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We develop a new class of non-Gaussian multiscale stochastic processes defined
by random cascades on trees of multiresolution coefficients. These cascades
reproduce a semiparametric class of random variables known as Gaussian scale
mixtures, members of which include many of the best known, heavy-tailed
distributions. This class of cascade models is rich enough to accurately capture
the remarkably regular and non-Gaussian features of natural images, but also
sufficiently structured to permit the development of efficient algorithms. In
particular, we develop an efficient technique for estimation, and demonstrate in a
denoising application that it preserves natural image structure (e.g., edges). Our
framework generates global yet structured image models, thereby providing a
unified basis for a variety of applications in signal and image processing, including
image denoising, coding, and super-resolution.  2001 Academic Press

1. INTRODUCTION

Stochastic models of natural images underlie a variety of applications in image
processing and low-level computer vision, including image coding, denoising and
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restoration, interpolation and synthesis. Accordingly, the past decade has witnessed
an increasing amount of research devoted to developing stochastic models of images
(e.g., [19, 38, 45, 48, 55]). Simultaneously, wavelet transforms and other multiresolution
representations have profoundly influenced image processing and low-level computer
vision (e.g., [34]). Moreover, multiscale theory has proven useful in modeling and
synthesizing a variety of stochastic processes (e.g., [12, 33, 60]).

The intersection of these three lines of research—statistical image models, multiscale
representations, and multiscale modeling of stochastic processes—constitute the focus of
this paper. More specifically, our goal is to develop and study a new class of multiscale
stochastic processes that are capable of capturing the statistics of natural images. These
processes are defined by random coarse-to-fine cascades on trees of wavelet or other
multiresolution coefficients. Our cascade models represent a significant variation on linear
models defined on multiscale trees (e.g., [8]). Although such models lead to exceptionally
efficient algorithms for image processing, their linear nature means that they cannot capture
the striking types of non-Gaussian behavior present in wavelet pyramids of natural images.
To capture such behavior, we define random cascades that reproduce a rich semiparametric
class of random variables known as Gaussian scale mixtures (GSMs). We demonstrate that
the structure of our random cascade models not only captures natural image statistics, but
also facilitates efficient and optimal processing, which we illustrate by application to image
denoising. Preliminary forms of parts of this work have appeared in [56, 57].

1.1. The Statistics of Natural Images

We begin with an overview of previous empirical work on natural image statistics.
Typically, the term “natural images” is used in a loose fashion to denote the ensemble
of visual images found in the natural environment, as opposed to other image classes
(e.g., radar images). The study of image statistics dates back to the pioneering work
of television engineers in the 1950s (e.g., [20, 39]), who studied the autocovariance
function of images. Other work has emphasized the fractal structure of natural images
(e.g., [19, 40, 54]). Consistent with fractal behavior, a large body of empirical work has
shown that the power spectrum of natural images obeys a f−γ law (e.g., [19, 45]).
Moreover, natural images exhibit highly non-Gaussian statistical dependencies that can be
revealed by examining the statistics of a multiresolution decomposition. Figure 1 contrasts
the marginal distributions of wavelet coefficients for Gaussian noise with those for a typical
natural image. Plotted on the vertical axis is log probability, so that the Gaussian curve is
an inverted parabola. In contrast, the marginal distribution obtained from the natural image
is heavy-tailed and kurtotic. These characteristics, which are are found for a wide range of
filters and natural images, have been modeled by a number of researchers (e.g., [21, 34,
48, 55]).

Another important feature of natural images is their approximate scale invariance,
meaning that their statistics are invariant (up to a multiplicative constant) to changes in
scale. Intuitively, there should be no preferred scale in an ensemble of natural images,
since (disregarding occlusion) the same scene is equally likely to be viewed from a range of
distances. One manifestation of the scale invariance of natural images is their f−γ spectral
characteristic. The marginal distributions of wavelet coefficients provide further support for
approximate scale invariance. When they are renormalized by a scale-dependent factor, the
resulting histograms tend to coincide, as they should for a scale-invariant process [21, 27].
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FIG. 1. Histograms of wavelet marginal distributions for (a) Gaussian noise; and (b) a typical natural image.
Vertical axis gives log probability (rescaled).

While a great deal of attention has been devoted to marginal statistics of single
coefficients, much less attention has been paid to joint statistics of groups of wavelet
coefficients. Both theoretical [53] and empirical studies (e.g., [48]) show that coefficients
of orthonormal wavelet decompositions of natural images tend to be roughly decorrelated.
More recent work has shown that nearby wavelet coefficients, despite being roughly
uncorrelated, exhibit strong dependencies. The basic form of dependency, which is
surprisingly regular over a range of multiscale transforms, choice of coefficient pairs, and
natural images [3, 48], is illustrated in Fig. 2. Shown are two joint conditional histograms
of two wavelet coefficients, which we call the “child” and its coarser scale the “parent”
at the same spatial position and orientation. Each column of the 2D plots corresponds to
a 1D conditional histogram p(child|parent) for a fixed value of the parent. Light intensity
corresponds to frequency of occurrence, where each column has been independently

FIG. 2. Joint conditional histograms for a wavelet coefficient (parent) and its coarser scale child taken from
Gaussian white noise (a), contrasted with a natural image (b). Each column of the 2D plots corresponds to 1D
conditional histogram of p(child/parent). Lightness corresponds to frequency of occurrence, where each column
has been independently rescaled to form a conditional histogram.
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rescaled to form a conditional histogram. Panel (a) corresponds to a Gaussian white noise
image. As expected, the two coefficients are independent, because the shape of the cross-
section p(child|parent) is independent of the value of the parent.

In contrast, panel (b) shows typical behavior for a natural image. Although the
two wavelet coefficients are approximately decorrelated, they are highly dependent. In
particular, the distribution of the child conditioned on the value of the parent has a standard
deviation that scales with the absolute value of the parent. The characteristic “bow tie”
shape of this histogram is found for wavelet coefficients at nearby spatial positions,
adjacent orientations and spatial scales, and over a wide range of natural images. Thus,
wavelet coefficients from natural images exhibit a striking self-reinforcing characteristic, in
that if one wavelet coefficient is large in absolute value, then “nearby” coefficients (where
nearness is measured in scale, position, or orientation) also are more likely to be large in
absolute value.

1.2. Overview

The previous section laid out a number of striking empirical characteristics that should
be reproduced by a stochastic model for images. The goals of this paper are to develop
a mathematical framework for capturing the structure of natural images and to show
that it can be used as the consistent basis for a variety of image processing tasks. As
with other work on natural images (e.g., [21, 43, 48]), we work in terms of wavelet or
other multiresolution coefficients, which can be identified with the nodes of a multiscale
tree. The basis of our approach is the decomposition of wavelet coefficients into two
underlying stochastic processes defined on the multiscale tree. In particular, we model
wavelet coefficients as a product of one white multiscale Gaussian process with a second
continuous-valued multiplier process. This multiplier process, which is generated as
a nonlinear function of a second Gaussian multiscale process (called the premultiplier),
serves to control the non-Gaussian dependencies among wavelet coefficients.

The class of marginal distributions generated by this nonlinear mixing is rich, including
many of the best known and well-studied heavy-tailed variables. Moreover, the multiscale
tree structure allows us to construct global probability distributions on all wavelet
coefficients, and hence statistical models for natural images. We show that this framework
is powerful enough to capture the key characteristics of natural images described above;
moreover, it does so in a parsimonious fashion, requiring only a small set of parameters.
Both Gaussian processes in the underlying decomposition are modeled by the multiscale
framework of [8, 33], which permits efficient and optimal algorithms. As a result, although
our models produce highly non-Gaussian statistics, we are able to exploit this embedded
linear-Gaussian structure to great advantage. A number of other researchers (e.g., [21, 43,
44, 48, 54]) have studied and exploited the properties of natural images on which we
focus here, and our approach has both some similarities and important differences with
these earlier efforts. Later in the paper, we discuss these links both in image modeling
(Section 3.4) and in image denoising and coding (Section 4.2). We also note that similar
models also been studied in speech processing (e.g., [62]) and financial mathematics
(e.g., [63]).

In next section, we provide the mathematical preliminaries for our treatment, including
an introduction to and some new results concerning so-called Gaussian scale mixtures.



RANDOM CASCADES ON WAVELET TREES 93

We also briefly review the relevant features of the linear multiscale modeling framework
in (e.g., [8, 33]). In Section 3, we introduce the class of multiscale wavelet cascade models
and illustrate the characteristics that can be captured by such models, including the highly
non-Gaussian structure of natural images. In Section 4, we develop an algorithm for
maximum a posteriori (MAP) estimation of the premultiplier process. On the basis of
this estimator, we develop a technique for image denoising that preserves the structure
of natural images. In addition, we describe an algorithm for estimating model parameters.
Section 5 provides illustrative results of applying the wavelet denoising algorithm to both
1D signals and natural images. Section 6 summarizes our work, and points out directions
for future work.

2. MATHEMATICAL PRELIMINARIES

This section develops mathematical preliminaries necessary for defining random
cascades on wavelet trees. We begin by introducing the semiparametric class of random
variables known as Gaussian scale mixtures and providing some analysis of their properties
required for our development. We end by reviewing the relevant aspects of previous work
on linear multiscale stochastic processes.

2.1. Gaussian Scale Mixtures

In this section, we introduce and describe some of the basic properties of GSMs,
including several new results whose proofs can be found in Appendix A. To begin, a
GSM vector c is formed by taking the product of two independent random variables,
namely a positive scalar random variable z known as the multiplier or mixing variable
and a Gaussian random vector u distributed as 3 N (0,�). With this notation, we have
c
d= √

zu, where
d= denotes equality in distribution.

The choice of mixing variable specifies the GSM variable c with associated GSM
density pc. In particular, the GSM density can be represented as an integral of a Gaussian
kernel function scaled and weighted by the mixing variable

pc(c)=
∫ ∞

0

1

(2π)m/2|z�|1/2 exp

(
−cT �−1c

2z

)
pz(z) dz, (1)

where pz is the density of the mixing variable, and m is the dimension of the random
vector c. As a special case, the finite mixture of Gaussians corresponds to choosing pz to
be a (discrete) probability mass function, in which case the integral reduces to a finite sum.

