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Abstract—This paper addresses the problem of both segmenting
and reconstructing a noisy signal or image. The work is motivated
by large problems arising in certain scientific applications, such as
medical imaging. Two objectives for a segmentation and denoising
algorithm are laid out: it should be computationally efficient
and capable of generating statistics for the errors in the recon-
struction and estimates of the boundary locations. The starting
point for the development of a suitable algorithm is a variational
approach to segmentation [1]. This paper then develops a precise
statistical interpretation of a one-dimensional (1-D) version of this
variational approach to segmentation. The 1-D algorithm that
arises as a result of this analysis is computationally efficient and
capable of generating error statistics. A straightforward extension
of this algorithm to two dimensions would incorporate recursive
procedures for computing estimates of inhomogeneous Gaussian
Markov random fields. Such procedures require an unacceptably
large number of operations. To meet the objective of developing a
computationally efficient algorithm, the use of recently developed
multiscale statistical methods is investigated. This results in the
development of an algorithm for segmenting and denoising which
is not only computationally efficient but also capable of generating
error statistics, as desired.

Index Terms—Denoising, multiscale statistical models, segmen-
tation.

I. INTRODUCTION

M UMFORD and Shah have developed a theoretical frame-
work in which to address the problem of simultaneous

image denoising and segmentation [2], [3]. In this framework,
the goal is to decompose a given noisy image into piecewise
smooth regions bounded by contours on which the image inten-
sity is allowed to change abruptly. This is accomplished by min-
imizing a particular functional jointly over the image boundaries
and a reconstruction of the image. The minimizing reconstruc-
tion of the original image has been denoised through smoothing
everywhere except along the detected boundary contours. The
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Mumford and Shah functional has many nice mathematical and
psychovisual properties [4]; however, it is difficult to compute
minimizers because of the discrete nature of the image boundary
terms.

Various people have tried to address these computational dif-
ficulties by making small alterations in the Mumford and Shah
framework [5]–[7]. In this revised setting, there are also two ob-
jects computed by the algorithm: a reconstruction of the orig-
inal image and a continuous-valued edge-strength function. The
reconstruction is a denoised version of the unprocessed, noisy
image which does not suffer from the edge blurring effects of
some simple linear reconstruction algorithms (e.g., low-pass fil-
tering). The edge-strength function provides information about
the optimal spatially-varying amount of smoothing that should
be applied to produce the reconstruction. The function varies
between the values 0 and 1, taking on the value 1 where no
smoothing should be done and 0 in areas where full smoothing
is performed. While the edge-strength function itself is not an
explicit estimate of image edges, it is demonstrably a more ro-
bust indicator of edge likelihood than standard gradient maps.
In particular, the edge-strength function displays substantial ro-
bustness to noise and automatically avoids problems of dynamic
range exhibited by gradient maps of noisy images (see Section
VI). As a consequence, generating explicit edge contours from
edge-strength functions can be accomplished robustly as shown
in [1] using thresholding and [8] using curve evolution.

The approach to segmentation and denoising taken in this
paper begins with a novel Bayesian interpretation of the revised
Mumford and Shah variational approach to segmentation. This
interpretation follows in the footsteps of some recent work in
which close connections are made between certain variational
and statistical approaches to image processing [9], [10]. The
principal advantage of the Bayesian framework is that it pro-
vides a theoretical structure for the interpretation and compu-
tation of error statistics. Error statistics provide a quantitative
measure of the quality of the reconstruction and estimate of the
edge-strength function. Such a measure of quality is very im-
portant in certain scientific applications. One of the main con-
tributions of this paper is the development of a segmentation al-
gorithm which produces not only a reconstruction of the image
and an estimate of the edge-strength function but also error sta-
tistics. Furthermore, this paper contains a careful evaluation of
the nature and quality of the information provided by these error
statistics.

While the Bayesian interpretation can be equally well applied
to both one and two-dimensional (2-D) signals, there is a sig-
nificant difference in computational complexity in solving the
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resulting problems. As a consequence, a thorough analysis of
the problem is first presented in a one-dimensional (1-D) setting.
Markov random field prior (MRF) models appear in the corre-
sponding 2-D Bayesian estimation problems. Unfortunately, al-
gorithms for solving estimation problems involving 2-D MRF
priors require a large number of computations to generate exact
estimates and a prohibitively large computational load to cal-
culate error statistics. Our objective here is to develop an al-
gorithm with constant per-pixel complexity that also produces
useful error statistics.

