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Abstract

Conventional optimal estimation algorithms for distributed parameter systems have been limited due to their computational
complexity. In this paper, we consider an alternative modeling framework recently developed for large-scale static estimation
problems and extend this methodology to dynamic estimation. Rather than propagate estimation error statistics in conventional
recursive estimation algorithms, we propagate a more compact multiscale model for the errors. In the context of 1-D di!usion which
we use to illustrate the development of our algorithm, for a discrete-space process of N points the resulting multiscale estimator
achievesO(N logN) computational complexity (per time step) with near-optimal performance as compared to the O(N3) complexity of
the standard Kalman "lter. ( 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Estimation for distributed parameter systems govern-
ed by partial di!erential equations (PDEs), such as those
found in applications ranging from pollution control
(Omatu, Seifeld, Soeda, & Sawaragi, 1988) to the
modeling of ecological systems and #exible structures
(Banks & Kunisch, 1989), has received considerable at-
tention in the estimation and control communities in the
past. While there have been successful applications of the
theory of optimal estimation for such systems, it is also
true that there are severe computational barriers that
limit the domain in which truly optimal methods can be
implemented. Indeed this is certainly the case in the "eld
of remote sensing in which `data assimilationa, the meld-
ing of data with dynamic models, represents one of the

most signi"cant current-day problems. For example, in
problems of atmospheric or oceanographic data assimi-
lation (Fieguth, Karl, Willsky, & Wunsch, 1995), the
dimensionality of "nite-dimensional approximations to
the underlying dynamics can range from hundreds of
thousands to hundreds of millions. Given the need in such
applications to produce both estimates and estimation
error variances, the computational challenge is substan-
tial. Indeed, conventional linear least-squares estimation
(LLSE) algorithms, such as Kalman "ltering, are com-
pletely impractical for solving such large problems both
for computational and for storage reasons. A critical
aspect of these estimation problems is the requirement
that estimation error statistics be computed. This necess-
ity precludes the use of accelerated methods such as
multigrid (Briggs, 1987), which do not supply such error
statistics, or the FFT, which requires spatially stationary
prior models and spatially regular measurement patterns,
requirements that cannot be met in many applications
including most, if not all, remote sensing problems.

For these reasons, it is clear that there is a need for
suboptimal (that is, approximate) estimation algorithms
that can deal e!ectively with the computational chal-
lenges. The key to doing this is to "nd a compact and
e!ective representation for the statistics of the estimation
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Fig. 1. Two possible sequences of steps for dynamic estimation: (a) the
standard Kalman "lter, in which covariance matrices are propagated;
(b) proposed alternative, in which models are propagated.

errors, avoiding the storage or computation of large
covariance matrices.

Consider time-recursive estimation for spatially dis-
tributed phenomena; this procedure can be viewed as an
interleaved sequence of (i) temporal prediction and (ii)
purely static spatial estimation problems. The standard
Kalman "lter approach, illustrated in Fig. 1(a), is to
explicitly calculate the full covariance and the Kalman
gain at each step. Each "lter update step corresponds to
solving a static estimation problem, namely that of esti-
mating the errors in the one-step predicted estimates
x( (tDt!1) from the measurement innovations at time t.
The exact Kalman "lter propagation and solution of this
problem corresponds to an explicit solution of each such
static estimation problem by explicitly calculating full
covariance and gain matrices, leading to associated com-
plexity O(N3).

An alternative recursive procedure (Chin, Karl,
& Willsky, 1995) is one in which we propagate a statist-
ical model for the one-step predicted estimation errors, as
shown in Fig. 1(b). Such models implicitly specify the
error statistics, although any desired element of the full
error covariance can be computed (dashed lines in "g-
ure). The implicit nature of the representation leads to an
implicit description of the optimal estimator; that is, our
result is an algorithm rather than an explicit gain matrix,
much as the Kalman "lter is implicit and the Wiener "lter
explicit.

Clearly the major issue, then, is to "nd an implicit
representation of the spatial error statistics that can be
e$ciently predicted and updated, improving on the
O(N3) complexity of the Kalman "lter by orders of mag-
nitude. In Chin et al. (1995) an approach was developed
to use a Markov random "eld framework as an implicit
representation for the spatial error models. Such models
do indeed capture a rich class of spatial phenomena and
in particular were demonstrated to lead to near-optimal
estimation performance for problems in dynamic com-
puter vision, however the actual solution of the spatial
estimation problem for each measurement update using
such a model is not nearly as e$cient.

Instead, in this paper, we consider the use of an alter-
native implicit representation, namely the multiscale
stochastic modeling and estimation methodology de-
veloped in Basseville et al. (1992) and Chou, Willsky and
Benveniste (1994a). These multiscale models have been
demonstrated to yield extremely fast solutions to purely
spatial (i.e., temporally static estimation problems), in-
cluding the modeling of 1/f processes (Daniel & Willsky,
1997a; Luettgen, Karl, Willsky, & Tenney, 1993), large
distributed phenomena for remote sensing in oceanogra-
phy (Fieguth et al., 1995; Fieguth, Menemenlis, Ho, Will-
sky, & Wunsch, 1998; Menemenlis, Fieguth, Wunsch,
& Willsky, 1997) and hydrology (Daniel & Willsky,
1997b). For the class of multiscale models considered in
this paper, given a multiscale model having a state di-
mension d;N, then the complexity to estimate a spatial
process with N points is O(Nd3), much less than O(N3) for
standard least-squares.

Taken together, the existence of the multiscale frame-
work (a highly e$cient static estimator) and the implicit
modeling paradigm of Fig. 1 strongly motivate applying
multiscale techniques to estimate dynamic or time-recur-
sive systems; this is the fundamental contribution of this
paper.