A first question concerns characterizing which random vectors can be represented as
GSMs. For simplicity in notation, we focus on the case of a scalar GSM, although
the results can be stated more generally. We begin with a few definitions. First of
all, recall that the characteristic function of a random variable c is given by φc(s) =∫ ∞
−∞ exp(ics)pc(c) dc, where pc is the density function of c. We also need the notion

of complete monotonicity: a function f defined on (0,∞) is completely monotone if it has
derivatives f (n) of all orders, and (−1)n f (n)(y)≥ 0 for all y > 0 and n= 0,1,2, . . . . With

3 The notation x ∼N (µ,�) means that x is distributed as a Gaussian with mean µ and covariance �.
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these definitions, we have the following necessary and sufficient conditions:

THEOREM 1. A symmetric random variable c with characteristic function φc(t) is
a GSM if and only if g(s)� φc(

√
s ) is completely monotone.

Proof. See Appendix A.

Andrews and Mallows [1] provide the following necessary and sufficient conditions on
the density function:

THEOREM 2. Let c have a density function pc that is symmetric about zero. Then c is
a GSM if and only if f (y)� pc(

√
y ) is completely monotone.

These two theorems provide straightforward criteria for a GSM in the characteristic
function and density domains respectively.

The family of Gaussian scale mixtures includes several well-known families of
random variables, including those shown in Table 1. The densities of these variables
are characterized by a scale parameter λ and a parameter α that controls the heaviness
of the tails. Each family typically exhibits a range of tail behavior as α varies, ranging
from Gaussian to very heavy-tailed. In fact, although the scale parameter λ is analogous
to a variance, the tails of many of these variables are so heavy that variances fail to
exist. A classical example is the α-stable family, which has been extensively studied
(see [46]). The case α = 2 corresponds to the familiar Gaussian, whereas variables with
smaller α > 0 have increasingly heavy tails. A well-known example with heavy tails is
the Cauchy distribution, which corresponds to α = 1. The generalized Gaussian family,
also known as the generalized Laplacian family, is described by a parameter α ∈ (0,2].
The choice α = 2 again corresponds to a Gaussian, whereas α = 1 is a symmetrized
Laplacian. The generalized Gaussian family is often used to model the marginals of
wavelet coefficients (e.g., [21, 34, 37, 50]), where the tail parameter when fit to empirical
histograms is typically less than 1. The symmetrized gamma family is also important
because it (like the α-stable) is infinitely divisible [17], a property emphasized in the
context of natural images in [27].

For most of the random variables in Table 1, it is either well known or straightforward to
find the density of the multiplier variable. For the generalized Gaussian family, however,

TABLE 1
Example Densities from the Class of Gaussian Scale Mixtures

Mixing density GSM density GSM char. function

λZ(α) Symmetrized Gamma [1 + λ2t2]−α , α > 0

λ/Z(α− 1
2 ) Student: No explicit form

[1 + t2/λ2]−α , α > 1
2

Positive α/2-stable α-stable exp(−|λt|α), α ∈ (0,2]
No explicit form Generalized Gaussian: No explicit form

exp(−|c/λ|α), α ∈ (0,2]
z
d= λexp(x/α) Log multiplier No explicit form

α ≥ 0 No explicit form

Note. The notation Z(γ ) denotes a positive gamma variable z of index γ with density p(z) =
(zγ−1/�(γ )) exp(−z).
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this verification is not entirely straightforward. In order to show that the generalized
Gaussian is a GSM, we first need to formally develop a relation apparent in Table 1
(e.g., compare symmetrized gamma and generalized Student variables).

THEOREM 3. Let c
d= √

zu be a GSM with characteristic function φc, and let
the mixing variable z have density pz. Define f (v) � pz(v)/

√
v, and suppose that∫ ∞

0 f (v) dv <∞, in which case we can consider a random variable v with the density f .

Then the GSM y
d= (1/√v)u has density py(y)∝ φc(y).

Proof. See Appendix A.

On the basis of Theorem 3, one would conjecture that the generalized Gaussian family

should have a representation c
d= (1/

√
v)u, with the density of v satisfying f (v) ∝

pα/2(v)/
√
v, where pα/2 is the density of a positive α/2-stable random variable. In order

to prove this conjecture, it is necessary to verify that f (as defined above) is a valid density
function: i.e., that

∫ ∞
0 f (v) dv < ∞. This verification is not entirely straightforward,

because with certain exceptions (e.g., α = 1
2 ), there are no explicit forms for the positive

α-stable densities. Nonetheless, it can be proved by using properties of positive α-stable
densities [17], and we summarize the results in the following:

PROPOSITION 1. The generalized Gaussian family has the representation c
d=

(1/
√
v)u, where in particular, v has the density proportional to pα/2(v)/

√
v, and pα/2 is

the density of a positive α/2-stable variable.

Proof. See Appendix A.

In this paper, we will frequently exploit the fact that a large class of nonnegative
multipliers z can be generated by passing a Gaussian random variable z through the
appropriate function h: R → R

+. The following result characterizes those GSMs that can
be represented in this way:

PROPOSITION 2. Let c
d= √

zu be a GSM, and suppose that the cumulative distribution
function (CDF) F of the multiplier is invertible. Then c has an equivalent representation

c
d= h(x)u for an appropriate function h: R → R

+, where x ∼N (0,1).

Proof. Let F and G be the CDFs of z and x respectively. Since the inverse function

F−1: [0,1] → R
+ is defined, we have z

d= F−1(G(x)), and h(x)� [F−1(G(x))]1/2 is the
appropriate function.

According to this representation, the multiplier z is given by h2(x). We refer to the
Gaussian quantity x as the premultiplier since it is the stochastic input to the nonlinearity h
that generates the multiplier. The conditions of Proposition 2 (i.e., invertible cumulative
distribution function F ) will be satisfied under a variety of conditions, including when the
density pz is nowhere zero on (0,∞). This latter condition includes all random variables
listed in Table 1.

In many cases, it is possible to determine explicitly the form of h. For example, choosing
h(x)= |x| will generate the square root of gamma variables of index 1/2, which allows us
to produce the symmetrized gamma variable of index 1/2. For the purpose of application,
the precise form of GSM may not be critical. In this context, an advantage of the GSM
framework is that it does not require an explicit form of the density of c, but instead focuses
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attention on the multiplier. Our set-up allows an arbitrary choice of the nonlinearity h,
meaning that it permits the use of GSMs which may confer a computational or analytical
advantage. For the results in this paper, we will choose h from parameterized families
of functions that generate random variables with ranges of behavior. One example is the
family of functions {(exp(x/α) | α > 0}, orresponding to the lognormal family listed in
Table 1. Another choice is the family {(x+)α | α > 0}, which generates a class of variables
with a range of tail behavior that is qualitatively similar to the symmetrized gamma and
generalized Gaussian families. 4

The GSM class includes many random variables with tails so heavy that variances and
lower moments may fail to exist. Such variables are characterized by polynomial decay in
the tails of the distribution, where the prototypical example is the α-stable family for α < 2.
Polynomially decaying tails are not appropriate for modeling the wavelet coefficients
of natural images, for which the tails tend to drop off more quickly. Therefore, for the
applications to natural images in this paper, we consider GSMs for which variances exist.
Such variables can still exhibit highly non-Gaussian tail behavior, as will be clear in our
modeling of wavelet marginal densities.

2.2. Multiscale Stochastic Processes

In this section, we introduce some of the basic concepts and results concerning linear
multiscale models defined on trees. We limit our treatment to those aspects required for
subsequent development; the reader is referred to other literature (e.g., [8, 12, 18, 33] for
further details of these models, and their application to a variety of 1-D and 2-D statistical
inference problems.

The processes of interest to us are defined on a tree T , such as that illustrated in
Fig. 3. The nodes s ∈ T are organized, as depicted in the figure, into a series of scales,
which we enumerate m = 0,1, . . . ,M . At the coarsest scale m = 0 (the top of the tree)
there is a single node s = 0, which we designate the root node. At the next finest scale
m = 1 are q nodes, which correspond to the children of the root node. We specialize
here to regular trees, so that each parent node has the same number of children (q). This
procedure of moving from parent to child is then applied recursively, so that a node at scale
m<M gives birth to q children at the next scale (m+ 1). These children are indexed by
sα1, . . . , sαq . Similarly, each node s at scalem> 0 has a unique parent sγ̄ at scale (m−1).

4 Here the notation x+ denotes the positive part of x, defined by x+ = x for x ≥ 0 and 0 otherwise.

FIG. 3. A segment of a q-adic tree, with the unique parent sγ̄ and children sαq, . . . , sαq corresponding to
node s .
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It should be noted that such trees arise naturally from multiresolution decompositions. For
instance, a wavelet decomposition of a 1D signal generates a binary tree (q = 2), whereas
decomposing an image will generate a quadtree (q = 4).

To define a multiscale stochastic process, we assign to each node of the tree a random
vector x(s). The processes of interest to us are a particular class that are Markov
with respect to the graph structure of the tree. In particular, a multiscale Markov tree
process x(s), s ∈ T has the property that for any two distinct nodes s, t ∈ T , x(s) and x(t)
are conditionally independent given x(τ) at any node τ on the unique path from s to t . For
example, if we define s∧ t as the coarsest scale node on this path (also the nearest common
ancestor of s and t), then x(s) and x(t) are independent given x(s ∧ t).

Multiscale processes in which the random variables x(s) at each node assume a discrete
set of values represent a generalization of the usual (discrete) Markov chain to more
general tree graphs. A number of researchers have studied and made use of such discrete
multiscale processes (e.g., [7, 10]). Of particular relevance here is the work of Baraniuk and
colleagues [10, 43], who have used such discrete multiscale stochastic processes as part of
their non-Gaussian modeling framework for signal and image processing. In Section 3.4,
we briefly discuss this work and its relationship to our framework.