There are two possible approaches to achieving such an
objective, namelyapproximating the solution(i.e., replacing
the solution to the estimation problem with one which is easier
to compute) orapproximating the problem(i.e., replacing the
estimation problem with one which has similar characteristics
but which can be solved exactly using an efficient algorithm).
An approach of the former type is described in [11]. In this
paper, an approach of the latter type is developed by altering
the prior model appearing in the problem formulation. In
particular, this paper examines the usefulness of multiscale
prior models for image segmentation. Multiscale models,
which were introduced and studied in [9], admit algorithms
with constant per-pixel complexity for the calculation of both
estimates and error variances. They have also been shown to be
useful in defining alternative approaches to problems in com-
puter vision which are often posed in a variational context [9],
[10], [12], [13]. These previous investigations, however, dealt
with problems that resulted in linear estimation algorithms.
In contrast, image segmentation is fundamentally a nonlinear
problem, and thus, this paper represents the first work on using
multiscale stochastic models to solve a nonlinear problem in
image processing and computer vision. The algorithm that
results not only has a modest computational load but also yields
good performance.

The work presented in this paper builds primarily upon the
two areas of variational methods for segmentation and multi-
scale methods for image processing. Section II summarizes the
relevant material on variational methods for segmentation. Sec-
tion III provides an overview of the multiscale modeling frame-
work. The overview is not meant to be comprehensive, however,
and many details are not discussed but may be found in the lit-
erature [9], [10], [12]–[15]. The subsequent Sections IV and V
discuss the specifics of the 1-D scenario, and Section VI is de-
voted to the 2-D scenario.

II. V ARIATIONAL METHODS IN IMAGE SEGMENTATION

A family of functionals proposed by Ambrosio and Tortorelli
for image segmentation and denoising [5], [6] lies at the core of
a segmentation and denoising algorithm developed by Shah [1]
and extended by Pien and Gauch [7] among others. A member
of this family of functionals, parameterized byρ, is of the form

(1)

where is the image domain, is the image
data, is a piecewise smooth approximation to
and is an estimate of the edge-strength function,
indicating high probability for the presence of an edge where it
takes values close to one. The first and second terms constrain
the approximating surfaceto match the data as best as possible
and also to be smooth in those places whereis close to zero.
The third term ensures that remain reasonably smooth and
does not tend to 1 everywhere. As shown in [6], the minima of
(1) converge to a minimum of the Mumford and Shah functional
as The general approach Shah and Pien use to minimize
(1) is coordinate descent: one alternates between fixingand
minimizing

(2)

over possible and fixing and minimizing

(3)

over possible Based on empirical evidence, Shah [1] and Pien
and Gauch [7] have noted that this coordinate descent scheme
converges to a reasonable solution and that the results are not
significantly affected by the initial condition or whether one
starts by estimating or

III. M ULTISCALE MODELS

Consider a prototypical quadratic minimization problem:
minimize

(4)

where and are vectors consisting of a lexicographic ordering
of pixels in an image and is a matrix chosen to ensure that the
minimizer of (4) is smooth (e.g., could take first differences
of nearest neighbors as an approximation of a derivative). Min-
imization of (4) is equivalent to maximization of

(5)

One can now view as a joint Gaussian probability distri-
bution. In fact is the joint distribution for and given
by the measurement and model equations

(6)

where and are independent zero-mean Gaussian random
vectors with identity covariance. For a given value ofthe
maximum of over occurs at the conditional mean of
the Gaussian, E What’s more, E is the Bayes least-
squares estimate of according to the distribution induced by
the modeling equations (6). Thus, one can view the problem of
minimizing (4) from the perspective of optimization or of sta-
tistical estimation [9], [10], [16].

