second basic concept associated with tree-indexed processes is Markovianity. As

discussed in the Introduction, we develop a scale-recursive formulation of this concept for

internal processes (Section 5) that leads to e�cient model realization. Once we develop

these two basic concepts for tree-indexed processes, we apply them to the MAR stochas-

tic realization problem. In doing so, we deduce the structure of internal MAR models

that both must be satis®ed (and which is not satis®ed by previous methods) and which

reduces computational complexity.

4. Internal Processes

In this section, we ®rst de®ne internality for an arbitrary tree-indexed process and then

seek to understand what structure must be imposed on the states of a MAR process to

make it internal.
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De®nition 2 (Internal Tree-Indexed Process). A tree-indexed process x��� is internal if

for all s 2 S0 ÿ T 0�M�, x�s� is a linear function of xMs , the process indexed by ®nest-scale

nodes that descend from s. I.e., for some set of matrices fWsg,

x�s� �Wsx
M
s : �4�

The matrices fWsg are called internal matrices. If x��� is also a MAR process then x�s�
de®ned by (4) is called an internal state. For a general tree-indexed process, internality

places no restrictions on the internal matrices. However, we are interested in internal

MAR processes which also obey (1). A consequence of this is that the internal matrices

cannot be chosen independently. This can be seen intuitively because ®ne-scale states are

derived from coarse scale ones by (1) and must be consistent with the information con-

tained in coarse scale states (given by (4)). That is, (1) and (4) together place constraints

on ®ner-scale states and, thereby, on the internal matrices associated with those states.

The constraints imposed by (4) are not enforced in previous systematic realization

approaches [10, 22, 24, 26]. As a consequence the MAR models developed in these

works are not internal [22, Section 3.7.2]. Although the authors of [10, 22, 24, 26] were

aware of this, it has, until now, not been dealt with in a theoretically consistent and

complete framework. We not only develop a framework that incorporates the constraints

of (4) but we show how doing so vastly simpli®es the construction of internal MAR

models. The key is that (4) is not the right parameterization for internal MAR states.

The right parameterization comes from the following.

De®nition 3 (Locally Internal Tree-Indexed Process). A tree-indexed process x��� is
locally internal if for all s 2 S0 ÿ T 0�M�, x�s� is a linear function of xm�s��1s , the process

indexed by the children nodes of s. I.e., for some set of matrices fVsg,

x�s� � Vsx
m�s��1
s : �5�

Notice that (4) places all of the focus on the ®ne scale while (5) is scale-recursive. We call

Vs a local internal matrix. The following proposition shows that the local internal

matrices provide the right parameterization for an internal process.

Proposition 1 A MAR process, x���, is internal if and only if it is locally internal.

Proof: The ``if'' direction is trivial. If x��� is locally internal then we may write x�s� as a
linear combination of its children. In turn, each x�s�i� is a linear combination of its

children and so on, scale-recursively down the tree. Therefore, x�s� is a linear combina-

tion of its ®nest-scale descendents xMs . This holds for all s 2 S0 ÿ T 0�M� so x��� is

internal.

For the ``only if'' direction, assume that x��� is internal. For any s 2 S0 ÿ T 0�M�, we
may write8

x�s� � Ê x�s� j xm�s��1s

h i
� ex�s� �6�
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where ex�s� is uncorrelated with xm�s��1s . Since x�s� and the x�s�i� which comprise xm�s��1s

are assumed to be internal states, ex�s� must be a linear function of xMs . We show that ex�s�
must be zero (so that x�s� is indeed a linear function of xm�s��1s ). By (6), ex�s� is a linear

combination of x�s� and xm�s��1s so we may write

ex�s� � Ê ex�s� j x�s�; xm�s��1s

h i
� Ê ex�s� j xm�s��1s

h i
� 0 �7�

where the second equality follows from the fact that ex�s� must be a linear function of xMs
and the fact that conditioned on xm�s��1s , x�s� and xMs are conditionally uncorrelated (by

the Markov property). The third equality follows from the fact thatex�s� is uncorrelated
with the x�s�i�. This completes the proof. &

Note that, given the local internal matrices fVsg it is easy to derive the internal matrices

fWsg recursively as follows:

Ws �

Id if m�s� �M;

Vs

Ws�1

Ws�2

..

.

Ws�q

2666664

3777775 otherwise

8>>>>>>><>>>>>>>:
�8�

where Id is the d � d identity matrix and dX dim�x�s�� is the state dimension9 (i.e., the

length) of state x�s�. Since an internal MAR process has states satisfying (5) as well as (1),

we immediately have the following complete characterization of the parameters A�s� and
Q�s� for such a process in terms of the local internal matrices and the covariance matrix

for xm�s��1s .

Proposition 2 Suppose x��� is a MAR process. Let Js�i
be the selection matrix such that

Js�i
xm�s��1s � x�s�i�. Then x��� is a locally internal MAR process with x�s� � Vsx

m�s��1
s if

and only if for all s 2 S0 ÿ T 0�M�,

A�s�i� � Js�i
P
x
m�s��1
s

VT
s �VsPx

m�s��1
s

VT
s �ÿ1; �9a�

Q�s�i� � Js�i
P
x
m�s��1
s
ÿ P

x
m�s��1
s

VT
s �VsPx

m�s��1
s

VT
s �ÿ1VsPx

m�s��1
s

� �
JT
s�i
: �9b�

Proof: See Appendix A.1. &

The relations of (9) may be written in another form which emphasizes that A�s�i� and
Q�s�i� depend only on state covariances and parent-child cross covariances:

A�s�i� � Px�s�i�x�s�P
ÿ1
x�s�; �10a�

Q�s�i� � Px�s�i� ÿ Px�s�i�x�s�P
ÿ1
x�s�P

T
x�s�i�x�s�: �10b�

Together, Propositions 1 and 2 provide the necessary and su�cient conditions for a

MAR process to be internal.
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5. Notions of Markovianity

For internal tree-indexed processes, the Markov property of De®nition 1 is equivalent to

two other notions of Markovianity. These notions, which we develop in this section, are

much simpler to work with and lead to a scale-recursive realization algorithm, presented

in Section 7, with substantially reduced computational complexity as compared to

previous methods. The ®rst alternate notion of Markovianity is the ®ne-scale Markov

property, which is the focus of the approaches in [10, 22, 24, 26].

De®nition 4 (Fine-Scale Markov Property). A tree-indexed process x��� has the ®ne-

scale Markov property if conditioned on x�s� for any s 2 S0 ÿ T 0�M� the q� 1 vectors in

the set fxMs�i
gqi�1 [ fxMsc g are conditionally uncorrelated.

Figure 3 provides some intuition about the relationship between the Markov property

and the ®ne-scale Markov property. The Markov property focuses on the conditional

decorrelation of the states indexed by the nodes in the subtrees extending from s (the

three sets of nodes enclosed by solid lines and labeled ``A'',``B'', and ``C'' in Figure 3).

The ®ne-scale Markov property, in contrast, places its attention on the conditional

decorrelation of ®nest-scale sub-processes (dotted-lined regions in Figure 3). While

there are fewer leaf nodes than nodes in the tree, this does not provide a substantial

amount of simpli®cation because the number of tree nodes and the number of leaf nodes

are of the same order. This is the key to why previous realization methods [10, 22, 24, 26],

which make extensive use of the ®ne-scale Markov property, scale poorly with problem

size. We now show that, for internal processes, the ®ne-scale Markov property is

equivalent to the Markov property.

