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Abstract—This paper addresses the problem of both segmenting Mumford and Shah functional has many nice mathematical and
and reconstructing a noisy signal or image. The work is motivated psychovisual properties [4]; however, it is difficult to compute

by large problems arising in certain scientific applications, such as - inimizers because of the discrete nature of the image boundary
medical imaging. Two objectives for a segmentation and denoising terms

algorithm are laid out: it should be computationally efficient : . . .
and capable of generating statistics for the errors in the recon-  Various people have tried to address these computational dif-
struction and estimates of the boundary locations. The starting ficulties by making small alterations in the Mumford and Shah
point for the development of a suitable algorithm is a variational  framework [5]—[7]. In this revised setting, there are also two ob-
approach to segmentation [1]. This paper then develops a precise jo ot computed by the algorithm: a reconstruction of the orig-

statistical interpretation of a one-dimensional (1-D) version of this . . . .
variational approach to segmentation. The 1-D algorithm that inal image and a continuous-valued edge-strength function. The

arises as a result of this analysis is computationally efficient and '€construction is a denoised version of the unprocessed, noisy
capable of generating error statistics. A straightforward extension image which does not suffer from the edge blurring effects of
of this algorithm to two dimensions would incorporate recursive  some simple linear reconstruction algorithms (e.g., low-pass fil-
procedures for computing estimates of inhomogeneous Gaussianyering) The edge-strength function provides information about

Markov random fields. Such procedures require an unacceptably th timal tiall . t of thina that should
large number of operations. To meet the objective of developing a € opumal spatially-varying amount or smoothing that shou

computationally efficient algorithm, the use of recently developed D€ applied to produce the reconstruction. The function varies

multiscale statistical methods is investigated. This results in the between the values 0 and 1, taking on the value 1 where no

development of an algorithm for segmenting and denoising which smoothing should be done and 0 in areas where full smoothing
is not only computationally efficient but also capable of generating g performed. While the edge-strength function itself is not an

error statistics, as desired. . . . L

explicit estimate of image edges, it is demonstrably a more ro-

Index Terms—Denoising, multiscale statistical models, segmen- pyst indicator of edge likelihood than standard gradient maps.
tation. In particular, the edge-strength function displays substantial ro-

bustness to noise and automatically avoids problems of dynamic

I. INTRODUCTION range exhibited by gradient maps of noisy images (see Section

UMFORD and Shah have developed a theoretical fram\éD' Asa consequence, generating eXp“.C't edge contours from
. . . edge-strength functions can be accomplished robustly as shown

work in which to address the problem of simultaneous . . : .
n [1] using thresholding and [8] using curve evolution.

image denoising and segmentation [2], [3]. In this framework The approach to segmentation and denoising taken in this

the goal is to decompose a given noisy Image into p'eC?W'Sgper begins with a novel Bayesian interpretation of the revised
smooth regions bounded by contours on which the image inten-

o - : .Mumford and Shah variational approach to segmentation. This
sity is allowed to change abruptly. This is accomplished by min- . . .
o . . - . . Interpretation follows in the footsteps of some recent work in
imizing a particular functional jointly over the image boundaries, : . . .

X ) L which close connections are made between certain variational
and a reconstruction of the image. The minimizing reconstruc- L : .
and statistical approaches to image processing [9], [10]. The

tion of the original image has been denoised through SmOOthmlanipal advantage of the Bayesian framework is that it pro-
everywhere except along the detected boundary contours. vides a theoretical structure for the interpretation and compu-

tation of error statistics. Error statistics provide a quantitative
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resulting problems. As a consequence, a thorough analysismfere2 C R? is the image domain: & — R is the image

the problemis first presented in a one-dimensional (1-D) settirdata, f: € — R is a piecewise smooth approximation ¢o

Markov random field prior (MRF) models appear in the correands: £ — [0, 1] is an estimate of the edge-strength function,

sponding 2-D Bayesian estimation problems. Unfortunately, ahdicating high probability for the presence of an edge where it

gorithms for solving estimation problems involving 2-D MRRakes values close to one. The first and second terms constrain

priors require a large number of computations to generate extet approximating surfacéto match the data as best as possible

estimates and a prohibitively large computational load to calnd also to be smooth in those places wheieclose to zero.

culate error statistics. Our objective here is to develop an dlhe third term ensures thatremain reasonably smooth and

gorithm with constant per-pixel complexity that also producedoes not tend to 1 everywhere. As shown in [6], the minima of

useful error statistics. (1) converge to a minimum of the Mumford and Shah functional
There are two possible approaches to achieving such @p — 0. The general approach Shah and Pien use to minimize

objective, namelyapproximating the solutioffi.e., replacing (1) is coordinate descent: one alternates between fixiagd

the solution to the estimation problem with one which is easiarinimizing

to compute) orapproximating the problen.e., replacing the oo

estimation problem with one which has similar characteristics / / (r g — 2+ ANV - 5)?) dz dy 2)

but which can be solved exactly using an efficient algorithm). Q

An approach of the former type is described in [11]. In thig,e, possiblef, and fixing f and minimizing
paper, an approach of the latter type is developed by altering ’

the prior model appearing in the problem formulation. In [ 9 s B , 82
particular, this paper examines the usefulness of muItiscaIg/ o AVIFA = 9)7+ 5 L pIVsl™ + ) de dy (3)

prior models for image segmentation. Multiscale models, ) . ) ]
which were introduced and studied in [9], admit algorithm@Ver Possible. Based on empirical evidence, Shah [1] and Pien
with constant per-pixel complexity for the calculation of bot@nd Gauch [7] have noted that this coordinate descent scheme
estimates and error variances. They have also been shown t§®&/€rges to a reasonable solution and that the results are not
useful in defining alternative approaches to problems in corsignificantly .affe(.:ted by the initial condition or whether one
puter vision which are often posed in a variational context [9f{arts by estimating or s.