The class of multiscale Markov processes of interest to us are Gaussian processes
specified by the distribution x(0) ∼ N (0,Px(0)) at the root node, together with coarse-
to-fine dynamics

x(s)=A(s)x(sγ̄ )+B(s)w(s), (2)

where the process noise is white 5 on T . The vector x(s) at each node is distributed
as N (0,Px(s)), where the covariance Px(s) � E[x(s)xT (s)] evolves according to the
discrete-time Lyapunov equation

Px(s)=A(s)Px(sγ̄ )AT (s)+Q(s), (3)

where Q(s) � B(s)BT (s). In this paper, we will pay particular attention to stationary
processes, for which we have A(s)= A, B(s) = B , and Px(s) = Px for all nodes s ∈ T ,
where the covariance Px is the solution of the Lyapunov equation APxAT + BBT = Px .
Processes defined according to the dynamics in Eq. (2) are called multiscale autore-
gressive (MAR) processes. It has been shown that the MAR framework can effec-
tively model a wide range of Gaussian stochastic processes, including one-dimensional
Markov processes [31, 33], 1/f -like processes [8, 11, 12, 32, 60], and Markov random
fields [32, 33].

An additional benefit of the MAR framework is that it leads to extremely efficient
algorithms for estimating the process x(s) on the basis of noisy observations of the
form y(s) = C(s)x(s) + v(s), where v(s) is a zero-mean, white noise process with
covariance R(s). In particular, the optimal estimates of x(s) at every node of the tree
based on {y(s), s ∈ T } can be calculated very efficiently by a direct algorithm [8] that
is a generalization of two-pass algorithms for estimation of time series (e.g., the Rauch–
Tung–Streibel smoother [42]). It consists of an upward pass from the leaf nodes to the root,
followed by a downward pass from the root to the leaves. The computational complexity

5 Here we assume without loss of generality that means are zero, since it is straightforward to add in non-zero
means.



98 WAINWRIGHT, SIMONCELLI, AND WILLSKY

is O(d3N), where d is the maximal dimension of x(s) at any node, and N is the total
number of nodes. This same algorithm also computes Pe(s), the covariance of the error
[x(s)− x̂(s)] at each node s ∈ T .

For notational reasons, it is useful to write down a vectorized form of the solution to the
estimation problem. Let x be a vector formed by stacking the vectors x(s) from each node
s ∈ T in a fixed order, and define y analogously so that y = Cx + v, where C is a block
diagonal matrix composed of the C(s) matrices, and v ∼ N (0,R), where R is the block
diagonal matrix formed using the R(s) matrices. The Bayes least-squares (BLS) and MAP
estimates are identical in this case and are given by

x̂ = PeC
T R−1y Pe = [

P−1
x +CT R−1C

]
, (4)

where Pe is the covariance of the error e = x − x̂. It is important to realize that for
typical image processing problems (with several hundred thousand nodes), x̂ and Pe

are of extremely high dimension, and thus their computation as suggested by Eq. (4) is
prohibitive. Instead, the fast tree algorithm solves the set of equations P−1

e x̂ = CT R−1y
and simultaneously computes the diagonal blocks of Pe, with the two-pass procedure
outlined previously.

3. RANDOM CASCADES ON WAVELET TREES

In this section, we introduce and develop a new type of multiscale stochastic process
defined by random cascades on trees. In particular, each tree node corresponds to a vector
of wavelet or multiresolution coefficients, and the cascade process is constructed so as to
produce a GSM vector at each node. We show that the GSM variables produced by these
cascade processes account well for the statistical properties of wavelet decompositions of
natural images, including self-similarity, kurtotic, and heavy-tailed marginal histograms,
and self-reinforcement among local groups of coefficients.

3.1. Cascades of Gaussian Scale Mixtures

As noted previously, naturally associated with a multiresolution decomposition like the
wavelet transform is a tree of coefficients (a binary tree for 1D signals, a quadtree for
images). Lying at each node is a random vector c(s), which will be used to model a vector
of d wavelet coefficients at the same scale and position, but different orientations. Using
the decomposition of Proposition 2, we model the wavelet vector c(s) as a GSM of the
form

c(s)
d= h(x(s))� u(s), (5)

where x(s) and u(s) are d-dimensional, independent Gaussian random vectors. Here
the nonlinearity h acts element-wise on the vector x(s), and � denotes element-wise
multiplication of the two d-vectors. We assume that h has been appropriately normalized
so that E[h2(xk(s))] = 1 for k = 1, . . . , d , where xk(s) denotes the kth element of the
vector x(s), in which case u(s) controls the variance of c(s).

To specify a multiscale stochastic process, we need to define parent-to-child dynamics
on the underlying state variables x(s) and u(s). Recall that for wavelet coefficients of
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natural images, the parent and child vectors are close to decorrelated. We can express the
covariance between c(s) and its parent c(sγ̄ ) as

cov[c(s), c(sγ̄ )] = E{h(x(s))[h(x(sγ̄ ))]T } � cov[u(s), u(sγ̄ )],

where we have used the independence of x and u. This relationship shows that the
decorrelation of c(s) and c(sγ̄ ) is determined by the u process. Therefore, to model wavelet
coefficients of natural images, it is appropriate to choose u(s) as a white noise process on
the tree T , uncorrelated from node to node. In contrast, the vector x(s) must depend on
its parent x(sγ̄ ), in order to capture the strong property of local reinforcement in wavelet
coefficients of natural images. Therefore, the GSM representation of Eq. (5) decomposes
the wavelet vector c(s) into two random components, one of which controls the correlation
structure, while the other controls reinforcement among wavelet coefficients.

We model the white noise process u(s) as

u(s)=D(s)ζ(s), ζ(s)∼N (0, I ), (6)

so that D(s) controls any scale-to-scale variation (and hence the scaling law) for the
process. To capture the dependency in the premultiplier process x(s), we use a MAR model

x(s)=Ax(sγ̄ )+Bw(s), (7)

with x(0) ∼ N (0,Px(0)) and ζ(s) ∼ N (0, I ) at the root node. Although we specialize
here to the stationary case of a MAR model (i.e., A(s) ≡ A and B(s) ≡ B for all nodes
s ∈ T ), it is clear that GSM cascades with nonstationary MAR dynamics are also possible.
Figure 4 provides a graphical representation of this model structure for three levels of
a binary tree. The premultiplier process x(s) and white noise u(s) both live at the nodes
of a multiscale tree, represented by open circles. These processes generate the wavelet
coefficient vector c(s), represented by filled squares, via the nonlinearity h.

FIG. 4. Graphical illustration of model structure. Premultiplier process x(s) and white noise u(s) are defined
on nodes (represented by ©) of the multiscale tree. Wavelet coefficient vectors c(s) (represented by �) is
generated via nonlinearity h.
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Equations (5), (6), and (7) together specify the coefficients c(s) of a multiresolution
decomposition on a tree. For each node s, let m(s) be its spatial scale, and let p(s) be
its spatial location in the image plane. The quantity c(s) is a random vector of wavelet
coefficients for a set of different orientations at the same spatial location. For the 1D
examples shown subsequently, we use an orthonormal wavelet representation, whereas
for 2D applications to images, we use the steerable pyramid [51], an overcomplete
representation that divides the image into subbands localized in both scale and orientation.
A steerable pyramid can be designed with any number of orientation bands; for the work
reported here, we use d = 4 orientations. These coefficients then define a random image
via the inverse transform

I(p1,p2)=
∑
s∈T

d∑
k=1

ci(s)ψk;s (p1,p2), (8)

where (p1,p2) is a point in the 2D image plane, ck(s) is the kth element of c(s)
(corresponding to the kth orientation), and ψk;s corresponds to the multiresolution basis
element corresponding to orientation k, and centered at scale and position (m(s),p(s)).

An advantage of the steerable pyramid for image processing tasks (e.g., denoising) is its
translation invariance [51]. Achieving this invariance requires overcompleteness, implying
that there is redundancy in each vector of coefficients c(s). In principle, this can be easily
accommodated by taking ζ(s) in (6) to be a lower dimensional random vector, so that
D(s) is rectangular. For the work reported here, we have taken ζ(s) to be of the same
dimension as u(s) and hence c(s). This is not a strictly accurate model since it suggests
that there are more degrees of freedom in the c(s) than there should be; however, we have
found this formulation to be adequate in practice.

3.2. Properties of GSM Cascades

In this section, we examine the properties of random cascades of Gaussian scale
mixtures on trees. We show that they are well-suited to capturing the statistical behavior of
multiresolution coefficients from natural images.

3.2.1. Self-Similarity

Recall that self-similarity of a process means that its statistics are invariant (up to
a multiplicative constant) under any change of scale. Note that GSM tree processes, as
defined above, are generated by a discrete multiresolution transform as in Eq. (8). Such
processes can never be strictly self-similar. However, by appropriate choice of parameters,
we can ensure that they satisfy a weaker form of self-similarity, known as dyadic self-
similarity. In particular, dyadic self-similarity of the random image I(p1,p2) means that

I(p1,p2)
d= 2−kγ I(2k(p1,p2)) for all integers k, where γ is a parameter. From Eq. (8), it

can be shown that the synthesized process I(t) will be dyadically self-similar if and only if

the basis coefficients satisfy c(s)
d= 2γ [m(t)−m(s)]c(t) for all nodes s, t ∈ T . We guarantee

this condition by choosing D(s) = 2−γm(s) in Eq. (6) and taking the state process x(s) to

be stationary, so that x(s)
d= x(t) for all nodes s, t ∈ T . The parameter γ > 0 controls the

drop-off in the power spectrum of the synthesized process (e.g., [12]).
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3.2.2. Marginal Distributions

That the marginal densities of wavelet coefficients are well-fit by at least one
GSM family—namely, the generalized Gaussian with tail exponent α used as a fitting
parameter—is widely known (e.g., [21, 34, 37, 50]). In previous work [55], we have
demonstrated that other GSM families also provide good fits to wavelet marginals. For ex-
ample, Fig. 5 shows fits of the symmetrized gamma family to the histograms of marginal
distributions from various natural images. Fitting was performed by numerically minimiz-
ing the Kullback–Leibler divergence between empirical and theoretical histograms. The fits
are typically quite good; for instance, panel (d) shows one the worst fits that we obtained
from a range of natural images.

