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A Generalized  Likelihood  Ratio  Approach to the 
Detection and  Estimation of 

Jumps in Linear Systems 

ALAN S. WILLSKY, MEMBER, IEEE, AND HAROLD L. JONES, 
MEMBER,  IEEE 

Abshclct-We consider a class of stochastic hear systems that are 
subject to jumps of unknown magnitudes in the state variables ornoling  at 
nnknown times. This model can be nsed when considering such problem 
as estimation for systems subject to possible  component fai lures  and the 
tracking of  vehicles  capable of abrupt maneuvers Using Kalmao-Bucy 
filtering and generalized  likelihood ratio techniques, we devise an adaptive 
filtering  system for the detection and estimation of the jumps. An example 
that illustrates the dymmical properlies of our fiitering scheme is dis- 
cusssed in  detail. 

I. INTRODUCTION 

In recent  years the Kalman-Bucy filter has been applied  to a  wide 
variety of practical  problems. In  some cases the  dynamical system  being 
studied  is  linear and can be  modeled quite accurately. For such problems 
the Kalman-Bucy filter performs  extremely  well.  However,  there are 
many  applications  for  which standard Kalman-Bucy  filtering  techniques 
are  inadequate  and “adaptive  filtering”  techniques are required [IHIS]. 
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In this short  paper we consider an adaptive filtering problem for  linear 
systems  subject to  abrupt changes. As discussed  in [ I ]  and [22], such 
models can  be used to study systems subject to system component 
failures,  systems  involving  small  nonlinearities, and systems for which we 
wish to use  a filter of lower  dimension than  the  actual system state (e.g., 
the design of a tracking filter based on a constant velocity  model, 
ignoring  possible  vehicle  accelerations [4]). 

Our  approach, which is a  modification and generalization of the 
techniques in [4] and [ 161, is based on the assumption  that abrupt system 
changes  may occur  but  that they  occur  infrequently, Le., that our basic 
model is correct except  for sporadic system  anomalies,  such as failures. 
Given this  assumption, the philosophy of our  approach is as follows: we 
implement  a  Kalman-Bucy filter based on the  assumption of no abrupt 
system  changes, and we design  a  secondary  system that monitors the 
measurement  residuals of the filter to determine if a  change has  occurred 
and  adjusts  the filter accordingly. The reasoning behind  this  structure is 
that, since  changes occur relatively  infrequently, we do not wish to 
degade the  performance of our filter under  normal  conditions by 
requiring our state estimator to  be directly  sensitive to system  changes. 

As this work  was  primarily  motivated  by the  problem of failure 
detection, we have  concentrated a  great deal of our  attention on the 
problem of detection of jumps; however, our  detection method,  which is 
based on the generalized  likelihood ratio [20], leads directly to two filter 
compensation  methods described in Section IV. We  refer the  reader to 
[3], [4], [9], [IO], [16], and [18] for other  adaptive  filtering  techniques 
involving the use of detection-theoretic  notions. 

11. Lm-EAR STOCHASTIC SYSTEMS WITH UMXOWN J w s  

Consider the following  discrete-time dynamical system  (considered 
also in [16D: 

x ( k + l ) = @ ~ ( k + I , k ) x ( k ) + T ( k ) w ( k ) + 6 , , , + , ~  (1) 

z ( k + 1 ) = H ( k + l ) x ( k + 1 ) + o ( k + 1 )  (2) 

where x ( k ) E R ”  is the state, with Gaussian initial condition x(0)  with 
mean io and covariance Po In addition, r ERP is the observation, and 
(w(k)} and { u ( k ) }  are  independent,  zero  mean,  white  Gaussian 
sequences  with E[w(k)w(k)‘]= Q ( k )  and E[c(k)o(k) ’ ]=  R(k)>O.  The 
term 1~ represents  a  possible jump in one  or more of the state 
variables.  Here 0 is an unknown  positive  integer,  which  assumes  a  finite 
value if a jump occurs and takes the value + m if there is no jump. Also 
8, is the  Kronecker  delta  and P is  the unknown size of the  random  jump. 
We either  assume that Y is completely free  or  that  there  are a  finite 
number of possible  “jump duections” j,;. . ,jAr with v =  afi for some 
unknown i and  unknown  scalar a.  