[10], [12], [13]. These previous investigations, however, dealt

with problems that resulted in linear estimation algorithms. Hl. MULTISCALE MODELS

In contrast, image segmentation is fundamentally a nonlinearconsider a prototypical quadratic minimization problem:
problem, and thus, this paper represents the first work on usifghimize

multiscale stochastic models to solve a nonlinear problem in

image processing and computer vision. The algorithm that E(f)=r"Yg— fIP+NLfI? 4)
results not only has a modest computational load but also yields
good performance. wheref andg are vectors consisting of a lexicographic ordering

The work presented in this paper builds primarily upon thef pixels in an image andl is a matrix chosen to ensure that the
two areas of variational methods for segmentation and mulfinimizer of (4) is smooth (e.gZ could take first differences
scale methods for image processing. Section Il summarizes gi@earest neighbors as an approximation of a derivative). Min-
relevant material on variational methods for segmentation. Sé®ization of (4) is equivalent to maximization of
bl smormon b M R e o,

and many details are not discussed but may be found in the Jit- . - . S
erature [9], [10], [12][15]. The subsequent Sections IV and ne can now view( f, g) as a joint Gaussian probability distri-

discuss the specifics of the 1-D scenario, and Section VI is ch_tmn. In factp(f, g) is the joint distribution forf andg given

5 the measurement and model equations
voted to the 2-D scenario. y q

g=f+Vrv VALf=w (6)
Il. VARIATIONAL METHODS INIMAGE SEGMENTATION . .
wherev and w are independent zero-mean Gaussian random
A family of functionals proposed by Ambrosio and Tortorellivectors with identity covariance. For a given value gofthe
for image segmentation and denoising [5], [6] lies at the core wfaximum ofp( f, g) over f occurs at the conditional mean of
a segmentation and denoising algorithm developed by Shahl1¢ Gaussian, F|g]. What's more, Ef|g] is the Bayes least-
and extended by Pien and Gauch [7] among others. A memisguares estimate gf according to the distribution induced by
of this family of functionals, parameterized pyis of the form the modeling equations (6). Thus, one can view the problem of
minimizing (4) from the perspective of optimization or of sta-
tistical estimation [9], [10], [16].
E(f,s) = / / {7,1(9 — 2+ AVSPA - s)? The main advanf[age of the Baye_sian interpretl_e\tion _is tha_t it
Q casts the problem into a probabilistic framework in which it is
I , 82 natural to examine the accuracy of the resulting estimates. This
* 2 <p|Vs| * _>} dz dy @ is especially relevant in scientific applications such as remote
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The class of processes representable as the finest scale of a
tree process includes some very important processes. In par-
ticular, Luettgen [18] has shown that any 1-D Gauss—Markov
process can be represented on a tree using a model with a three-
dimensional (3-D) state. The 1-D results in this paper make

vy use of this model. The 2-D results make use of and extend the
1/ f-like model used previously for the computation of optical
flow and ocean surface reconstruction [10], [13]. Thig-like

model and its extension are presented in Section VI.
)

Fig. 1. Nodes of a tree, such as the quad-tree pictured here (typically one ud® STATISTICAL INTERPRETATION OFSEGMENTATION IN ONE

a binary tree for 1-D applications and a quad-tree for 2-D applications), are the DIMENSION

index sets of the multiscale processes discussed in this paper. The operation of

7 on an index is described as followszifis the index of some node, thefy The first step in applying the multiscale modeling framework

denotes the parent of that node. to segmentation in 1-D is to develop a statistical interpreta-

tion of the discretized version of (1). One possibility for dis-
sensing, in which one may be, for example, assessing if femetizing this functional is to replace the functiofige), g(z),
tures in a reconstruction are meaningful or statistically insigni&nds(z) with regularly spaced collections of sampjés), g(¢),
icant artifacts. In addition, this statistical formulation brings intands(¢); the integrals with sums oveérand the derivatives with
focus the role played by the regularization term as a prior modéist differences. The result in 1-D is the discrete functional
opening up the possibility of using alternate models that offer

certain advantages. _ -1 DY )2

Specifically, one can consider modeling a 1-D or 2-D phep(f’ 8= P (D) = 9(2))
nomenon as the finest scale of a stochastic process on a tree. n—1
Doing so provides important computational advantages when A Z (1= s(@)2fi +1) — f(4))?
performing estimation. The tree modeling framework used in =1
this paper was introduced in [14] and further developed in [9], 3 n—2 ] nol
[10], [12], [13], [15]. In these references, one can find more de- +5 <p do(sli+1) = s(i)*+= > s(i)2>
tailed discussions of the following concepts. i=1 P

The multiscale processes that are of interest in this paper are )
specified in terms of an autoregression on atree (see Fig. 1). The
root-to-leaf recursion takes the form wheren denotes the number of data poipt$)?. As was done in

[1], [7], one can use coordinate descent to minimize (9), thereby
z(v) = A(W)z(v7) + B(r)w(v) (7) decomposing this complex problem into two simpler ones.