Thus, the GSM class provides a flexible framework for choosing probabilistic models
that capture real image statistics. As a result, it permits the use of GSM families that may
have analytical or computational advantages—that is, families for which the multiplier
distribution is easily expressed and manipulated for state and parameter estimation.

FIG. 5. Log histograms of GSM model fits (dotted line) to the log empirical histograms of steerable pyramid
coefficients (a single subband) applied to natural images. Parameters are computed by numerical minimization of
the Kullback–Leibler divergence.
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3.2.3. Self-Reinforcing Property

Recall that the tree-structured nature of the dynamics in Eqs. (6) and (7) imposes a
powerful Markov property on the wavelet coefficients c(s). In particular, any two vectors
of wavelet coefficients c(s) and c(t) are conditionally independent given x(s ∧ t), where
s ∧ t denotes the nearest common ancestor in scale of nodes s and t . In this section, we
exploit this property to show that the tree structure accounts for the drop-off in dependence
between a pair of coefficients as the spatial separation is increased.

The contours of joint distributions of wavelet coefficients from natural images show
a wide range of shapes, ranging from circular to a concave star-shape (see top row of
Fig. 6). Huang and Mumford [21] suggested that these joint contours might be modeled
with a 2D generalized Gaussian. Here we show that the dependency structure of a random
tree cascade accounts remarkably well for this range of behavior. In particular, we consider
a random cascade on a multiresolution tree with A(s) ≡ µI and B(s) ≡ √

1 −µ2 I ; and
h(x)� |x| which generates symmetrized gamma variables of index 0.5 (see Section 2.1).
The tree structure specifies the joint distribution of any pair of wavelet coefficients c(s)
and c(t).

Plotted along the second row of Fig. 6 are joint contours of log probability for pairs
of steerable pyramid wavelet coefficients [51] taken from the “mountain” image shown at
the top. In this example, we used a complex-valued transform, which incorporates both
even and odd phase coefficients (see [41]). Coefficient pairs are at the same spatial scale
and orientation, but with a varying spatial separation of 5 pixels. The third row shows the
same plots for coefficients of the simulated GSM random cascade. The shapes of the joint
contours of image data and simulated model are strikingly similar. First of all, consider
the pair of coefficients in quadrature phase (i.e., even and odd phase coefficients at the
same spatial location, corresponding to 5= 0). The joint contours for this quadrature pair
are very close to circular for natural images, as has been noted previously [61]. Likewise,
the model with 5 = 0 generates a pair of coefficients with circular joint contours. For
a pair of nearby coefficients (5 = 8), the contours are diamond-shaped, whereas they
become a concave star-shape for widely separated coefficients (5 = 128). Plotted in the
last two rows are joint conditional histograms that more explicitly illustrate the dependence
between the coefficient pairs. While all pairs are decorrelated, they exhibit a range of
statistical dependencies. The pairs in quadrature phase at the same spatial location are
highly dependent, as revealed by the familiar “bow tie” shape of the joint conditional
histogram. As the spatial separation5 increases, the dependence between coefficient pairs
drops off, until the widely separated pair (third column) are extremely close to independent.
This near independence is clear because the joint conditional histogram has almost constant
cross-section regardless of the value of the abscissa. Thus, a GSM cascade on a tree
accounts well for pairwise joint dependencies of coefficients over a full range of spatial
separations.

3.3. Parameters of GSM Cascades

An attractive feature of the wavelet cascade models developed here is that they are
specified by a rather small set of parameters. First of all, the matrices D(s) determine
any scale-to-scale variation in the process, and hence the scaling law. Secondly, the
choice of the nonlinearity h determines the form of the marginal distributions of wavelet
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FIG. 6. Examples of empirically observed distributions of wavelet coefficients, compared with simulated
distributions from the GSM gamma model. Top row: Mountain image. Second row: Empirical joint histograms
for the mountain image, for three pairs of wavelet coefficients, corresponding to basis functions with spatial
separations 5 = {0,8,128}. Third row: Simulated joint distributions for µ = 0.92, h(x) = |x|, and the same
spatial separations. Contour lines are drawn at equal intervals of log probability. Fourth row: Empirical conditional
histograms for the mountain image. Fifth row: Simulated conditional histograms for the GSM cascade. For these
conditional distributions, intensity corresponds to probability, except that each column has been independently
rescaled to fill the full range of intensities.
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coefficients, including tail behavior and kurtosis. Thirdly, the system matrices A determine
the dependency of the underlying premultiplier process x(s) from node to node.

Variations in D(s) control the amount of power at high frequencies relative to
low frequencies, and hence the overall smoothness of the process. The effect of such
changes is well-understood from studies of f−γ type Gaussian processes on multiscale
trees (e.g., [12, 60]). Here we investigate the effect of varying the nonlinearity h, as well as
the system matrices. In particular, we simulate a one-dimensional cascade (i.e., the wavelet
representation of a 1D process) with the parameters D(s) = 2−γm(s) and γ = 1.5; the
nonlinearity h(x) = (x+)α ; and system matrices A = µ; and B = √

1 −µ2, where the
choices of the parameter α and the scale-to-scale dependence µ were varied.

Figure 7 shows simulated random cascades for four combinations of the parameters
(α,µ) using the “Daub4” wavelet. The first three panels in each subfigure correspond
to three scales of the wavelet pyramid, ranging from coarse to fine. The fourth panel in
each subfigure corresponds to the synthesized GSM process. First considering the effect
of the parameter α, note that the wavelet coefficients in cascades with α = 2 (panels (c)
and (d)) exhibit sparse behavior, in that a few outlying values tend to dominate. The wavelet

FIG. 7. Simulated random cascades for various choices of the parameters. Heaviness of tails (and hence
impulsiveness of the process) increases with the parameter α, whereas the parameter µ controls the scale-to-scale
dependence. (a) α = 0.2; µ= 0.05; (b) α = 0.2; µ= 0.95; (c) α = 2; µ= 0.05; and (d) α = 2; µ= 0.95.



RANDOM CASCADES ON WAVELET TREES 105

coefficients of images also exhibit such sparsity, in that coefficients corresponding to edges
and other discontinuities will tend to dominate. Of course, for both natural images and
simulated cascades, this sparsity is a reflection of heavy tails in the densities/histograms. In
contrast, wavelet coefficients in the cascades corresponding to α = 0.2 (panels (a) and (b))
are distributed much more densely. In fact, the histograms of these coefficients, as well
as the behavior of the synthesized processes, are both quite close to Gaussian. Varying
the parameter µ also has a dramatic effect, particularly for the cascades with α = 2. With
µ= 0.05 (panels (a) and (c)), coefficients from scale to scale are close to independent, so
that high-valued coefficients do not tend to cluster in patterns through scale. In contrast,
the high scale-to-scale dependence for the cascades with µ= 0.95 manifests itself in trails
of large (in absolute value) coefficients through scale. One such trail is especially apparent
in panel (d). These trails through the scale space of wavelet coefficients lead to a localized
area of discontinuity and sharp variations in the synthesized process. Indeed, such trails
are the scale space signature of discontinuities and other structures of interest. In this
respect, our GSM tree models constitute a precise analytical model for the cascade behavior
exploited by successful image coders such as embedded zero-trees (e.g., [47]).

3.4. Relation to Previous Work on Image Modeling

In this section, we discuss relations between GSM cascades on wavelet trees, and
other approaches to image modeling. Simoncelli and colleagues [3, 48, 49] modeled the
dependency between wavelet coefficients with a conditionally Gaussian model, where
the variance of one wavelet coefficient depends on the absolute value of its neighbors.
This local model has proven useful in a variety of applications, including image coding,
denoising, and texture synthesis. Our GSM cascades capture these same dependencies, but
using an auxiliary multiplier variable that controls dependencies between coefficients. The
multiplier variable is defined on a multiscale tree, thereby inducing a global probability
distribution on the space of images.

Huang and Mumford [21] analyzed a variety of image statistics, documenting approxi-
mate scale invariance and a range of shapes in the joint contours of empirical histograms
of wavelet coefficients. Building on earlier work of Ruderman [44], Lee and Mumford [27]
developed a random collage model that exhibits both translational invariance and approx-
imate scale invariance. As discussed in Section 3.2.1, our GSM tree models satisfy an
approximate form of scale invariance. Moreover, the marginal distributions of GSMs are
highly kurtotic for many choices of multiplier variables, and particular choices ensure that
the statistics will be infinitely divisible (e.g., symmetrized gamma, α-stable.) As shown in
Fig. 6, our GSM tree models generate a range of behaviors in the joint contours of pairs of
wavelet coefficients. Thus, our GSM cascades capture many of the properties emphasized
by Mumford and colleagues in a parsimonious manner.

Our work is also related to the framework for non-Gaussian signal processing developed
by Baraniuk and colleagues [10] and applied to image denoising [43]. Their framework
uses a hidden discrete-state process defined on a tree to capture dependencies between
wavelet coefficients, which themselves are modeled as finite scale mixtures of Gaussians.
Accurately modeling the heavy tails and high kurtosis of wavelet marginal distributions
will typically require a large number of discrete states. The corresponding increase in the
number of parameters leads to models that may not provide a parsimonious description.
In contrast, we have emphasized the use of infinite parametric mixtures, which as we
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have shown, accurately capture both the heavy tails and high kurtosis of wavelet marginal
distributions with a small number of parameters.

4. ESTIMATION

We now turn to problems of estimation in GSM cascades on wavelet trees. Such
problems involve using data or observations to make inferences either about the state
(i.e., x(s) and u(s)) of the GSM or about unknown model parameters. Of particular interest
are estimates of the premultiplier process x(s), which determine the multiplier h(x(s)).
A significant benefit of the GSM framework is that conditioned on knowledge of the
premultiplier, a GSM model reduces to a linear-Gaussian system, which can be analyzed
by standard techniques. In the context of image processing, estimates of the premultiplier
are of potential use for a variety of applications (e.g., coding and denoising).