The main advantage of the Bayesian interpretation is that it
casts the problem into a probabilistic framework in which it is
natural to examine the accuracy of the resulting estimates. This
is especially relevant in scientific applications such as remote
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Fig. 1. Nodes of a tree, such as the quad-tree pictured here (typically one uses
a binary tree for 1-D applications and a quad-tree for 2-D applications), are the
index sets of the multiscale processes discussed in this paper. The operation of
 on an index is described as follows: if� is the index of some node, then�
denotes the parent of that node.

sensing, in which one may be, for example, assessing if fea-
tures in a reconstruction are meaningful or statistically insignif-
icant artifacts. In addition, this statistical formulation brings into
focus the role played by the regularization term as a prior model,
opening up the possibility of using alternate models that offer
certain advantages.

Specifically, one can consider modeling a 1-D or 2-D phe-
nomenon as the finest scale of a stochastic process on a tree.
Doing so provides important computational advantages when
performing estimation. The tree modeling framework used in
this paper was introduced in [14] and further developed in [9],
[10], [12], [13], [15]. In these references, one can find more de-
tailed discussions of the following concepts.

The multiscale processes that are of interest in this paper are
specified in terms of an autoregression on a tree (see Fig. 1). The
root-to-leaf recursion takes the form

(7)

where the notation refers to the parent of node This re-
cursion is a generalization of the standard state-space recursion
for modeling a phenomenon evolving in time. In (7), the
and the state root at the root node are independent zero-mean
Gaussian random vectors, the’s with identity covariance and

root with prior covariance The and matrices are
deterministic quantities which define the statistics of the process
on the tree. Observations of the state variables have the
form

(8)

where the are independent Gaussian random vectors, and
the matrices are deterministic. The least-squares estimates
of process values at all nodes on the tree given all observations
and the associated error variances can be calculated with an

recursive algorithm [14], [17], where is the number
of finest scale nodes on the tree. The algorithm consists of a
fine-to-coarse recursion in which data in successively larger
subtrees are fused up to the root node of the tree, and a sub-
sequent coarse-to-fine recursion which produces both the op-
timal estimates and their error covariances. This algorithm gen-
eralizes the standard Kalman filter and Rauch–Tung–Striebel
smoother.

The class of processes representable as the finest scale of a
tree process includes some very important processes. In par-
ticular, Luettgen [18] has shown that any 1-D Gauss–Markov
process can be represented on a tree using a model with a three-
dimensional (3-D) state. The 1-D results in this paper make
use of this model. The 2-D results make use of and extend the

-like model used previously for the computation of optical
flow and ocean surface reconstruction [10], [13]. This -like
model and its extension are presented in Section VI.

IV. STATISTICAL INTERPRETATION OFSEGMENTATION IN ONE

DIMENSION

The first step in applying the multiscale modeling framework
to segmentation in 1-D is to develop a statistical interpreta-
tion of the discretized version of (1). One possibility for dis-
cretizing this functional is to replace the functions
and with regularly spaced collections of samples
and the integrals with sums overand the derivatives with
first differences. The result in 1-D is the discrete functional

(9)

where denotes the number of data points 1. As was done in
[1], [7], one can use coordinate descent to minimize (9), thereby
decomposing this complex problem into two simpler ones.

The problem of fixing and finding the that minimizes
(9) is equivalent to finding the that minimizes the discrete
functional

(10)

A slightly more compact form can be written by collecting
the samples and into vectors and
and Specifically, let be the the
matrix that takes first differences of samples, and let

diag Then, (10) simplifies to
where

Finding the minimum of for fixed invertible is then
equivalent to finding the least-squares estimate ofassuming
the following measurement and prior model

(11)

1In this discretization,s has a length which is one sample less than that off:

This is because the samples of the discretizeds lie between the samples of the
discretizedf: More details are provided in [19].
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where and are independent zero-mean Gaussian random
vectors with identity covariance. Notice that forsuch that

the multiplier of is very large.
Thus, at these locations, the variance of in the
prior model is high, and a least-squares estimator will allow big
jumps to occur in the estimate of This is exactly what one
wants the estimator to do at edge locations.