The problem of fixings and finding thef that minimizes
where the notation refers to the parent of node This re- (9) is equivalent to finding the’ that minimizes the discrete
cursion is a generalization of the standard state-space recursigictional
for modeling a phenomenon evolving in time. In (7), thev)

and the state(root) at the root node are independent zero-mean I PN

Gaussian random vectors, thés with identity covariance and Eo(f) = 2 (f(0) = 9(2))

z(root) with prior covariance’;... The A and B matrices are n_zl_

deterministic quantities which define the statistics of the process + M1 — s(N2(FGi+1) — f())2. (10
on the tree. Observationgr) of the state variables have the ; ( (¢ )= J@)F. 10
form

A slightly more compact form can be written by collecting
y(v) = C(W)x(v) + v(v) (8) the samplesf(¢),g(%), and s(¢) into vectorsf andg € R”
ands € R" 1. Specifically, letL,, be the the(n — 1) x n
where theu(v) are independent Gaussian random vectors, affhtrix that takes first differences of, samples, and let
the matrice<”(v) are deterministic. The least-squares estimatgs — diag (1 — s1,---,1 — s,_1). Then, (10) simplifies to
of process values at all nodes on the tree given all observatigng r) = || — g2+ AL fl| 37 g, where||z||f, = 2T Wa.
and the associated error variances can be calculated Withpﬁﬁumg the minimum ofE, for fixed invertible S is then
O(N) recursive algorithm [14], [17], wheré/ is the number equivalent to finding the least-squares estimat¢ assuming
of finest scale nodes on the tree. The algorithm consists oft following measurement and prior model
fine-to-coarse recursion in which data in successively larger
subtrees are fused up to the root node of the tree, and a sub- 1
sequent coarse-to-fine recursion which produces both the op- vV
timal estimates and their error covariances. This algorithmgen; . . -
. . . In this discretizations has a length which is one sample less than thgt of
eralizes the standard Kalman filter and RaUCh_Tung_St”etﬁls is because the samples of the discretizéid between the samples of the
smoother. discretizedf. More details are provided in [19].

g=f+Vrvy Lof=—=S"twy, (11)
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wherewv; andw; are independent zero-mean Gaussian randasndesirable because a solution to the unconstrained minimiza-

vectors with identity covariance. Notice that forsuch that
s(i) = 1, the multiplier ofw(¢),1/(1 — s(¢)), is very large.
Thus, at these locations, the variancef¢f + 1) — f(¢) in the
prior model is high, and a least-squares estimator will allow b
jumps to occur in the estimate ¢gf This is exactly what one
wants the estimator to do at edge locations.

The problem of fixingf and findings that minimizes (9) is
equivalent to minimizing

A ST (G + 1)~ (- 5(0)°
+ %p i (s(i +1) — s(d))% + % i s(i)?. (12)

Defining a(i) = A(f(i + 1) — f(i))*, b = B/2p,c = fBp/2,
and~(i) = a(¢)/(a(t) + b), one finds that, after completing the
square, (12) can be rewritten

i((a(i) +0)(4(0) = (D) + a(D)(1 = 1()*) = br(0)*)

=1

+c z_: (s(i +1) — s())* (13)

Ignoring terms which do not depend anone observes that
minimizing (12) overs is equivalent to minimizing

n—1

Y (ald) +b)(()

=1

Ey(s)

n—2

— (@) e S (s(i+ 1) - 5(0)”.

=1

By defining the diagonal matrix

A = diag (VN s + b+ /ML Dty +)

and the vector
T
)‘(Lnf)% o )\(L"f)%nfl)

where (L,, f);, corresponds to théth row of L, f, one can
rewrite (14) as

(14)

(15)

In the original functional (1)s is constrained to lie within [0,1].

If one removes this constraint, the problem of finding the
that minimizes (15) is equivalent to the problem of estimating
given the following measurement and prior model:

Ef(s) = Iy = sllZra + cllLa-s]*.

vy=s+A v, L,_i1s= Wi (16)

S
NG

tion of (15) that lies within [0,1] is an optimal solution of the
constrained problem. As it turns out, this is often the case, as
discussed in Section V.

ig As an aside, we note that one of the benefits of formulating a
minimization problem in terms of statistics is that it yields nat-
ural interpretations of the parameters. These interpretations, in
turn, can be used to form a loose set of guidelines for picking
parameter values suitable for a particular segmentation applica-
tion. Specifically, simple calculations lead to the following ob-
servations which can be used to pick the signal-dependent pa-
rameters\, b, ¢, andr.

¢ A is inversely proportional to the variability in the recon-
structed signaf at locations where no edges are present.
In particular, B(f(i + 1) — f(i))?|s(¢) = 0] = 1/A.

