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Now define

[ y(-9 y(=1-1) y(1-p-1)
y(1-4) y(=i) y(2-p-9

Y= .
| y(¥-1-1) y(N—-2-1) y(N—p-1i)
u(—1i) u(—-1-14) u(l—=p—1i)
u(l1—1i) u(—i) u(2—p—1i)

U= :
u(N-.l—i) u(N—2—1i) u(N~p-i)

Substituting (k) into Q, we can easily verify that

P 2
Q=-Y,— 2 a¥;+ 2 bU.

i=1 i=0
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A Generalized Likelihood Ratio Approach to the
Detection and Estimation of
Jumps in Linear Systems

ALAN S. WILLSKY, MEMBER, IEEE, AND HAROLD L. JONES,
MEMBER, IEEE

Abstract—We consider a class of stochastic linear systems that are
subject to jumps of unknown magnitudes in the state variables occurring at
unknown times. This model can be used when considering such problems
as estimation for systems subject to possible component failures and the
tracking of vehicles capable of abrupt maneuvers. Using Kalman-Bucy
filtering and generalized likelihood ratio techniques, we devise an adaptive
filtering system for the detection and estimation of the jumps. An example
that illustrates the dynamical properties of our filtering scheme is dis-
cusssed in detail.

I. INTRODUCTION

In recent years the Kalman-Bucy filter has been applied to a wide
variety of practical problems. In some cases the dynamical system being
studied is linear and can be modeled quite accurately. For such problems
the Kalman-Bucy filter performs extremely well. However, there are
many applications for which standard Kalman-Bucy filtering techniques
are inadequate and “adaptive filtering” techniques are required [1}1-{18].
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In this short paper we consider an adaptive filtering problem for linear
systems subject to abrupt changes. As discussed in [1] and [22], such
models can be used to study systems subject to system component
failures, systems involving small nonlinearities, and systems for which we
wish to use a filter of lower dimension than the actual system state (e.g.,
the design of a tracking filter based on a constant velocity model,
ignoring possible vehicle accelerations [4]).

Our approach, which is 2 modification and generalization of the
techniques in [4] and [16], is based on the assumption that abrupt system
changes may occur but that they occur infrequently, i.e., that our basic
model is correct except for sporadic system anomalies, such as failures.
Given this assumption, the philosophy of our approach is as follows: we
implement a Kalman-Bucy filter based on the assumption of no abrupt
system changes, and we design a secondary system that monitors the
measurement residuals of the filter to determine if a change has occurred
and adjusts the filter accordingly. The reasoning behind this structure is
that, since changes occur relatively infrequently, we do not wish to
degrade the performance of our filter under normal conditions by.
requiring our state estimator to be directly sensitive to system changes.

As this work was primarily motivated by the problem of failure
detection, we have concentrated a great deal of our attention on the
problem of detection of jumps; however, our detection method, which is
based on the generalized likelihood ratio [20), leads directly to two filter
compensation methods described in Section IV. We refer the reader to
[3], [4], [9). [10], [16], and [18] for other adaptive filtering techniques
involving the use of detection-theoretic notions.

I1. LINEAR STOCHASTIC SYSTEMS WITH UNKNOWN JUMPS

Consider the following discrete-time dynamical system (considered
also in [16]):

x(k+ D=0k + L,k)x (k) +T(k)w(k) +85 ;o 17 (1)
2{k+D)=H(k+Dx(k+1)+o(k+1) (2)

where x(k)ER" is the state, with Gaussian initial condition x(0) with
mean x, and covariance P In addition, z € R? is the observation, and
{w(k)} and {v(k)} are independent, zero mean, white Gaussian
sequences with E[w(k)w(k)]= Q (k) and E[v(k)v(k)]=R(k)>0. The
term 8 . ,» Tepresents a possible jump in one or more of the state
variables. Here § is an unknown positive integer, which assumes a finite
value if a jump occurs and takes the value + oo if there is no jump. Also
8, is the Kronecker delta and » is the unknown size of the random jump.
We either assume that » is completely free or that there are a finite
number of possible “jump directions” f,---,fy with »=af; for some
unknown i/ and unknown scalar a.