The problem of fixing and finding that minimizes (9) is
equivalent to minimizing

(12)

Defining
and one finds that, after completing the
square, (12) can be rewritten

(13)

Ignoring terms which do not depend on one observes that
minimizing (12) over is equivalent to minimizing

(14)

By defining the diagonal matrix

diag

and the vector

where corresponds to theth row of one can
rewrite (14) as

(15)

In the original functional (1), is constrained to lie within [0,1].
If one removes this constraint, the problem of finding the
that minimizes (15) is equivalent to the problem of estimating
given the following measurement and prior model:

(16)

where and are independent zero-mean Gaussian random
vectors with identity covariance. Notice thatγ plays the role of
an observation of and that its components take on values near
one where the difference between consecutive samples ofis
large and near zero where the difference is small. Observe also
that lies within [0,1); thus, the first term in (15) provides
an increased penalty forthat does not stay within [0,1]. This

is desirable because a solution to the unconstrained minimiza-
tion of (15) that lies within [0,1] is an optimal solution of the
constrained problem. As it turns out, this is often the case, as
discussed in Section V.

As an aside, we note that one of the benefits of formulating a
minimization problem in terms of statistics is that it yields nat-
ural interpretations of the parameters. These interpretations, in
turn, can be used to form a loose set of guidelines for picking
parameter values suitable for a particular segmentation applica-
tion. Specifically, simple calculations lead to the following ob-
servations which can be used to pick the signal-dependent pa-
rametersλ, and .

• λ is inversely proportional to the variability in the recon-
structed signal at locations where no edges are present.
In particular, E

• is the measurement noise variance term, determined in
many applications by sensor specifications.

• is proportional to the width of the edges. Specifically, the
model for the edge-strength functionimplies E

• controls the degree of edginess. In particular, choosing a
value for it is related to the issue of defining what level of
variability in we wish to call an edge. Since the observa-
tions appearing in the model for the edge-strength function

have the form

one desires that forat edge locations

E

These rules guided the choice of parameter values used for the
numerical results presented in the subsequent section. More dis-
cussion concerning the parameters, including Monte Carlo re-
sults, can be found there and in [19].

V. NUMERICAL RESULTS

Based on the Gauss-Markov estimation problem formulations
specified by (11) and (16), one can compute estimatesand
using any one of a variety of efficient methods. These include
direct methods for solving the associated normal equations and
Kalman filter smoothing. For the simulation results that follow,
estimates and as well as error variances and were
computed by a multiscale recursive estimation algorithm [13],
[17], [18] (see also Section III). One detail concerning the im-
plementation of this and other algorithms is that they require the
specification of prior variances on and the first
samples of the probabilistic models forand However, the
precise interpretation of the variational formulation as an esti-
mation problem corresponds to viewing the initial value as un-
known, which is equivalent to an infinitely large prior variance.
While it is possible to accommodate this in the estimation for-
mulation with no effect on algorithmic complexity, it is common
to use an alternate approach in which one closely approximates
the solution to the original problem by setting the prior covari-
ance to a relatively large number. For the purposes of this
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TABLE I
DESCRIPTION OFPARAMETERS IN 1-D SEGMENTATION ALGORITHM

(a)

(b) (c)

(d) (e)

Fig. 2. The results for segmenting the data pictured in (a), a noisy observation of a process whose statistics are dictated by (11) for the true edge-strength function
given by (17). The measurement noise is white and Gaussian with unit variance. All parameters are set as in Table I. (a) Datag, (b) reconstruction^f , (c) estimate
of the edge-strength function̂s; (d) reconstruction error standard deviationsP ; and (e) estimate of edge-strength function error standard deviations

p
P .

paper, is set large relative to and This segmentation
algorithm requires the specification of two parameters in addi-
tion to that of :

• : Since estimating requires that be well-
behaved, we must also enforce a constraint on the range of

A simple solution is to clip each estimate of the edge-
strength function so that for some small,
This solution proves adequate.

• : As the segmentation algorithm is iterative in nature,
one must specify a stopping criterion. For all of the results
in this section, the algorithm stops when the percentage
change in the functional (9) falls below.

Our experience has been that a single pair of values ofand
can be used to produce good segmentations of a variety of signal
types. The parameter specifies when to stop, but one also
needs an initial guess with which to start the iterative algorithm.
For the results in this section, the algorithm starts by estimating

using an initial estimate of the edge-strength function
A list of all of the algorithm’s parameters are listed in Table I.

To illustrate the operation of the algorithm, some examples
follow. These, in turn, are followed by some Monte Carlo ex-
periments designed to assess quantitatively the performance of
the algorithm.