In this section, we develop a Newton-like algorithm for MAP estimation of the
premultiplier x(s) based on noisy observations. The cost of computing intermediate
quantities within each iteration scales linearly in problem size, because very fast algorithms
(see Section 2.2) can be applied to the underlying Gaussian-tree structure. Furthermore,
under suitable regularity conditions, this algorithm has a number of desirable properties,
including guaranteed convergence to a local optimum at a quadratic rate. We then show
how this algorithm can be used as the basis of a method for wavelet domain denoising. Next
we turn to the problem of estimating parameters that specify a GSM model and develop
a technique in which state estimates are exploited in intermediate computations. The
resultant technique is an approximate form of expectation-maximization algorithm [14],
where intermediate computation is again efficient due to the tree structure.

4.1. State Estimation

Here we consider the problem of estimating the premultiplier x(s) given noisy
observations

y(s)= h(x(s))� u(s)+ v(s), (9)

where v(s) ∼ N (0,R(s)) is observation noise. An interesting feature of this problem
is that unlike the standard linear observation problem (see Section 2.2)), the task of
estimating x(s) given noiseless observations (i.e., R(s) ≡ 0) is not trivial. Indeed, even
in the absence of v(s), the state u(s) effectively acts as a multiplicative form of noise. With
the noise v(s) present, we have an estimation problem that is nonlinear and includes both
additive and multiplicative noise terms.

Given that we have a dynamical system defined on a tree, optimal estimation can, in
principle, be performed by a two-pass algorithm, sweeping up and down the tree. For
the linear-Gaussian case described in Section 2.2, computation of the optimal estimate
(which is simultaneously the BLS and MAP estimate) is particularly simple, involving the
passing of conditional means and covariances only. In general, for nonlinear/non-Gaussian
problems, however, not only are the BLS and MAP estimates different, but neither is easy
to compute. However, the GSM models developed here have structure that can be exploited
to produce an efficient and conceptually interesting algorithm for MAP estimation.

To set up the estimation problem, let x denote a vector formed by concatenating
the state vectors x(s) at each node, and define the vector y similarly. Recall that the
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computation of the MAP estimate involves the solution of the optimization problem
x̂MAP � arg minx[− logp(x|y)]. Hereafter we simply write x̂ to mean this MAP estimate.
At a global level, our algorithm is a Newton-type method applied to the objective function
f (x) � − logp(x|y). That is, it entails generating a sequence {xn} via the recursion
xn+1 = xn + αnS−1(xn)∇f (xn), where the matrix S(xn) is the Hessian of f , or some
suitable approximation to it; and αn is a step-size parameter. This class of methods is
attractive (see [2]), because under suitable regularity conditions, not only is convergence to
a local minimum guaranteed, but also the convergence rate is quadratic. The disadvantage
of such methods, in general, is that the computation of the descent direction dn �
−S−1(xn)∇f (xn) may be extremely costly. This concern is especially valid in image
processing applications, where the dimension of the matrix S(xn) will be of the order 105

or higher.
One of the most important features of our model set-up is that the computation required

for each step of the Newton recursion can indeed be performed efficiently. More precisely,
the computation of the descent direction is equivalent to the solution of a linear MAR
estimation problem, allowing the efficient algorithm of [8] described in Section 2.2 to be
used for its computation. In order to demonstrate this equivalence, we rewrite the objective
function as f (x)= − logp(y|x)− logp(x)+ C using Bayes’ rule, where C is a constant
that absorbs terms not depending on x. The vector x is distributed as N (0,Px), where the
large covariance matrix Px is defined by the system matrices A and B in Eq. (7). As a
result, the log prior term can be written as 1

2 xT P−1
x x + C. Finally, since the data y(s) at

each node is conditionally independent of all other data given the state vector x, we can
write

f (x)= −
N∑
s=1

logp(y(s)|x(s))+ 1

2
xT P−1

x x +C.

From this representation of f , it can be seen that the Hessian of f will have the
form ∇2f (x) = P−1

x + D(x), where D(x) is a block diagonal matrix, with each block
corresponding to a node s. With this form of the Hessian, the descent direction dn is
given by dn = −[P−1

x +D(xn)]−1∇f (xn). Comparing this form of the descent direction
to the linear-Gaussian problem given in Eq. (4), it is clear that the two problems are
equivalent with appropriate identification of data terms, observation matrix, and noise
covariance. Further details of these identifications, as well as calculation of the Hessian,
the gradient ∇f (x), and D(x) can be found in Appendix B.

Note that the overall structure of this MAP estimation algorithm is of a hybrid form.
The Newton-like component involves an approximation of the objective function f that
is performed globally on the entire graph at once. Local graphical structure is exploited
within each iteration where the descent direction is computed by extremely efficient and
direct algorithms for linear multiscale tree problems [8]. Thus, the complexity per iteration
scales as O(d3N), where N is the number of nodes, and d is the number of orientations.
As a Newton method, quadratic convergence is guaranteed for suitably smooth choices
of the nonlinearity. This method is distinct from extended Kalman filtering (e.g., [24]),
a technique for approximate estimation of nonlinear dynamic systems, because the
objective function is approximated globally on the entire state trajectory at once.

Another important characteristic of the GSM framework is that conditioning on the
premultiplier x(s) reduces the model to the linear-Gaussian case. That is, when the
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multiplier is known, the observations (9) are of the standard linear-Gaussian form.
If, indeed x(s) were known exactly, we would have that Pc(s) = H [x(s)]Pu(s)H [x(s)],
where Pu(s) = D(s)DT (s) is the covariance of u(s), and the matrix H [x(s)] �
diag {h(x(s))}. This suggests a suboptimal estimate in which we replace x(s) by x̂(s),
namely

ĉ(s)= P̂c(s)
[
P̂c(s)+R(s)

]−1
y(s), (10)

where P̂c(s) = H [x̂(s)]Pu(s)H [x̂(s)]. It is this form of wavelet estimator that we use in
our application to image denoising in Section 5.

4.2. Relation to Other Estimators

There are a number of interesting links between the GSM tree estimator, developed
here, and previous approaches to wavelet denoising. In particular, there is a large class
of pointwise approaches to denoising, so called because they operate independently on
each wavelet coefficient. The link to the GSM framework comes from the Bayesian
perspective, in which many of these methods can be shown to be equivalent to MAP or
BLS estimation under a particular kind of GSM prior to the marginal distribution. For
example, soft shrinkage [15], a widely studied form of pointwise estimate, is equivalent to
a MAP estimate with a certain GSM prior, namely, a Laplacian or generalized Gaussian
distribution with tail exponent α = 1 (see [4]). Specifically, suppose that the prior on x
has the form px(x) ∝ exp(−(λ/2)|x|) and that y is an observation of x contaminated by
Gaussian noise of variance σ 2. Under these assumptions, it is straightforward to verify that
the MAP estimate is given by

x̂MAP = [y − sign(y − τ )τ ]+, (11)

where τ � λσ 2/2. For the purposes of comparison, we apply this type of soft thresholding
to image denoising in Section 5. Additional relations between thresholding and MAP
estimators are discussed in [37]. It is shown in [50] that by varying the tail parameter α
of a generalized Gaussian prior, it is possible to derive a full family of pointwise Bayes
least-squares estimators.

The GSM framework can also be related to the James–Stein estimator (JSE), a technique
with an interesting and often controversial history. The JSE applies to the problem of
estimating the fixed mean c of a multivariate normal distribution from noisy observations
y = c+v, where v ∼N (0, σ 2I) and the length of the vector quantities is p. The maximum
likelihood estimate of c, which is simply the data y itself, was long thought to be best in
the sense that no other estimator could achieve a lower mean-squared error (MSE) for all
values of c. However, in 1961 James and Stein [23] introduced an estimator of the mean for
dimension p ≥ 3 that achieves a uniformly lower MSE for all values of c. The empirical
Bayesian derivation for the JSE (see, e.g., [16]) provides the link to GSMs. In the
empirical Bayes formulation, c is modeled as a random quantity, distributed according to
N (0, τ 2). If the quantity τ were known, then the Bayes least-squares estimate (BLSE) of
c given y would be given by ĉBLS = [(τ 2)/(τ 2 + σ 2)]y . For τ unknown, we can imagine
trying to mimic the BLSE by estimating τ 2, and then substituting this estimate into the
formula for the BLSE. In fact, the JSE proceeds more directly by estimating the quantity
σ 2/[τ 2 + σ 2] as (p − 2)σ 2/‖y‖2, which can be shown [26] to be an unbiased estimate.
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Substituting this estimate into the BLSE formula yields the positive-part JSE, defined as
ĉ= ([‖y‖2 − (p− 2)σ 2]+]/‖y‖2)y .

The link to Gaussian scale mixtures is clear. Under the empirical Bayesian interpretation,
the JSE decomposes the unknown mean c into two parts c = τu, where u∼ N (0, I ), and
τ is an unknown but fixed quantity. That is, the JSE decomposes the mean into a type of
Gaussian scale mixture, involving a Gaussian component u and an unknown multiplier τ .
For the Gaussian scale mixtures discussed in this paper, we typically viewed τ as a random
variable and assigned it a prior under which we computed the MAP estimate. The JSE is
very similar, except that it does not assign a prior to τ , and it performs an operation that
is very close to ML estimation of σ 2/[τ 2 + σ 2]. Finally, both the JSE and the GSM tree
method replace the variance in standard linear-Gaussian equations (e.g., in Eq. (10)) by an
estimated variance.