In the next section we develop a techmique for the detection and
estimation of such jumps. Also, our method can be used to detect
multiple jumps by separate detection of and compensation for individual
jumps. As discussed in [22), this model can be used to consider such
problems as actuator, sensor, and plant changes and failures and the
detection of higher order, unmodeled effects (such as acceleration in the
constant velocity model mentioned in Section I) by state augmentation.
In this manner we can consider step and ramp-type phenomena.

1II. THE GENERAL LIKELIHOOD RATIO TECHNIQUE

Consider the system (1), (2). We wish to design an adaptive filtering
system for the estimation of the state x(k). Based on the comments in
Section 1, we assume that we have implemented a Kalman-Bucy filter
based on the “no-jump” (# = c0) hypothesis H,.

e+ 1k) =k +1,k) % (k|k) 3)
Z(k)k)=x(klk—1)+ K (k)y(k) (4)

where y(k) is the measurement residual
y(k)=z(k)— H(k)x(k|k—1) (5)
and the gain, error covariance, and residual covariance satisfy

K(k)y=P(klk-DH (K)V (k) ©
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P(k+1|k)=0(k+1,k)P (k) (k+1,k) +T(K)Q (OT'(k) (7
P(k|k)y= P (kjk—1)— K (k)H (k)P (k|k—1) (8)
V (k)= H (k)P (klk—1)H'(k)+ R (k). )

Straightforward calculations [22] allow us to express the residual as a
sum of two terms

(10

where v, is a zero mean white noise sequence with covariance V(%) (it
represents the actual measurement residual if a jump does not occur)
and G can be precomputed (see the Appendix for the equations defining
G). We can then perform a generalized likelihood ratio (GLR) [20] test
to decide if a jump has occurred (the H; hypothesis). The details of this
procedure are described in (22]. Essentially, we compute the maximum
likelihood estimates (MLE’s) 8 (k) and »(k) based on y(1),- - -,y(k) and
the hypothesis H;. These values are then used in computing the log-
likelihood ratio /(k) for H, versus H), given the observed residuals
y(1),> - -, y(k). Using the fact that all the relevant densities are Gaussian,
we have

y(k)=G (k: @)+ v,(k)

? (k)= C ~k; 6 (1)) lk; 6 (k)] (11)
where C is deterministic
C(k;0)=éaG'(j;ﬁ)V“(j)G(j;O) (12)
and d is a linear combination of the residuals
d(k;8)= ﬁBG’(j;ﬂ)V“(/‘)y(j)- (13)

j=

The operation on the residuals in (13) can be interpreted as a matched
filter (MF) or a least squares estimate of the jump » assuming that & is
known and that we have no g priori information about the value of ». In
this case C ~!(k;8) is the error covariance of our estimate of ».

The MLE 8 (k) is the value 8 < k that maximizes

I{k;8)=a'(k;8)C ~Wk;0)d(k;0) (14)
and our decision rule is
H,
k6 (01 Z e (15)
HO

where ¢ is a threshold value chosen to provide a reasonable tradeoff
between false and missed alarms (see discussion in Section V).

Note that the full implementation of the GLR detection-estimation
scheme involves a growing bank of matched filters, i.e., we must com-
pute d(k;8) and /(k;8) for #=1,---,k. To avoid this problem, it is
convenient to restrict attention to a “data window™ of finite width. That
is, at any time &, we restrict our optimization over 8 to an interval of the
form k—M<8<k—N. Note if N=M—1, §=k—-M+1 there is no
optimization over # (the GLR counsists of a single MF). If the window is
sufficiently wide to insure detection and identification of all important
failures, this approximation does not lead to serious difficulties. An
algorithm based upon this finite window is developed in the Appendix.
Means for selecting an appropriate window width are discussed in
Section 1V.

We now consider the case in which we hypothesize » = af; where a is
an unknown scalar and f,E{f;,---,fy} is a given set of hypothesized
“failure directions.” In this case, the GLR detector takes the form

pli;d (k).i ()]

A0= T8 (0.7 (o] as)
where (k) and i (k) are the quantities that maximize
aa DMK 00)
1(k,0,z)—m an
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where
a(k;0,0)=fC(k;0) (18)
b(k;8,i)=j;d(k;8). (19
The decision as to failure is made using the decision rule
H,
118 (k),7 ()] 2 . (20)
H,

In general, C(j;8), G(j;#), V (), and the other relevant matrices
described in the Appendix are time varying. However, if the system
under consideration is time-invariant and if we use the optimal steady-
state Kalman filter, we have that C(j;8)=C(j—8;0), G(j; =G —
9;0), V()= V(0), etc., which simplifies the necessary computation and
storage. We note that in any case, the necessary quantities can be
computed recursively (see the Appendix).