A. Examples

Fig. 2 illustrates a segmentation of a synthetic signal. The data
in Fig. 2(a) consists of a signalto which unit intensity white

Gaussian measurement noise has been added. The signalis a
realization of a Gaussian process described by (11). The process
is started with initial condition and generated using
for the double-sided exponential function

(17)

The values of the parameters used are listed in Table I. Now, re-
call that where the edge-strength function is approximately one,
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(a)

(b) (c)

(d) (e)

Fig. 3. Segmentation of a noisy unit step as plotted in part (a). The measurement noise is white and Gaussian with standard deviation 0.2. All parameters are
given in Table I. (a) Datag, (b) reconstruction^f , (c) estimate of the edge-strength functionŝ, (d) reconstruction error standard deviationsP , and (e) estimate
of edge-strength function error standard deviations

p
P

the variance of the increment in the model ofincreases. This
is clearly evident in Fig. 2(a) in which the particular realiza-
tion of displays a clear jump in its value in the vicinity of the
edge-strength function’s peak.

The data in Fig. 2(a) are then fed into the iterative segmen-
tation and denoising algorithm. The results displayed in the re-
maining parts of Fig. 2 are after five iterations of the algorithm,
at which point, the value of the functional (9) was changing by
less than No clipping was necessary during the
course of the run, and thus, the results are true to the discrete
form of the variational formulation (9). The final reconstruc-
tion is a smoother version of the data, but the edge has not been
smoothed away. The final estimate of the edge-strength func-
tion has a strong peak at the location of the edge. These are the
desired results of the segmentation algorithm. In addition, the
estimation error variance for in Fig. 2(d) displays the charac-
teristic one would expect: away from the expected edge, con-
siderable lowpass filtering is effected, reducing the noise vari-
ance. However, in the vicinity of the edge, one expects greater
variability and, in essence, the estimator performs less noise fil-
tering, resulting in a larger error variance. Note also that the vari-
ance in the estimate of the edge process is almost constant, with
a slight drop in the vicinity of the edge, i.e., wherechanges
abruptly, reflecting greater confidence that an edge is present
in this vicinity. The results for the preceding example are good,
but not completely convincing by themselves sinceis matched
to the algorithm by its construction. Consider a prototypical
signal not matched to the model, namely a step edge. Fig. 3
displays results for data consisting of a unit step embedded in
white Gaussian noise. The estimates are shown after 12 iter-
ations. Once again, no clipping was necessary in the iterative
process. The results demonstrate that the algorithm works as
desired. It removes almost all of the noise away from the edge,
while accurately preserving the discontinuity. Note thatin-
creases near the outer ends because there are fewer measure-

ments in the vicinity andλ is large. As in the case of the first
example, however, the error statistics reflect the fact that, near
the edge, one expects less noise reduction in estimatingand
has higher confidence in the estimate of the edge process be-
cause of the abrupt change in value of

B. Monte Carlo Experiments

Two different sets of Monte Carlo experiments are presented
here. The first set provides some information for interpreting the
error statistics. The second set shows that the algorithm is robust
to parameter settings.

1) Error Statistics: In this section, a more careful look is
taken at the error statistics provided by the segmentation al-
gorithm in order to assess their accuracy and utility. Since the
full iterative algorithm is nonlinear, the exact error variances
in estimating and are not easily computed. The statistics
calculated by our algorithm represent approximations that re-
sult from the linear estimation problems for each of the two
separate coordinate descent steps forand Fig. 4 presents
Monte Carlo results comparing the error statistics computed
by the segmentation algorithm with the actual error variances.
Each experiment in this simulation corresponds to (a) gen-
erating a realization of the process described by (11) for
the fixed edge-strength functiongiven by (17) and with the
initial value set to 0; (b) adding white Gaussian mea-
surement noise with unit intensity; and (c) applying the seg-
mentation algorithm using the parameters in Table I to obtain
the estimates of the realization and of the edge-strength
function as well as and the error variances for these
estimates that the algorithm generates.

