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Abstract

This paper uses a multiscale statistical framework to estimate groundwater travel times and to derive conditional travel time

probability densities. In the applications of interest here travel time uncertainties depend primarily on uncertainties in hydraulic

conductivity. These uncertainties can be reduced if the travel times are conditioned on scattered measurements of hydraulic con-

ductivity and/or hydraulic head. In our approach the spatially discretized log hydraulic conductivity is modeled as a multiscale

stochastic process, where each scale describes the process at a di�erent spatial resolution. Related dependent variables such as

hydraulic head and travel time are approximated by discrete linear functions of the log conductivity. The linearization makes it

possible to incorporate these variables into e�cient multiscale estimation and conditional simulation algorithms. We illustrate the

application of these algorithms by considering two options for estimating travel time densities: (1) a Monte Carlo technique which

only requires linearization of the groundwater ¯ow equation and (2) a Gaussian approximation which also requires linearization of

Darcy's law and an implicit particle tracking equation. Both options provide reasonable estimates of the travel time probability

density in a synthetic experiment if the underlying log hydraulic conductivity variance is small (0.5). When this variance is increased

(to 5.0), the Monte Carlo result is still quite good but the Gaussian approximation is unsatisfactory. The multiscale Monte Carlo

option is a very competitive approach for estimating travel time since it provides accurate results over a wide range of conditions and

it is more computationally e�cient than competing alternatives. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many hydrologic analyses require information on
spatially distributed variables such as rainfall, evapo-
transpiration, groundwater recharge, and soil hydraulic
conductivity. Values for these variables may need to be
speci®ed at each cell of a regular computational grid or
as averages over larger irregular regions such as water-
sheds. Field measurements are seldom available in either
of these forms. Most in situ measurements of hydrologic
variables are recorded only at scattered points, such as
meteorological stations or groundwater wells. Remote
sensing measurements generally cover larger areas but
are only indirectly related to the variables needed for
hydrologic analysis. In either case, some sort of data
processing or retrieval algorithm must be used to con-
vert raw measurements into more readily usable infor-
mation. This algorithm may be as simple as Thiessen
polygon interpolation or as complex as a variational
data assimilation procedure.

Most of the algorithms used to derive estimates of
spatially distributed hydrologic variables are based on
least-squares principles. Examples include geostatistical
techniques such as kriging and Bayesian inverse esti-
mation procedures. These algorithms typically presume
that the quantity to be estimated is a random ®eld which
can be described in terms of its mean and covariance
functions. Although such descriptions are conceptually
appealing they lead to computationally demanding al-
gorithms if the random ®eld is ®nely discretized. For
example, a relatively modest 100 by 100 pixel two-di-
mensional grid yields 10 000 discrete values which are
related by a covariance matrix with 108 elements. Least-
squares computations based on such large matrices are
ine�cient and undesirable.

The computational di�culties encountered in spatial
least-squares estimation do not usually arise in temporal
estimation problems. The sizes of the covariance ma-
trices used in temporal estimation algorithms such as the
Kalman ®lter do not depend on the total number of
measurements processed [7]. These algorithms have a
recursive form which takes advantage of the Markovian
structure of the underlying time series model. The
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updated estimate computed at any given time depends
only on measurements obtained at this time and a prior
estimate derived from previously processed measure-
ments. Consequently, the recursive algorithm is much
less computationally demanding than equivalent batch
processing algorithms.

The above discussion suggests that spatial estimation
could be performed more e�ciently if it were imple-
mented in a recursive fashion. In order to pursue this
point further, suppose that we discretize a continuous
random ®eld over a number of nested regular grids with
progressively ®ner resolutions (i.e. smaller pixels). The
discretization operation generally assigns a vector of
`states' to each pixel in a given grid. For example, the
states for a given pixel could be samples of the contin-
uous ®eld at several speci®ed points inside the pixel
boundary. In any case, each of the grids used in a
multigrid discretization can be characterized by a par-
ticular spatial scale (e.g. the pixel size). Note that here
we use the term `scale' to refer to the spatial discreti-
zation process rather than to an intrinsic property of the
original random ®eld.

Once we have de®ned a multiscale discretization we
can apply the concept of recursive estimation over scale,
in a manner which is similar but not identical to tem-
poral recursion [4,5]. This is feasible if the values of the
discretized variable at di�erent scales are related by a
Markov statistical model. When the statistical model is
appropriately selected a scale-recursive estimator can be
much more e�cient than a conventional batch estimator
operating only at the ®nest scale.

Multiscale spatial estimation concepts have proven to
be useful in a number of image processing and remote
sensing problems [6,10±12,15,16]. In this paper we show
how such concepts can also be applied to groundwater
problems. As an example, we describe a multiscale al-
gorithm which estimates groundwater travel times and
generates travel time probability distributions. Our ex-
ample is a simpli®ed version of the waste isolation per-
formance assessment problem considered in a recent
comparison of popular groundwater inverse procedures
[19]. In the remaining sections of this paper we review
relevant multiscale estimation concepts, describe the
travel time estimation problem, and present some typi-
cal results. We also discuss some of the advantages and
limitations of the multiscale approach.

2. Multiscale estimation

2.1. Background

It is helpful for estimation purposes to distinguish
dependent variables (such as hydraulic head and travel
time) from independent variables (such as hydraulic
conductivity) which are more di�cult to observe or

model [14]. Independent variables are the primary
sources of uncertainty in hydrologic estimation prob-
lems and are often characterized as random ®elds with
speci®ed statistical properties. For simplicity, we restrict
our attention to time-invariant problems and consider
two dependent variables, denoted dh�x� and ds, respec-
tively. These dependent variables are related to the in-
dependent variable df �x� by the following
transformations:

dh�x�
ds

� �
� Gh�df �

Gs�df �
� �

; �1�

where the G��� operators represent solutions to physi-
cally based equations which depend on df �x�. In the
application discussed in this paper, dh�x� is the deviation
of the random hydraulic head h�x� from the speci®ed
nominal head h0�x�; ds is the deviation of the solute
travel time s from the nominal value s0, and df �x� is the
deviation of the random log hydraulic conductivity f �x�
from the nominal f0�x�. These de®nitions facilitate lin-
earizations required later in our discussion. Since the
nominal values are all known the hydrologic variables of
primary interest can always be derived from the devia-
tions as follows:

h�x� � h0�x� � dh�x�; �2�
s � s0 � ds; �3�
f �x� � f0�x� � df �x�: �4�
We assume that f0�x� is chosen to be the mean of f �x�
so that the independent variable df �x� is zero mean. The
operators Gdh and Gds are derived from the groundwater
¯ow equation and the implicit integral equation which
relates travel time to log conductivity. Detailed de®ni-
tions of these operators are provided later in the paper.