Proposition 3 Assume that x��� is an internal tree-indexed process. Then it has the ®ne-

scale Markov property if and only if it has the Markov property.

Proof: First, if x��� has the Markov property it clearly has the ®ne-scale Markov prop-

erty since the Markov property subsumes the ®ne-scale Markov property. Assume, then,
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erty), (iii) in the shaded regions (scale-recursive Markov property).



that x��� has the ®ne-scale Markov property and let s; r; t 2 S0 such that the unique

shortest path from s to t goes through r. Subject only to this condition, s; r; t are arbitrary

so we need to show that x�s� and x�t� are conditionally uncorrelated when conditioned on

x�r�. There are two cases.

Case 1: First consider the case where t is not an ancestor of s nor is s an ancestor of t

(see Figure 4). It is clear from Figure 4, that the index sets for the vectors xMt and xMs do

not overlap. Therefore, by assumption, x�r� conditionally decorrelates xMs and xMt . It

follows that x�r� conditionally decorrelates x�s� �Wsx
M
s and x�t� �Wtx

M
t . The alge-

braic details are omitted and may be found in [19].

Case 2: Next consider the case where s � t�n for some n (see Figure 5). Therefore s is

also an ancestor of r and consequently xMt is contained in xMr . It follows that x�t� is a
linear function of xMr so it su�ces to show that x�s� and xMr are conditionally decorre-

lated by x�r�. Because by assumption x��� is an internal process, we may write x�s� as

x�s� �Wsx
M
s � Lsrx

M
r � LxMrc ; �11�

for some matrices Lsr and L where Lsr � DsrWr, for some matrix Dsr. Therefore,

rowspace�Lsr� � rowspace�Wr�: �12�
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Thus, Lsrx
M
r can be linearly estimated from x�r� �Wrx

M
r without error. Also, condi-

tioned on x�r�, xMrc and xMr are conditionally uncorrelated by hypothesis. Therefore, x�r�
conditionally decorrelates x�s� and xMr . &

As we now develop, another notion of Markovianity which is equivalent to the Markov

property is the scale-recursive Markov property. The development of this scale-recursive

formulation of the Markov property is one of the major contributions of this paper. It is

signi®cant because it permits us to view the stochastic realization problem scale-recur-

sively and thereby, develop e�cient algorithms.

De®nition 5 (Scale-Recursive Markov Property). A tree-indexed process x��� has the

scale-recursive Markov property if conditioned x�s� for any s 2 S0 ÿ T 0�M� the q� 1

vectors in the set fx�s�i�gqi�1 [ fxm�s��1sc g are conditionally uncorrelated.

Referring to Figure 3, we see that the scale-recursive Markov property is similar to the

®ne-scale Markov property except that rather than focusing on the leaf-node states, it

focuses on those at the preceding ®ner scale (in the shaded regions). Since the sets of

nodes associated with the scale-recursive Markov property are asymptotically of strictly

smaller order than those associated with the Markov property (solid-lined regions labeled

``A'', ``B'', and ``C'') or the ®ne-scale Markov property (dotted-lined regions), our reali-

zation algorithm based on scale-recursive Markovianity is orders of magnitude more

e�cient than previous approaches. Speci®cally, at scale M ÿ 1, the total number of

variables considered is the same for both the ®ne-scale Markov property and the scale-

recursive Markov property. However, at coarser scales, the sets involved in the scale-

recursive Markov property are smaller than those involved in the ®ne-scale Markov

property. Indeed, at each successive coarser scale, the total number of variables consid-

ered in the scale-recursive Markov property is reduced by a factor of q. We now show

that the scale-recursive Markov property is equivalent to the Markov property for inter-

nal processes.

Proposition 4 Assume x��� is an internal tree-indexed process. Then x��� has the scale-

recursive Markov property if and only if it has the Markov property.

Proof: First, if x��� has the Markov property then, by de®nition, it has the scale-recur-

sive Markov property. Next, assume that x��� has the scale-recursive Markov property.

We show in Appendix A.2 that for an arbitrary s in S0 ÿ T 0�M�, x�s� conditionally
decorrelates the vectors in the set fxMs�i

gqi�1 [ fxMsc g (see Figure 6). Having shown this,

then x��� has the ®ne-scale Markov property and thus, by Proposition 3, it has the

Markov property. &

The computational complexity of previously developed realization algorithms stems

from several sources, two of which are exposed here. First, because they are based on the

®ne-scale Markov property and use canonical correlations, they must consider the sta-

tistics (covariance matrix) for a large number of variables (those indexed by the ®ne-scale

nodes). Second, they must do this at every node. In contrast,we focus on the (equivalent)

scale-recursive Markov property which alleviates the latter source of complexity as
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described previously. We also use predictive e�ciency and not canonical correlations

which alleviates the former source of complexity as described in the next section.

6. Predictive E�ciency and Decorrelating Random Vectors

At the heart of our realization approach we must deduce the information necessary to

conditionally decorrelate random vectors. The problem of conditionally decorrelating

random vectors has been considered before. One well-known approach is through the

computation of canonical correlations. The canonical correlations approach provides a

method of achieving exact or approximate conditional decorrelation. In the latter case, it

can be viewed as providing an absolute measure of the di�erence between an approximate

model and an exact model that is related to the Kullback-Leibler distance [1, 2].

Rather than using canonical correlations, our approach is based on the estimation-

theoretic concept of predictive e�ciency, which we review in this section. As will be

shown, predictive e�ciency can be viewed as providing a measure of the di�erence

between an approximate and an exact model directly related to the intended use of a

MAR model for estimation. Further, use of predictive e�ciency also leads to signi®cant

savings in complexity of the resulting realization algorithm. Predictive e�ciency has been

introduced elsewhere [3, 40] and the relevant aspects of it are well known in the statistics

and control communities. Therefore, our treatment is brief and we refer the reader to [19]

for details.

To begin, we de®ne "�z2 j z1� to be the mean-square error in the linear least-squares

estimate of the length-n2 vector z2 based on the length-n1 vector z1:

"�z2 j z1�XE kz2 ÿ Ê�z2 j z1�k2
� �

�13a�

� trace P2 ÿ PT
12P

ÿ1
1 P12

ÿ � �13b�

where Pi is the positive-de®nite covariance matrix for zi and P12 is the cross-covariance

matrix for z1, z2. (We remind the reader that Ê�� j ��� denotes the linear least-squares

estimator (see the proof of Proposition 1).)
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Consider now the problem of estimating z2 not from z1 but from no more than r linear

functionals of z1 given by Vz1 where V 2 Mr which is the set of all matrices of size `� n1
with ` � r. We can measure the quality of the estimate based on Vz1 relative to that which

can be obtained from z1 by

�"�z2 j Vz1�X "�z2 j Vz1� ÿ "�z2 j z1� �14a�

� trace PT
12P

ÿ1
1 P12

ÿ �ÿ trace PT
12V

T �VP1V
T �ÿ1VP12

� �
: �14b�

The idea of predictive e�ciency is to minimize �"�z2 j Vz1� overMr. Let

bVX arg min
V2Mr

�"�z2 j Vz1� : �15�

Notice that the minimum is lower bounded by zero and equality obtains if and only if Vz1
conditionally decorrelates z1 and z2. Therefore, we can interpret �"�� j ��� as a measure of

distance from Markovianity although it is not a true distance because it is not symmetric.

The optimal V 2 Mr according to the predictive e�ciency measure is provided in the

following proposition, which is proved in [19].