7 is the measurement noise variance term, determined in
many applications by sensor specifications.

cis proportional to the width of the edges. Specifically, the
model for the edge-strength functieimplies K s(i+1)—
s())? = 1/c.

b controls the degree of edginess. In particular, choosing a
value for it is related to the issue of defining what level of
variability in f we wish to call an edge. Since the observa-
tions appearing in the model for the edge-strength function

s have the form
PSP 0 Vi (0
A(fi+1) = f(@)>+0
one desires that farat edge locations
b NE[(f(i +1) — f(2))*|s() = 0] = 1,
b <A +1) = f(i)>
These rules guided the choice of parameter values used for the
numerical results presented in the subsequent section. More dis-

cussion concerning the parameters, including Monte Carlo re-
sults, can be found there and in [19].

V. NUMERICAL RESULTS

Based on the Gauss-Markov estimation problem formulations
specified by (11) and (16), one can compute estimftesd §
using any one of a variety of efficient methods. These include
direct methods for solving the associated normal equations and
Kalman filter smoothing. For the simulation results that follow,
estimatesf and3$ as well as error varianceB; and P, were
computed by a multiscale recursive estimation algorithm [13],
[17], [18] (see also Section IIl). One detail concerning the im-
plementation of this and other algorithms is that they require the
specification of prior variances, on f(0) ands(0), the first
samples of the probabilistic models férands. However, the
precise interpretation of the variational formulation as an esti-

wherewv, andw, are independent zero-mean Gaussian randamation problem corresponds to viewing the initial value as un-

vectors with identity covariance. Notice thaplays the role of
an observation of and that its components take on values ne
one where the difference between consecutive samplgdof

known, which is equivalent to an infinitely large prior variance.
&vhile it is possible to accommodate this in the estimation for-
mulation with no effect on algorithmic complexity, itis common

large and near zero where the difference is small. Observe disaise an alternate approach in which one closely approximates
that~(¢) lies within [0,1); thus, the first term in (15) providesthe solution to the original problem by setting the prior covari-

an increased penalty farthat does not stay within [0,1]. This

anceF, to a relatively large number. For the purposes of this
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TABLE |

DESCRIPTION OFPARAMETERS IN 1-D SEGMENTATION ALGORITHM

Value for the
Results in Figs.
Parameter Description 2 and 4 3
A A adjusts the smoothness in f away from edges. See (16). 1 25000
b b affects the edginess of the estimate of the edge-strength 10 25
function. See (16).
c c sets the allowed variability in s. See (16). 100 1
T r is the assumed noise variance in the data 1 (0.2)?
Py Py is the prior covariance for initial process values. 100
€ Estimates of s are clipped to lie within [0,1 — €]. 1.0 x 1074
A The algorithms stops after the percent change of the func- 0.01%
tional (9) falls below A. R
80
60 b
40 e NMWM
20 J 1
_23 MN%W”\«WNJ
_400 200 400 600 800 1000
@
80 1
: pe—— |
20 ,j 1 0.5F f)
OW\MW
:jg ' 0 “\A/wxw/y'; ' Q\WW\N,M“
0 400 600 800 1000 0 200 400 600 800 1000
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| Y .
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L & hd A&
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Fig. 2. The results for segmenting the data pictured in (a), a noisy observation of a process whose statistics are dictated by (11) for the ¢éngtledigeston
given by (17). The measurement noise is white and Gaussian with unit variance. All parameters are set as in Table ¢, (@) Batanstructiorf, (c) estimate
of the edge-strength functich (d) reconstruction error standard deviatiqy(sZTf; and (e) estimate of edge-strength function error standard deviafiéhs

paper,F; is set large relative td/ A and1/c. This segmentation f using an initial estimate of the edge-strength functivs- 0.
algorithm requires the specification of two parameters in addi-list of all of the algorithm’s parameters are listed in Table I.
tion to that of F: To illustrate the operation of the algorithm, some examples
follow. These, in turn, are followed by some Monte Carlo ex-
%gé)géiments designed to assess quantitatively the performance of
he algorithm.

* ¢ Since estimatingf requires thatl /(1 — s)? be well
behaved, we must also enforce a constraint on the ral
s. A simple solution is to clip each estimate of the edge-
strength function so that for some smalk € [0,1 —¢]. A, Examples

This solution proves adequate. o : L
- A: As the segmentation algorithm is iterative in nature, _F|g. 2illustrates a segmentation of a synthetic signal. The data

. . o in Fig. 2(a) consists of a signglto which unit intensity white
one must specify a stopping criterion. For all of the resu'%aussgian(nzeasurement noigseahas been added Theyﬁi'g;rml

::nhg:; esﬁ]cif: }stﬂilr?;”(tg)r? aﬁéogzgvﬁen the percentaggalization of a Gaussian process described by (11). The process
' is started with initial conditiory’(0) = 0 and generated using

Our experience has been that a single pair of valuessoflA  for s the double-sided exponential function

can be used to produce good segmentations of a variety of signal 7)

types. The parametek specifies when to stop, but one also

needs an initial guess with which to start the iterative algorithrithe values of the parameters used are listed in Table I. Now, re-

For the results in this section, the algorithm starts by estimatiogll that where the edge-strength function is approximately one,