For computational purposes all the variables and
operators appearing in (1) are generally discretized over
space. The discretization procedure replaces the scalar
spatial functions df �x� and dh�x� with Nf -dimensional
vectors, where Nf usually corresponds to the number of
cells, pixels, or nodes in the computational grid. To
simplify notation, the symbols df and dh appearing
without x arguments will henceforth be used to indicate
these discretized vectors. When the problem is discret-
ized the functional operators Gdh and Gds are replaced
with the discrete operators Gdh and gds, which act on the
vector df . Consequently, the discrete version of (1) is

dh
ds

� �
� Gh�df �

gs�df �
� �

: �5�

The discretization operation also replaces the scalar
covariance function of df �x� with the discrete Nf -di-
mensional covariance matrix Pf . The complete set of
discretized variables can be assembled in a single state
vector z
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z �
df
dh
ds

2664
3775: �6�

The discretized operators and statistics which charac-
terize this state vector constitute a `®nest scale' model of
the hydrologic problem of interest.

The unknown variables of the ®nest scale model may
be estimated from measurements of the state variables
included in z. In many applications the measurement
process can be described by the following linear equa-
tion:

y � Cz� v; �7�
where y is a vector of measurements, C a matrix that
identi®es the measured elements of z, and v is a random
measurement error vector with speci®ed statistics. The
objective of the estimation procedure is to derive an
`optimal' estimate of z from y. A reasonable and widely
used choice for the optimal estimate is the linear least-
squares estimate. This estimate ẑ is the conditional mean
of z given y, written as E�zjy�, when the G��� operators
are linear and z and v are normally distributed [4,14].
Moreover, in this case the estimation error covariance is
equal to the conditional covariance of z given y. When
the G��� operators are nonlinear they can sometimes be
replaced by linear approximations. In such cases, linear
least-squares estimates and error covariances derived
from the linearized transformations can be viewed as
approximations to the conditional moments.

Although it is possible to formulate a classical least-
squares solution to the ®nest scale estimation problem,
the computational requirements are formidable when Nf

is large. For this reason, we seek an equivalent repre-
sentation of the ®nest scale problem which is generated
by a more e�cient multiscale model. The structure and
derivation of this model are discussed in the next
section.

2.2. Multiscale models

The objective of the multiscale modeling discussed
here is to provide an e�cient method for generating and
estimating the random variables included in the state
vector z. It is convenient to begin by viewing the model
as a recursive algorithm for generating replicates of the
random ®eld df . Then we can extend (or augment) this
model so that it can also generate other variables which
depend on df . Once the structure of the multiscale
model has been established it is relatively easy to
develop a recursive least-squares estimation algorithm.

Multiscale models are typically arranged on inverted
trees such as the one shown in Fig. 1(a) [5]. The tree in
this ®gure describes a one-dimensional random ®eld at
four di�erent spatial scales, each corresponding to a

particular discrete representation of the random ®eld. In
practice, the scales frequently correspond to grids of
di�erent resolutions. Each scale includes a number of
nodes (indicated by ®lled circles) which are character-
ized by vectors of state variables. Each node is identi®ed
by an index s, with the corresponding state vector
denoted by z�s�.

Fig. 1(b) introduces some standard terminology
associated with multiscale models [5]. The nodes at the
bottom of the inverted tree are called the `leaf nodes'
while the single node at the top is called the `root node'.
Each node s (except the root node) has a unique parent
sc. Also, each node s (except the leaf nodes) has qs

children sa1; sa2; . . . ; saqs . Any node s partitions the tree
into qs�1 nodal subsets Ssa1

; Ssa2
; . . . ; Ssaqs�1

. The ®rst qs

subsets contain the nodes descended from each of the
children of s while the ®nal subset contains the nodes
not descended from s. This multiscale formalism is quite

Fig. 1. (a) A simple multiscale tree with nodes de®ned at four scales

and (b) notation used to identify the parent and children of node s.
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¯exible since it can be applied to multidimensional
random ®elds with varying numbers of children and
state variables at each node [2,3].

The simple example of Fig. 2 shows how the states of
a multiscale tree could be selected for the application of
interest here [5]. In this example nine pixels with di�er-
ent log conductivity deviations �dfk; k � 0; . . . ; 8� are
de®ned along a line (so Nf � 9). We model this discrete
log conductivity ®eld with a simple three-scale tree
containing seven nodes (shown by ellipses), each with a
three-component state vector. Each node's state vector
contains the subset of log conductivity values enclosed
by the corresponding ellipse. So the states of the ®rst
three nodes are given by:

z�0� �
df �0�
df �4�
df �8�

264
375; z�1� �

df �0�
df �2�
df �4�

264
375;

z�2� �
df �4�
df �6�
df �8�

264
375: �8�

As we move down the tree the collection of states at each
scale provides a progressively higher resolution de-
scription of the df process. Note that the df process
originally de®ned on nine pixels along the line now ap-
pears in the state vectors of the four leaf nodes (with
some redundancy). The state vector at each leaf node
completely characterizes the ®nest scale conductivity
process in a particular quadrant of the line. Conse-
quently, the entire df vector can always be extracted
from the four states z�3�; z�4�; z�5�; and z�6�.

It is easy to verify that each state vector in the model
of Fig. 2 can be expressed as a linear function of df [5]:

z�s� � Vsdf : �9�
A collection of states produced in this way is called an
`internal realization' and the matrix Vs is called an `in-
ternal matrix' [8]. In our example the Vs matrix for each
node is a 3 by 9 array of zeros and ones which may be
readily identi®ed from Fig. 2. Internal matrices of this
type produce state vectors which are simple subsets of

the set of all ®nest scale log conductivity values. Note
that the ®nest scale df values generated in an internal
realization do not all need to be included in the states at
the leaf nodes (as they are in Fig. 2). They can be
associated with nodes at di�erent scales, so long as
(9) holds.