To apply this framework to a time-recursive problem
requires "nding a multiscale model for the estimation
errors, and the derivation of an algorithm in order to
propagate the multiscale model over time:

(1) Why should multiscale models be capable of
modeling the estimation errors for distributed para-
meter systems? A rich literature already exists for the
theory, stochastic realization, and parameter estima-
tion of multiscale models for one-dimensional pro-
cesses (Basseville et al., 1992; Chou et al., 1994a;
Chou, Willsky, & Nikoukhah, 1994b; Daniel & Will-
sky, 1997b; Fieguth & Willsky, 1996; Irving, 1998;
Luettgen & Willsky, 1995) and two-dimensional sys-
tems (Chin et al., 1995; Fieguth et al., 1995, 1998;
Irving, Fieguth, & Willsky, 1997; Luettgen et al.,
1993; Menemenlis et al., 1997).

We are interested in approximating the statistics of
a given "eld; that is, we intentionally sacri"ce a small
amount of statistical "delity in order to obtain multi-
resolution models that have small state dimension d.
For a surprisingly rich class of purely spatial pro-
cesses, low-dimensional multiresolution models have
been constructed that yield near-optimal estimation
performance (that is, with statistically insigni"cant
discrepancies).

The basics of multiscale modeling are discussed in
Sections 2 and 4.

(2) Past work on multiscale models considered static
estimation problems, where the model is "xed
a priori. In the time-recursive context the estimation
error statistics, and consequently the associated
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Fig. 2. A portion of a dyadic multiscale tree.

multiscale model, can change at each successive time
if we are not in temporal steady-state. The particular
problem of quickly propagating a multiscale model
over time is unexplored and represents a new, signi"-
cant contribution of this paper.

The principles of multiscale-model prediction are
presented in Section 3. A new multiscale model,
which leads to signi"cant performance increases in
the time-recursive context, is discussed in Sections
2 and 4, with examples and performance compari-
sons shown in Section 5.

2. Multiscale modeling and realization

In the multiscale estimation framework of Basseville et
al. (1992), Chou et al. (1994a) and Irving (1998), random
processes and random "elds are modeled on tree struc-
tures. The nodes of these trees are organized into a se-
quence of scales, where the "nest-level scale should be
thought of as a discretization of the spatial domain of
interest. A node s on the tree is connected to a unique
parent node, sc6 , at the next coarser level, and to several
child nodes sa

i
(i"1,2, q), at the next "ner level. In

general the number of children may vary from node to
node. However, for our purposes focusing on the 1-D
spatial domain, it is su$cient for us to restrict our atten-
tion to uniform q"2 dyadic trees, depicted in Fig. 2.

The multiscale process is a collection of zero-mean
random vectors x(s), indexed by nodes s on the tree and
speci"ed by a scale-to-scale relationship of the form

x(s)"A(s)x(sc6 )#B(s)w(s), (1)

where w(s) is a zero-mean unit-variance white noise pro-
cess uncorrelated with x(0), the state at the root node of
the tree. Measurements can be made at any node:

y(s)"C(s)x(s)#v(s), (2)

where v(s) is white, zero-mean, and uncorrelated with the
process x(s).

From (1), the whiteness of w(s) implies that the state
x(s) conditionally decorrelates the q#1 subtrees connec-
ted to node s. This Markovianity property of the multi-

scale tree admits e$cient scale-recursive smoothing
algorithms (Chou et al., 1994a,b), similar to the
Rauch}Tung}Striebel smoothing algorithm (Rauch,
Tung, & Striebel, 1965). The algorithm, summarized in
the Appendix, is exact and has a computational complex-
ity of O(k3N), where k is the state dimension of x(s) and
N is the number of nodes at the "nest scale, in order to
compute the estimates and error covariances at all nodes
of the tree, compared to O(N3) for the standard LLSE
formalism.

It is important to realize that the multiscale model (1),
together with the covariance P(0) of state x(0) at the root
of the tree, provides an implicit speci"cation of the full
covariance of the multiscale process. The explicit
covariance between any two nodes x(s

1
) and x(s

2
) can be

easily calculated as
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is the "rst common ancestor of s

1
and s

2
,

P(s
1
's

2
) is the covariance of x(s

1
's

2
), and U(s,p) is the

state transition matrix from any node p to direct de-
scendent s. For example, referring to Fig. 2,

P(sa
i
, u)OE[x(sa

i
)xT(u)]"A(sa

i
)A(s)P(sc6 )AT(u). (4)

Furthermore, the covariances of x(s) at each individual
node can be recursively computed from a tree-recursive
Lyapunov equation

P(s)"A(s)P(sc6 )AT(s)#B(s)BT(s). (5)

Thus the calculation of P(s) and any individual P(s
1
, s

2
) is

computationally simple (at most O(N) for all of the P(s)),
whereas clearly the calculation of all of the cross-
covariances P(s

1
, s

2
) is prohibitively complex.

The utility of the e$cient estimation algorithm in the
Appendix for the multiscale model (1) and (2) depends, of
course, on the expressive power of models of this form.
There exists a body of research (Luettgen et al., 1993;
Daniel & Willsky, 1997b; Irving et al., 1997; Irving, 1998)
for the stochastic realization of multiscale models that
exactly or approximately match the second-order statis-
tics of a given process.

Let v denote the ideal "nest-scale process we wish to
realize, and let x denote the subset of the state variables
of a tree model we choose to use to model v. That is, we
wish to specify a tree model such that the covariance,
Px approximately equals the ideal covariance Pv . As
discussed in previous work on multiscale modeling, the
realization problem consists of two distinct but related
steps: (i) the speci"cation of the state variables x(s) at
every node; and (ii) the speci"cation of the matrices
A(s),B(s).