Proposition 5 Let U�UT be the eigen-decomposition of P
ÿ1=2
1 P12P

T
12P

ÿT=2
1 with the

eigen-value matrix � � diag��1; �2; . . . ; �n1� and �i � �j for i � j. Let r � n1. ThenbVX arg minV2Mr
�"�z2 j Vz1� is given by the ®rst r rows of UTP

ÿ1=2
1 .

In the sequel, we call the pair of matrices �U;�� of Proposition 5 the predictive e�ciency

matrices. The computational complexity of computing these matrices is O�n21n2 � n31�. The
n21n2 term comes from the formation of the matrix P

ÿ1=2
1 P12P

T
12P

ÿT=2
1 . The n31 term comes

from the fact that we must invert the matrix square root of P1 and compute an eigen-

decomposition of an n1 � n1 matrix. The inversion of P2 is not required because the

predictive e�ciency method is asymmetric. In fact, P2 plays no role in the computation

of the predictive e�ciency matrices. In contrast, the canonical correlations method of

[22, 24, 26] requires the inversion of both P1 and P2 because it is symmetric. It is precisely

this di�erence in symmetry that accounts for the e�ciency of our approach as compared

to previous methods. In the context of the MAR stochastic realization problem, n2 is

related to problem size while n1 is related to state dimension and can be chosen to be

independent of n2. Thus, the asymptotic complexity of the predictive e�ciency method is

O�n2� whereas that of the canonical correlations approach is O�n32�.
The main message of Proposition 5 is that bVz1 does the best job (in the sense of (15)) of

conditionally decorrelating z1 and z2 subject to the constraint that bV may have no more

than r rows. We have a need to generalize this idea to consider the problem of (approxi-

mately) conditionally decorrelating more than two random vectors. For this purpose, we

de®ne (with an abuse of notation) the following generalization of �"�� j ���:

�"�z1; z2; . . . ; zq�1 j Vz0�X max
i
f�"�zi j Vz0�g: �16�
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The corresponding predictive e�ciency problem is

bV � arg min
V2Md

�"�z1; z2; . . . ; zq�1 j Vz0� : �17�

A special case of (17) is at the heart of our approach to the MAR realization problem as

we show in the next section. This special case is the one for which z0 � �zT1 zT2 . . . zTq �T . In
this case, we can view �" as a measure of Markovianity since Vz0 conditionally decor-

relates fzigq�1i�1 if and only if �"�z1; z2; . . . ; zq�1 j Vz0� � 0. Unfortunately, unlike the case

for a pair-wise predictive e�ciency problem (cf., Proposition 5), to our knowledge, a

procedure for solving this higher order predictive e�ciency problem is not known.

However, by considering q pair-wise predictive e�ciency problems instead of (17), we

can obtain a good sub-optimal solution.

Rather than attempt to conditionally decorrelate all q� 1 random vectors in the set

fzigq�1i�1 at once, we instead consider each one in turn. That is, for each i, we seek a linear

function of zi that (approximately) conditionally decorrelates it from the others. Using

the predictive e�ciency criterion, this becomes formally

Vi;ri � arg min
V2Mri

�"�zci j Vzi� �18�

where the ri satisfy
Pq

i�1 ri � d and zci � �zT1 ; zT2 ; . . . ; zTiÿ1; z
T
i�1; . . . ; zTq�1�T , a vector con-

sisting of zj for j 6� i. This pair-wise problem is solved by computing the predictive

e�ciency matrices �Ui;�i� as explained in Proposition 5.

Having solved these q pair-wise problems, we concatenate the resulting matrices Vi;ri to

form �V , our sub-optimal solution to (17):

�VXdiag�V1;r1 ;V2;r2 ; . . . ;Vq;rq�: �19�

To completely de®ne our sub-optimal solution �V , we need to specify exactly how the ri
are chosen. Our approach is to ®rst compute all of the q sets of predictive e�ciency

matricesf�Ui;�i�gqi�1. Then, we create one ordered list consisting of all of the eigenvalues

and select the largest d eigenvalues from our list, thereby determining the number, ri, of

rows taken from each Ui. To be sure, one can consider other ways of specifying the ri.

Some of these are discussed in Section 9.

7. Stochastic Realization

Recall from Section 3 that our objective is to build an internal MAR model x��� such that

its ®ne-scale sub-process xM has a covariance matrix PxM that closely approximates the

(given) N �N covariance matrix PfM of the process f M . In Sub-section 7.1 we provide an

O�N2� algorithm to address this problem and in Sub-section 7.2 we introduce an approxi-

mation that results in O�N� algorithm. The algorithms we describe compute MAR

models assuming a given ®xed target value for the state dimension, d. Additionally, while

our algorithms possess some properties that are similar to those possessed by model

selection algorithms in the graphical modeling literature, our approach is substantially
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di�erent and deals with issues that do not commonly arise in the graphical modeling

literature. We discuss this point more thoroughly in the concluding section of the paper.

7.1. O�N2� Algorithm

In constructing an internal MAR model x��� for PfM we de®ne another locally internal

tree-indexed (and not necessarily MAR) process as an intermediate step. This inter-

mediate process f ��� has as its ®nest-scale sub-process f M , the signal to be modeled. At

any node s not at the ®nest scale, we de®ne the value of f ��� at node s scale-recursively as

f �s�XVs f
m�s��1
s where each local internal matrix Vs is derived based on a predictive

e�ciency criterion (detailed shortly).

From the set of local internal matrices fVsg and the given ®ne-scale covariance PfM , the

statistics Pf �s� andPf �s�i�f �s� are easily computed. In turn, these may be used to de®ne the

dynamical model for f ���:
f �s�i� � A�s�i�f �s� � ��s�i�; �20a�
Q�s�i�XE���s�i���s�i�T � �20b�

where A�s�i� and Q�s�i� are computed from Pf �s� and Pf �s�i�f �s� as described in (10) (in

which x�s�i� and x�s� are replaced by f �s�i� and f �s�, respectively).
If the process f ��� has the scale-recursive Markov property then ���� is a white noise

process, uncorrelated with f �0�. Hence, (20) is an exact MAR model for f M [26]. As we

will explain, this will occur if no approximation is made in the predictive e�ciency step

that de®nes the local internal matrices. If, on the other hand, we do make an approxi-

mation in the predictive e�ciency step, then ���� will not be a white noise process,

uncorrelated with f �0�. However, in this case, we can de®ne an approximate model by

assuming that ���� is white and uncorrelated with f �0�. That is, we de®ne the internal

MAR process x��� to approximate f ��� as
x�s�i� � A�s�i�x�s� � w�s�i�; �21a�
E�w�s�i�w�s�i�T � � Q�s�i� �21b�

where A��� andQ��� are the same as in (20) and w��� is white, uncorrelated with x�0�. Note

that, while this results in an approximate model (PxM 6� PfM ), the state covariances Px�s�
at each node s and the child-parent cross-covariances Px�s�i�x�s� for each child-parent pair

of nodes exactly match Pf �s� and Pf �s�i�f �s�, respectively. Consequently, the d � d diagonal

blocks of PxM exactly match those of PfM .