Multiscale trees such as Fig. 2 implicitly relate the
state at each node to the state at its parent. This rela-
tionship can be expressed recursively with the following
state transition equation [5]:

z�s� � Asz�sc� � w�s�; �10�
where As is the state transition matrix for node s and
w�s� is a random `process noise' vector. The process
noise accounts for the additional variability which is
revealed when the discretization is re®ned from the scale
of the parent to the scale of the child. We can use this
recursion to generate random realizations of df if we
initialize with a random root node vector z�0�. The
states at all the children of the root node are then de-
rived from (10), with a di�erent random w�s� value
added for each child. This process is repeated at each
scale.

Since we are con®guring the tree to suit our own
modeling needs we can select the statistics of the root
zone state and the process noise to facilitate subsequent
derivations. The moments of w�s� and z�0� are de®ned as
follows:

E�w�s�� � 0; E w�s�w�r�T
h i

� Qsdrs; E�z�0�� � 0;

E w�s�z�0�T
h i

� 0; E z�0�z�0�T
h i

� P0 8s; r:

Since all states are linearly related to z�0� and w�s�, they
are all zero mean. Moreover, since the w�s� vectors are
uncorrelated with one another (`white') the statistical
properties of the states at nodes s > 0 depend only on
the root node covariance P0 and the autoregression
parameters As and Qs.

We can now consider the problem of identifying a
multiscale model which generates a df ®eld with a
speci®ed covariance Pf . This is the multiscale `realiza-
tion problem' [8,9]. When the multiscale model is in-
ternal, (6) can be used to relate Pf to the covariance
Pz�s�z�sc� between the state at any node s and the state at
the parent of s

Pz�s�z�sc� � P T
z�sc�z�s� � VsPf V T

sc : �11�

If the state covariances are consistent with this rela-
tionship, the df values generated on the tree will have a
covariance Pf . Arguments from least-squares estimation
theory can be used to show that the recursion will satisfy
(11) if the error covariances and transition matrix are
given by:

Fig. 2. Three-scale example used to generate a one-dimensional

Gauss±Markov process over nine pixels.
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P0 � V0Pf V T
0 ; �12�

Qs � Pz�s� ÿ Pz�s�z�sc�Pÿ1
z�sc�Pz�sc�z�s�; �13�

As � Pz�s�z�sc�Pÿ1
z�sc�; �14�

where Pz�s� � Pz�s�z�s� is the autocovariance of z�s� [4,5]. If
we apply these equations to the example of Fig. 2 it is
relatively easy to show that the series of nine df values
contained in the leaf node state vectors will have a
covariance Pf .

The concepts described above apply to any internal
multiscale model which satis®es (9). For example, we
could use a model which includes four rather than three
of the ®nest scale conductivity values in each state vec-
tor. Although Vs and the matrices de®ned in (12)±(14)
would change, the covariance of the df values generated
by the recursion would still be Pf . Generally speaking,
many di�erent multiscale models can be used to generate
a df ®eld with speci®ed statistics. Some of these may be
more convenient or more computationally e�cient than
others. In practical applications multiscale realization is
somewhat of an art, although several investigators
provide helpful guidelines [5,8,13].

It can be shown that the whiteness of the process
noise w�s� imparts a useful multiscale Markov property
to the tree [3]. This property states that the conditional
covariance between any of the qs � 1 random vectors
partitioned by s is 0:

E z�r�zT�p� j z�s�� � � 0

for r 2 Ssai ; p 2 Ssaj ; i 6� j; i; j � 1; . . . ; qs � 1:

The multiscale Markov property decouples information
from the nodes above and below s in the tree, in much
the same way that the well-known temporal Markov
property decouples information before and after the
current time. The decoupling enables state estimates to
be computed recursively in successive upward and
downward sweeps through the tree.

In many cases the multiscale characterization
�z�s�; P0; Qs; As; s 2 S0� can provide a more e�cient
description of the ®nest scale process than the conven-
tional discrete characterization �df ; Pf �. If the state di-
mension d is the same for all nodes the multiscale
storage requirement is O�d2Nf � while the storage re-
quired by Pf is O�N 2

f �. The di�erence can be dramatic for
large Nf , so long as d does not depend on Nf . This is the
case when the tree describes a one-dimensional Gauss±
Markov process, as in the example discussed above. It is
also the case for certain two-dimensional random ®eld
models, such as the 1=f fractal model used in [6] to
process satellite altimetry data. When the process is two-
dimensional Gauss±Markov, the state vector needs to
include enough ®nest scale values to partition the nodes
on the tree according to the multiscale Markov criterion
cited above [4]. In practice, this means that d must be
O�N 0:5

f �, giving a multiscale storage requirement of

O�N 2
f �, the same order as the storage required by Pf . We

return to this topic at the end of the paper.
With the multiscale model of df in place we can

consider how discretized dependent variables and asso-
ciated physical relationships can be included. This is
accomplished by augmenting the state z�s� at each node
of the tree [5]. Since the augmentation process requires
Gh�df � and gs�df � to be linear in df these transforma-
tions must be derived from linear approximations to the
applicable ¯ow and travel time equations. We discuss
the linearization process in more detail in the next sec-
tion and focus for now on the methods used to incor-
porate dependent variables that are linear combinations
of independent variables.

The state augmentation procedure must: (1) allow the
desired dependent variable to be constructed from the
states de®ned at a particular node and (2) preserve the
multiscale Markov property throughout the tree, so that
the desired ®nest scale log conductivity covariance is
preserved. This process is discussed in detail in [4,5].
Here we summarize the general concepts and then il-
lustrate them with a simple example.