IV. ADAPTIVE FILTERING BY DIRECT ESTIMATE
INCREMENTATION AND COVARIANCE INCREMENTATION

Once a jump has been detected by the GLR detector, we can use the
MLE’s (k) and »(k) to directly increment our state estimate, We
propose the estimate update equation

£ (k| K new =% (k| I) o+ {®L,6 (k)] = Fli;0 (0)}5 (k) (21)
where ® and F are defined in the Appendix. An adaptive filtering
scheme based on this approximation, the finite data window method,
and unconstrained » is illustrated in Fig. 1. Once a state jump is
detected, we increment the state estimate using (21). Note that the term
®» represents the contribution to x(k) if a jump of » occurs at time 8,
while F7 represents the response of the Kalman-Bucy filter to the jump
prior to its detection.

The proposed adaptive filtering scheme deserves some comment. We
first note that it does not represent the optimal solution to the filtering
problem for linear systems subject to jumps. Indeed, the feedback (21)
uses only the MLE § (k) and totally neglects any information concerning
the conditional distribution for 8. However, some simple reasoning yields
the result that the estimate in (21) is precisely the optimal estimate for
x(k) given the measurements z(j), j=80(k), #(k)+1,---,k and the
assumption that there is no a priori information (i.e., we assume that the
a priori covariance for x at time #(k) is infinite).! This fact, combined
with the simplicity of (21), provides the motivation for the use of this
estimate incrementation method. We note that the suboptimality in-
troduced by neglecting any uncertainty in 8 (k) may be of importance in
some problems. In this case, one may wish to utilize more information
about 8 in the estimate update procedure. To this end, we remark that
the /(k; @) in (14) are likelihood ratios for various values of 4, and hence
can be normalized to yield the conditional probability distribution for 8.
We also note, however, that there is a critical tradeoff between filter
performance and filter complexity, and this consideration has led us to
propose computational simplifications such as the finite data window
and the estimate update law (21).

We note that one could employ the estimate update procedure (21)
without changing filter gains, thus avoiding on-line covariance calcula-
tions. However, in many cases the GLR estimate p(k) may be quite
inaccurate, and the proposed scheme may lead to instabilities (we detect
our inaccuracy in estimating » as another jump and feed back another
inaccurate estimate). Intuitively, we should increase our estimation error
covariance to reflect the degradation in the quality of our estimate
caused by the jump. By increasing the error covariance, the filter gain is
increased and the filter can improve its response to the jump (i.e., it can
compensate for inaccuracies in our estimates » and #). Given the
interpretation of (21) as the optimal estimate based on z[4 K-+ -, 2(k)
with no a priori information, a reasonable method for covariance in-
crementation is to reset P (k|k) to the error covariance for this estimate.

I'This fact was pointed out to us by one of the reviewers.
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Recalling that C ~'[k; ] (k)] is the error covariance for #(k), we find that
the appropriate covariance update equation is

Fig. 1. Implementation of direct compensation technique.

P(klk)new= P (klk)old
+{@lk,0 ()]~ Flk;8 (1)]}C ~'k; 6 (k)]

Aolk,d ()~ Flk; 8 (O1). (22)

We close this section by making several more qualitative comments.
We note that the incrementation procedure described by (21) and (22)
requires the discarding of all filter information prior to #(k). This is a
direct consequence of the assumption that » has an infinite a priori
covariance. In many problems, such as the inertial calibration and
alignment problem discussed in [1], one has some a priori information
about the possible range of values for ». In addition, in problems in
which great accuracy is required it does not seem appropriate to throw
away all previous information. One possible method for avoiding such a
problem is to use a finite initial covariance for ». In addition, we have
found that the use of gain incrementation (22) without estimate in-
crementation (21) also works well, as we essentially allow the filter to
correct for the jump itself. This latter method can be interpreted as
follows: prior to gain incrementation the filter bandwidth may be quite
small and the filter responds very slowly to the jump; the use of gain
incrementation then provides a mechanism for increasing the bandwidth
and reducing the response time of the filter.