It remains only to specify the predictive e�ciency step in which we de®ne the local

internal matrices fVsg. To obtain an exact model requires that f ��� have the scale-

recursive Markov property which it does (by de®nition) if f �s� � Vs f
m�s��1
s conditionally

decorrelates the set of vectors ff �s�i�gqi�1 [ f
m�s��1
sc for all s 2 S0 ÿ T 0�M�. This occurs

exactly when

�"� f �s�1�; f �s�2�; . . . ; f �s�q�; f m�s��1sc j Vs f
m�s��1
s � � 0: �22�
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Typically, any Vs satisfying (22) has too many rows, leading to models with impracti-

cally high state dimensions. Therefore, to obtain lower dimensional states, we may apply

the procedure described in Section 6 to ®nd a sub-optimal solution to the predictive

e�ciency problem

arg min
V2Md

�" f �s�1�; f �s�2�; . . . ; f �s�q�; f m�s��1sc j Vf m�s��1s

� �
�23�

thereby constraining Vs to have no more than d rows. This predictive e�ciency step

provides useful information on whether the state dimension d is large enough or too

large. Speci®cally, the predictive e�ciency matrices provide a rank-ordered quanti®cation

of the value of keeping each successive state variable. If d is too small, there will be

signi®cant remaining value in keeping more than d variables. If d is too large, we could

have kept fewer variables with negligible loss of performance.

The asymptotic computational complexity of our realization approach stems from two

sources. The ®rst is the computation of the local internal matrices. If d is chosen inde-

pendent of problem size N then, as described in Section 6, the complexity of ®nding our

sub-optimal solution to (23) is O�qn� because f m�s��1s�c
i

(which plays the role of zci of Section

6), is length O�qn�. Summing this up over all nodes we arrive at an O�q2M� complexity

which is equivalent to O�N2� because N / qM . While our focus is on asymptotic com-

plexity (just described) it is worth mentioning that for a ®xed problem size, complexity is

proportional to d3 because the computation of the predictive e�ciency matrices involves

an eigen-decomposition of a d � d matrix.

The second source of complexity is the computation of Pf n , the statistics of f ��� at scale
n which are needed to compute the local internal matrices at scale nÿ 1. We have that

Pf n � VnPf n�1VTn �24�

where Vn is a block diagonal matrix whose diagonal blocks are Vs for s 2 T 0�n�, lexico-
graphically ordered. By construction, each row of Vn has at most d non-zero elements.

Taking advantage of this sparsity, we can compute fPf ngMÿ1n�0 with complexity O�N2�.

7.2. Boundary Approximations

The predictive e�ciency-based MAR realization method proposed in the previous section

has complexity proportional to N2 (where the signal or (lexicographically ordered) image

to be modeled has total size N). While this is relatively e�cient as compared to other

approaches [10, 22, 24, 26], it is still too burdensome for some problems, particularly

those arising in image processing. The source of this complexity stems from the fact that,

in computing the predictive e�ciency matrices, we focus on estimating every element of a

large random vector, z2, from a small one, z1. (We use the notation z1 and z2 as shorthand

for vectors that arise in the computation of a sub-optimal solution to the predictive

e�ciency problem posed in (23).) In this section, we propose the boundary approximation

which focuses on estimating only a small number of elements of z2 which are temporally or

spatially close to z1. As we will show, this boundary approximation leads to a realization
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algorithm that has complexity proportional to N. We note that a similar approximation

is employed in conjunction with canonical correlations in [22, 26]. However, in some

sense it is more severe because, due to the previously discussed symmetry of canonical

correlations, it requires truncating both z2 and z1. Since predictive e�ciency is not sym-

metric, we need only truncate z2 to obtain an O�N� algorithm.

Intuitively, the boundary approximation should not be a severe one for processes that

are Markov (or nearly so) or have quickly decaying long-range correlations. In the

former case, the boundaries of z1 contain all the relevant information for estimating

the more distant random variables. Therefore, a summary of z1 (i.e., Vz1) that does a

good job of estimating these local variables ought to be su�cient for estimating the

distant ones. In the latter case of quickly decaying long-range correlations, distant ran-

dom variables are negligibly correlated with z1 and, therefore, do not substantially con-

tribute to the mean-square estimation error. In our examples, we will show that the class

of processes for which the boundary approximation results in small modeling error is, in

fact, considerably richer than Markov and fast-decorrelating processes. A theoretical

understanding of the foregoing points is a topic of current research as we will discuss

in Section 9.

Let us begin by examining the two sources of the N2 complexity of our realization

approach in the context of building a MAR model for a one-dimensional random signal

(as opposed to a two-dimensional random ®eld, to which we return later). The ®rst source

comes from ®nding the local internal matrices which are sub-optimal solutions to (23).

The second is the computation of Pf n for all scales n 2 f0; 1; . . . ;M ÿ 1g. With respect to

the former, we noted in Section 6 that summarizing a length-n1 vector z1 for the purposes

of estimating a length-n2 vector z2 has complexity O�n2�. In the context of the stochastic

realization problem, this translated into a complexity of O�N� per node which, when

summed over all O�N� nodes, lead to an overall O�N2� complexity for computing the

internal matrices. This suggests that we can reduce the overall complexity to O�N� by
somehow ignoring all but a small portion of z2 (whose size is independent of N).

To this end, let k be an integer chosen independent of n2 and Hk be a selection matrix

such that, when post-multiplied by z2, selects the kd elements of z2 that are temporally

closest to z1 as illustrated in Figure 7. We will call the kd elements selected by Hk the size-

k boundary of z1. With this notation, consider

bVkX arg min
V2Mr

�"�Hkz2 j Vz1� : �25�
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Since the complexity of computing HkPz2H
T
k (a quantity needed to solve (25)) is inde-

pendent n2, the solution of (25) can be computed with complexity that is also independent

of n2. We then view bVk as a sub-optimal solution to (15). Using this idea in our stochastic

realization approach, we arrive at a complexity of O�N� for computing the internal

matrices.

We now turn to the second source of the N2 complexity of the MAR stochastic

realization approach of Section 7.1Ðthe computation of the Pf n . The boundary approxi-

mation reduces this source of complexity as well since using (25) implies that we need not

compute all of Pf n . Rather, only a diagonal band of size that is a function of k is needed

because we never consider cross-correlations involving elements that are further than kd

away from the node at which the current predictive e�ciency matrices are being com-

puted. It is not hard to show that the total complexity of computing the required diagonal

bands of the Pf n matrices for all n 2 f0; 1; . . . ;M ÿ 1g is O�N�. Hence, the overall asymp-

totic complexity of the MAR realization algorithm with the boundary approximation

is O�N�.
We now discuss the boundary approximation for modeling two-dimensional random

®elds. In this case, the vector z1 represents a pixel of a random ®eld and z2 the rest of the

random ®eld as illustrated in Figure 8. The matrix Hk selects the elements of z2 that lie in

the k concentric square annuli, each of which is one pixel wide, that surround z1 (with the

obvious modi®cations for boundary e�ects as illustrated). All of the complexity analysis

provided previously for the one-dimensional case is identical for the two-dimensional case.

8. Examples

In this section we provide several examples illustrating the performance of the O�N2�
realization algorithm of Sub-section 7.1 as well as the boundary approximation discussed
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in Sub-section 7.2. In our one-dimensional examples we always use dyadic trees (q � 2)

and in our two-dimensional examples we always use quad-trees (q � 4).