The key in de"ning the coarser scale states x(s) is in
satisfying the tree Markovianity property; that is, to
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Fig. 3. Two possible 1-D Markov process realizations. (a) Endpoint
model of Luettgen et al. (1993) for a "rst-order Markov process, here
consisting of sixteen elements v(1)2v(16). Note that the entire set of
samples is represented at the "nest scale, but that some of these values
are redundantly represented at nodes at higher levels in the tree. (b)
Proposed nonredundant multiscale model for the same process, with
the same root node, but with descendant states which are de"ned as
endpoints of successively smaller intervals, eliminating redundancy.
Note that each sample of v appears only once in this tree model.

decorrelate the disjoint sets of variables on the several
subtrees that node s separates. De"ning each state vector
x(s) as a linear functional of the process x,

x(s)"L(s)x, (6)

a general method for constructing L(s) to achieve the
required exact or approximate decorrelation is described
in Irving (1998) and represents a generalization of
Akaike's canonical correlations algorithm (Akaike,
1975). However in some cases, including ours, this step
can be bypassed completely. As developed in Luettgen et
al. (1993), for the case of "rst-order Markov process an
exact multiscale realization can be constructed as shown
in Fig. 3(a). This so-called endpoint model takes advant-
age of the fact that conditioned on the values at the two
endpoints of any time interval, the remaining uncertainty
about the values of a Markov process inside that interval
is independent of those outside the interval. Since de-
scendants of each node s in the "gure only involve pro-
cess values within the interval associated with node s, we
immediately have tree-Markovianity.

In general, a model which collects the entire modeled
process at the "nest scale leads to considerable redund-

ancy. In the case of the endpoint model just described,
this redundancy is quite apparent, as the endpoints com-
prising the state at any parent node are copied into some
of the descendent nodes. This suggests an alternative,
Fig. 3(b), in which we eliminate this redundant copying
and instead include endpoints of successively smaller
intervals, leading to a non-redundant endpoint model. In
this case, the process being realized has its sample values
distributed over all of the tree nodes rather than having
them all collected at the "nest scale. While the existence
of the non-redundant model illustrated in this "gure
represents a modest contribution to multiscale realiz-
ation theory, its importance for the subject of this paper
is far greater as its use greatly simpli"es time-recursive
estimation, as will be seen in Section 4.3.

Once the state variables are speci"ed, the second step
of the realization problem is the construction of the
dynamic matrices A(s),B(s). Since we can interpret (1) as
the sum of an estimate x(s) based on its parent x(sc6 ) and
the (orthogonal) error in this estimate, these matrices are
completely determined by the joint statistics of x(s) and
x(sc6 ):

A(s)"P(s, sc6 )P~1(sc6 ), (7)

B(s)BT(s)"P(s)!P(s, sc6 )P~1(sc6 )PT(s, sc6 ). (8)

Thus determining these matrices requires computing the
joint parent}child statistics at each node. From (6), if we
assume that the realization exactly matches the desired
statistics, i.e., that Pv"Px , then

P(s, sc6 )"L(s)PvLT(sc6 ), (9)

P(s)"L(s)PvLT(s). (10)

At "rst glance this seems prohibitive, as it implies that we
need to explicitly calculate and store the entire
covariance Pv . However, from (7), (8) we really only need
the second-order statistics of parent}child state pairs,
which represent only low-dimensional projections of the
full covariance. In particular, for the endpoint models in
Fig. 3, the computation of A(s) and B(s) requires the
speci"cation of a relatively sparse subset of the elements
of Pv of cardinality O(N) rather than O(N2). It is this fact
that leads us to an e$cient solution to time-recursive
multiscale estimation of di!usion processes.

3. Multiscale dynamic estimation

3.1. General approach

Consider a discrete-time system, whose temporal dy-
namics are governed by

z(t#1)"A
$
z(t)#w

$
(t), (11)
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Fig. 4. A schematic of the proposed multiscale iterative method for dynamic estimation, modeled on the Kalman "lter.

where w
$
(t) is the zero mean process noise with diagonal

covariance Q
$
. The measurements are

y
$
(t)"C

$
(t)z(t)#v

$
(t), (12)

where v
$
(t) is the measurement noise with zero mean and

diagonal covariance R
$
. The temporal dynamics, process

noise, and measurement noise are assumed to be station-
ary in time, so A

$
, Q

$
, and R

$
are independent of t. For

the applications we have in mind (see Section 4) z(t)
would represent a spatially discretized distributed para-
meter process and (11) would represent the correspond-
ing temporally discretized dynamics, so that
A

$
represents the discretization of a partial di!erential

operator in space. In addition, R
$

is diagonal and the
components of y

$
represent independent point measure-

ments of the distributed process.
We are interested in modeling the estimation error, so

we let

v(tDq)"z(t)!z( (tDq), (13)

where z( (tDq) denotes the estimate of z(t) based on measure-
ments through time q. The Kalman "lter, as sketched in
Fig. 1, consists of a prediction stage

z( (t#1Dt)"A
$
z( (tDt), (14)

and a measurement update stage

z( (tDt)"z( (tDt!1)#v( (tDt!1). (15)

In standard Kalman "ltering the estimate v( (tDt!1) is
calculated explicitly as

v( (tDt!1)"Pv(tDt!1)CT
$
(C

$
Pv (tDt!1)CT

$
#R

$
)~1y(t).

(16)

However, for the problems of interest here the dimen-
sionality of v(tDt!1) makes this explicit calculation
either impossible or at best exceedingly complex.

The alternative approach that we propose in this paper
is to implicitly calculate and propagate the statistics of the
estimation error as a sequence of multiscale models,
illustrated in Fig. 4. Speci"cally, suppose that we have
a multiscale model A(s; tDt!1), B(s; tDt!1) for the pre-
diction error, de"ning the states as

x(s; tDt!1)"L(s)v(tDt!1). (17)

The multiscale estimation formulation in the appendix
yields the estimates x( (s; tDt!1) and a multiscale model
A(s; tDt), B(s; tDt) for the updated estimation error v(tDt):

x(s; tDt)"L(s)v(tDt), (18)

where the parameters A(s; tDt) and B(s; tDt) are computed
as part of the multiscale estimation process. That is, if we
start with a multiscale model (17) for v(tDt!1) we directly
obtain an analogous model (18) for v(tDt) without explicit-
ly calculating Pv (tDt).