0.97 x exp(—|i — 512|/10).
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Fig. 3. Segmentation of a noisy unit step as plotted in part (a). The measurement noise is white and Gaussian with standard deviation 0.2. Allgsarameter
given in Table I. (a) Datg, (b) reconstructiorf, (c) estimate of the edge-strength functigr{d) reconstruction error standard deviatiqy(sin, and (e) estimate
of edge-strength function error standard deviatigfi8,

the variance of the increment in the modelfoincreases. This ments in the vicinity and is large. As in the case of the first
is clearly evident in Fig. 2(a) in which the particular realizaexample, however, the error statistics reflect the fact that, near
tion of f displays a clear jump in its value in the vicinity of thethe edge, one expects less noise reduction in estimgtiugd
edge-strength function’s peak. has higher confidence in the estimate of the edge process be-
The data in Fig. 2(a) are then fed into the iterative segmetause of the abrupt change in valuefof
tation and denoising algorithm. The results displayed in the re- .
maining parts of Fig. 2 are after five iterations of the algorithn®- Monte Carlo Experiments
at which point, the value of the functional (9) was changing by Two different sets of Monte Carlo experiments are presented
less thanA = 0.01%. No clipping was necessary during thenere. The first set provides some information for interpreting the
course of the run, and thus, the results are true to the discreteor statistics. The second set shows that the algorithm is robust
form of the variational formulation (9). The final reconstructo parameter settings.
tion is a smoother version of the data, but the edge has not beem) Error Statistics: In this section, a more careful look is
smoothed away. The final estimate of the edge-strength fungken at the error statistics provided by the segmentation al-
tion has a strong peak at the location of the edge. These aredbéithm in order to assess their accuracy and utility. Since the
desired results of the segmentation algorithm. In addition, thel iterative algorithm is nonlinear, the exact error variances
estimation error variance fgfin Fig. 2(d) displays the charac-in estimatingf and s are not easily computed. The statistics
teristic one would expect: away from the expected edge, cagalculated by our algorithm represent approximations that re-
siderable lowpass filtering is effected, reducing the noise vagult from the linear estimation problems for each of the two
ance. However, in the vicinity of the edge, one expects great@parate coordinate descent stepsff@and s. Fig. 4 presents
variability and, in essence, the estimator performs less noise fitonte Carlo results comparing the error statistics computed
tering, resulting in alarger error variance. Note also that the valy the segmentation algorithm with the actual error variances.
ance in the estimate of the edge process is almost constant, \#iflth experiment in this simulation corresponds to (a) gen-
a slight drop in the vicinity of the edge, i.e., whefechanges erating a realizationf of the process described by (11) for
abruptly, reflecting greater confidence that an edge is presem fixed edge-strength functiongiven by (17) and with the
in this vicinity. The results for the preceding example are goofhitial value f(0) set to 0; (b) adding white Gaussian mea-
but not completely convincing by themselves sifiée matched surement noise with unit intensity; and (c) applying the seg-
to the algorithm by its construction. Consider a prototypicahentation algorithm using the parameters in Table | to obtain
signal not matched to the model, namely a step edge. Figth@ estimateg of the realizationf and s of the edge-strength
displays results for data consisting of a unit step embeddedfimction s as well asP; and P, the error variances for these
white Gaussian noise. The estimates are shown after 12 itestimates that the algorithm generates.
ations. Once again, no clipping was necessary in the iterativeThe quantities of interest for each run ag = (f -,
process. The results demonstrate that the algorithm workseas= (5 — s), and the error statistic8; and P, computed by the
desired. It removes almost all of the noise away from the edgggorithm. From 100 independent runs, the following quantities
while accurately preserving the discontinuity. Note thatin-  are estimated: &%, Var(e;), E Py, E ¢Z, Var(e,), and EP;.
creases near the outer ends because there are fewer mea3ikese are plotted in Fig. 4 along with Monte Carlo error bars



462 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 3, MARCH 2000

Mean Squared Error for Estimating f (E 83) Mean Squared Error for Estimating s (E 53)
0.08
0.06
0.04 (b-i)
0.02
. ) . R R R N . . 0 A
01()020()3004005006007008009001000 100 200 300 400 500 600 700 800 900 1000
Variance of the Error for Estimating f (Var(ey)) Variance of the Error for Estimating s (Var(es))
0.04
003
0.02 1 (b-ii)
0.01
c1002()03()04—0()5006007()0800900100() 7700 200 300 400 500 600 700 800 900 1000
The Segmentation Error Variance for Estimating f (E Py) The Segmentation Error Variance for Estimating s (E P,)

r T T T T v r 003
0.8f
06 0.02
a-iii AF (b-iii)
(a-iii) 04 ootk Y ]

0.2r
0

0

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

The True Segmentation Error Variance for Estimating f (Py,)

| ——— ey
05 A

100 200 300 400 500 600 700 800 900 1000

(a) (b)

(a-iv)

Fig. 4. Comparison of various error statistics compiled using Monte Carlo technigues for segmenting synthetic data. The data are realizatosss oflagse
statistics are given by (11) for the exponential edge-strength function given by (17). Part (a) of this figure displays statistics concerrongttioetien errors,

e = (f — f), and the reconstruction error standard deviations generated by the algafithiRart (a-iv) displays the optimal error standard deviations for
estimatingf given that the true edge-strength function given by (17) is known. Part (b) of this figure displays the statistics concerning the errors in #etimating
edge-strength functior, = (3 —s). (a-i) Mean squared error for estimatifig Ee? ), (a-ii) variance of the error for estimatinfg(Var(e, )), (a-iii)) segmentation

error variance for estimating (E P;), (a-iv) true segmentation error variance for estimatfngP; ), (b-i) mean squared error for estimating Ee?), (b-ii)
variance of the error for estimating(Var(e,)), and (b-iii) segmentation error variance for estimatinge P ).