8.1. One-Dimensional Realization and Estimation Examples

Our one-dimensional examples are intended to illustrate the application of our realization

algorithms and, in particular, the power of the boundary approximation. Additionally,

we demonstrate that an approximate model can achieve estimation results that are

statistically indistinguishable from results based on an exact model. Our ®rst example is

the realization and estimation of fractional Brownian motion with Hurst parameter

H � 0:7 (denoted fBm(0.7)). The correlation function for fBm(H) is [39]

rH�t1; t2� �
1

2
jt1j2H � jt2j2H ÿ jt1 ÿ t2j2H
� �

: �26�

The true fBm(0.7) covariance matrix, PfM , associated with 128 samples of fBm(0.7) on

�0; 1� is illustrated in Figure 9(a). The realized covariance matrix, PxM , associated with a

MAR model with state dimension d � 4 and based on our full O�N2� algorithm is

illustrated in Figure 9(b). In Figure 9(c) we have plotted jPfM ÿ PxM j where j � j is ele-

ment-wise. Notice that even for this relatively low dimensional model, the approximation
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Figure 9. Realization of 128 samples of fBm(0.7) on �0; 1�. (a) Exact covariance, PfM . (b) Realized co-
variance, PxM (d � 4). (c) jPfM ÿ PxM j where PxM is from (b). (d) Realized covariance, PxM , using the
boundary approximation (d � 4, k � 1). (e) jPfM ÿ PxM j where PxM is from (d).
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is quite good, with the largest element-wise error on the order of 10ÿ3. In addition, that

the 4� 4 diagonal blocks of jPfM ÿ PxM j are zero can be plainly seen in Figure 9(c).

Notice also that some of the largest errors correspond to correlations between elements

that are spatially close. This is due to the fact that spatially close elements (like those at

sample numbers 64 and 65) can be quite far apart in tree distance and the correlation

between them su�ers from errors induced by the approximation made at all the tree nodes

between them.

In Figure 9(d), we have plotted the realized covariance, PxM , based on a MAR model

for fBm(0.7), again with state dimension d � 4, but using the O�N� boundary approxi-

mation algorithm. The boundary size is k � 1 which corresponds to designing local

internal matrices to (approximately) conditionally decorrelate MAR variables at a

given node from those indexed by the two nearest nodes at the same scale (or one nearest

node if the given node is on the boundary). The modeling error jPfM ÿ PxM j is illustrated
in Figure 9(e) and should be compared with Figure 9(c). Notice that the errors, while

di�erent, are of the same order, 10ÿ3. Since fBm(0.7) is not Markov and has slowly

(polynomially) decaying correlations [4], this illustrates that the boundary approximation

is e�ective for a broader class of processes than those that motivated it.

Next, we apply the MAR model for fBm(0.7) associated with Figure 9(b) to an estima-

tion problem based on incomplete measurements corrupted by non-stationary noise. We

emphasize that this is a problem that cannot be handled with fast transform techniques

due to the non-stationarity of the process to be estimated and the process noise and the

fact that the measurements are incomplete. Figure 10(a) is a sample path of fBm(0.7).

Figure 10(b) illustrates noisy incomplete measurements of Figure 10(a). Measurements

are taken over the ®rst and last third of the process. No measurements are available over

the middle third. The white measurement noise has variance 0.3 over the ®rst third sub-

interval and 0.5 over the last third sub-interval. Figure 10(c) shows the output of the

MAR estimator [5] based on the model associated with Figure 9(b) (solid line) with one-

standard-deviation error bars (dotted lines). The optimal estimate based on the exact

fBm(0.7) statistics (rather than our approximate model of them) is also plotted (dashed

line) in Figure 10(c). However it is not easily distinguishable from the MAR estimate

since the two nearly coincide. Moreover, the di�erence between the two is well within the

one-standard-deviation error bars. This demonstrates that the degree to which our MAR

model deviates from the exact model is statistically irrelevant. Note that the optimal

estimate requires O�N3� computations while the MAR estimator is O�N�. The MAR

estimator also produces estimation error statistics with no additional computations

beyond what are needed to compute the estimates themselves. In Figure 10(d) we have

plotted the MAR error standard-deviations (solid line) and the optimal error standard-

deviations (dashed line). The two nearly coincide, again illustrating that the degree to

which our model deviates from an exact one is not relevant to this estimation problem.

Next, we illustrate MAR realizations using our O�N2� algorithm of a 12-th order

stationary Markov process. The purpose of these examples is to show that, while fBm

can be well modeled with state dimension d � 4, some processes require a higher state

dimension. In Figure 11(a) we illustrate the true covariance matrix, PfM . Figure 11(b) is

the realized covariance matrix, PxM , associated with a MAR model with state dimension

d � 4. Notice that the errors jPfM ÿ PxM j, which are plotted in Figure 11(c), are much
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larger (25% of the process variance) than those associated with the fBm(0.7) model of

Figure 9(c) which also has state dimension d � 4. If, however, we increase the state

dimension to d � 8, we achieve a MAR realization with errors on the order of 7% of

the process variance. This is illustrated in Figure 11(d) which shows PxM and Figure 11(e)

which shows jPfM ÿ PxM j for this higher state dimension model. A more accurate model

of the 12-th order stationary Markov process than the one associated with Figure 11(d)

requires maximum state dimension larger than d � 8.

To achieve modeling errors on the order of those depicted in Figure 11(e), one need not

use a model with state dimension d � 8 at all nodes. It is possible to achieve similar

performance with state dimensions that decrease at coarser scales. We illustrate this point

in Figure 12. Figure 12(a) is the realized covariance matrix, PxM , associated with a four-

scale MAR model with state dimension 8 at scales 3 (the ®nest) and 2, state dimension 6

at scale 1, and state dimension 4 at scale 0 (the coarsest). The error jPfM ÿ PxM j is plotted
in Figure 12(b) and is on the order of 8% of the process variance, comparable to that

achieved with the d � 8 (at all nodes) model of Figure 11(e).

Figure 12(c) illustrates the realized covariance for another MAR model of the 12-th

order stationary Markov process with state dimensions that vary with scale as described.

However, in this case, the boundary approximation was used with boundary size k � 3.
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Figure 10. Estimation of fBm(0.7) using the model of Figure 9(b). (a) Sample-path using exact statistics.
(b) Noisy, incomplete observations of (a). (c) MAR estimates (solid line), optimal estimates based on the
exact statistics (dashed line), and plus/minus one standard deviation error bars (dotted lines). (d) Error
standard deviation given by the MAR estimator (solid line) and based on the exact statistics (dashed line).
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Errors are plotted in Figure 12(d) and should be compared with Figure 12(b). Notice that

the errors,while slightly di�erent, are on the same order (roughly 10% of the process

variance). This illustrates that little modeling ®delity is lost in making the boundary

approximation. In this case, this result is consistent with our intuition because the under-

lying process is 12-th order Markov and a boundary size k � 3 corresponds to keeping kd

state elements on either side of the node being designed. In this example d varies from 4 to

8 so the number of boundary elements is always at least as large as the Markov order.

Despite this fact, the results depicted in Figure 12(b) and Figure 12(d) are di�erent

because we are designing internal matrices to do di�erent jobs. In the former case, we

are attempting to conditionally decorrelate MAR variables at a given node from all other

variables at the same scale. In the latter case, we are only considering the nearby variables

at the same scale. Naturally, these two criteria lead to a di�erent emphasis and di�erent

linear functionals that comprise the internal matrices.

Next we illustrate model ®delity as a function of boundary size. We again consider

MAR models for the 12-th order stationary Markov process where the state dimension

varies with scale as described previously. For di�erent boundary sizes k 2 f1; 2; 3; 4; 5; 6g
we computed a realization. We then compared the realized covariance to the true one

with three di�erent norms jjPfM ÿ PxM jj: the Frobenius norm, induced 2-norm (maximum

singular value) and maximum absolute value of the di�erence jPfM ÿ PxM j. We point out
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Figure 11. Realization of a 12-th order stationary Markov process. (a) Exact covariance, PfM . (b) Realized
covariance, PxM (d � 4). (c) jPfM ÿ PxM j where PxM is from (b). (d) Realized covariance, PxM , (d � 8).
(e) jPfM ÿ PxM j where PxM is from (d).
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that, in our realization procedure, we are not explicitly minimizing any of these norms.