To complete one step of the recursion we need to
compute a multiscale model for the next predicted errors

v(t#1Dt)"A
$
v(tDt)#w

$
(t) (19)

without explicitly calculating Pv (t#1Dt). Finding the pre-
dicted multiscale model, not provided by the multiscale
estimation formulation, is explored in the following sub-
section and is novel to this paper.

3.2. Multiscale prediction step

We assume that the linear functionals L(s) have been
speci"ed and do not vary over time, although in general
one might expect these linear functionals to change de-
pending on how the statistics of the one-step prediction
errors vary over time. With the choice of the linear
functionals L(s) made, we are left with the "nal key issue,
namely determining and propagating the parameters of
the multiscale model through the temporal dynamics
(19).
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We assume that we know the predicted model
A(s; tDt!1), B(s; tDt!1), P(s; tDt!1) in Fig. 4. Using the
estimation and error modeling algorithms (Appendix) we
can compute the corresponding quantities A(s; tDt),
B(s; tDt), and P(s; tDt) for the updated multiscale model.
Finally, we need to calculate the corresponding quantit-
ies A(s; t#1Dt), B(s; t#1Dt), and P(s; t#1Dt) for the pre-
dicted model for v(t#1Dt) whose states are

x(s; t#1Dt)"L(s)v(t#1Dt). (20)

From (7)}(10), we see that A(s; t#1Dt) and B(s; t#1Dt)
will be determined if we determine both the individual
state covariances P(s; t#1Dt) and the parent}child
cross-covariances P(s, c( ; t#1Dt). To derive expressions
for the individual elements of these covariances, we "rst
substitute the temporal dynamics (19) into (20):

x(s; t#1Dt)"L(s)A
$
v(tDt)#L(s)w

$
(t). (21)

Unless A
$

and L(s) commute, the term L(s)A
$
v(tDt) mixes

the linear functionals used to form the states x(s; tDt) in
(18). If we let lT

i
(s) denote the ith row (linear functional) of

L(s) then

x
i
(s; t#1Dt)"lT

i
(s)A

$
v(tDt)#lT

i
(s)w

$
(t). (22)

The term lT
i
(s)A

$
represents some linear functional of

v(tDt), but in general it will not correspond to any of the
linear functionals which we already have in L(s). How-
ever, it is always possible to write it as a linear combina-
tion of existing functionals, since the collection of linear
functionals at the "nest scale already forms a basis.
Therefore we can write

lT
i
(s)A

$
" +

(p,j)|S
hs,ip,jlTj (p), (23)

allowing us to express x
i
(s; t#1Dt), not in terms of v(tDt),

but instead in terms of selected model states:

x
i
(s, t#1Dt)" +

(p,j)|S
hs,ip,jxj

(p, tDt)#lT
i
(s)w

$
(t). (24)

From (24) we can compute the quantities P(s; t#1Dt) and
P(s, c6 ; t#1Dt) by computing certain covariances

E[x
i
(s; t#1Dt)x

j
(u;t#1Dt)], (25)

which itself is computed from the known covariances
P(s; tDt) and (3). However, as we pointed out in Section 2,
calculating all or even many of these cross-covariances is
prohibitive, thus it is desirable to choose among the
various solutions to (23) those in which hs,ip,j are extremely
sparse and in fact are nonzero only for nodes p that are
near to node s.

Since the speci"c properties of the hs,ip,j are highly
dependent upon the dynamics, the next section will study
the problem in a speci"c dynamic context.

4. Applications to 1-D di4usions

In this section we apply the ideas of Section 3 in detail
to estimating 1-D di!usion problems. We will develop
solutions to the two major issues identi"ed in Section 3:
the choice of the linear functionals L(s), and the propaga-
tion of the multiresolution model. In Section 5, we will
illustrate the performance of the resulting estimator.

4.1. Problem setup

The point of departure for this application is 1-D
damped heat di!usion process on a rod or ring satisfying
the following stochastic PDE:

Lz(l, q)
Lq

"a
L2z(l, q)

Ll2
!bz(l, q)#cw(l, q), (26)

where z(l, q) is the temperature at location l and time q,
w(l, q) is a white Gaussian noise with unit variance, and
l3[0,¸]. Constant a is related to the heat conduction
coe$cient and the problem dimension; b controls the
heat loss to the surrounding coolant, whose temperature
is set to zero without loss of generality.

The number of free parameters in (26) can be reduced
by normalizing the spatial dimension to unit length and
the di!usion parameter to 1:

Lz(l, q)
Lq

"

L2z(l, q)
Ll2

!bz(l, q)#cw(l, q). (27)

A number of "nite-di!erence schemes can be applied to
discretize this PDE to arrive at a system of di!erence
equations in the form of (11)

z(t#1)"A
$
z(t)#w

$
(t), (28)

where z(t) is the vector containing the temperatures at all
spatial grid points at time step t, and w

$
(t) models the

process noise, with covariance Q
$
. For our purposes such

a discretized model plays two related but distinct roles:
the prediction of the estimates (14), and to provide the
dynamic matrix (23)}(24) to predict the estimation error
statistics. As we will see, for the latter case it is desirable
to choose A

$
to be banded with relatively small band-

width, which arises if we use an explicit "nite-di!erence
temporal discretization. We use a simple forward Euler
scheme, in which case A

$
is tridiagonal and Q

$
"p2

w
I. Of

course, if we use such a scheme prediction of estimates
(14), care must be taken to ensure that the spatial discret-
ization *l and the temporal step *q are small enough for
numerical accuracy and convergence (Strikwerda, 1989).