set at 2 standard deviations. Comparing Fig. 4(a)-i fai} Bnd actually preferable for segmentation, for which the peak loca-
Fig. 4(a)-ii for Var (¢y), one sees that these are quite close tions in the estimates of the edge strength-functions are more
value, indicating that the estimate produced by our algorithmimmportant than the estimates’ shapes. Because of this bias to-
essentially unbiased. Comparing these two figures with the pleard tighter edge localizatios,is a slightly biased estimate of
of E P, one observes that the error variance computed by ougiven by (17), as evidenced by the broader peak efEs
algorithm has essentially the same shape, reflecting the fact tbatpared to Vd; ).
it accurately captures the nature of the errors in estimating A second interesting point is that & increases slightly in
Fig. 4(a)-iv shows a plot of the error variance for an estimatte vicinity of the edge, while the variance computed by the es-
that is given perfect knowledge of the edge process. Compartigation algorithm, E P, decreases. The reason for this can
this to Fig. 4(a)-iii, one notices that the segmentation algorithbe explained as follows. Specifically, the estimator believes that
performs nearly as well assfwere known perfectly and did notit is has more information about when the gradient of is
have to be estimated. large. Thus, in the vicinity of an edge, the estimator indicates
The error statistics for the edge-strength function are depictadeduction in error variance for estimatingHowever, if the
in Fig. 4(b). Ec? and Vare, ) being small relative to one indicateestimate of thdocation of the edge is in error, then the differ-
that the estimate of the edge-strength function is quite accurateee, = (5 — s) will exhibit large, very localized errors, both
and that the error does not vary considerably from sample pakbsitive and negative (just as one would see in the difference
to sample path. In addition, the shapes of these plots have sgitwo discrete-time impulses whose locations are slightly dif-
eral interesting features related to the behavior of the estimaterent). Thus, rather than providing an accurate estimate of the
in the vicinity of the edge. Note first that, as can be seenin Fig.gze of the estimation error variance in this vicinity, this dip in
the algorithm tends to estimate edge-strength functions that #re error variance should be viewed as a measure of confidence
slightly narrower than the actual edge-strength function. Thisiisthe presence of an edge in the vicinity.
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Fig.5. Average value dfV for the step edge example of Fig. 3 but for different
values ofA. . . .
exist no known algorithms which can compute the necessary

quantities for this general problem with fewer thatw?) oper-
2) Parameter SelectionFig. 5 presents results from agtions, where is the linear dimension of the image.

Monte Carlo simulation designed to characterize how well gjnhce the objective is to generate estimates and error
the algorithm can segment signals for different values of th@riances with constant computational complexity per pixel
parameted. In this experiment, the algorithm is segmenting § e., with O(n2) operations), one is confronted with the need
unit step edge. The quantity computed from each segmentatigngevelop approximations. The approach taken here is to
is W, the number of values of the estimated edge-strentifternately estimate a reconstruction and an edge-strength
function that lie above a given threshold set close to one. Thifction assuming multiscale prior models. When the prior
corresponds roughly to the sum of the widths of the edgesijil 3 multiscale model, there is an efficient algorithm for
the segmentation. In the case of the step edge, the desired valigjucing the estimates, and the associated error variances of
of W is one. Except fol, the algorithm’s parameters take oihe reconstruction and edge-strength function [14], [17] (see
the values listed in Table | for Fig. 3. The threshold is set t§sg Section l1). These two estimation steps replace the two
0.9. The results in Fig. 5 are for 500 runs, and the error bars @gbrdinate descent step in Shah and Pien’s variational approach

set at one standard deviation. _ to segmentation as discussed in Section Il. The estimation is
~ Recall that the amount of smoothness the algorithm expegisrformed in an overlapped domain, as described in [20]. Thus,
in f where there is no edge is directly relatedMoFor A = the multiscale models do not directly modgland s but the

2.5 x 10°, the algorithm generates the very flat step estimate ghrresponding lifted versiong and's. The two models, one

Fig. 3. However, one can not setoo high because, as Fig. Sfor each of the lifted field€ ands, are described in Section
shows, the average valueldf increases with. Remember that /.. Note that there are two principal distinctions between
W is a measure of how many points are very likely to be edgesyr multiscale modeling approach and some other quad-tree
If A is set too high, the algorithm will put edges in many placegyproaches to solving image processing problems. The first is
and set the estimate of the functigralmost constant betweentnat the variables on the tree are states that decorrelate regions
edges. Although the results of the algorithm dependothe  of the image, and the second is that the associated estimation
slope of the curve in Fig. 5 is not very steep. This indicates thghorithm passes information everywhere along the tree so as

small perturbations in the value dfwill not severely diminish o produce globally optimal estimates of the lifted fields.
the performance of the algorithm.