The ®rst step in the state augmentation procedure is
to assign the dependent variable (say ds) to a particular
node r. This means that information available in the
augmented state vector at r will be used to construct ds.
We require the function gs�df � to be linear (or to be
approximated by a linear function) so that we can write
it as gs�df � � gT

s df , where the vector gs is a set of Nf

known weighting coe�cients. The second step of the
augmentation procedure is to expand this linear com-
bination into a series of partial linear combinations as
follows:

gT
s df � gT

s;ra1
dfra1

� gT
s;ra2

dfra2
� � � � � gT

s;raqr�1
dfraqr�1

;

�15�
where dfrak is the vector of independent variables con-
tained in the states of nodes in Srak . Recall that Srak is the
set containing all nodes descended from rak (when
k6 qr) or all nodes not descended from rak (when
k � qr�1). The augmentation is completed by adding
each of the partial linear combinations in this series to
the state vector at node r. After the state vector at r is
augmented, each of the descendants of r is augmented in
a similar way, down to the leaf nodes, which are not
augmented. If a partial linear combination adds to new
information about the descendants of a given node, it is
not included. The procedure may be repeated in a re-
cursive fashion when several dependent variables need
to be incorporated into the multiscale model. If re-
dundancies arise the size of the augmented state can be
reduced to eliminate them [4,5].

We can illustrate the state augmentation procedure
using the simple multiscale model of Fig. 2. For the
moment, suppose that ds �

P8
k�0 gskdf �k� is de®ned to
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be a weighted sum of the nine ®nest scale log conduc-
tivity deviations, where the weights gsk have been de-
rived from an appropriate physical model. This
dependent variable can be assigned to the root node (i.e.
r � 0). An acceptable augmentation can then be ob-
tained by including partial weighted sums of the ®nest
scale process values in the nodal state vectors, as pre-
scribed above. The complete state vectors at nodes 0, 1,
and 2 are then:

z�0� �

df �0�
df �4�
df �8�
S0;4

S4;8

26666664

37777775; z�1� �

df �0�
df �2�
df �4�
S0;2

S2;4

26666664

37777775;

z�2� �

df �4�
df �6�
df �8�
S4;6

S6;8

26666664

37777775; �16�

where the partial sum Si;j �
Pj

k�i gskdf �k�. The desired
value of ds can be obtained from an appropriate linear
combination of the augmented root node states.

The augmented state de®nitions of (16) can be used
to de®ne new somewhat larger Vs matrices. Then (12)±
(14) can be used to derive the augmented covariances
and transition matrix needed to generate both
df and ds. Other augmentation strategies could achieve
the same result as (16). For example, ds can be assigned
to a node further down the tree than the root node.
Since some choices will give a lower total number of
states than others, it is best to tailor the augmentation
strategy to the particular problem to be solved [5].

2.3. Multiscale estimation and conditional simulation

The multiscale modeling concepts discussed above
can be used to develop e�cient estimation and condi-
tional simulation algorithms [3±6]. In particular, sup-
pose that we wish to estimate the log hydraulic
conductivity and travel time deviations df and ds from
scattered measurements of log conductivity and hy-
draulic head. We can describe the log conductivity ®eld
and linear approximations to the head and travel time
with an augmented multiscale model similar to the one
presented in the previous section. The vector of mea-
surements y�s� available at node s on the tree is given by
the following measurement equation, which has the
same form as (7)

y�s� � Csz�s� � v�s�; �17�
where Cs is a speci®ed measurement matrix and v�s� is a
random measurement error with the following speci®ed
statistical properties:

E�v�s�� � 0; E v�s�df T
� � � 0; E v�r�vT�s�� � � Rdrs

8s; r:

Eqs. (10) and (17) together contribute three sources of
uncertainty to the estimation problem: (1) the random
root node state, (2) the random process noise vectors
de®ned at all nodes below the root node, and (3) the
random measurement errors. Optimal (linear least-
squares) estimates of the state z�s� given the measure-
ments y�s� can be computed with a multiscale recursive
algorithm which is based on (10) and (17). This algo-
rithm is executed in two passes. The ®rst pass starts at
the root node and moves downward to progressively
®ner scales, updating estimates at nodes where mea-
surements are assigned. The second pass moves upward
from the leaf nodes, merging estimates from the children
of each node and performing a second update at each
measurement node. The complete estimation algorithm
is described in [3,6]. It is a generalization of the Rauch-
Tung-Striebel smoother used to estimate the states of
time series models. This multiscale estimation algorithm
is derived using least-squares estimation concepts.
However, the e�ort needed to compute state estimates
on a tree with Nf leaf nodes and a ®xed state vector size
of d is O�d3Nf �, as compared to O�N 3

f � to solve the
classical least-squares normal equations. So the e�-
ciency of the multiscale approach depends strongly on
the ability to keep d small and, ideally, independent of
Nf . Some e�ciency gain is obtained even for the two-
dimensional Gauss±Markov case, where d is propor-
tional to N 0:5

f . In this case, the multiscale e�ort is O�N 2:5
f �

rather than O�N 3
f �.

Like the Kalman ®lter, the multiscale estimator pro-
vides valuable information on the accuracy of its esti-
mates. The estimation error e�s� at any node is
e�s� � z�s� ÿ ẑ�s�, where ẑ�s� is the ®nal estimate com-
puted after both passes of the algorithm. On the second
pass the estimator computes the covariance Pe�s� of e�s�
[4]. If all error sources are normally distributed and the
linearity assumptions (or approximations) adopted in
the state augmentation discussion hold, the estimation
error is also normally distributed and ẑ�s� and Pe�s� are
the conditional mean and covariance of z�s�. In this case
the conditional covariance may be used to construct a
con®dence region around the estimate ẑ. We adopt the
normality assumption in the remainder of this paper.

The multiscale estimation equations may be manip-
ulated to provide a scale-recursive model for the error
e�s� [4]. This model has the same general form as (10)

e�s� � Jse�sc� � ~w�s�; �18�
where J�s� is a coe�cient matrix and ~w�s� is a zero mean
white random variable. The recursion is initialized with
a zero mean random root node error e�0�. Given the
normality assumption made earlier, both ~w�s� and e�0�
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are normally distributed. The matrix J�s�, the covari-
ance ~Qs of ~w�s�, and the covariance Pe�0� of e�0� may all
be derived from conditional covariances computed by
the estimation algorithm [4].