Obviously, a better choice for propagating estimates
would be an implicit discretization scheme, which would
result in a dense matrix A

$
. We can actually consider

using di!erent A
$

for the two cases: an implicit, more
`exacta, scheme for the prediction of the estimates, and
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an explicit scheme for the error model, propagating the
error statistics only approximately. Consequently, the
way in which new measurements are incorporated in the
update step will not be optimal, however the multiscale
error model already introduces an approximation into
the update step, and we will see that the net e!ect of all of
these approximations is a surprisingly small loss in per-
formance.

We assume point measurements that may be irregular
in space, but stationary in time (except for the last
example in Section 5):

y
$
(t)"C

$
z(t)#v

$
(t), (29)

where C
$

is a selection matrix and the measurement
noise v

$
is white, covariance R

$
"p2

v
I, uncorrelated with

z(t) or w
$
(t). For a given particular measurement con"g-

uration C
$

we are left with only two free parameters:
b and p2

w
/p2

v
.

Of course the complete speci"cation of the model (28)
also implies the speci"cation of a speci"c set of boundary
conditions. For the purpose of describing our methodo-
logy in this section, we will assume circular boundary
conditions, z(0, q)"z(¸, q), physically corresponding to
a thin cooling ring immersed in a coolant. In this case, the
steady-state process variances are constant as long as
the process (26) has spatially constant parameters; that is,
the diagonal of Pz is p2

1
I. We will use the more familiar

notion of signal-to-noise ratio SNR"10 log(p2
1
/p2

v
) in-

stead of p2
w
/p2

v
. We can also adjust p2

w
to normalize p2

1
to

1. The stipulation of other boundary conditions leaves
the linear functionals and the multiscale prediction algo-
rithm unchanged and a!ects only the resulting numerical
values.

4.2. Linear functionals

We are seeking a set of linear functionals which allow
us to develop an accurate multiscale model for the
steady-state predicted estimation errors in the context of
one-dimensional di!usion. We propose to model the
one-step predicted estimation errors as Markov pro-
cesses, motivated by experimental work (Chin et al.,
1995), which demonstrated cases in which estimation
errors could be well-modeled by Markov random "elds,
and by theoretical work (Coleman, 1995), which showed
that continuous-time, continuous-space heat di!usion
models are Markov in steady-state.

In the speci"c case of one-dimensional Markov pro-
cesses we have already seen in Fig. 3 an exact multiscale
model (Chou et al., 1994a; Luettgen et al., 1993), in which
the coarser scale states are de"ned as so-called `end-
pointa linear functionals, for which each state consists of
the "nest-scale process values taken at state endpoints.
Moreover, it has been demonstrated that such a choice of
state is e!ective for many other processes as well (Daniel
& Willsky, 1997a). Consequently, we will investigate the

use of such functionals for space}time estimation prob-
lems of the type examined in our paper.

We will test our choice of linear functionals in two
ways. We begin by deriving the best choice of linear
functionals and compare these to the chosen endpoint
functionals. Next, in Section 5, we will compare our
multiscale approach, based on endpoint linear func-
tionals, with the exact Kalman "lter.

For small-size systems it is computationally possible to
explicitly solve the Riccati equation for the exact steady-
state error covariance, computing the full covariance
Pv (tDt!1) for the process to be realized at the "nest level
of the tree. We can then use a method of canonical
correlations (CCR) (Irving, 1998), applying singular-
value decompositions to parts of covariance Pv (tDt!1),
to produce at each node s a set of linear functionals
ordered by statistical signi"cance, measuring the degree
to which a functional decorrelates node s from the re-
mainder of the tree. In this way we can "nd the most
appropriate selection of linear functionals to construct
a multiscale realization. The insights gained from this
procedure, applied to small-size systems, may then be
applied to larger systems, where neither the Riccati equa-
tion nor CCR are computationally feasible.

Except in very special cases, the Riccati error
covariance is spatially nonstationary and non-Markov as
well. Nevertheless, the multiresolution representation
still represents an excellent choice. Fig. 3 illustrates the
application of CCR to decorrelating the interval M1!16N
from M17!32N for two di!erent measurement locations.
Because of the intrinsic nonstationarity introduced by
the tree, the location of the measurement has some in#u-
ence on the results of CCR. The four most signi"cant
linear functionals produced by CCR are shown for the
`besta (location 8) and `worsta (location 16) measure-
ment placements (see Fig. 5). The immediate conclusion
is that the two most signi"cant linear functionals are
almost completely concentrated on the interval end-
points. The relative insigni"cance of the third and fourth
linear functionals as a function of measurement location
is depicted in Fig. 6.

An alternative approach is to use the multiscale model
itself, based on endpoint functionals, assessed via a
fractional variance reduction (FVR) criterion, comparing
the steady-state process variance and the steady-state
updated error variance as a measure of estimator
performance:

FVR"

Var(s.s. process)!Var(s.s. updated error)

Var(s.s. process)
. (30)

For instance, if the FVR for the optimal estimator is 0.99
and for a suboptimal estimator is 0.98, we would argue
that the suboptimal estimator has done a very good
job, although its error variance is twice as large as the
optimum.
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Fig. 5. The four most signi"cant the linear functionals that decorrelate the steady-state predicted estimation errors at points 1}16 from those at points
17}32 of a 32-element di!usion process (b"10, SNR"0 dB, *q"2]10~5). The measurement is at pixel 8 in (a), and at pixel 16 in (b). The singular
value is printed above each associated linear functional.

Fig. 6. The singular values of the third and fourth most signi"cant linear functionals as a function of measurement location.

Fig. 7 depicts results for four di!erent measurement
locations. Fig. 7(a) shows the optimal and multiscale
FVRs; at the resolution of this plot all of these curves are
indistinguishable. Fig. 7(b) displays the percentage di!er-
ence between each of the multiscale FVRs and the opti-
mum; the di!erences are very small, peaking in the
worst-case with an FVR of 0.596, whereas the optimal
estimator has an FVR of 0.6.