The quantities of interest for each run are
and the error statistics and computed by the

algorithm. From 100 independent runs, the following quantities
are estimated: E Var E E Var and E
These are plotted in Fig. 4 along with Monte Carlo error bars
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Fig. 4. Comparison of various error statistics compiled using Monte Carlo techniques for segmenting synthetic data. The data are realizations of a process whose
statistics are given by (11) for the exponential edge-strength function given by (17). Part (a) of this figure displays statistics concerning the reconstruction errors,
e = (f̂ � f); and the reconstruction error standard deviations generated by the algorithm,P : Part (a-iv) displays the optimal error standard deviations for
estimatingf given that the true edge-strength function given by (17) is known. Part (b) of this figure displays the statistics concerning the errors in estimatingthe
edge-strength function,e = (ŝ�s): (a-i) Mean squared error for estimatingf (Ee ), (a-ii) variance of the error for estimatingf (Var(e )), (a-iii) segmentation
error variance for estimatingf (E P ), (a-iv) true segmentation error variance for estimatingf (P ), (b-i) mean squared error for estimatings (Ee ), (b-ii)
variance of the error for estimatings (Var(e )), and (b-iii) segmentation error variance for estimatings (E P ).

set at 2 standard deviations. Comparing Fig. 4(a)-i for Eand
Fig. 4(a)-ii for Var one sees that these are quite close in
value, indicating that the estimate produced by our algorithm is
essentially unbiased. Comparing these two figures with the plot
of E one observes that the error variance computed by our
algorithm has essentially the same shape, reflecting the fact that
it accurately captures the nature of the errors in estimating
Fig. 4(a)-iv shows a plot of the error variance for an estimator
that is given perfect knowledge of the edge process. Comparing
this to Fig. 4(a)-iii, one notices that the segmentation algorithm
performs nearly as well as ifwere known perfectly and did not
have to be estimated.

The error statistics for the edge-strength function are depicted
in Fig. 4(b). E and Var being small relative to one indicate
that the estimate of the edge-strength function is quite accurate
and that the error does not vary considerably from sample path
to sample path. In addition, the shapes of these plots have sev-
eral interesting features related to the behavior of the estimator
in the vicinity of the edge. Note first that, as can be seen in Fig. 2,
the algorithm tends to estimate edge-strength functions that are
slightly narrower than the actual edge-strength function. This is

actually preferable for segmentation, for which the peak loca-
tions in the estimates of the edge strength-functions are more
important than the estimates’ shapes. Because of this bias to-
ward tighter edge localization,is a slightly biased estimate of

given by (17), as evidenced by the broader peak of Eas
compared to Var

A second interesting point is that E increases slightly in
the vicinity of the edge, while the variance computed by the es-
timation algorithm, E decreases. The reason for this can
be explained as follows. Specifically, the estimator believes that
it is has more information about when the gradient of is
large. Thus, in the vicinity of an edge, the estimator indicates
a reduction in error variance for estimatingHowever, if the
estimate of thelocationof the edge is in error, then the differ-
ence will exhibit large, very localized errors, both
positive and negative (just as one would see in the difference
of two discrete-time impulses whose locations are slightly dif-
ferent). Thus, rather than providing an accurate estimate of the
size of the estimation error variance in this vicinity, this dip in
the error variance should be viewed as a measure of confidence
in the presence of an edge in the vicinity.
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Fig. 5. Average value ofW for the step edge example of Fig. 3 but for different
values ofλ.

2) Parameter Selection:Fig. 5 presents results from a
Monte Carlo simulation designed to characterize how well
the algorithm can segment signals for different values of the
parameterλ. In this experiment, the algorithm is segmenting a
unit step edge. The quantity computed from each segmentation
is the number of values of the estimated edge-strength
function that lie above a given threshold set close to one. This
corresponds roughly to the sum of the widths of the edges in
the segmentation. In the case of the step edge, the desired value
of is one. Except forλ, the algorithm’s parameters take on
the values listed in Table I for Fig. 3. The threshold is set to
0.9. The results in Fig. 5 are for 500 runs, and the error bars are
set at one standard deviation.

Recall that the amount of smoothness the algorithm expects
in where there is no edge is directly related toλ. For

the algorithm generates the very flat step estimate of
Fig. 3. However, one can not setλ too high because, as Fig. 5
shows, the average value of increases withλ. Remember that

is a measure of how many points are very likely to be edges.
If λ is set too high, the algorithm will put edges in many places
and set the estimate of the functionalmost constant between
edges. Although the results of the algorithm depend onλ, the
slope of the curve in Fig. 5 is not very steep. This indicates that
small perturbations in the value ofλ will not severely diminish
the performance of the algorithm.