The error model of (18) provides a convenient way to
generate log conductivity realizations which are condi-
tioned on the measurements used by the estimator. A
given realization is obtained by generating normal ran-
dom variables e�0� and ~w�s� with the appropriate co-
variances and propagating the error downwards from
the root node to the leaf nodes. The conditional real-
ization of the state at node s is obtained from
z�s� � ẑ�s� � e�s�. The desired conditional log conduc-
tivity realization can then be extracted in the usual way
from the collection of conditional leaf node states. Each
realization derived in this way requires O�d2Nf � com-
putations. This can be considerably more e�cient than
alternative conditional simulation methods (such as
those described in [19]), even when the log conductivity
®eld is Gauss±Markov and d is O�N 0:5

f �. The travel time
example discussed in the next section illustrates both the
estimation and conditional simulation aspects of the
multiscale approach.

3. The travel time estimation problem

Solute travel times between speci®ed points or
boundaries can frequently provide useful information
about the aggregate e�ects of heterogeneous subsurface
¯ow processes [18]. The travel times of natural tracers,
such as certain radioisotopes, can be used to identify
areas and rates of groundwater recharge. The travel
times of wastes released from underground storage fa-
cilities to the accessible environment provide valuable
information for assessing possible exposure risks. Travel
time is particularly important in radioactive waste dis-
posal applications, since the exposure level for any given
constituent depends on the ratio of travel time to half-
life [19]. When the factors controlling solute transport
are highly variable and uncertain it is best to use prob-
abilistic approaches to characterize travel times and re-
lated risks. This viewpoint has in¯uenced repository
licensing criteria, which have sometimes been expressed
in terms of the probability that the travel time will be
less than some speci®ed threshold [19]. In order to work
with such criteria we need methods for deriving travel
time probability densities.

The problem of deriving solute travel time densities is
well suited for the multiscale modeling approach de-
scribed in this paper. If the log hydraulic conductivity
®eld is a normally distributed random variable and we
have measurements of log conductivity and other vari-
ables such as hydraulic head, we can use multiscale
concepts to derive a travel time probability density

which is conditioned on the measurements. This can be
done at two di�erent levels of approximation.

The ®rst (Monte Carlo) option is to generate condi-
tional realizations of a normally distributed log con-
ductivity at the nodes of a multiscale model, following
the method discussed earlier. Each log conductivity re-
alization yields distinct velocity and travel time realiza-
tions, which may be derived from the equations
governing groundwater ¯ow and advective transport
along a streamline. The desired travel time probability
density is constructed from the resulting ensemble of
simulated travel times. The key approximation made in
this approach is linearization of the log conductivity-to-
head transformation, which is required to derive the
conditional log conductivity realization. Since the log
conductivity±travel time transformation is not linearized
the Monte Carlo travel time density may not be normal.

The second (Gaussian) option is based on the ob-
servation that the travel time is normally distributed if
the log conductivity is normal and the conductivity-to-
travel time transformation is linear. In this case, the
conditional travel time density is completely character-
ized by its mean and variance. These conditional mo-
ments may be derived from a single run of the multiscale
model. This option is less computationally demanding
than the Monte Carlo approach but requires lineariza-
tion of both the log conductivity-head and the log
conductivity-to-travel time transformations.

In order to put the travel time problem into a mul-
tiscale framework we need to specify the statistics of the
log conductivity ®eld and the physical relationships be-
tween log conductivity, head, and travel time. It is
convenient to begin with a non-discretized description of
the governing equations. We then carry out the required
linearizations and perform a ®nest scale spatial discret-
ization. Lastly, we formulate and apply the multiscale
model. To illustrate the general concepts, we consider
two-dimensional transport in a time-invariant ground-
water ¯ow ®eld with a known recharge term and an
uncertain hydraulic conductivity. The relevant non-dis-
cretized ¯ow equation is:

r � ef �x�rh�x�� �ÿ Q�x� � 0; x 2 X;

h�x� � hb�x�; x 2 oXD; �19�
ÿ ef �x�rh�x� � n�x� � qb�x�; x 2 oXN ;

where h�x� and f �x� are the head and log-conductivity
functions and Q�x� is a known recharge rate. Dirichlet
(speci®ed head) conditions apply on the boundary oXD

of the computational domain X while Neumann (spec-
i®ed ¯ux) conditions apply on oXN . The groundwater
velocity is given by Darcy's law:

u�x� � ÿ 1

h�x� e
f �x�rh�x�; �20�

where h is the e�ective porosity.
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We now consider a solute particle moving without
dispersion along a path starting at x�0� at time 0 and
ending at time s somewhere on a control plane located
at x1�s� � L. The geometry is illustrated in Fig. 3. We
assume for simplicity that the dominant velocity com-
ponent is in the x1 direction so that the probability that a
particle does not exit through the control plane is neg-
ligible. The particle path is de®ned implicitly by the
following velocity integral:

x�t� � x�0� �
Z t

t0�0

u�x�t0��dt0 �21�

and the travel time s is obtained by imposing the re-
quirement that x1�s� � L. Eqs. (19)±(21) provide the
information we need to relate head and travel time to
log conductivity. Since the resulting relationships are
nonlinear and our state augmentation is based on linear
transformations, the governing equations need to be
linearized about appropriate nominals.

The linearization process is well documented in the
stochastic groundwater literature [14,17,18]. A simple
approach is to assume that the deviations df �x�; dh�x�,
and ds are small. We then replace f �x�; h�x� and s in
(19)±(21) by the perturbation expressions given in (2)±
(4). In a similar way, the velocity u�x� is replaced by
u�x� � u0�x� � du�x�. The nominal values h0�x�; u0�x�,
and s0 used in the perturbation expansions are the exact
head, velocity, and travel time solutions obtained when
f �x� is set equal to f0�x� in (19)±(21). For simplicity, we
suppose that the nominal (or mean) log conductivity
f0�x� � f0 is constant. Also, we assume that the coor-
dinates have been de®ned so that rh0�x� and u0 � u10

point in the x1 direction (normal to the control plane).
These assumptions simplify notation but can be readily
relaxed since they are not essential to the approach.