In the next  section we develop a technique for  the  detection  and 
estimation of such jumps. Also, our method can  be used to  detect 
multiple jumps by separate detection of and compensation for individual 
jumps. As discussed  in [22], this model can be  used to consider  such 
problems as actuator, sensor, and  plant changes and  fdures and the 
detection of higher  order,  unmodeled  effects  (such as acceleration  in the 
constant velocity  model  mentioned  in  Section I) by state augmentation. 
In this manner we can consider step and ramp-type phenomena. 

111. THE GENEI~AL LIKELIHOOD RATIO TECHNIQUE 

Consider the system (l), (2). We wish to design an adaptive filtering 
system  for the estimation of the  state x(k) .  Based on the  comments in 
Section I. we assume that we have  implemented  a  Kalman-Bucy filter 
based on the “no-jump” ( 8  = CQ) hypothesis H,. 

. ( k + l l k ) = ~ ( k + l , k ) . ( k l k )  (3) 
. ( k J k ) = ~ ( k I k - l ) + K ( k ) y ( k )  (4) 

where y ( k )  is the measurement  residual 

y ( k ) = z ( k ) - H ( k ) ~ ( k l k - I )  ( 5 )  

and  the gain, error covariance, and residual  covariance  satisfy 

K ( k ) = P ( k ( k - l ) H ’ ( k ) V - ’ ( k )  (6) 
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p ( k + I l k ) = ~ ( k + l , k ) 9 ( k l k ) ~ ’ ( k + 1 , k ) + r ( k ) Q ( k ) r f ( k )  (7) 

P ( k J k ) = P ( k J k - l ) - K ( k ) H ( k ) P ( k J k - l )  (8) 

V ( k ) = H ( k ) P ( k l k - l ) H ’ ( k ) + R ( k ) .  (9 )  

Straightforward calculations [22] allow us to express the residual as  a 
sum of two terms 

Y ( k ) = G ( k @ ) e + y l ( k )  ( 10) 

where y I  is a zero mean white noise sequence with covariance V(k)  (it 
represents the  actual  measurement residual if a  jump does not  occur) 
and G can  be  precomputed (see the  Appendix  for the equations defining 
G). We can  then  perform  a generalized likelihood ratio (GLR) [20] test 
to decide if a  jump has occurred (the H I  hypothesis). The  details of this 
procedure  are described in [2?]. Essentially, we compute  the maximum 
likelihood estimates (MLE‘s) 8 ( k )  and ;(k) based on y(1); . . ,y(k)  and 
the hypothesis H I .  These values are then used  in computing the log- 
likelihood ratio I(k) for H I  versus Ho, given the observed residuals 
y (  I), . . . , y(k).  Using the fact  that all the relevant densities are Gaussian, 
we have 

;(k)=C-’[k;B1(k)ld[k;8^(k)l  (11) 

where C is deterministic 

k 
c ( k ; e ) =  2 G’G;B)V-~G)GO.;O) (12) 

j =  9 

and d is a linear combination of the residuals 

k 
d ( k ; B ) =  2 G ’ ( j ; e ) V - I ( j ) y ( j ) .  ( 13) 

j = 9  

The  operation on the residuals in (13) can be interpreted as a  matched 
filter (MF) or  a least squares estimate of the jump e assuming  that 8 is 
known and  that we have no apnori information  about the value of v. In 
this case c - y k ;  8) is the  error covariance of our  estimate of e.  

The MLE 8 ( k )  is the value 8 G k that maximizes 

I ( k ; e ) = d ‘ ( k ; B ) C - ‘ ( k ; B ) d ( k ; e )  (14) 

and our decision rule is 

HI 

HO 

I[k;8^(k)l z L 
where z is a threshold value chosen  to provide a  reasonable tradeoff 
between false and missed alarms (see discussion in Section V). 

Note  that the full implementation of the GLR detection-estimation 
scheme involves a growing bank of matched filters, i.e.,  we must com- 
pute d ( k ; 8 )  and I ( k ; 8 )  for 8= I ; . .  , k .  To avoid this problem, it is 
convenient to restrict attention  to  a  “data window” of finite width. That 
is, at any time k, we restrict our optimization over 8 to  an interval of the 
form k - M < O < k - N .  Note if N = M - I ,  8 = k - M + 1  there is no 
optimization over 8 (the GLR consists of a single MF). If the window is 
sufficiently wide  to insure detection  and  identification of all important 
failures, this approximation does not lead  to serious difficulties. An 
algorithm based  upon this finite window is developed in the  Appendix. 
Means for selecting an  appropriate window width  are discussed  in 
Section IV. 