A final issue concerns the size M of the finite data window of the
GLR. Noting the interpretation of C ~! [k; @ (k)] as the error covariance
for #(k), one might consider choosing a value of M such that this
covariance is sufficiently small. On the other hand, in many cases one is
much more concerned with quick detection of jumps rather than accurate
estimation of the jump. In this case the crucial quantity that one wishes
to control is not C~ Yk;8(k)] but rather the detection delay time
k — @ (k). This tradeoff between fast detection and accurate estimation is
of obvious importance, and the relative importance of these issues in a
particular application will dictate the choice of M.

Finally, we note that in the implementation of the GLR system of Fig.
1, we reinitialize the GLR detector (i.e., set the states of the MF’s to
zero) immediately following filter incrementation. This is done in order
to avoid possible instabilities in which we detect and identify the same
jump several times and “overcompensate.” With this implementation,
the GLR system can be used to detect several successive state jumps.

V. DETECTION PROBABILITY CALCULATION

Implementation of the GLR requires the choice of a decision
threshold € and a window length M. As mentioned earlier, these quanti-
ties are chosen by considering tradeoffs among detection delay time, the
probability P of false alarm, and the probability P,(»,8) of correct
detection of a jump of magnitude » at time 4. These probabilities are
given by [20]

PF=f°cp(l=L|H0)dL (23)

Py (n0)= [ “pU=L|H\r,8)dL. (24)
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Here p(I= L|Hy) is the probability density of /(k;#) conditioned on Hy,
and p(/=L|H,»,8) is its density conditioned on H, and particular
assumed values of » and 6. It is easy to show [22] that P(/=L|Hy is a
Chi-squared density with » degrees of freedom, and P(I=L|H,,»,8) is a
noncentral Chi-squared density [23], [24] with noncentrality parameter
82=2TC(k;8)». (25)
Values of Pr and Pp, can be computed from tables in [23}, as can the
value ¢ for specified P or P. Finally, we note that in order to use these
tables, we must specify values for 4 and ». A good guideline is to choose
» to be the minimum jump that must be detected for each failure
direction. Also, several values of # should be used if the system is

time-varying.
VI. AN ExamPpLE

The application of the GLR to a simple tracking problem is illustrated
in this section. The problem is to design a tracking filter which uses
position measurements taken at 30 s intervals to track the motion of a
vehicle along a straight line. The system dynamics are given by (1)-(4),
where the only modeled force acting on the vehicle is a white Gaussian
acceleration, Ar=30 s, and

<I>(k,k—l)=[(l) Alf], r=[?] (26)
Elw(k) w(i)]=8,0=(0.173 ft/5)5,. n
The measurement matrix and measurement noise are
H=[1 0] (28)
Elo(k) v(j)]=R8,;=(600 f1)’,;. (29)

The vehicle is subject to occasional step changes of unknown magnitude
in either position or velocity. The tracking filter is a Kalman filter
operating in steady state and requires 60-90 min to completely respond
to such jumps. The magnitudes of the position and velocity jumps that
are considered in this study are 10 times the steady-state rms estimation
errors in the corresponding state variables.

The GLR system was implemented with the dezection law

Hl
1(k;6) z 10.6
HO

(30

and with M =12 and N =6, i.c., the optimization of § (k) was constrained
to k—12<8(k) < k—6. Jump identification is made at the first time at
which (30) is satisfied and
g (k)=k—11 (31)

since waiting until the end of the detection window yields the most
accurate estimate of ¢ (see the preceding section). For the 10 ¢ jumps
described above, (30) yields a P of 0.005 and a P, greater than 0.9.

Fig. 2 presents a single Monte Carlo trial for the 10 o (1320 ft) position
jump. GLR detected the jump at 6.5 min (7)) and identified it at 11 min
(T;). The constrained optimization of #(k) has the effect of implement-
ing GLR as a finite memory filter. Thus, once 8 is no longer in the
detection window, i.e., # < k—11, and the tracking filter has responded
sufficiently to the step change by itself, the detection law (30) becomes
less likely to continue to select H,. The tendency of /(k; ) to decrease is
evident in Fig. 2(b) for times greater than 16 min, although threshold
crossings persist well past the 50 min mark. In 30 Monte Carlo trials with
either the 106 position or velocity jump, GLR correctly detected every
jump.