If the expansions of (2)±(4) are substituted into (19)±
(21) and products of perturbation terms are neglected,
the following linearized equations result:

r2dh�x� ÿ r � �df �x�rh0�x�� � 0; x 2 X;

dh � 0; x 2 oXD; �22�
rdh�x� � n�x� � df �rh0�x� � n�x��; x 2 oXN ;

du�x� � ÿ 1

h
ef0 �df �x�rh0�x� � rdh�x��; �23�

ds � ÿ 1

u10

Z s0

t0�0

du1�x10�t0��dt0; �24�

where x10�t� is the path traced by a particle advected by
the known nominal velocity u10. The ®rst of these ex-
pressions is a partial di�erential equation which has a
solution of the following form [4]:

dh�x� �
Z

X
�rx0G�x; x0� � rx0h0�x0��df �x0�dx0

�
Z

XN

G�x; x0��rx0h0�x0� � n�x0��df �x0�dx0; �25�

where G�x; x0� is the Green's function for (22). Eq. (25)
can be substituted into (23) and then (23) substituted
into (24) to give a set of explicit integral expressions
which relate dh�x�, du�x�, and ds to df �x�. The expres-
sions for dh�x� and ds are linearized versions of (1)

dh�x�
ds

� �
� Ghdf

Gsdf

� �
; �26�

where the linear Ghdf and Gsdf operators represent
convolutions of known functions over the unknown
perturbation df �x�.

The non-discretized description of the travel time
problem presented above can be put in a discrete form
appropriate for multiscale modeling if we construct a
regular ®nest scale computational grid with the discrete
values of df �x�, dh�x�, and du�x� de®ned at the center of
each pixel. The elements of the covariance matrix of the
discrete vector df may be obtained from the relationship
Pf ;ij � Pf �xi; xj�, where Pf �x; x0� is the covariance func-
tion of the non-discretized df �x� process and x � xi and
x0 � xj are the coordinates of the center of pixel (i; j).
The convolution integrals derived from (22)±(25) can be
expressed in a compatible discrete form if trapezoidal
integration is used to write all integrals as summations.
The discretized ¯ow equation Green's function which
appears inside the summations can be obtained by
solving the discretized adjoint of (22) at locations where
the head is required (head measurement locations and
locations along the particle path where velocity must be
computed).

After the discretization procedure is completed, the
equations relating the discrete dependent variables dh
and ds to the discrete independent variable df may be
written in the form

dh
ds

� �
� Ghdf

gT
s df

� �
; �27�Fig. 3. Solute source and control plane locations for travel time

calculation.
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where Gh is a matrix and gT
s is a vector of weighting

factors derived from the discretized convolution inte-
grals. The weighting factors specify the in¯uence that a
discrete log conductivity perturbation at any given pixel
has on the head perturbation at another pixel (in the
case of Gh) or on the travel time from the source to the
control plane (in the case of gs). In this sense, they can
be viewed as sensitivity derivatives [14].

We now have a discrete problem formulation which
®ts into the multiscale framework. Consequently, we can
construct an augmented multiscale model which gener-
ates ®nest scale log conductivity perturbations as well as
head and travel time perturbations. In order to complete
the multiscale model we need to assign the measured
heads and the travel time to particular nodes on the
multiscale tree. Since this process is application-speci®c
the details are discussed in the next section where we
present an example.

The procedure outlined above is quite general. It can
be applied to a wide range of hydrologic problems de-
scribed by di�erential equations derived from physical
principles. The primary limitation imposed is the need to
linearize some or all of the independent-to-dependent
variable relationships. In our case, this was accom-
plished by linearizing the governing di�erential equa-
tions, expressing the solutions as convolution integrals,
and then discretizing. Other approaches which give the
same ®nal outcome could be used. The linearization
operation introduces approximations which will a�ect
the estimates and conditional simulations generated by
the multiscale model. In any given application care must
be taken to establish the range of validity of this oper-
ation. This topic is investigated in more detail in the next
section.

4. Examples of multiscale travel time estimation

In this section we illustrate multiscale travel time es-
timation with a two-dimensional example based on
synthetically generated measurements. A synthetic ex-
periment gives a good feeling for the e�ect of lineari-
zations and other assumptions since the state variables
which generate the synthetic measurements are known
perfectly. Of course, the merits of the approach cannot
be completely assessed until it is tested with real ®eld
data since the synthetic experiment inevitably relies on
assumptions that may not be valid in practice (e.g. time-
invariant two-dimensional ¯ow, perfectly known
boundary conditions, conservative transport, etc.). For
present purposes, we are concerned primarily with
computational e�ciency and the e�ects of linearization
assumptions. Both of these can be conveniently tested
with a synthetic experiment.

In the synthetic experiment we generate a single un-
conditional log hydraulic conductivity ®eld with the

multiscale model. The head, velocity, and travel time
corresponding to this ®eld and the speci®ed boundary
conditions are derived from (19)±(21). Log conductivity
and head values at speci®ed measurement locations are
identi®ed and corrupted with zero mean random errors
having the appropriate covariance, to produce a set of
synthetic measurements. Conditional moments and
multiple conditional realizations of the log conductivity,
estimation error, and travel time are then derived from
these measurements.

The following speci®cations de®ne the synthetic
experiment:
· The region of interest is the unit square

x 2 �0; 1� � �0; 1�.
· Travel time is computed from a source at

x�0� � �0:25; 0:5� to a control plane at x1 � 0:75.
· The non-discretized log hydraulic conductivity is a

zero mean two-dimensional Gauss±Markov process
with an exponential covariance function. The log
conductivity variance is either 0.5 or 5.0 and the cor-
relation distance in each direction is 1.5.

· The time-invariant groundwater head satis®es (19)
with Q � 0, no-¯ux conditions across the x2 � 0 and
x2 � 1 boundaries, and speci®ed heads of
h�0; x2� � 1 and h�1; x2� � 0.

· Head and travel time are linearized about the con-
stant nominal (mean) log conductivity value
f0�x� � 0. The corresponding nominal travel time is
0.1.

· The ®nest scale numerical grid has 33-by-33
(nx � ny � 33) pixels regularly spaced on the unit
square.

· Synthetic head and conductivity measurements are
generated at each of the 20 clustered locations shown
in Fig. 4.