Figure 13 illustrates the value of these three norms as a function of boundary size. As

expected, modeling ®delity improves as boundary size increases. Notice that boundary

size k � 3 seems to be the appropriate choice under these norms since negligible improve-

ment can be expected for larger sizes and substantial degradation obtains for smaller sizes.

As pointed out previously, the most signi®cant modeling errors occur for samples that

are close spatially but distant on the tree. In our next example, we explore the impact of
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Figure 12. Realization for 128 samples of a 12-th order stationary Markov process. (a) Exact covariance,
PfM . (b) Realized covariance, PxM (state dimension varies with scale (see text)). (c) jPfM ÿ PxM j where PxM

is from (b). (c) Realized covariance using boundary approximation (k � 3). (d) jPfM ÿ PxM j where PxM is
from (d).
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Figure 13. Boundary approximations for 12-th order stationary Markov process. jjPfM ÿ PxM jj is plotted
as a function of boundary size k for three di�erent norms: Frobenius (solid line), maximum singular value
(dashed line), maximum element-wise absolute di�erence (dash-dot line). The last of these is multiplied by
10 so that it is on the same scale as the ®rst two.



this phenomenon on an estimation problem that is, in some sense, most likely to test this

modeling weakness. Figure 14(a) is a sample path of a 12-th order stationary Markov

process. Figure 14(b) illustrates noisy and incomplete measurements of Figure 14(a).

Measurements are taken only over the interval [65, 96] which is just to the right of the

point of greatest modeling error. The white measurement noise has variance 0.3. Figure

14(c) shows the output of the MAR estimator based on the model associated with Figure

12(a) (solidline) with one-standard-deviation error bars (dotted lines). The optimal esti-

mate based on the exact statistics is also plotted (dashed line) in Figure 14(c). We can see

that the largest estimation error due to modeling occurs just to the left of sample 64 as

expected given the pattern of modeling error in Figure 12(b) and our measurement

locations. Nevertheless, the di�erence between the optimal and the MAR estimates are

well within the one-standard-deviation error bars and, therefore, are not particularly

signi®cant statistically. In Figure 14(d) we have plotted the MAR error standard-devia-

tions (solid line) and the optimal error standard-deviations (dashed line). Again, the most

signi®cant errors are just to the left of sample 64 as expected and are small.

8.2. Two-Dimensional Sample-Path Generation Examples

We now turn to some image processing examples. These examples are intended to illustrate

the application of our algorithms tomodeling larger processes that arise in two-dimensions.
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Figure 14. Estimation of a 12-th order stationary Markov process using the model of Figure 12(a). (a)
Sample-path using exact statistics. (b) Noisy, observations of (a) over �65; 96�. (c) MAR estimates (solid
line), optimal estimates based on the exact statistics (dashed line), and plus/minus one standard deviation
error bars (dotted lines). (d) Error standard deviation given by the MAR estimator (solid line) and based
on the exact statistics (dashed line).
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As will be shown, the boundary approximation is as e�ective in two-dimensions as it has

already been shown to be in one-dimension. First, we consider building aMARmodel for a

Markov random®eld that mimics the texture of wood [32]. An exact 64� 64 sample-path10

is illustrated inFigure 15(a).Notice that this wood texture is highly correlated vertically and

less-so horizontally. Figure 15(b) is a sample-path generated by a MAR model with

state dimension d � 16. A distracting blockiness is apparent in this ®gure and is due to

the quad-tree structure of our model and the small state dimension. Additionally, the

extreme directionality of the wood texture makes this blockiness particularly easy to see.

In some applications such blockiness is of no practical signi®cance while in others, such as

surface reconstruction where gradients must be taken [17], smoothness is required.

There are two techniques for reducing blockiness. One is to increase the state dimen-

sion. This is illustrated in Figure 15(c) which is a sample path based on a MAR model

with state dimension d � 64. Unfortunately, increasing the state dimension leads to less

e�cient image processing algorithms. However, there is another approach: the overlap-

ping framework of [23] in which the original ®eld is oversampled to form a redundant

®eld. A MAR model for this redundant ®eld has multiple leaf nodes corresponding to

each image pixel. The mapping back from MAR leaf-node variables to the image domain

consists of simply averaging leaf-node variables corresponding to each individual pixel.

Thus, this averaging of MAR variables does not introduce spatial averaging in the image

domain. However, because multiple leaf nodes correspond to each pixel, the maximum

tree distance between di�erent pixels is signi®cantly reduced as compared to a non-

redundant model. This results in smaller modeling errors and the elimination of blocky
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Figure 15. Sample-paths for wood texture of [32]. (a) Exact. (b) MAR model (d � 16). (c) MAR model
(d � 64). (d) MAR model and the overlapping framework of [23] (d � 16). (e) MAR model and the
overlapping framework with boundary approximation (d � 16, k � 1).
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artifacts. We refer the reader to [23] for details. A sample path for a MAR model based

on this overlapping framework with state dimension d � 16 is illustrated in Figure 15(d).

Finally, Figure 15(e) represents a sample image from a model constructed again using the

overlapping framework but in this case also employing the boundary approximation. The

boundary size is k � 1 which corresponds to conditionally decorrelating MAR variables

with those residing at nodes one pixel away. Notice that there are no blocky artifacts in

either Figure 15(d) or Figure 15(e), and both models produce wood textures comparable

to that in Figure 15(a).

Next we consider sample-path generation of a two-dimensional, isotropic random ®eld

of interest in the geological sciences [27, 43]. The correlation function is

r`��� � 1ÿ 3�

2`
� �3

2`3
if 0 � � � `;

0 if � > `

8<: �27�

where � �
�������������
i2 � j2

p
and i; j are indices into a two-dimensional grid. An exact sample-path

for ` � 40 is illustrated in Figure 16(a). In Figure 16(b) and Figure 16(c) we provide a

sample-path associated with a MAR model with state dimension d � 16 and d � 64,

respectively. In Figure 16(d) the overlapping framework is used with d � 16. Finally,

in Figure 16(e), the boundary approximation is employed with boundary size k � 1 in

conjunction with the overlap framework (d � 16). As in the previous example, little

degradation is evident when the boundary approximation is used.
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Figure 16. Sample-paths for the isotropic random ®eld of (27). (a) Exact. (b) MAR model (d � 16). (c)
MAR model (d � 64). (d) MAR model and overlapping framework of [23] (d � 16). (e) MAR model and
overlapping framework with boundary approximation (d � 16, k � 1).
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8.3. Two-Dimensional Multiresolution Data-Fusion Example

We conclude this section with a random ®eld data-fusion problem based on irregular

local and non-local measurements. In particular, we estimate the ®eld illustrated in

Figure 16(a) based on measurements whose locations are indicated in Figure 17(a).

Each grey point in Figure 17(a) corresponds to a point measurement. Only about 20%

of the ®ne-scale pixels are measured and, as can be seen, the point measurements are

scattered irregularly. The four horizontal black lines correspond to non-local averages.