We now consider the case in which  we hypothesize e = af where a is 
an unknown scalar  and f E (f,; . . ,jN} is a given set of hypothesized 
“failure directions.” In this case, the GLR detector takes the  form 

b[k;B^ (k),l‘(k)l 
i ( k ) =  

a [ k ; d  ( k ) , l ( k ) l  

where $(k)  and ~‘(k)  are the quantities  that maximize 

[ (k;B, i )=  ___ 
b*(k; 8,i)  
a(k;8, i )  

where 

a(k;8,i)=A.”C(k;8)f;: 

b ( k ; B , i ) = f - d ( k ; # ) .  

The decision as to failure is made using the decision rule 

In general, C ( j ; 8 ) ,  G ( j ; 8 ) ,  V Q ,  and the other relevant matrices 
described in the Appendix  are time  varying.  However, if the system 
under  consideration is time-invariant and if we  use the optimal steady- 
state  Kalman filter, we have  that C(j;8)= C(j-e;O), G ( j ; 8 ) =  C ( j -  
8;0), V Q =  V(O), etc.,  which  simplifies the necessary computation  and 
storage. We  note  that  in  any case, the necessary quantities can be 
computed recursively (see the Appendix). 

IV. ADAPTIVE FJLTEXLNG BY DIRECT ESTIMATE 
INCREUENTATION ANXI COVARIANCE INCRFMENTATION 

Once a jump has been detected by the GLR detector, we can use the 
MLE’s 8(k )  and ;(k) to directly increment our state estimate. We 
propose the estimate  update  equation 

2(k lk ) ,m=i (k (k )o ld+  { d k , B ^   ( k ) 1 -   F [ k ; g ( k ) l } ; ( k )  (21) 

where CP and F are defined in the Appendix. An adaptive filtering 
scheme  based on this approximation,  the  finite  data window method, 
and  unconstrained e is illustrated in Fig. 1. Once  a  state  jump is 
detected, we increment the state  estimate using  (21). Note  that  the t e T  

represents the  contribution to x ( k )  if a  jump of j occurs at time 8, 
while Fi represents the response of the Kalman-Bucy filter to the jump 
prior  to  its  detection. 

The  proposed  adaptive filtering scheme  deserves some  comment. We 
first note  that  it does not represent the optimal solution to the filtering 
problem  for  linear systems subject  to  jumps.  Indeed,  the feedback (21) 
uses  only the MLE 8(k )  and totally neglects any  information concerning 
the  conditional  distribution  for 8. However, some simple reasoning yields 
the r d t  that the estimate in (21) is precjsely  +e optimal estimate for 
x ( k )  given the  measurements z ( j ) ,  j = 8 ( k ) ,  B(k)+l,-.-,k and the 
assumption  that  there is no a prior’, information (i.e.,  we assume  that  the 
apriori covariance for x at time 8 ( k )  is infinite).’ This fact,  combined 
with the simplicity of (21), provides the motivation for  the use of this 
estimate  incrementation method. We not?  that  the suboptimality in- 
troduced by neglecting any  uncertainty  in B (k) may be of importance  in 
some problems. In this case, one may  wish to utilize more  information 
about 8 in the estimate update procedure. To this end, we remark  that 
the I(k;  8) in (14) are likelihood ratios for various values of 8, and hence 
can  be normalized to yield the conditional probability distribution  for 8. 
We also note, however, that there is a critical tradeoff between filter 
performance  and filter complexity, and this consideration has led us to 
propose  computational simplifications such as the finite  data window 
and the estimate update law (21). 

We note  that  one could employ the estimate update procedure (21) 
without changing  filter gains, thus avoiding on-line covariance calcula- 
tions. However,  in many cases the GLR estimate i ( k )  may be  quite 
inaccurate,  and the proposed  scheme may lead to instabilities (we detect 
our inaccuracy in  estimating v as another  jump  and feed back  another 
inaccurate estimate). Intuitively, we should increase our estimation error 
covariance to reflect the  degradation  in  the quality of our estimate 
caused by the  jump. By increasing the  error covariance, the  filter gain is 
increased and  the filter can improve  its response to the jump (i.e., it can 
compensate  for inaccuracies in  our estimates v and f). Given the 
interpretation of (21)  as the optimal estimate based on z[B(k)], .  . . , z (k )  
with no a priori information,  a reasonable method  for covariance in- 
crementation is to  reset P(k(k )  to the error covariance for this estimate. 