Similar experiments have been performed in which other pa-
rameters were adjusted. These can be found in [19]. To sum-
marize, the effect of these parameters on the results coincide
with the simple guidelines presented in Section IV. Furthermore,
these Monte Carlo experiments indicate that the results are ro-
bust to small changes in the parameter settings.

VI. A M ULTISCALE METHOD FORIMAGE SEGMENTATION

As discussed in [19], solving the exact 2-D counterparts to the
estimation problems in the 1-D segmentation and denoising al-
gorithm is not an easy task. In particular, the calculations in 2-D
correspond to solving estimation problems with prior models
that are 2-D Markov random fields (MRF) or, equivalently, to
solving elliptic partial differential equations and computing the
diagonal elements of the inverses of elliptic operators [9]. There

Fig. 6. How discontinuities are incorporated into the1=f -like multiscale
model.

exist no known algorithms which can compute the necessary
quantities for this general problem with fewer than oper-
ations, where is the linear dimension of the image.

Since the objective is to generate estimates and error
variances with constant computational complexity per pixel
(i.e., with operations), one is confronted with the need
to develop approximations. The approach taken here is to
alternately estimate a reconstruction and an edge-strength
function assuming multiscale prior models. When the prior
is a multiscale model, there is an efficient algorithm for
producing the estimates, and the associated error variances of
the reconstruction and edge-strength function [14], [17] (see
also Section III). These two estimation steps replace the two
coordinate descent step in Shah and Pien’s variational approach
to segmentation as discussed in Section II. The estimation is
performed in an overlapped domain, as described in [20]. Thus,
the multiscale models do not directly modeland but the
corresponding lifted versions and The two models, one
for each of the lifted fields and are described in Section
VI-A. Note that there are two principal distinctions between
our multiscale modeling approach and some other quad-tree
approaches to solving image processing problems. The first is
that the variables on the tree are states that decorrelate regions
of the image, and the second is that the associated estimation
algorithm passes information everywhere along the tree so as
to produce globally optimal estimates of the lifted fields.

A. Multiscale Models for Segmentation

Consider first, the model used for the estimation ofAs dis-
cussed in [9], [10], [12], [13], [16], the smoothness penalty as-
sociated with the gradient, used for example in (2) and (3), cor-
responds to a fractal penalty in that it is roughly equivalent to
a -like prior spectrum for the random field being modeled.
This type of spectrum has a natural scaling law; namely, the
variances of increments at finer and finer scales decrease ge-
ometrically. In [9], [10], [12], [13], it was demonstrated that a
very simple multiscale model having this same scaling property
leads to estimates that are very similar to those produced using
the original smoothness penalty. A model of this type is used for
the lifted version of the edge-strength function. Specifically

(18)
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TABLE II
DESCRIPTION OFPARAMETERS, IN THE MULTISCALE METHOD

where is a constant, and the are independent unit
variance Gaussian random variables. As described in [12], [15],
the are constants that decrease from one scale to the next
finer scale and depend on the amount of overlap used. The mea-
surements and measurement error variances used in conjunction
with the model for in (18) are exactly analogous to those spec-
ified by γ and in 1-D. The only difference in 2-D is that a
sum of the squares of the first differences in each direction re-
places the square of the first difference in one direction. Details
are specified in [19].

The multiscale model for the lifted version of the reconstruc-
tion is, to some extent, similar to the one for the edge-strength
function. However, significant modification to this model is
needed in order to capture the presence of discontinuities, as
indicated by the edge estimates. In particular, in the 1-D case,
as captured in (11), the increments ofhave a variance which
is inversely proportional to the corresponding value of
Thus, the variance of the increment ofis large near an edge
(i.e., where is approximately one in value). In a similar
manner, one needs to capture the idea that increments ofas
one moves to finer scales, should have variances that reflect the
presence of edges (i.e., that are again inversely proportional to