Fig. 3 contains a summary of the jump estimation errors at T, for a
set of 10 Monte Carlo trials with the 1320 ft jump in position. In all but
one trial, the error in 8 (k) was 30 s (one time step) or less. The errors in
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Fig. 2. (a) Filter residuals for a 1320 ft jump in position at 5 min. (b) Likelihood ratio

for (a) using unconstrained GLR.

6 (k) are normalized with respect to the o’s determined from C ~'(k;k—
11). The errors in »(k) appear to be approximately Gaussian with the
predicted o’s. )

Sets of Monte Carlo trials have been run in which the tracking filter
estimates were compensated after a jump had been detected. The results
are summarized in Table I (response time is the time required to reduce
the estimation error to less than four times the steady-state standard
deviation). The table indicates that direct compensation and gain com-
pensation are both effective (compared to the response when no com-
pensation is made), but for this example, gain compensation is superior.

VII. CONCLUSIONS

In this short paper we have developed an adaptive filtering technique
for discrete-time linear stochastic systems subject to abrupt jumps in
state variables. Our technique is potentially useful in the design of failure
detection and compensation systems. The proposed estimation system
consists of a Kalman-Bucy filter based on the “no-jump” hypothesis and
a detection-compensation system based on generalized likelihood ratio
(GLR) hypothesis testing. Once a jump is detected, we can adjust the
filter in one of three ways: we can directly increment the state estimate
using the parameter estimates provided by the GLR detector; we can
increase the estimation error covariance using GLR data and thus can
.allow the filter to adjust itself to the jump; we can adjust both the
estimate and the error covariance. A second-order example has been
studied to indicate the dynamical characteristics of the GLR system.
These results indicate the potential usefulness of the method, as ex-
tremely high correct detection rates and very small false alarm rates were
obtained. We note that the structure of our system is appealing, espe-
cially in failure detection applications in which we do not wish to disrupt
system performance until after a jump is detected. In addition, the GLR
system can essentially be attached to the “end” of an existing filter that
does not account for jumps.

The analysis of this short paper is devoted to the development and
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Fig. 3. Summary of jump estimation errors for Monte Carlo trials with a 1320 ft jump
in position.

description of the algorithm and to a brief look at an analysis of its
usefulness (i.e., the simulation results and the determination of expres-
sions for the probabilities of false alarm and correct detection). Clearly
further analysis and simulations are needed to assess the behavior of the
overall system and to answer questions such as the stability of the filter,
the choice of detection threshold, and the length of the detection
window. It is our opinion that the GLR method will prove to be an
extremely useful tool in the design of failure detection systems. In a later
paper we will report on some extremely successful results for a problem
involving the detection of gyro and accelerometer failures in an inertial
navigation system.

APPENDIX
COMPUTATIONAL ALGORITHM

Utilization of the GLR test (with N=0 for simplicity) requires that
I(k;8) in (14) be evaluated for all k— M < @ < k. The necessary quanti-
ties for this calculation can be computed from the equations

Cll;0)=G'(k;0)YV "W k)G(k;0)+ C(k—1;8) (Al)
d(k;8)=G'(k;0)V W k)y(k)+d(k—1;8) (A2)
G (k;8)=H (kN B(k,8) - &k, k— DF(k—1;0)] {A3)
Fk;0)=K(k)G (k;8) + Dk, k—1)F(k—1;8) (A%)

where @ is the state transition matrix for (1). Equations (A1)~(A4) are
computed for k—~ M < @< k, and the only new additional equations are
for a jump at the present time k.

Clk;k)=H'(K)V Y H (k) (A3)
d(k;k)=H'(k) V-1 (k)y(k) (A6)
Fk;k)=K(k)H (k). (A7)

If the system is time-invariant, (A1)<(A4) only need be utilized for the
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TABLE 1
SuMMarY OF FILTER REsPONSE TIMES FOR MONTE CARLO TRIALS WITH AND WITHOUT COMPENSATION
No Compensation Direct Compensation Gain Compensation
Series A ey K . R .
ve. Response | Low-Hligh Ave. Response Low-High Ave. Response | Low-High
Time (min) {min} Time (min) (min) Time {(min) (min)
Position (100) 54 44 - 71 34 10 - 57 22 12 - 39
Velocity (100) 49 39 - B1 34 10 - 81 16 4 - 40
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