‘This fact was pointed out to us by one of the renewers. 
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1 

Fig. I .  Implementation of direct compensation  technique. 

Recalling that C-'[k;B^(k)] is the error  covariance  for i(k), we find  that 
the  appropriate covariance update  equation is 

We  close this section  by  making  several  more q a t a t i v e  comments. 
We  note  that  the  incrementation procedure  described  byA(21) and (22) 
requires the discarding of all filter information prior to f?(k).  Th~s  is  a 
direct consequence of the assumption that 9 has an infinite u priori 
covariance. In many problems,  such as the  inertial  calibration and 
alignment  problem  discussed in [I], one  has some a priori information 
about  the possible range of values for Y. In addition,  in  problems in 
which  great  accuracy  is  required it does not seem appropriate to throw 
away all previous  mformation. One possible  method for avoiding  such  a 
problem  is to use a finite initial covariance for 9.  In addition, we have 
found  that  the use of gain incrementation (22) without  estimate  in- 
crementation (21) also works  well, as we essentially  allow the filter to 
correct for the jump itself. This  latter method can be interpreted as 
follows: prior to gain  incrementation the filter bandwidth  may be  quite 
small and  the filter responds  very  slowly to the jump; the use  of gain 
incrementation  then provides  a  mechanism  for  increasing the  bandwidth 
and reducing the response  time of the filter. 

A final  issue concerns the size M of the finite data window of the 
GLR. Noting  the  interpretation of C [ k ;  B(k)] as the  error covariance 
for i(k), one might consider  choosing  a  value of M such that this 
covariance is sufficiently  small. On the other hand,  in  many cases one is 
much  more  concerned  with  quick detection of jumps  rather than accurate 
estimation of the  jump. In +is case  the crucial quantity  that one  wishes 
to cpntrol is not C - ' [ k ; B ( k ) ]  but  rather  the detection  delay  time 
k - 8 ( k ) .  This tradeoff  between  fast  detection and  accurate estimation is 
of obvious  importance, and  the relative importance of these  issues in a 
particular application will dctate the choice of M .  

Finally, we note  that in  the  implementation of the GLR system of Fig. 
1, we reinitialize the GLR detector (i.e.,  set  the states of the MF's to 
zero)  immediately  following filter incrementation. This is done in order 
to avoid  possible  instabilities  in  which we detect  and identify  the  same 
jump several  times and "overcompensate."  With this implementation, 
the GLR system can be  used to detect  several  successive state  jumps. 

V. DETECTION PROBABILITY CALCULATION 

Implementation of the GLR requires  the  choice of a  decision 
threshold E and a  window  length M. As mentioned earlier,  these quanti- 
ties are chosen  by  considering  tradeoffs among detection delay time,  the 
probability PF of false alarm, and  the probability P,(v ,B)  of correct 
detection of a jump of magnitude Y at time 0. These  probabilities are 
given  by [20] 

Herep(Z=LJH,,) is the probability  density of l (k;B)  conditioned  on H, 
and p( /=LJH, , v ,B)  is its density conditioned  on H ,  and particular 
assumed  values of 9 and 0. It is easy to show  [22] that P ( I =  LIHd) is a 
Chi-squared  density  with n degrees of freedom, and P(Z= LIH,,v,B) is a 
noncentral Chi-squared  density [23],  [24] with  noncentrality parameter 

8 ' = v T C ( k ; 0 ) v .  (25) 

Values of PF and Pn can be computed  from tables  in (231, as can the 
value E for  specified PF or Po. Finally, we note  that in order to use these 
tables,  we  must  specify  values for 8 and v .  A good  guideline is to choose 
Y to be  the minimum jump  that must  be  detected for each failure 
direction. Also, several  values of 0 should  be  used if the system is 
time-varying. 