4.3. Multiscale prediction step for 1-D diwusion

For the small examples considered thus far we could
explicitly solve the Riccati equation, compute Pv (t#1Dt),

and determine the multiscale model for v(t#1Dt). For
large problems, however, we must directly infer the
model for Pv (t#1Dt) from the model for the updated
errors Pv(tDt), which is computed by the multiscale es-
timation algorithm. The problem is that only the indi-
vidual node covariances are explicitly calculated during
multiscale estimation, whereas in general the mixing due
to the dynamics A

$
requires that more distant correla-

tions be calculated (as speci"ed by the hs,ip,j in (23)}(24)).
However, for the di!usion processes of interest here we

can construct the multiscale model for v(t#1Dt) with
very few additional calculations. In particular, as we
argued in Section 4.2, the prediction error process
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Fig. 7. (a) The percent variance reduction of the optimal estimator and of the multiscale estimator in steady state. (b) Percent degradation of the
multiscale estimator with respect to the exact solution (b"10, SNR"0 dB, *q"2]10~5).

v(t#1Dt) is well-approximated as a low-order Markov
process in space, implying that we can represent it accu-
rately using an endpoint multiscale model, most impor-
tantly a non-redundant endpoint model as in Fig. 3(b).
Furthermore, for a di!usion process the matrix A

$
is

tridiagonal, implying that the dynamic evolution of the
estimation error at any spatial location involves only the
value of the error at that location and its nearest neigh-
bors. As we can see from Fig. 3(b), the left and right
spatial neighbors of any element of any node s can be
found in s, the parent of s, or a child of s. Consequently,
the statistics required to predict the multiscale model for
v(t#1Dt) are never more than three scales apart, regard-
less of the overall size of the problem. As a result, the
complexity per tree node to construct this model is O(1),
so that the total complexity is only O(N).

4.4. Iterative and recursive implementation

The complete algorithm we have just described can be
used in one of the two ways. One, to obtain an approxim-
ate multiscale model for the steady-state prediction error
process by running the algorithm iteratively o!-line until
convergence is achieved. Second, to use this algorithm to
provide a multiscale error model dynamically at each
step of the recursive estimation procedure for the initial,
transient phase of estimation or for temporally non-
stationary problems. The following paragraphs comment
on issues of complexity, initialization, stopping criteria,
and sources of inaccuracy.

The computational complexity per time-step of the
algorithm is as follows. The end-point linear functionals
have a state dimension 43 for any node on the tree,
regardless of problem size. Therefore the total complexity
of the update step is O(N). From the previous section,
using the same linear functionals, the prediction step
complexity is also O(N), therefore the total complexity of
the dynamic multiscale estimator for discretized di!usion
is only O(N) per time step!

The initialization of our algorithm takes the form of
specifying a multiscale model for v(0), the prior estima-
tion errors. Constructing such a model involves evaluat-
ing those elements of the prior covariance P

v
(0) in order

to derive the self-statistics of each tree node and the cross
statistics between every node and its parent. While
covariance extension and maximum-entropy methods
(Dempster, 1972; Lev-Ari et al., 1989) can be used, often
we can obtain these desired elements more easily using
the FFT if the dynamics are space-invariant and assum-
ing circular boundary conditions. This latter method is
used for initialization in the examples in Section 5.

If we are iteratively calculating a multiscale model for
the steady-state estimation errors, then the iteration
stopping criterion is a critical issue. The convergence of
the solution of the time-varying Riccati equation to
steady-state is controlled by the slowest time constant of
the error dynamics A

$
(I!K(R)C

$
); choosing the num-

ber of iterations to be several times this time constant
provides a conservative bound. For large problems this
time constant will generally be unavailable, moreover
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Fig. 8. (a) Percent variance reduction of the optimal estimator with one measurement at location 23 for b"10 and SNR"!10, 0, and 10 dB. (b)
Percent performance degradation with respect to optimal.

taking this conservative approach may lead to an excess-
ive numbers of iterations. An alternative, adaptive, stop-
ping criterion is to examine the diagonal elements of
P

v
(tDt) and stop when these suggest convergence, however

in our experiments we restrict the number of iterations to
be O(logN) so that the total complexity is O(N log N).
Although this implies that the resulting multiscale es-
timator may not have converged, the results demonstrate
that the performance of the resulting estimators is close
to the optimal Kalman "lter.

Given that the multiscale estimation algorithm of the
Appendix is exact, the only sources of error lie in the
realized multiscale model itself: the termination of iter-
ations prior to convergence, the temporal and spatial
discretization of the dynamics, and choosing end-point
linear functionals as the basis for the multiscale model.
Furthermore, because our model propagation assumes
the updated statistics to be exact, it is possible that errors
are accumulating over time. Although each of these sour-
ces of error can be reduced at the expense of additional
computational complexity, the results of the following
section will show that the algorithm performs nearly
optimally at little statistical cost.

5. Examples and results

In this section we illustrate the application of our
methodology to several examples of size N"64. At this
size exact calculations for the optimal estimator are still
feasible, however the iterative multiscale algorithm de-
scribed in this paper can in principle be applied more
generally to much larger dynamic processes whose
steady-state error process can be adequately modeled

using end-point linear functionals and whose dynamics
are local. This section will illustrate some extensions and
departures from the basic di!usion problem described in
the preceding section.

5.1. Cooling ring

We start with a cooling ring and a single measurement.
The steady-state process variance has been normalized to 1.
Fig. 8(a) shows the variance reduction plots for several
values of SNR and heat loss parameter b"10. As the
SNR increases, so does the percent variance reduction. In
all cases, the multiscale estimator is less than 0.2%
poorer than the optimal estimator in steady state. The
greatest degradation in performance occurs in regions
furthest away from the measurement, where the error
variances are large.