· The log conductivity measurement errors are zero
mean with a variance of 0.1.

Fig. 4. Log conductivity and head measurement locations.
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· The head measurement errors are zero mean with a
variance of 0.001.

· The number of Monte Carlo realizations for comput-
ing the travel time probability density is 400.
We derive travel time probability densities using both

the Monte Carlo and Gaussian approaches. The multi-
scale model is implemented on a quadtree with four
children assigned to each node except the leaf nodes.
The tree has ®ve scales which describe the log conduc-
tivity ®eld at progressively ®ner resolutions. The number
and arrangement of states at each scale are selected to
meet the requirements of the multiscale Markov prop-
erty.

The linearized travel time is assigned to the root node
while the linearized heads at measurement locations are
assigned to various nodes, depending on the location of
their cluster. Measured heads in the central of Fig. 4 are
assigned to the root node. Measured heads in each of the
remaining clusters are assigned to the Scale 1 node as-
sociated with the spatial quadrant containing that clus-
ter. This assignment strategy increases the size of each of
the Scale 0 and Scale 1 state vectors to about 100. The
sizes of the augmented state vectors at the remaining
scales are smaller.

Fig. 5(a) shows the synthetic experiment log hy-
draulic conductivity realization generated for a variance
of 0.5. This realization yields a relatively smooth hy-
draulic head pro®le along the x1 axis. The resulting `true'
travel time is 0.149. The 20 log conductivity and 20 head
measurements derived from the realization of Fig. 5(a)
can be used to estimate the states at every node of the
multiscale tree. The ®nest scale log conductivity values
extracted from these state estimates are plotted in
Fig. 5(b) and the corresponding estimation error vari-
ance is plotted in Fig. 5(c). The log conductivity estimate
is considerably smoother than the underlying random
replicate while the estimation error variance decreases
modestly in the vicinity of the measurements. Both re-
sults indicate that the measured data provide relatively
little information about the true log conductivity. This
behavior is typical of groundwater ¯ow inverse prob-
lems which are not forced by an internal speci®ed ¯ux
(such as a pumping or injection well). In such problems,
log conductivity measurements provide only local in-
formation and head measurements are relatively insen-
sitive to moderate variations in the log conductivity.
Nevertheless, these measurements contain useful infor-
mation about more global quantities such as travel time.

This can be seen in Fig. 6, which shows the travel time
probability densities obtained from the Monte Carlo
and Gaussian approaches for the 0.5 log conductivity
variance case. The Monte Carlo result (solid line) is
presented as a histogram constructed from 400 addi-
tional random realizations similar to the one shown in
Fig. 5(a). The Gaussian result (dashed line) is a smooth
density function which depends only on the travel time

estimate (conditional mean) and estimation error vari-
ance (conditional variance) obtained from the two-pass
multiscale estimation algorithm. The symmetric Gauss-
ian approximation has a mean of 0.146 while the mean
of the slightly skewed Monte Carlo density is 0.155.
These both compare well to the true value of 0.149.
These results are typical of experiments performed with
a log conductivity variance of 0.5. The accuracy of the
Gaussian and Monte Carlo travel time estimates and the
similarity of the two densities suggests that the lineari-
zations adopted in the multiscale model are good
approximations for this low variance case.

The situation changes considerably when the variance
is raised. Fig. 7 shows the same information as Fig. 6 for

Fig. 5. (a) A typical unconditional log conductivity realization for

r2
f � 0:5. (b) Finest scale log conductivity estimate based on log con-

ductivity and head measurements generated from the realization

plotted in (a). (c) The corresponding estimation error variance.
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a log conductivity variance of 5.0, an order of magni-
tude larger. Variances of this magnitude are quite high
but can be observed at particularly heterogeneous sites.
For present purposes, the large variance case is of in-
terest primarily because it provides a demanding test of
the linearizations used in both the Gaussian and Monte
Carlo approaches. The true travel time obtained for the
5.0 variance case shown in Fig. 7 is 0.567. The Monte
Carlo mean of 0.536 compares well to the true value but
the Gaussian mean of 0.246 is less than half of the true
travel time. Moreover, the symmetric and relatively
narrow Gaussian density di�ers signi®cantly from the
Monte Carlo density, which has a more log normal
shape. In some large variance cases simulated in our
experiments the Gaussian density extended well into the
region of negative travel times. The Monte Carlo ap-
proach cannot produce such unrealistic results since it
accurately simulates the movement of the solute particle
along the streamline from the source to the control

plane. The Gaussian approach replaces this simulation
with a linear approximation which leads to problems
when the log conductivity variance is large.

The results presented in Figs. 6 and 7 suggest that the
log conductivity-to-head linearization used in the Monte
Carlo density may be an acceptable approximation even
at log conductivity variances as large as 5.0 (because the
Monte Carlo approach still gives a good estimate of the
true travel time). On the other hand, the additional log
conductivity-to-travel time linearization used in the
Gaussian approach does not appear to be acceptable at
such large variances (because the travel time estimate is
inaccurate and the shape of the distribution is unreal-
istic). Both methods and their associated linearizations
appear to give good results at log conductivity variances
of the order 0.5. These conclusions are consistent with
other studies, which have found that head statistics
based on a small perturbation assumption remain valid
over a wider range of log conductivity variances than
velocity statistics derived from the same assumption [1].

Much of the motivation of the multiscale approach is
to provide an e�cient method for estimating hydrologic
variables and for deriving their probability densities.
Consequently, we need to examine the computational
performance of the algorithm used in our example. As
we have seen, the computational advantages of the
multiscale approach depend on the sizes of the nodal
state vectors. In the two-dimensional example consid-
ered here the unaugmented state vectors at Scales 0 and
1 are relatively large �O�100�� compared to the number
of ®ne scale variables �O�1000��. Note that these large
state dimensions are needed to properly model the
speci®ed two-dimensional Gauss±Markov log conduc-
tivity covariance. Relatively speaking, the contribution
from augmentation is minor.