Although not always explicitly stated, many other approaches to image denoising
and image coding rely on a GSM-type decomposition. The roots of this approach lie
in the image coding literature, where researchers in the 1970s proposed dividing DCT
coefficients into groups according to their variance [6]. Similarly, Lee [28] proposed
an enhancement technique that used local variances in the pixel domain, which is now
implemented in the MATLAB wiener2 routine. More recent approaches also involve
modeling wavelet coefficients as scale mixture distributions (e.g., [5, 9, 29, 30, 35, 36, 52]).
Another approach is to model dependency between the variance of a subband coefficient
and its neighbors directly, using a conditionally Gaussian model [3, 48, 49]. Some models
permit the variance parameter to assume only a discrete set of values (e.g., [29]), whereas
others allow a continuum of values. The latter models effectively correspond to infinite
mixture models, similar to those emphasized in the current paper.

A step common to all these techniques, whether for denoising or coding, is to estimate
the multiplier or variance. Conditioned on the variance estimate, coefficients can be
denoised by the standard LLS estimator in Eq. (10). Many approaches use a maximum
likelihood (ML)-like estimate for the variance parameter, based on a local neighborhood
of coefficients. In such a ML framework, the variance parameter is viewed as an unknown
but fixed quantity, without a prior distribution. These forms of estimator are thus very
close to the James–Stein estimator discussed previously. More recently, Mihcak et al. [36]
assumed an exponential distribution on the variance parameter and performed a local and
approximate form of MAP estimation. This corresponds to a local GSM model using a
symmetrized gamma distribution with parameter α = 1. Overall, the GSM tree framework
presented in this paper represents an extension from local to global models. Our models
allow an arbitrary choice of the prior on the multiplier, which is controlled by the choice of
the nonlinearity h. Moreover, the GSM tree algorithm computes the MAP estimate based
on a global prior model on the full multiresolution representation. This global prior, which
incorporates the strong self-reinforcing properties among wavelet coefficients, is induced
by the multiscale tree structure.

In the context of the underlying tree, our GSM cascade models are closely related to
the non-Gaussian modeling framework of Baraniuk and colleagues [10]. In their models,
a multiscale, discrete-state multiplier process defined on a tree controls the dependency
among wavelet coefficients, which are modeled as finite scale mixtures of Gaussians. Such
models have proven useful in various applications, including image denoising [43]. For
finite mixtures in which the multiplier variable takes on discrete values, there exist direct



110 WAINWRIGHT, SIMONCELLI, AND WILLSKY

recursive algorithms for computing the marginal distributions of the discrete multiplier
states conditioned on the data. The BLS estimate of wavelet coefficients given noisy
observations can be obtained by taking expectations over these marginal distributions
(see [10]). However, the computational complexity of computing marginal distributions
scales exponentially as ∼Md , where M is the number of multiplier states and d is the
dimension of the multiplier. In practice, therefore, both the number of states and dimension
of the multiplier may be limited; for example, the denoising algorithm of [43] uses a low
and high variance state (M = 2) and a scalar multiplier at each node (d = 1). A small
number of multiplier states means that the models may not properly capture the non-
Gaussian tail behavior and high kurtosis of wavelet marginals, whereas a low multiplier
dimension will restrict the modeling of dependencies between orientations. In contrast,
our GSM modeling framework emphasizes infinite scale mixtures of Gaussians. As we
have illustrated, these infinite mixtures accurately capture the non-Gaussian tail behavior
and high kurtosis of wavelet coefficients. Regardless of the particular GSM used, the
complexity of our algorithm scales as ∼d3, where d is the dimension of multiplier vector
at each node.

4.3. Parameter Estimation

We now address the problem of estimating the parameters of a GSM random cascade
model. Recall that a GSM model is specified by a small set of quantities, namely, the
matrices D(s) that control the scaling law; the pointwise nonlinearity h; and the system
matrices A and B that control the MAR dynamics. Determining the matrices D(s)
amounts to estimating the variance, and hence can be done with standard methods. The
nonlinearity h controls the marginal distributions, so that estimating h is similar to fitting
a parameterized distribution to the marginal histograms of wavelet coefficients, again a
fairly standard procedure. The novel aspect of our GSM models are the system matrices A
and B that control the scale-to-scale dependence of the underlying premultiplier process,
and it is on the estimation of these quantities that we focus here. In particular, let θ be
a vector of parameters that specify these system matrices, so that we write the stationary
MAR dynamics as

x(s)=A(θ)x(sγ̄ )+B(θ)w(s). (12)

The task is to estimate the parameter vector θ on the basis of noisy observations given
by Eq. (9).

We begin by observing that this set-up shares a characteristic common to many parame-
ter estimation problems: namely, the estimation of θ would be relatively straightforward
given the premultiplier x. Given this property, the parameter estimation problem lends
itself to the use of the expectation-maximization (EM) algorithm [14], a technique fre-
quently used to obtain the ML estimate of θ . Recall that the ML estimate is given by
θ̂ML = arg maxθ∈;[logp(y; θ)], where; is the domain of θ . In accordance with its name,
the EM algorithm alternates between taking expectations over a set of “hidden” variables x
and then performing maximization of the resulting function. In particular, the E-step of
iteration n involves taking the expectation of the augmented log likelihood logp(x,y; θ)
with respect to the conditional density p(x|y; θn−1), where θn−1 is the parameter estimate
from the previous iteration. In the standard version of the EM algorithm, the M-step entails
finding the global maximum of the resulting function. However, there exist other versions
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of EM (often called GEM for generalized EM [14]) in which the M-step consists of taking
gradient step.

A disadvantage of EM-type algorithms is that calculating the expectation over the
conditional density p(x|y; θn−1) can be difficult. This problem is often encountered for
continuous-valued variables, where the integrals are typically intractable. One approach
in such cases is to develop an approximation q(x|y; θn−1)≈ p(x|y; θn−1) and perform an
approximate E-step by taking expectations with respect to the distribution q , whose form
is chosen to make such expectations comparatively easy to compute. It can be shown that
such approximate methods will still converge, although they need not converge to a local
maximum of the log likelihood, but rather to a local maximum of a lower bound on the
likelihood [25].

We have developed such an approximate EM method for parameter estimation in GSM
systems, where the approximation q to the conditional density is obtained from the
algorithm described in Section 4.1. It should be noted that even with an approximate form
of the density, taking the expectation is not, in general, a straightforward task. Again the
problem stems from the high dimensionality of the conditional density—in applications
such as image processing, it will be on the order of 105 or 106. Nonetheless, we have
found that the tree structure of the problem can again be exploited to great advantage. In
particular, we make use of highly efficient algorithms for Gaussian likelihood calculation
on multiscale trees in order to perform gradient ascent. 6 This approximate EM algorithm
itself is developed in Appendix C. Thus, by exploiting the tree structure, we obtain a
tractable technique for estimating the parameters specifying the system matrices.

5. ILLUSTRATIVE RESULTS

In this section, we present some illustrative results of the state estimation algorithm
developed in the previous section. We focus, in particular, on the problem estimating
wavelet coefficients c(s) on the basis of noisy observations y(s). The wavelet coefficients
are generated by GSM tree dynamics, and hence lie at the nodes of a multiresolution tree.
However, to illustrate the basic properties of our estimator, we first consider its application
to the estimation of 1D sequence of scalar-valued coefficients c(s) from a corresponding
sequence of measurements. These sequences can be thought of as the successive values of
one of the components of c(s) and y(s) on a single coarse-to-fine path in a tree, such as
that in Fig. 3. Following this 1D example, we illustrate the application of our full algorithm
to perform image denoising on a multiresolution quadtree of coefficients.

5.1. Examples in 1D

We first consider a scalar GSM process obtained by sampling a GSM tree process
along the unique tree path beginning at the root node and moving down the tree (from
parent to child), terminating at a specified fine-scale node. Such a sample path reveals
the scale-to-scale dependence inherent in a GSM tree process. We generate the process
on the tree with dynamics of the form x(s) = µx(s − 1) + √

1 −µ2w(s) and c(s) =
h(x(s))u(s), where u(s) and w(s) are distributed as N (0,1) at each node. We estimate

6 Thus, the overall procedure actually exploits tree structure twice: once to compute the density q(x|y, θn−1)

using the estimation algorithm of Section 4.1 and again in order to calculate the required expectation.
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FIG. 8. Estimation of a 1D GSM processes based on observations contaminated by white Gaussian noise.
(a) GSM process generated with h(x)� exp(1.5x). (b) GSM generated with h(x)� [x+]3.

c(s) = h(x(s))u(s) on the basis of the noisy observations given in equation (9), with
R(s)= σ 2.

Shown in Fig. 8 are sample paths from two different GSM processes, as well as estimates
based on noisy observations. The sample paths were generated with µ = 0.95, and the
nonlinearities h(x)= exp(1.5x) for panel (a) and h(x)= (x+)3 for panel (b). Observe that
the sample paths of both GSM processes alternate between regions of low amplitude values
and regions of high amplitude process values. Changes in the premultiplier x(s) cause the
transition from one region to another. In both examples, the signal-to-noise ratio (SNR) of
the noisy observations was on the order of 2.5 dB, where the SNR of the observations is
defined as SNRobs = 10 log10(var[c(s)]/σ 2). For any estimator c̄(s), we can define an SNR
for comparison as SNRest = 10 log10(var[c(s)]/var[c̄(s)− c(s)]). Recall that our estimator
of c(s) consists of two steps: first computing the MAP estimate of x(s) and then computing
the mean of c(s) conditioned on the data y(s) and the estimate x̂(s). As a result, a fair
comparison is to see how the SNR enhancement of our estimator compares to that of an
“ideal” case in which we know x(s) exactly (so that the corresponding estimate of c(s)
is obtained node-by-node via standard linear estimation). For the example in Fig. 8a,



RANDOM CASCADES ON WAVELET TREES 113

FIG. 9. (a) Empirical histograms of original wavelet coefficients, estimated coefficients, and noisy
observations, all plotted on a semilog scale. (b) Joint histogram of absolute value of noisy observations
y(s) = c(s) + v(s) versus absolute value of estimates ĉ(s). The overlaid solid line is the conditional mean
E[|ĉ(s)| | |y(s)|].

our estimator achieves an SNR of 9.71 dB, while the unachievable ideal SNR is less
than 0.50 dB higher. In addition to this quantitative comparison, it is also worthwhile to
comment on the qualitative properties of the estimator. Note that for both GSM process,
the estimator effectively suppresses noise in regions where the multiplier h(x(s)) is of
low amplitude, while simultaneously preserving peaks in high amplitude regions. Thus,
the estimator behaves in a way well-suited for data with the characteristics of natural
imagery, i.e., for which it is desirable to smooth low variance regions, while simultaneously
preserving edges and other discontinuities of interest.