The single measurement case is, in a sense, the worse-
case scenario, as the system is only weakly observable. In
multiple measurement cases, the performance of our
multiscale estimator compared to the optimal is gener-
ally better than that shown in Fig. 8 (Ho, 1998).

5.2. Pinned xn

In this example we replace the cyclic boundary condi-
tion by the more realistic condition for a cooling "n: one
end of the "n is pinned to a heat source and the other end
immersed in a coolant. The boundary condition at the
heat source is Dirichlet: z(0, t)"z

0
. At the free end, the

heat #ux is set to be equal to the heat loss,
Lz(l, t)/Ll"!bz(l, t). A second variation recognizes the
fact that the heat loss parameter b may be spatially
varying if the coolant is non-homogeneous (Aihara,
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Fig. 9. Pinned "n with two measurements at locations 14 and 53. Heat loss parameter b"0 at locations 1}32 and b"10 at 33}64. (a) Steady-state
process variances, steady-state estimation error variances, and the realized variances at the "nest scale of the suboptimal multiscale estimator. (b)
Percent variance reduction of the steady-state optimal estimators (SNR"0 dB). (c) Percent performance degradation of the multiscale estimator with
respect to optimal.

1997) (e.g., a partially insulated/partially cooled "n).
The discretized dynamic equation (28) will then have
a non-circulant A

$
and an extra term B

$
u(t) to account

for the boundary condition:

z(t#1)"A
$
z(t)#B

$
u(t)#w

$
(t). (31)

With non-circular boundary conditions or spatially-
varying heat loss b the steady-state process becomes
spatially non-stationary, requiring a modi"ed de"nition
of SNR; we will use the maximum pointwise SNR,
10 log(max

i
p
1
(i)2/p2

7
).

Fig. 9(a) shows the spatially nonstationary steady-state
process variance and the steady-state error variances of
the estimators for the case in which measurements are
available at two spatial locations. The plots in panel (c) of
the latter two are indistinguishable here: their di!erence
is only a fraction of a percent, demonstrating the excel-
lent performance of our method. Of course for truly large
problems we would not have access to the optimal esti-
mates nor the actual error variances of our suboptimal
estimator. What we do have, however, is the multiscale
model for v(tDt), the variances that this estimator believes
it is achieving. This is illustrated as the dotted line in
panel (a). Note that these variances are also quite accu-

rate, although they slightly underestimate the actual er-
ror variance.

Fig. 10 shows the same pinned "n example of Fig. 9
except that a measurement is available only every 200
prediction steps, thus allowing substantial mixing to oc-
cur between measurements. Since many predictions steps
must be taken for every update step, the e!ects of the
approximations in our multiscale algorithm are much
more pronounced, yet in the worse case it is still within
3% of the optimal estimator.

5.3. Advection}diwusion

Our multiscale methodology is also capable of
modeling advection}di!usion processes, which have been
employed in a wide variety of applications, especially in
#uid dynamics, from pollution monitoring (Omatu et al.,
1988) to tracer movements in oceanography (Wunsch,
1988, 1987).

The resulting dynamics

Lz(l, q)
Lq

"

L2z(l, q)
Ll2

#o
Lz(l, q)

Ll
!b(l)z(l, q)#cw(l, q) (32)
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Fig. 10. As in Fig. 9, but with one measurement update every 200 prediction steps. (a) Percent variance reduction of the steady-state estimators. (b)
Percent performance degradation of the multiscale estimator with respect to the optimal.

Fig. 11. Liquid #ow (o"!10) from a reservoir (location 1) through a thin pipe, half insulated (b"0 at locations 1}32) and half exposed (b"10 at
33}64). Measurements at locations 14 and 53. SNR"0 dB. (a) Steady-state process variances, steady-state estimation error variances, realized
variances at the "nest scale of the multiscale estimator. (b) Percent variance reduction of the steady-state estimators. (c) Percent performance
degradation of the multiscale estimator with respect to the optimal.

model a thin pipe, in which a liquid #ows towards
positive l from a reservoir. Fig. 11 displays the results
from one such estimation problem with measure-
ments at two spatial locations. The multiscale approx-
imate estimator tracks the performance of the optimal

estimator closely. Also, the approximate error vari-
ances captured by the multiscale model (corres-
ponding to the dotted line in panel (a)) provide a
very good approximation to the actual error stat-
istics.
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Fig. 12. Cooling pipe. One update step for every 100 prediction steps (SNR"0 dB). (a) True process at step 1300 and initial values of the process. (b)
Updated estimates at step 1300. The optimal and the multiscale suboptimal estimates are indistinguishable at this resolution. The locations and values
of the two measurements at this update step are labeled with circles. Dotted curves show the range of one standard deviation from the optimal
estimates.

5.4. Recursive implementation and temporally
nonstationary performance

Fig. 12 illustrates the application of the recursive ver-
sion of our algorithm to a temporally nonstationary
situation, based on the advection}di!usion dynamics in
(32), initializing the process with the nonequilibrium in-
itial condition indicated by the solid line in Fig. 12(a).
The measurements, taken once every 100 prediction
steps, are nonstationary: at each measurement time the
number of measurements is Poisson (mean 4) and the
measurement locations are uniformly distributed.

Since there is no steady-state, we have depicted a snap-
shot of the process and estimation results at time step
1300 (i.e., after the 13th update). The dash-dot line in
Fig. 12(a) indicates the actual process at time 1300, while
Fig. 12(b) depicts the estimation results after the
measurement update. The two measurements taken at
this time are indicated by the small circles. As these
"gures illustrate, the estimates produced by the optimal
Kalman "lter and by our multiscale recursive estimator
are virtually identical and the di!erences are statistically
insigni"cant.