That is, we have four line-integral measurements taken over the regions indicated with

black lines. This example is included to show that a simple addition to our realization

methodology provides a signi®cant extension. In particular, this example illustrates the

power of the MAR framework by allowing us to fuse heterogeneous and multiresolution

measurements (such as the point and line-integral measurements of Figure 17(a)). An

important point is that such data-fusion problems can be approached with the same

MAR estimation algorithm and the same computational e�ciency as for the case of

estimation based only on point measurements. The key here is to design MAR models

that explicitly include speci®c linear functionals as state variables at speci®c nodes on

the tree. We note that while here we include speci®c linear functionals that represent

measurements in our model exactly, other approaches have been developed that include

measurements (as well as variables to estimate) approximately [8, 9, 19].
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Figure 17. Random ®eld multiresolution data-fusion example. (a) Measurement geometry: point measure-
ments (grey), line-integral measurements (black). (b) Estimates based on the measurement geometry of (b)
using a MAR model designed as discussed in the text (d � 64). (c) Error variances. (d) and (e) represent
similar processing as (b) and (c) but with a MAR model with state dimension d � 32.
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MAR models that accommodate non-local variables exactly have been considered

before in [9]. This previous work required a MAR model to be provided and then

augmented it to include the speci®c desired linear functionals. In contrast, our approach

is to tailor our model to the non-local variables by ®rst incorporating them and then

building a MAR model around them, conditioning on the information they carry. More

speci®cally, we pre-de®ne some of the state variables in our MAR model so that (i) each

line-integral appears as a state element (so we can incorporate a measurement associated

with it, cf. (3)) and (ii) the resulting model is internal.

The ®rst point (i) requires pre-de®ning four state elements. We incorporate each of the

four line-integral measurements in a model by placing one measurement at each of the

four ®rst-scale nodes of a quad-tree (i.e., at each of the four nodes that are children of the

root node). The second point (ii) requires propagating the information contained in these

four state elements down the tree to maintain an internal model [9, 19]. After this is done,

our realization algorithm is applied with the additional step that, when computing a given

local internal matrix at node s, we ®rst condition (by computing linear least-squares

residuals) the relevant random quantities on the information already present at node s

due to the prior incorporation of the non-local linear functionals associated with the four

line-integral measurements. In other words, the criterion we use in rank-ordering the

additional (unconstrained) linear functionals that de®ne the state is in terms of the addi-

tional predictive e�ciency they provide given that we have already committed to keeping

the speci®c linear functional corresponding to a measurement. Our construction neces-

sarily produces an internal model since we ensure that each linear functional at each node

is, indeed, a linear functional of the state variables at the immediate descendent nodes

(the computation of linear least-squares residuals is a linear operation).

Applying a MAR model so designed (and with d � 64) to the data-fusion problem at

hand, we obtain the MAR estimates and estimation error variances shown in Figure

17(b) and Figure 17(c), respectively. Figure 17(d) and Figure 17(e) represent the same

processing as Figure 17(b) and Figure 17(c), respectively, but with a MAR model with

state dimension d � 32. Notice that the estimates of Figure 17(d) are nearly identical to

those of Figure 17(b). Additionally, the estimation error variances of Figure 17(e) are on

the order as those of Figure 17(c) and some blocky artifacts can be seen in the former due

to the lower dimensionality of the model.

9. Conclusion

This paper represents a substantial contribution to stochastic realization theory for inter-

nal MAR processes. In contrast to previous approaches, ours leads to fast algorithms for

internal models. First, our detailed analysis of internality provides a parameterization of

internal states in terms of local internal matrices. This new parameterization leads to a

scale-recursive characterization of Markovianity for tree-indexed processes. Based on the

principles of internality, scale-recursive Markovianity, and predictive e�ciency, we devel-

oped a general-purpose stochastic realization algorithm with complexity quadratic in

problem size. In contrast, the most e�cient general purpose algorithm previously devel-

oped is quartic in problem size [22, 24, 26] and does not provide internal models. Finally,
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with an approximation, we obtained a realization algorithm with complexity linear in

problem size and demonstrated its e�ectiveness with a variety of examples.

One of our examples (the data-fusion example of Section 8.3) showed that if we know

the form of linear non-local measurements, we can tailor a model to them. Since our

model construction procedure scales well with problem size, we have, in essence, provided

a ``just-in-time'' modeling methodology: Once the form of the measurements is known,

we construct a model that incorporates these non-local functionals as state variables

using one of our e�cient realization algorithms. Then we fuse the (local and non-local)

data using the e�cient optimal estimation algorithm for MAR models. This is a non-

trivial idea for adaptive data-fusion.

There are several fundamental open questions in MAR stochastic realization theory,

some of which are suggested by our work. The ®rst question, raised in Section 6, is how to

solve the higher-order predictive e�ciency problem (17). Our sub-optimal solution of

solving several pair-wise problems also raises issues. One issue is how to choose the ri, the

number of linear functionals of zi to keep. Our approach of choosing the ri implicitly by

keeping the linear functionals corresponding to the d highest eigenvalues has one unfor-

tunate consequence; the collection of linear functionals may contain redundant informa-

tion. A way to avoid this redundancy is to consider adding linear functionals sequentially

where at each sequential step we add one or more linear functionals that have the highest

predictive e�ciency conditioned on the linear functionals that have been chosen during

previous steps. One simple way to do this is to ®rst incorporate linear functionals from z1,

then from z2, etc., an approach that requires specifying the ri sequentially rather than

collectively. This will produce models that depend on the order in which the zi appear in

the sequence. More complex alternatives (e.g., cycling through the zi several times,

incorporating smaller numbers of linear functionals at each step) can potentially achieve

greater statistical ®delity with an increase in computational load. Assessing the tradeo�s

in model accuracy versus complexity of the realization procedure represents one direction

for enhancing the procedure described in this paper.

Another issue raised by our work concerns the boundary approximation. While we

have provided some intuition for why the boundary approximation works for approxi-

mately Markov process and processes with fast-decaying long-range correlations, we

have shown that it is also remarkably e�ective for processes, like fBm(0.7), which do

not have these characteristics. Characterizing the range of applicability of the boundary

approximation is a topic of current study. Another related topic is generalizing the

boundary approximation to consider summarizing distant variables rather than discard-

ing them (e.g., perhaps in a multipole- or mean-®eld-like fashion in which the e�ects of

distant variables are treated in aggregate).

Finally, there are several issues which we have not mentioned in the body of this paper

but are important. One issue concerns our reliance on complete knowledge of the co-

variance matrix PfM . In many real-world problems, it is unlikely one will have precise

knowledge of the entire covariance matrix of the process to be modeled. Moreover, in

large image processing (and higher-dimensional) problems, such precise knowledge is

impractical due to the large amount of memory it would require. We are currently work-

ing on two approaches that do not require complete knowledge of the underlying co-

variance. For problems in which partial covariance information is available, we are
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developing a covariance extension technique that builds a MAR model for an extension

of the known covariance information without explicitly ®nding the full extension itself.

For problems in which only sample-path data are available, we are working on techni-

ques to estimate the MAR parameters A��� and Q��� directly.
A second open issue is the speci®cation and application of a global criterion for MAR

model identi®cation. All previous approaches, as well as our own, are based on local

criteria, involving the construction of states independently rather than jointly. The use of

a global criterion for joint state construction is elusive and di�cult. Further work is

required to develop e�cient algorithms based on a global criterion or to assess the e�ect

on the global criterion of locally-chosen variables.

A third open issue is the joint impact of the choice of the branching factor q and the state

dimension d. The impact of q on complexity is rather weak and not of real signi®cance. Its

impact on accuracy, however, deserves some study. Whenever we introduce several state

vectors (corresponding to several tree branches) that are to be decorrelated by a single,

common, parent, the larger the number of states vectors (branches) the poorer the job we

will do for a ®xed state dimension d. How one trades o� d and q is an open issue.