Figure 9 illustrates statistical properties of the estimator. Plotted in Fig. 9 are empirical
histograms of the original wavelet coefficients c, the noisy observations y , and the
estimates ĉ. Observe that the histogram of the original values shows the high kurtosis and
heavy tails that are typical of a GSM. In contrast, while the noisy histogram of observations
retains the heavy tails, the noise contamination removes the high kurtosis and makes it
appear roughly Gaussian near the origin. The estimation routine restores the high kurtosis,
as shown in the histogram of estimated coefficients.

Note that the estimate ĉ(s) at any node s can be viewed as a random variable given by
a function ĉ(s) =Gs(y) of the vector of data y. Plotted in panel (b) is a joint conditional
histogram of noisy observations y(s) and estimates ĉ(s) for a given node s. In particular,
each column in this figure corresponds to the distribution of |ĉ(s)| conditioned on the
corresponding value of |y(s)| represented on the abscissa. Note that we always have
|ĉ(s)| ≤ |y(s)|, since ĉ(s) is obtained multiplying y(s) by an adaptive factor always less
than one. Therefore, all parts of the histogram in panel (b) lie below the diagonal. For data
|y(s)| near zero, the estimate also tends to cluster near zero. At the other extreme, as the
data become large in absolute value, then |ĉ(s)| clusters near |y(s)|. The overlaid solid line
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in panel (b) corresponds to the mean of the estimator conditioned on different values of
the data. It shows that in an average sense, this estimator behaves similarly to a form of
shrinkage or soft thresholding (e.g., [15, 50]). That is, the estimator preferentially shrinks
smaller observation values while modifying larger ones much less. Based on the discussion
in Section 4.2, this is not surprising since many forms of thresholding, when interpreted in
a Bayesian framework, correspond to a pointwise GSM model. Of course, it is important to
emphasize that the GSM tree estimator is similar to thresholding only in this average sense.
Thresholding is a deterministic operation applied pointwise to each coefficient, whereas
our estimate of each coefficient is based on the full vector of data y, using a global prior
model that incorporates the strong cascade dependencies among coefficients.

5.2. Image Denoising

Here we illustrate the application of the GSM-tree framework to denoising natural
images, using the steerable pyramid [51]. This is an overcomplete representation that
decomposes the image into subbands localized in both scale and orientation. In all cases,
we use a decomposition with four orientations, which corresponds to a state dimension of
d = 4. Therefore, lying at each node of a quadtree are the two 4-vectors x(s) and u(s),
which are used to model the 4-vector of wavelet coefficients c(s). By the notation ck(s),
we mean the coefficient at scale s and orientation 7 k. We refer to a collection of all
coefficients at the same scale and orientation (but different spatial positions) as a subband.
Noisy observations of the wavelet coefficients are given by Eq. (9), where R(s)= σ 2I .

Recall that the GSM-tree algorithm first computes the MAP estimate of the premulti-
pliers x(s), which it then uses to compute denoised wavelet coefficients via Eq. (10). We
have experimented with different choices of the nonlinearity h, including the previously
discussed families {exp(x/α) | α > 0} and {(x+)α|α ≥ 0}. As a Newton-like method, con-
vergence of the algorithm tends to be rapid for sufficiently smooth (i.e., C2) choices of this
nonlinearity. The computational cost per iteration scales linearly in the number of wavelet
coefficients. Given the denoised multiresolution coefficients c(s), the clean image is ob-
tained by inverting the multiresolution decomposition.

We compare the denoising behavior of the GSM-tree algorithm to a number of other
techniques. With the exception of one algorithm (MATLAB’s adaptive filtering), all
techniques are applied to the steerable pyramid decomposition, and involve an estimate
of the subband variance. This estimate is given by σ 2

c = [var(y(s))− σ 2
n ]+, where σ 2

n is
the variance of the noise in the subband (which can be computed directly from σ ). All of
the algorithms compared here are semiblind, in that we assume that the noise variance σ 2

is known. The techniques to which we compare our algorithm here are:

1. Wiener subband technique: for each subband, compute denoised coefficients as
ĉ(s)= σ 2

c [σ 2
c + σ 2

n ]−1y(s), where σ 2
c is the variance of the subband, and σ 2

n is the noise
variance in that subband.

2. Adaptive: MATLAB’s adaptive filtering routine called by wiener.m: it performs
pixel-wise Wiener filtering with a variance computed from a local 5 × 5 neighbor-
hood (see [28]).

7 Here the orientations k = 1, . . . ,4 are ordered from vertical through to the −45◦ orientation.
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3. Soft thresholding: [15] For each subband, compute the soft threshold given in
Eq. (11), where the threshold t = λσ 2

n /2 is determined by the noise variance σ 2
n and the

scale parameter λ of a Laplacian distribution fit to the subband marginal.

We have applied these algorithms to a variety of natural images. In Fig. 10, we depict
representative results for the 256 × 256 Einstein image. Shown in Table 2 are the SNR
in decibels of the denoised images for all algorithms, based on original noisy images
at four levels of SNR. For all levels of SNR, the GSM tree algorithm is superior to
other techniques. Figure 10 depicts cropped denoised images for the Einstein image
Fig. 10a, on the basis of the noisy observations (SNR 4.80 dB) shown in Fig. 10b.
Figures 10c–10f show the results of the Wiener subband denoising, MATLAB adaptive
filtering, thresholding, and the tree algorithm, respectively.

Although the GSM-tree algorithm is superior to these other techniques, it is important
to note that the method presented here is not as good as we ultimately expect to be able
to achieve. The reason can be traced directly to one of the well-known limitations of tree
models [22], namely that nodes corresponding to nearby spatial positions in the original
image may be much farther apart in terms of tree distance (for example, variables x(4)
and x(5) in Fig. 4). As a result, although tree models are very successful at capturing
longer range dependencies, they may improperly model the dependency between certain
pairs of nearby variables, which can lead to artifacts. In this context, it is worth noting that
Strela et al. [52] have recently obtained excellent denoising results by using a local GSM
model that avoids the problems associated with a tree structure.

There are several ways to address the problem of these boundary artifacts while retaining
a global probability model. One approach is the so-called overlapping tree framework
of [22], which retains the tree structure but uses nodes that overlap spatially. Another
is to relax the requirement of a tree structure by introducing graphical connections
between wavelet coefficients that are spatially close. The addition of extra connections
between spatially adjacent nodes should increase modeling power significantly. However,
it also presents difficult algorithmic issues for estimation, since we can no longer exploit
extremely fast tree-based algorithms. Nonetheless, there exist a number of alternative and
emerging approaches, including techniques from numerical linear algebra [13], as well
as our recent work on estimation in graphs with cycles [58]. Other directions for future
work, including exploiting the phase information provided by complex-valued transforms
are discussed briefly in the following section.

TABLE 2
Denoising Results (SNR in dB) for 256 × 256 Einstein Image Using a Four-Orientation

Steerable Pyramid

Noisy Wiener subband wiener2.m Soft threshold GSM tree

1.59 9.28 10.19 10.11 10.54
4.80 10.61 11.86 11.47 12.31
9.02 12.58 13.37 13.24 14.68

13.06 14.96 14.23 15.41 16.83

Note. The original noisy SNR is given by 10 log10[var(I)/σ 2], and the cleaned SNR is given by
10 log10[var(I)/var(Î − I)], where I and Î denote the original and denoised images respectively.
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FIG. 10. Cropped denoising results using a four-orientation steerable pyramid. (a) Original image. (b) Noisy
image. (c) Wiener subband denoising. (d) MATLAB adaptive. (e) Soft thresholding. (f) GSM-tree algorithm.
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6. CONCLUSION

In this paper, we have developed a semiparametric class of non-Gaussian multiscale
stochastic processes defined by random cascades on trees of multiresolution coefficients.
As we have pointed out, although our methodology has strong intellectual ties to a variety
of different image models and methods for image analysis, it also differs in fundamental
and important ways. First of all, the power of our modeling framework is demonstrated
by its ability to accurately capture both the approximate decorrelation and dramatic non-
Gaussian dependencies of wavelet coefficients of natural images. This is achieved by
decomposing wavelet coefficients into two underlying stochastic processes: a Gaussian
white noise process is mixed with a non-Gaussian multiscale process that captures self-
reinforcing dependencies. A second significant feature of our modeling framework is its
parsimony: only a very small set of parameters are needed to specify a GSM wavelet
cascade. This suggests that fitting such models from data is a far better-posed problem than
other approaches which require many more degrees of freedom to be specified. Thirdly,
our modeling framework is sufficiently structured to permit efficient application to image
processing. In particular, we showed how very fast tree algorithms can be used to perform
estimation and established their effectiveness in application to image denoising.

A number of extensions to the modeling framework presented here are possible. First,
previous empirical work [55] shows that a small set of multipliers is sufficient to describe a
local neighborhood of wavelet coefficients. In contrast, models described in this paper use
a number of multipliers equal to the number of wavelet coefficients. Estimating the order
of the underlying multiplier process, though a challenging problem, is an important one in
order to develop models of even more power. Secondly, in the current application, we have
considered only fixed parametric forms of nonlinearity. Using a nonparametric form of
this nonlinearity would allow the model to further adapt to the image under consideration,
with no loss of efficiency. Thirdly, using the information about phase provided by a
complex-valued multiresolution decomposition (see, e.g., [41]) should lead to even better
image models. Finally, in order to overcome the well-known limitations of tree-structured
models, we are investigating GSM processes defined on graphs with cycles (i.e., non-trees).
The addition of extra edges to the graph leads to more powerful models, but also presents
new challenges in performing estimation.