6. Conclusion

In this paper we have developed a new approach to
suboptimal estimation for recursive estimation for dis-
tributed parameter space}time phenomena. The point of
departure for our work are the basic equations of
Kalman "ltering, which can be prohibitively complex

because of the growth in computational complexity with
the dimension of the problem of interest. Indeed this is
one of the most signi"cant challenges faced in remote
sensing data assimilation.

Our solution to this problem involves making use of
the observation that each update step in recursive estima-
tion can be viewed as a static estimation problem, in
which the errors in the predicted estimates are estimated
based on the latest measurement innovations. Rather
than explicitly propagating the full error covariance for
this prediction error "eld, we consider propagating
a model. In particular, rather than using standard models
such as Markov random "elds, we have chosen to use
a recently introduced class of multiscale models, which
leads to extremely fast algorithms for estimation. The
major challenge in applying this multiscale methodology
is in developing a method for propagating multiscale
error "eld models through the mixing introduced by the
temporal dynamics of the process being estimated.

The estimation results obtained indicate that near-
optimal performance can be achieved using this meth-
odology. Indeed, we would argue that, compared to the
intrinsic model uncertainty in many of the space}time
processes of interest such as remote sensing, the di!er-
ences in performance between our algorithm and the
Kalman "ltering solution are insigni"cant.

While we have illustrated our results here for 1-D
spatial processes, much greater bene"ts can be expected
in two- and three-dimensional problems. While the basic
concept of how to develop this extension is described in
this paper, important issues remain in order to make this
extension a reality. In particular, the choice of multiscale
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states in the representation of estimation error "elds
represents a "rst important problem that is currently
under investigation. In addition, while di!usion and ad-
vection}di!usion problems such as those considered in
this paper are of considerable practical interest in higher
dimensions, it is also of considerable interest to under-
stand how to adapt our methodology to dynamics that
allow wave-like behavior. Obviously, for such models we
would expect that the propagation of error models over
time would need to account for the modes of wave
propagation. Issues such as these as well as developing
a deeper understanding of how to capture temporal mix-
ing of scales within our multiresolution framework rep-
resent clearly de"ned directions to be pursued in order to
fully realize the promise suggested by the results present-
ed in this paper.

Appendix. Multiscale smoothing algorithm

The essential equations of the multiscale smoothing
algorithm are listed here. More detailed development of
these equations can be found in Chou et al. (1994a) and
Luettgen and Willsky (1995).

Suppose that we are given the multiscale process and
measurement equations:

x(s)"A(s)x(sc6 )#B(s)w(s), (A.1)

y(s)"C(s)x(s)#v(s), (A.2)

where w(s) is a zero-mean unit-variance white-noise pro-
cess and v(s) is a zero-mean white noise process with
covariance R(s). We are also given the statistics of the
states at the root node: zero mean with covariance P(0).
First, the prior covariances of all states at individual
nodes on the tree are computed via a Lyapunov equation

P(s)"A(s)P(sc6 )AT(s)#B(s)BT(s). (A.3)

The core of the multiscale algorithm consists of an up-
ward estimation sweep and a downward smoothing
sweep, but "rst let us de"ne a few quantities:

Y
s
"My(p)Dp is a descendant of sN, (A.4)

x( (pDs)"E[x(p)Dp3Y
s
Xy(s)], (A.5)

x( (pDs#)"E[x(p)Dp3Y
s
], (A.6)

P3 (pDs)"Cov[x(p)!x( (pDs)], (A.7)

P3 (pDs#)"Cov[x(p)!x( (pDs#)]. (A.8)

The upward sweep initializes at the "nest level from the
prior covariances:

x( (sDs#)"0, (A.9)

P(sDs#)"P(s). (A.10)

It requires the following upward model, corresponding to
the the downward model in (A.1):

x(sc6 )"F(s)x(s)#w6 (s), (A.11)

y(s)"C(s)x(s)#v(s), (A.12)

where

F(s)"P(sc6 )AT(s)P(s)~1, (A.13)

E[w6 (s)w6 (s)T]"P(sc6 )!P(sc6 )AT(s)P(s)~1A(s)P(sc6 )"Q(s).

(A.14)

The upward sweep computes the best estimate of the
states at a node given all measurement below that node.
It consists of three steps at each scale:

(a) Update step:

x( (sDs)"x( (sDs#)#K(s)[y(s)!C(s)x( (sDs#)], (A.15)

P(sDs)"[I!K(s)C(s)]P(sDs#), (A.16)

K(s)"P(sDs#)CT(s)[C(s)P(sDs#)CT(s)#R(s)]~1. (A.17)

(b) Prediction step:

x( (sDsa
i
)"F(sa

i
)x( (sa

i
Dsa

i
), (A.18)

P(sDsa
i
)"F(sa

i
)P(sa

i
Dsa

i
)FT(sa

i
)#Q(sa

i
). (A.19)

(c) Merge step:

x( (sDs#)"P(sDs#)
q
+
i/1

P~1(sDsa
i
)x( (sDsa

i
), (A.20)

P(sDs#)"C(1!q)P(s)~1#
q
+
i/1

P~1(sDsa
i
)D

~1
. (A.21)

The downward sweep computes the best estimate of the
states at a node given all available measurements:

x( (sD0)"x( (sDs)#J(s)[x( (sc6 D0)!x( (sc6 Ds)], (A.22)

P(sD0)"P(sDs)#J(s)[P(sc6 D0)!P(sc6 Ds)]JT(s), (A.23)

J(s)"P(sDs)FT(s)P~1(sc6 Ds). (A.24)

The smoothing error can be modeled as

x8 (sD0)"J(s)x8 (sc6 D0)#w\ (s), (A.25)

where x8 (sD0)"x(s)!x( (sD0), and

E[w\ (s)w\ (s)T]"P(sDs)!P(sDs)FT(s)P~1(sc6 Ds)F(s)P(sDs).

(A.26)

Note that the state covariances at individual nodes of the
smoothing error model have already been computed in
(A.24) and (A.26).
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