Another set of issues arise when contrasting our work with other well-known results

from graphical modeling. In the context of graphical models there is a signi®cant litera-

ture for model construction [20]. While these methods are applicable to tree models, our

methods are more powerful for our purposes. Speci®cally, most of the existing literature

deals with ®nite-state models and thus does not address issues such as keeping sets of

variables to form state vectors. Furthermore, while the idea of hidden variables is well-

known in the graphical model literature, the concept of internality is a new one for that

®eld. The fact that we can deal with such variables exactly rather than approximately is

another distinguishing factor. Also, the existing literature does not, in general, worry

much about the cardinality of the hidden variables, while the dimensionality of our state

vectors is a major concern. Of course, we deal with all of these issues in the context of tree

models and linear models with second-order statistics. This begs the question of exten-

sions to domains closer to those considered in most of the graphical model literature.

MAR models o�er substantial computational advantages for statistical inference as

long as they have state dimension that is small relative to the problem size, N. This raises

the question: what class of processes can be captured with a MAR model with state

dimension that is independent of (or a slowly growing function of) N? This is, in some

sense, the deepest question concerning MAR processes and the work presented here

represents only one step toward its resolution.

Appendix A
Proofs

A.1. Proof of Proposition 2

Proof of Proposition 2: We begin with the ``only if'' direction. Given that x��� is a locally
internal MAR process, it has dynamics of the form (1). Thus, for all s 2 S0 ÿ T 0�M�

x�s�i� � A�s�i�x�s� � w�s�i� : �A:1�
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Since w��� is white and uncorrelated with x�0�, it follows that w�s�i� is uncorrelated with

x�s�. Therefore, (A.1) represents the linear least-squares estimate of x�s�i� from x�s� plus
the estimation error w�s�i�. Then, (9) follows from (5) together with standard linear least-

squares formulae.

To show the ``if'' direction, notice that (9) implies that by the MAR dynamics

xm�s��1s �

Js�1

Js�2

..

.

Js�q

266664
377775

|����{z����}
I

P
x
m�s��1
s

VT
s �VsPx

m�s��1
s

VT
s �ÿ1x�s� �

w�s�1�
w�s�2�

..

.

w�s�q�

26664
37775

|�������{z�������}
X w

: �A:2�

Pre-multiplying (A.2) by Vs results inVsx
m�s��1
s � x�s� � Vsw. To conclude the proof we

now show that the second term Vsw is zero. For notational simplicity, let us de®ne

RXP
x
m�s��1
s
ÿ P

x
m�s��1
s

VT
s �VsPx

m�s��1
s

VT
s �ÿ1VsPx

m�s��1
s

: �A:3�

The covariance matrix for Vsw is

E�Vsww
TVT

s � � Vs diag Q�s�1�;Q�s�2�; . . . ;Q�s�q�
� �

VT
s �A:4a�

� Vs diag Js�1
RJT

s�1
; Js�2

RJT
s�2
; . . . ; Js�q

RJT
s�q

h i
VT

s �A:4b�

� VsRV
T
s �A:4c�

� 0 �A:4d�
where the ®rst equality follows from the de®nition of w in (A.2) and the second equality

follows from the de®nition of Q�s�i� given in (9) and of R given above. The third equality

follows from the fact that R is block diagonal because it is the estimation error covariance

matrix in estimating xm�s��1s from x�s� and x�s� conditionally decorrelates fx�s�i�gqi�1 by the
Markov property. The fourth equality follows from the de®nition of R. Since Vsw has

zero-mean and zero covariance it is deterministically zero. This completes the proof. &

A.2. Completion of Proof of Proposition 4

To complete the proof we need to show that for an arbitrary s in S0 ÿ T 0�M�, x�s�, which
has the scale-recursive Markov property, conditionally decorrelates the vectors in the set

fxMs�i
gqi�1 [ fxMsc g. This is trivially true for m�s� �M ÿ 1 since the two sets

fx�s�i�gqi�1 [ fxm�s��1sc g and fxMs�i
gqi�1 [ fxMsc g coincide. Suppose that for all s 2 T 0�n�,

x�s� conditionally decorrelates fxMs�i
gqi�1 [ fxMsc g and consider the case for which

s 2 T 0�nÿ 1�. For an arbitrary node s at scale nÿ 1 and for an arbitrary child of s we

have that

xMs�i
� Ê xMs�i

j xn� �� exMs�i
�A:5a�

� Ê xMs�i
j x�s�i�

� �� exMs�i
�A:5b�
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and

xMs�c
i
� Ê xMs�c

i
j xn

h i
� exMs�c

i
�A:6a�

� Ê xMs�c
i
j xns�c

i

h i
� exMs�c

i
�A:6b�

where in these identities we've used the induction hypothesis. It follows that the errorsexMs�i
and exMs�c

i
are uncorrelated with each other (due to the induction hypothesis) and with

xn (due to the orthogonality property of linear least-squares estimation). By assumption,

x�s� is an internal state and so it is a linear combination of its children. That is, we have

that for some Vs, x�s� � Vsx
n
s .

We now use these facts to show that xMs�i
and xMs�c

i
are uncorrelated when conditioned on

x�s�. By assumption, x�s� conditionally decorrelates xns�c
i
from x�s�i�. Therefore, referring

to (A.5b) and (A.6b), the two terms Ê�xMs�i
j x�s�i�� and Ê�xMs�c

i
j xns�c

i
� are conditionally

uncorrelated when conditioned on x�s�. As mentioned, the terms exMs�i
and exMs�c

i
are

uncorrelated with each other and with xn and therefore with x�s� � Vsx
n
s . Hence, it

follows that xMs�i
and xMs�c

i
are uncorrelated when conditioned on x�s�. Since s�i was an

arbitrary child of s, this holds for all children and the proposition is proved.

Notes

1. While the class of internal models is rich enough to include minimal models in the state-space case,

the same is not true for MAR models [22]. Nevertheless, for reasons discussed in the text, we focus on

internal MAR models and seek the minimal model within this class.

2. The approach in [10] is only applicable to self-similar processes with stationary increments while that

of [22, 24, 26] as well as our approach is completely general.

3. In this paper, we assume without loss of generality that all random quantities are zero-mean.

4. Using, for example, lexicographic ordering of the nodes comprising T s�n� or T c
s�n� in order to

construct a large vector from the component vectors x�t�.
5. Pz is our notation for the covariance matrix for random vector z. Similarly, Puv denotes the cross-

covariance matrix for random vectors u and v.

6. We may assume Gaussianity without loss of generality because our interest is only in second-order

statistics and linear processing.

7. Recall that the MAR estimator has a cubic dependence on state dimension.

8. We use the notation Ê�u j v� to denote the linear least-squares estimation of u given v �Ê�� j ��� is linear
in its second argument) while E�� j ��� is the Bayes least-squares estimator which is, in general, non-

linear. These, of course, coincide in the jointly Gaussian case. (E�z� is de®ned as the expectation of z

with respect to the probability measure on z.)

9. For clarity of presentation, we restrict attention to processes with constant state dimension, d.

However, our results are applicable and easily generalizable to cases in which the state varies with

s 2 S0, as we will show by example.

10. To compute exact sample-paths for random ®elds we use the FFT techniques described in [13]. Note

that this requires O�N logN� computations while MAR sample-path generation is O�N�.
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