Similar experiments have been performed in which other pa- ) i
rameters were adjusted. These can be found in [19]. To sufh- Multiscale Models for Segmentation

marize, the effect of these parameters on the results coincidg,nsider first. the model used for the estimatios o&s dis-
with the simple guidelines presented in Section IV. Furthermor&ssed in [9], [10], [12], [13], [16], the smoothness penalty as-

these Monte Carlo experiments indicate tha_lt the results are {3ziated with the gradient, used for example in (2) and (3), cor-
bust to small changes in the parameter settings. responds to a fractal penalty in that it is roughly equivalent to
a1/ f-like prior spectrum for the random field being modeled.

VI. A M ULTISCALE METHOD FORIMAGE SEGMENTATION This type of spectrum has a natural scaling law; namely, the

As discussed in [19], solving the exact 2-D counterparts to tr\]/grlances of increments at finer and finer scales decrease ge-

estimation problems in the 1-D segmentation and denoising 8ﬂ‘e”'ca”y' In 9], [10], [12], [13], it was demonsirated that a

gorithm is not an easy task. In particular, the calculations in 255" S|mple.mult|scale model haV|.ng. this same scaling proper.ty
) C T ) . eads to estimates that are very similar to those produced using
correspond to solving estimation problems with prior mode

Re original smoothness penalty. A model of this type is used for

that_are 27D_Mark(_)v rendom flelds (M.RF) or, equwalently, t?he lifted versiors of the edge-strength function. Specifically
solving elliptic partial differential equations and computing the

diagonal elements of the inverses of elliptic operators [9]. There s(v) = s(v) + d(v)Bsws (V) (18)
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TABLE I
DESCRIPTION OFPARAMETERS, IN THE MULTISCALE METHOD

Value for the
Results in Figs.

Parameter Description 7 8 9
b affects the edginess of the estimate of the edge-
b strength function. 30 10
A A affects ,the determination of what is an edge and 15 50
what isn’t.
B B, adjusts the multiscale smoothness penalty 1 0.87
8 placed on s. See (18). )
B adjusts the multiscale smoothness penalty
By placed on f. See (19). 1/40 0.75
T r is the assumed noise variance in image data. 1 | 6 1
P Pyoot is the multiscale model prior covariance for 1 % 10°
root the process value at the root node.
(16 10 (50 31
o Each component of O specifies the amount of over- | 7 4 2 18 11 7
lap at a particular scale. 2.0 0) 4 21
0 0)
€ Estimates of s are clipped to lie within [0,1 — €]. 0.01
I I is the number of iterations of estimating f and 9

8.

where B; is a constant, and the,(») are independent unit pixels between these nodes indicate the presence of an edge),

variance Gaussian random variables. As described in [12], [18]e variance of the scale-to-scale increment bétween these

the d(») are constants that decrease from one scale to the niswb nodes should increase. More precisely, the modef figsr

finer scale and depend on the amount of overlap used. The mgaecified by the recursion

surements and measurement error variances used in conjunction _

with the model fors in (18) are exactly analogous to those spec- £) = £03) +n()d() Brws (v) (19)

ified by yand A=2 in 1-D. The only difference in 2-D is that awhere B, is a constantw () are independent unit vari-

sum of the squares of the first differences in each direction r@ace Gaussian random variables, af@) is the sum of

places the square of the first difference in one direction. Detailg(1 — 3(4, j))? for estimates of the edge-strength function

are specified in [19]. values which fall on the line connecting and »5. In this
The multiscale model for the lifted version of the reconstruenanner, additional uncertainty is put into the recursiortfat

tion f is, to some extent, similar to the one for the edge-strengtie appropriate locations.

function. However, significant modification to this model is

needed in order to capture the presence of discontinuities,BasNumerical Results

indicated by the edge estimates. In particular, in the 1-D caseihjs section presents numerical results on two test images, a
as captured in (11), the incrementsfohave a variance which gynthetic image of a circle and an MRI brain scan. Table Il lists
is inversely proportional to the corresponding valu¢lof s)*.  the algorithm’s parameters and valué&ghe execution times for
Thus, the variance of the increment pis large near an edge ggch example were on the order of minutes when run using
(i.e., wheres is approximately one in value). In a similarpATLAB on a Sparc Ultra.

manner, one needs to capture the idea that incremerfitsasf  The segmentation of a synthetic 64 x 64 image of a circle is
one moves to finer scales, should have variances that reflect fagsented in Fig. 7. The circle image provides a simple example
presence of edges (i.e., that are again inversely proportionagdpwhich one can observe the desired outputs of the algorithm.
(1—s)%). This is done as follows. Note that each node on thgne reconstruction contains very little of the noise present in
tree can be thought of as representing the center of a subregi@f original data. Furthermore, the edges of the circle have not
of the image domain. A 2-D example is depicted in Fig. 6. Thgaen smoothed over in the reconstruction. The estimate of the
dots in this figure correspond to the center points of the regiopg e-strength function is close to zero everywhere except at the
associated with different nodes on the tree. The dots are shaggge of the circle, where the estimate tends to unity. This indi-
according to the scale of the corresponding node on the treges the algorithm has successfully identified edges and has ig-

the darker the dot, the coarser the scale. Thus, for exampigred the spurious changes in intensity in the data due to noise.
the noder, represents the entire large square region, while

the noder; at the next finest scale represents the upper-righlzThe parameters, A, B, B, andr have interpretations analogous to those

d t of this | N if th . d | resented in Section IV for the parametéra, ¢, andr appearing in the 1-D
quadrant or this large square. Now, Ir there Is an edge Ocat%rablem. The interpretations were used to guide the choice of parameters used

betweenry and v (i.e., if the values ofs at image domain in the numerical examples of the multiscale method for segmentation.
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(d) (e)