For state vectors of this order the multiscale and
classical least-squares Gaussian options require com-
parable amounts of computational e�ort to derive the
travel time density in our example. However, the e�ort
required by the multiscale Monte Carlo option is much
less than required with cokriging, the most competitive
least-squares conditional simulation alternative. Both
the multiscale and cokriging approaches only need to
carry out time-consuming covariance calculations once,
at the beginning of the Monte Carlo simulation. But
individual random realizations can be computed much
more quickly with the multiscale approach. This is be-
cause the cokriging method needs to generate a new
correlated random ®eld of dimension Nf for each real-
ization while the multiscale approach only needs to
generate the uncorrelated random variables used in the
recursion of (18). The combination of accuracy and
e�ciency provided by the multiscale Monte Carlo ap-
proach make it the best choice for computing travel
times, especially for problems where the log conductivity
variance is high.

Fig. 7. Travel time histogram from Monte Carlo method and proba-

bility density function from Gaussian approxiamtion for r2
f � 5:0.

Fig. 6. Travel time histogram from Monte Carlo method and proba-

bility density function from Gaussian approximation for r2
f � 0:5.
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The computational results obtained from our exam-
ple are somewhat misleading in one important respect.
The relatively large computational e�ort needed to cal-
culate the travel time density with the multiscale
Gaussian option is a result of our requirement that the
log conductivity be a two-dimensional exponentially
correlated Gauss±Markov random ®eld. This require-
ment re¯ects our desire to use a commonly accepted
model of log conductivity variability, rather than any
fundamental property of heterogeneous porous media.
The performance advantage o�ered by the multiscale
approach would have been more dramatic if we had
modeled the log conductivity ®eld as a 1=f process, as
was done with sea surface elevation data in [6], precip-
itation data in [16], and soil moisture data in [10]. In this
case d � 4 at each node, and the storage requirement
and number of ¯oating point operations are both only
O(Nf ). By comparison, recall that the multiscale Gauss±
Markov storage and ¯oating point requirements are
O(N 3

f ) and O(N 2:5
f ), respectively. Somewhat less dramatic

computational savings could be obtained by using ap-
proximate two-dimensional Gauss±Markov models
such as those described in [5,9,13]. Given the advantages
of using 1=f models and the uncertainties in log con-
ductivity statistics estimated from limited ®eld data,
there may be merit to using 1=f rather than Gauss±
Markov models in practical applications. This would
make it possible to fully realize the computational
bene®ts of the multiscale approach.

5. Conclusions

The multiscale methods described in this paper pro-
vide a way to apply the powerful concept of recursion to
spatially distributed estimation problems. This capabil-
ity is particularly useful in hydrology, meteorology, and
other earth sciences, where high resolution estimates are
required over large regions. Multiscale techniques o�er a
¯exible and very e�cient estimation option in such sit-
uations. The particular multiscale approach described
here is able to incorporate physical laws, such as those
which govern groundwater ¯ow and transport, directly
into the multiscale model. This greatly expands the
range of applications that can be addressed with the
multiscale approach.

The methods discussed in this paper require all
physical relationships included in the multiscale model
to be linear. This important restriction makes it possible
to apply classical linear estimation concepts in a multi-
scale framework. When spatial variability is su�ciently
small it may be possible to derive acceptable linear ap-
proximations to nonlinear relationships between vari-
ables such as log hydraulic conductivity, head, and
travel time. These approximations must be used with
caution when there is a signi®cant amount of variability.

In our travel time example, we observed that a linear
approximation of the log conductivity±travel time rela-
tionship that works well for a log conductivity variance
of 0.5 gives unreasonable results when the variance in-
creased to 5.0. On the other hand, linearization of the
log conductivity±head relationship appears to be ac-
ceptable even at the higher variance. When a simple
linearization is not adequate, multiscale estimation and
conditional simulation can be carried out iteratively,
with each iteration using updated approximations based
on linearizations around the most recent estimate of the
model states. A Gauss±Newton version of this iterative
approach has been successfully applied to a ground-
water inverse problem in [4].

The computational advantages of our multiscale
estimation technique depend primarily on the size of the
state vectors assigned to the nodes of the multiscale tree.
If the state vector dimensionality can be kept indepen-
dent of the number of ®nest scale variables to be esti-
mated, the multiscale approach is much more e�cient
than conventional alternatives such as cokriging. This is
the case when the independent variable is a one-dimen-
sional Gauss±Markov process or a multidimensional 1=f
process. It is usually not the case when the independent
variable is multidimensional Gauss±Markov. This is
because the state vector of multidimensional Gauss±
Markov models must be su�ciently large to provide the
partitioning required by the multiscale Markov property.
In the two-dimensional case we have examined, this
implies that the nodal state dimension must increase as
N 0:5

f , where Nf is the total number of ®nest scale inde-
pendent variable values. Since the computational penalty
incurred by using a multidimensional Gauss±Markov
model is signi®cant it is wise to consider replacing this
model with a much more e�cient 1=f alternative in
practical applications, especially if the 1=f model ap-
pears to be equally compatible with available ®eld data.

Our travel time example indicates that the multiscale
conditional simulation (Monte Carlo) technique pro-
vides good estimates of the travel time probability
density over a wide range of log conductivity variances.
Morevoer, this approach is more e�cient than com-
peting conditional simulation alternatives, such as cok-
riging, which need to generate computationally
demanding correlated random ®elds. The computational
advantages of the multiscale Monte Carlo approach
apply even when the log conductivity is modeled as a
two-dimensional Gauss±Markov random ®eld. The
multiscale Monte Carlo method for deriving travel time
densities appears the best way to simultaneously opti-
mize accuracy and computational e�ciency.

There are still many open research questions related
to the general ®eld of multiscale estimation and condi-
tional simulation [4]. In particular, there is a need for a
more systematic approach to state augmentation, so
that the multiscale state vectors can be selected to
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maximize computational e�ciency. There is a need to
develop a wider range of independent variable statistical
models which are amenable to the multiscale approach.
There is also a need to expand the multiscale framework
to include nonlinear and/or time-varying models of rel-
evant physical processes. Finally, we need to investigate
ways to apply multiscale estimation methods to the
hydrologically important problems of upscaling and
downscaling. This may require consideration of a
broader class of multiscale models than the internal
models examined here. Taken together, these topics
constitute a fruitful area for continued research.
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