APPENDIX A: PROOFS ON GAUSSIAN SCALE MIXTURES

We collect here proofs of various results stated about Gaussian scale mixtures.

A.1. Proof of Theorem 1

Combining the following lemmas give us the proof of Theorem 1.

LEMMA 1. Consider a GSM variable with representation x
d= √

zu, and let φc(t) and
ψz(t) be the characteristic function and Laplace transform of c and z respectively. Then
φc(t)=ψz(t2/2).

Proof. Apply iterated expectation to the representation of φc(t) = E[exp(jct)], and
use the fact that the characteristic function of a N (0,1) variable is exp(−t2/2).
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LEMMA 2. A function g on (0,∞) is the Laplace transform of a probability
distribution F ⇐⇒ g is completely monotone and g(0)= 1.

Proof. See Section XIII; 4 of Feller [17].

A.2. Proof of Theorem 3

THEOREM 3. Let x
d= √

zu be a GSM with characteristic function φc, and let the
mixing variable z have density pz(u). Define f (v) � pz(v)/

√
v, and suppose that∫ ∞

0 f (v) dv <∞, in which case we can consider a random variable v with the density f .

Then the GSM y
d= (1/√v)u has density py(y)∝ φcy .

Proof. We write

φc(t)=
∫ ∞

−∞

{∫ ∞

0

1√
2πz

exp

(
−u

2

2z

)
pz(z) dz

}
exp(iut) du

=
∫ ∞

0

{∫ ∞

−∞
1√
2πz

exp

(
−u

2

2z

)
exp(jut) du

}
pz(z) dz

=
∫ ∞

0

√
z exp

(
−z t

2

2

)
pz(z)√
z
dz, (13)

where we have used Fubini’s theorem, and the fact that the characteristic function of a
N (0, z) variable is exp(−zt2/2). From the final equation, it is clear that if v has density
f (v)� pz(v)/

√
v, then y � 1√

v
u is a GSM with density py(y)∝ φc(y).

A.3. Proof of Proposition 1

The following classical result is required in the proof:

LEMMA 3. For 0 < α < 1, let Gα be the distribution function of a positive α-stable
variable. Then as x→ 0, we have ex

−α
Gα(x)→ 0.

Proof. See Feller [17, Section XIII; 6].

Equipped with this result, we can now prove the proposition:

PROPOSITION 1. The generalized Gaussian family has the representation y
d=

(1/
√
v)u, where in particular, v has the density proportional to pα/2(v)/

√
v, and pα/2

is the density of a positive α/2-stable variable.

Proof. We need to establish existence of the integral
∫ ∞

0 (pα/2(u)/
√
u) du, where

pα/2(u)= (d/du)Gα/2(u). Integrating by parts, we obtain

∫ ∞

0

pα/2(u)√
u

du= Gα/2(u)√
u

∣∣∣∣
∞

0
+ 1

2

∫ ∞

0

Gα/2(u)

u3/2
du.

Examining the first term on the right side, clearly limu→∞(Gα/2(u)/
√
u) = 0 since

Gα/2(u)≤ 1 for all u ∈ R. Otherwise, we write

Gα/2(u)√
u

= [
eu

−α/2
Gα(u)

][e−u−α/2
√
u

]
.
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By inspection, the second term in square brackets tends to zero as u→ 0; using Lemma 3,
the first term in square brackets also tends to zero. By the product theorem for limits, we
have limu→0(Gα/2(u)/

√
u)= 0. As for the second term in the integration by parts, similar

arguments show that the integral exists.

APPENDIX B: STATE ESTIMATION

Here we explicitly compute the gradient and Hessian of the objective function f (x)�
− logp(x|y). To begin, we write

− logp(y|x)= 1

2

N∑
s=1

{
log det[B(x(s))] + yT (s)B−1(x(s))y(s)

} +C,

where the matrix B(x(s)) � H(x(s))Pu(s)H(x(s)) + R(s) is the covariance of y(s)
given x(s). Here Pu(s) is the covariance of u(s), and the matrix H(x(s))� diag{h(x(s))}.
Using this expansion, we can write

f (x)= 1

2

N∑
s=1

{
log det[B(x(s))] + yT (s)B−1(x(s))y(s)

} + 1

2
xT P−1

x x +C, (14)

where Px is the covariance matrix of x, and C absorbs terms not dependent on x. Note
that P is defined by the system matrices A(s) and Q(s) at each node s (see Eq. (7)). We
compute the derivative of f with respect to x

(∇f (x))(s;i) = 1

2
trace

[
B−1 ∂B

∂x(s; i)
]

− yT (s)B−1 ∂B
∂x(s; i)B

−1y(s)+ 1

2

[
P−1

x x
]
(s;i),

where

∂B
∂x(s; i) = ∂H(x(s))

∂x(s; i) Pu(s)H(x(s))+H(x(s))Pu(s)
∂H(x(s; i))
∂x(s; i) .

Here the notation (s; i) refers to the ith element of the vector x(s) at node s, and ∂/∂x(s; i)
refers to the partial derivative with respect to this element. Similarly, the Hessian can be
computed as ∇2f (x)= P−1

x +D(x), where D(x) is a block diagonal matrix.
We now show that the computation of the descent direction dn � −[P−1

x + D(xn)]−1

×∇f (xn) corresponds to the canonical form of a linear-Gaussian problem shown
in Eq. (4). In particular, we let P−1

x be the inverse covariance matrix in both cases; we
set the inverse noise covarianceR−1 ≡D(xn); and the observations matrix C ≡ I . Finally,
we define a vector of fictitious data as y = −D−1(xn)∇f (xn). Note that we have assumed
here that the blocks of D(xn) are positive definite to ensure that is constitutes a valid
covariance. Satisfying this condition may require modifying D, in which case the method
is not exact Newton but a Newton-like method.
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APPENDIX C: DETAILS OF PARAMETER ESTIMATION

C.1. Initial Set-Up

In this section, we provide the details of estimating the parameter vector θ in the
model (12) given the noisy wavelet coefficients y(s) in Eq. (9). We approximate the
conditional density p(x|y; θ) by expanding the negative log conditional density in a Taylor
series about the MAP estimate x̂

f (x; θ)≈ f (x̂; θ)+ 1

2
(x − x̂)′

{
P−1

x (θ)+D(x̂)}(x − x̂), (15)

where we have used the fact that ∇f (x̂; θ) = 0 by definition of the MAP estimate.
Here the matrix D(x̂) is the one that appeared earlier in the Hessian of f . This Taylor
series expansion yields the approximation p(x|y; θ) ≈ q(x|y; θ)� N (x̂,C(x̂; θ)), where
the covariance is given by C(x̂; θ) � {P−1

x (θ) + D(x̂)}−1. At iteration n, we use the
approximating density q(x|y; θn−1) to perform approximate E-step by calculating the
expectation of the augmented log likelihood L(θ; θn) � Eq(x|y;θn)[logp(x,y; θ)]. It is
straightforward to show [25] that this function is a lower bound on the log likelihood
p(y; θ). Like many generalized EM methods, instead of performing an exact maximization
of L at the M-step, we will simply take a gradient step. This generates a series of parameter
estimates {θn} via the recursion θn = θn−1 +βnS(θn−1; θn−1)∇L(θn−1; θn−1) where S is
the Hessian of L (or some approximation to it); and βn is a step size parameter.

To perform these updates, we need to calculate the gradient ∇L. The ith element of this
gradient is given by

∂L

∂θi
= Eq

[
∂

∂θi

(
logp(x; θ))

]
,

where we have used the dominated convergence theorem to interchange expectation
and differentiation, and the fact that logp(y|x; θ) does not depend on θ . Recall
that for a Gaussian process x ∼ N (0,Px), we have − logp(x; θ) = (N/2) log(2π) +
1
2 log detP(θ) + 1

2 xT P−1(θ)x, where we write P ≡ Px for simplicity in notation. The
partial derivative with respect to θi is given by

− ∂

∂θi

[
logp(x; θ)] = 1

2
trace

(
P−1 ∂P

∂θi

)
− 1

2
xT P−1 ∂P

∂θi
P−1x.

We calculate the ith element of the gradient ∇L by taking the expectation of of
−(∂/∂θi)[logp(x|θ)] with respect to this approximating normal density q(x; θn) ≡
N (x̂,C(x; θn)), where the covariance C was defined earlier. Following some elementary
calculations, we obtain

∂L

∂θi
= 1

2
trace

[
P−1 ∂P

∂θi

]
− 1

2
x̂′P−1 ∂P

∂θi
P−1x̂ − 1

2
trace

[
CT P−1 ∂P

∂θi
P−1

]
. (16)

C.2. Gradient Evaluation via Likelihood Calculations

Although Eq. (16) is analytically straightforward, its actual computation is non-trivial.
Recall that the matrices P and C , as well as their inverses and derivatives, are all N ×N ,
where N is very large (say 105). This large dimension renders infeasible any brute force
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approach. However, the tree structure can be exploited to develop a very fast algorithm
for likelihood calculation of MAR models (see [59]), consisting of a single upward sweep
from leaves to root.

This algorithm for computing MAR likelihoods turns out to be useful here. By applying
the matrix inversion lemma to Eq. (16) and simplifying, we have

∂L

∂θi
= −1

2
x̂′P−1 ∂P

∂θi
P−1x̂ + 1

2
trace

[(
P +D−1)−1 ∂P

∂θi

]
.

For any covariance matrix �, let J (u;�)� 1
2 trace log(�)+ 1

2 uT �−1u be the correspond-
ing Gaussian likelihood. With this definition, it can be shown be shown that

∂L

∂θi
(x̂)= ∂J

∂θi
(P ; x̂)− ∂J

∂θi
(P ; 0)+ ∂J

∂θi
(P +D−1; 0).

Thus, the gradient computation can be performed by taking derivatives of standard
Gaussian likelihoods on the tree. Similarly, this structure permits efficient computation
of elements of the Hessian.
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