Fig. 7. Segmentation of a synthetic circle image computed using the multiscale method. (@,)(Ib)ateconstructiO[f, (c) estimate of the edge-strength function

$8; (d) reconstruction error standard deviatiqy(in ; and (e) estimate of edge-strength function error standard deviagiéhs

¥

9

(b) ©

Fig. 8. This figure illustrates the difference between a gradient map and the estimate of the edge-strength function for a noisy circle image, () Data
magnitude of the gradient, and (c) estimate of the edge-strength furiction

Fig. 8 illustrates the difference between a gradient map andin addition to the reconstruction and estimate of the edge-
the estimate of the edge-strength function. As for the examength function, the multiscale algorithm computes the stan-
in Fig. 7, the unprocessed image is a circle embedded in whitard deviations of the error in the reconstruction and estimate
noise. The standard deviation of the noise is six. The magnituofethe edge-strength function. Notice that the error standard
of the gradient is very noisy, but the edge-strength function deviations for the reconstruction increase near edges and, for
only moderately noisy and clearly indicates the location of tithe estimate of the edge-strength function, decrease near edges,
underlying circle. as in the 1-D case. Thus, one expects that the error standard
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(d) (e)

Fig. 9. MRI segmentation computed using the multiscale method. (a)gDebaireconstructiorf , (c) estimate of the edge-strength functigifd) reconstruction
error standard deviationg/]T ; and (e) estimate of edge-strength function error standard deviafiéhs

deviations in Figs. 7 and 9 are of similar significance to thogskemarcate the boundaries of the ventricles, the two hollow re-
generated in 1-D. Another consequence of the above-mentioggeshs in the middle of the brain. Another goal is to determine
properties of the error standard deviations is that they can the boundary between gray and white matter in the brain. The
used not only to estimate one’s confidence in segmenting thstimate of the edge-strength function displayed in Fig. 9 does
image but also to improve one’s estimate of the boundary la-good job at indicating likely boundaries both of the ventricles
cations. This is a consequence of the error standard deviatiansl of the gray and white matter.
marking the edges in the image as well or better than the esti-
mate of the edge-strength function.

Fig. 9 displays a multiscale segmentation of a 256 x 256 MRI VII. CONCLUSION

brain scah There are many different potential uses of MRI

brain segmentation. Associated with each of these different us@4his paper, we have described a new approach to the recon-
are different goals of the segmentation. One of these goals i$tgiction and segmentation of noise corrupted signals and im-
ages. The points of departure for our work are the variational
3An MRI image with pixel values ranging over more than 800 integers w.

shifted and scaled to produce the data for this figure. The dynamic range of émUIatlon_ Of_ Mumford and_ Shah [2] andj more eXpIICItIY, the
scaled MRI data is close to that of the circle images. relaxed variational formulation of Ambrosio and Tortorelli [5].
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The latter formulation leads to the simultaneous computation[s]
of both a reconstructed signal or image and an edge-strength
function which provides a measure of the likely locations of 7]
edges or abrupt changes in the image or signal values.

The contributions of this paper are several. First, we providel8l
precise statistical interpretations of the steps involved in esti-
mating both the reconstructed signal or image and the edgefo]
strength function. This interpretation not only establishes an in-
tellectual bridge to statistical estimation, but it also leads diyy
rectly to the extension of the algorithm to produce error vari-
ances for the reconstructed image and edge-strength function.

Moreover, this statistical interpretation leads us to anothefy;
significant extension and new algorithm, in the case of 2-D
image processing. In particular, replacing the random fielqm
image models implied by the variational formulations in [1],

[7] with a multiscale prior model with similar characteristics
yields an extremely efficient algorithm for the simultaneous(3l
estimation of the reconstructed image and edge-strength funﬁ-4]
tion. Furthermore, the new algorithm can efficiently compute
the variances of the errors in these estimates. The algorithm
for computing both estimates and error variances given 3ol
multiscale model has constant computational complexity per
pixel. In contrast, the best known algorithm for computing[2€]
estimates and error variance given a random field model has;,
a complexity per pixel that increases as the square root of the
total number of pixels.

In addition to these substantial computational advantages, V\%S]
have also demonstrated the efficacy of these algorithms through
several experimental studies. In 1-D, we demonstrated the aB<]
curacy of the error variance calculations that our algorithm aupq]
tomatically produces for the reconstructed image. In 2-D, we
also demonstrated the ability of our algorithm to produce reli-
able estimates even in the presence of very high noise. In partic-
ular, we demonstrated that the estimates of edge-strength func-
tions produced by our approach are much more robust to noise
than image gradient maps. Thus, the edge-strength function es-
timates can be subsequently processed to produce robust
accurate edge estimates, e.g., by thresholding [1] or more
phisticated methods such as curve evolution [8].
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