VI. ANEMLE 

The application of the GLR to a  simple  tracking  problem is illustrated 
in th~s section. The problem is to design  a tracking filter which uses 
position  measurements  taken at 30 s intervals to track the motion of a 
vehicle  along  a  straight line. The system dynamics are given  by (1H4), 
where the only modeled force acting  on  the vehicle is a  white Gaussian 
acceleration, At = 30 s, and 

@ ( k , k - i ) =  [ 0 1  " 1 ,  r=[ y ]  

The measurement  matrix and measurement  noise are 

The vehicle is subject to occasional step changes of unknown magnitude 
in either  position or velocity. The  traclung filter is  a Kalman filter 
operating in  steady state  and requires 60-90 min to completely  respond 
to such jumps.  The magnitudes of the position and velocity jumps  that 
are considered in this study are 10 times the steady-state rms estimation 
errors in the corresponding state variables. 

The  GLR system  was  implemented  with  the detection law 

and with M -  12 and N=6, Le., the  optimization of B^(k) was constrained 
to k - 12< 8 ( k )  G k-6.  Jump identifcution is  made at the first time at 
which (30) is satisfied and 

i ( k ) = k - l l  (31) 

since  waiting  until the  end of the detection  window  yields the most 
accurate  estimate of i (see the preceding  section). For the 10 u jumps 
described  above, (30) yields  a PF of 0.005 and a PD greater than 0.9. 

Fig.  2  presents  a  single Monte Carlo trial for  the 10 u (1320 ft) position 
jump. GLR detected  the jump  at 6.5 mi? (To) and identified it at 11 min 
(T,). The  constrained optimization of B(k)  has the  effect of implement- 
ing GLR as a  finite  memory filter. Thus, once 0 is no longer in the 
detection window, i.e., 0 < k - 11, and the tracking filter bas responded 
sufficiently to  the  step change  by itself, the detection  law (30) becomes 
less  likely to  continue  to select H I .  The tendency of I ( k ; B )  to decrease is 
evident  in  Fig. 2@) for  times  greater than 16 min, although threshold 
crossings  persist well past the 50 min mark.  In  30 Monte Carlo trials with 
either  the 100 position or velocity jump,  GLR correctly  detected  every 

Fig.  3 contains a summary of the jump estimation errors at T, for a 
set of IO Monte Carlotrials with the 1320 ft  jump in  position. In all but 
one trial, the  error in B ( k )  was 30 s (one time  step) or less. The errors in 

jump. 
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Fig. 2. (a) Filter residuals Tor a 1320 ft jump in position at 5 min. (b) Likelihood ratio 
for (a) using unconstrained GLR. 

i ( k )  are normalized-  with  respect to the u’s determined from C -‘(k; k - 
11). The errors in v(k) appear  to be  approximately Gaussian with the 
predicted (J’S. 

Sets of Monte  Carlo trials have  been  run in which the  tracking filter 
estimates  were compensated  after a jump  had been  detected. The results 
are summarized in Table I (response  time is the time  required to reduce 
the estimation error to less than  four times the  steady-state  standard 
deviation). The  table  indicates  that  direct  compensation  and gain  com- 
pensation  are  both effective (compared to the response  when no com- 
pensation is made), but  for this  example,  gain  compensation  is  superior. 

VII. CONCLUSIONS 

In this short paper we have  developed an adaptive filtering  technique 
for discrete-time linear  stochastic systems  subject to  abrupt  jumps in 
state variables. Our technique  is  potentially  useful  in the design of failure 
detection and compensation systems. The proposed  estimation  system 
consists of a Kalman-Bucy filter based on the  “no-jump’’  hypothesis and 
a  detection-compensation  system  based on generalized  likelihood ratio 
(GLR) hypothesis  testing. Once a jump is  detected,  we can  adjust  the 
filter in one of three ways:  we can directly  increment the  state  estimate 
using the  parameter estimates  provided  by the GLR detector; we can 
increase the estimation error covariance  using GLR data  and thus  can 
.allow the filter to  adjust itself to the  jump; we can  adjust  both  the 
estimate and the  error covariance.  A  second-order  example has  been 
studied  to  indicate  the dynamical  characteristics of the GLR system. 
These  results indicate  the potential  usefulness of the method, as ex- 
tremely  high correct detection rates  and very  small  false alarm  rates were 
obtained. We note  that  the  structure of our system is appealing,  espe- 
cially in failure detection  applications in which we do not wish to disrupt 
system performance until after a jump is detected. In addition, the GLR 
system can essentially be attached to the “end” of an existing filter that 
does  not  account  for  jumps. 

The analysis of this  short  paper is devoted to the development and 

ERROR IN r(mm) 

NORMALIZED ERROR IN POSITION 
COMPONENT OF 4 {e = 366 f t l  

... 

-3u -2 -  -.7 0 u 2.7 3.7 
NORMALIZED ERROR IN VELOCITY 
COMPONENT OF 2 1.7 = 1.7ft lrsc) 

Fig. 3. Summary of jump  estimation errors for  Monte Carlo trials with a 1320 it jump 
in position. 

description of the algorithm and  to a  brief look at  an analysis of its 
usefulness  (Le., the simulation  results and the  determination of expres- 
sions for  the probabilities of false alarm  and  correct  detection). Clearly 
further analysis and simulations are needed to assess the behavior of the 
overall  system and  to answer questions such as the stability of the filter, 
the choice of detection threshold, and  the length of the detection 
window. It is our opinion that the GLR method will prove  to be  an 
extremely  useful  tool  in the design of failure  detection systems.  In  a  later 
paper we will report on some  extremely  successful  results  for a problem 
involving the detection of gyro and accelerometer  failures in an inertial 
navigation  system. 

APPENDIX 
CO-WUTATIONAL ALGORITHM 

Utilization of the GLR test  (with N = O  for simplicity)  requires that 
I(k;  0) in (14) be evaluated for all k - M < B < k .  The necessary quanti- 
ties for  this calculation can be computed from the  equations 

C ( k ; B ) = G ’ ( k ; B ) V - ’ ( k ) G ( k ; B ) + C ( k - l ; B )  (Al) 

d ( k ; e ) = G ’ ( k ; B ) V - l ( k ) y ( k ) + d ( k - I I e )  (A21 
G ( k ; B ) = H ( k ) ( ~ ( k , B ) - ~ ( k , k - l ) F ( k - l ; B ) ]  (A3) 
F ( k ; B ) = K ( L ) G ( k ; B ) + c P ( k , k - l ) F ( k - l ; B )  (A4) 

where cP is the  state transition  matrix for (1). Equations (AIHA4) are 
computed for k - M <  B < k ,  and the only new additional  equations  are 
for a jump  at the present  time k. 

C ( k ; k ) = H ‘ ( k ) V - ’ ( k ) N ( k )  (A51 

d ( k ; k ) = H ’ ( k ) I / - ’ ( k ) y ( k )  (A61 
F ( k ; k ) = K ( k ) H ( k ) .  (A7) 

If the system is time-invariant, (AlHA4) only need be utilized  for the 



~~ 

112 IEEE TRANSACTIONS OK AUTOMATIC CONTROL, FEBRUARY 1976 

TABLE I 

SLMMARY OF FILTER RESPONSE TIMES FOR MOhTE CARLO TRIALS WITH AND WITHOUT COMPENSATION 

I I No Compensntton 1 Direct compensation  Gain  Compensztion 1 
S e r i e s  Ave. Response 

Time (min)  
P o s j t i o n  (100) 54 

Lnw-lligh Low-High Ave. Response Low-High Avv.  Response 
( m l n  1 (min)  Time  (min) ( m i n )  Time - (mtn)  

4 4  - 71 12 - 39 22 10 - 57 34 

39 - 61 16 4 - 4 0  10 - 81 34 

first M measurements. For subsequent  measurements  the stored matrices 
from  previous iterations  can  be used. 

A last comment should  be  made  concerning the existence of the 
inverses C - I ( k ; 8 ) .  For an observable  system  there is some minimal 
integer N ‘  such that C -’(k;6’) does not exist  for 8 <  k - N ’ .  This 
situation arises  because  the  system is not  completely  observable  from N ’  
or fewer  measurements. In this  case, a reasonable approach is to choose 
some integer N ’  < N < M and constrain  the  optimization to k - M < 6’ 
< k -  N .  With this constraint. we need  only  store  the  corresponding 
values of the matrix  functions  !defined  in ( A l H A 4 ) .  In the  special  case 
in  which N is equal to M -  1. B(k)  is k - M +  1. and the  optimization is 
eliminated. For unobservable  systems. it  is necessary to  define 
pseudoinverses of C - I ( k ;  6’) which  restrict  the  possible jump directions 
to some  observable  subspace of the state space. 
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