This is done as follows. Note that each node on the
tree can be thought of as representing the center of a subregion
of the image domain. A 2-D example is depicted in Fig. 6. The
dots in this figure correspond to the center points of the regions
associated with different nodes on the tree. The dots are shaded
according to the scale of the corresponding node on the tree;
the darker the dot, the coarser the scale. Thus, for example,
the node represents the entire large square region, while
the node at the next finest scale represents the upper-right
quadrant of this large square. Now, if there is an edge located
between and (i.e., if the values of at image domain

pixels between these nodes indicate the presence of an edge),
the variance of the scale-to-scale increment ofbetween these
two nodes should increase. More precisely, the model foris
specified by the recursion

(19)

where is a constant, are independent unit vari-
ance Gaussian random variables, and is the sum of

for estimates of the edge-strength function
values which fall on the line connecting and In this
manner, additional uncertainty is put into the recursion forat
the appropriate locations.

B. Numerical Results

This section presents numerical results on two test images, a
synthetic image of a circle and an MRI brain scan. Table II lists
the algorithm’s parameters and values2. The execution times for
each example were on the order of minutes when run using
MATLAB on a Sparc Ultra.

The segmentation of a synthetic 64 × 64 image of a circle is
presented in Fig. 7. The circle image provides a simple example
for which one can observe the desired outputs of the algorithm.
The reconstruction contains very little of the noise present in
the original data. Furthermore, the edges of the circle have not
been smoothed over in the reconstruction. The estimate of the
edge-strength function is close to zero everywhere except at the
edge of the circle, where the estimate tends to unity. This indi-
cates the algorithm has successfully identified edges and has ig-
nored the spurious changes in intensity in the data due to noise.

2The parametersb; λ, B ;B ; andr have interpretations analogous to those
presented in Section IV for the parametersb; λ, c; andr appearing in the 1-D
problem. The interpretations were used to guide the choice of parameters used
in the numerical examples of the multiscale method for segmentation.
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(a)

(b) (c)

(d) (e)

Fig. 7. Segmentation of a synthetic circle image computed using the multiscale method. (a) Datag, (b) reconstruction^f , (c) estimate of the edge-strength function
ŝ; (d) reconstruction error standard deviationsP ; and (e) estimate of edge-strength function error standard deviations

p
P .

(a) (b) (c)

Fig. 8. This figure illustrates the difference between a gradient map and the estimate of the edge-strength function for a noisy circle image. (a) Datag, (b)
magnitude of the gradient, and (c) estimate of the edge-strength functionŝ.

Fig. 8 illustrates the difference between a gradient map and
the estimate of the edge-strength function. As for the example
in Fig. 7, the unprocessed image is a circle embedded in white
noise. The standard deviation of the noise is six. The magnitude
of the gradient is very noisy, but the edge-strength function is
only moderately noisy and clearly indicates the location of the
underlying circle.

In addition to the reconstruction and estimate of the edge-
strength function, the multiscale algorithm computes the stan-
dard deviations of the error in the reconstruction and estimate
of the edge-strength function. Notice that the error standard
deviations for the reconstruction increase near edges and, for
the estimate of the edge-strength function, decrease near edges,
as in the 1-D case. Thus, one expects that the error standard
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(a)

(b) (c)

(d) (e)

Fig. 9. MRI segmentation computed using the multiscale method. (a) Datag, (b) reconstruction^f , (c) estimate of the edge-strength functionŝ; (d) reconstruction
error standard deviations P ; and (e) estimate of edge-strength function error standard deviations

p
P .

deviations in Figs. 7 and 9 are of similar significance to those
generated in 1-D. Another consequence of the above-mentioned
properties of the error standard deviations is that they can be
used not only to estimate one’s confidence in segmenting the
image but also to improve one’s estimate of the boundary lo-
cations. This is a consequence of the error standard deviations
marking the edges in the image as well or better than the esti-
mate of the edge-strength function.

Fig. 9 displays a multiscale segmentation of a 256 × 256 MRI
brain scan3. There are many different potential uses of MRI
brain segmentation. Associated with each of these different uses
are different goals of the segmentation. One of these goals is to

3An MRI image with pixel values ranging over more than 800 integers was
shifted and scaled to produce the data for this figure. The dynamic range of the
scaled MRI data is close to that of the circle images.

demarcate the boundaries of the ventricles, the two hollow re-
gions in the middle of the brain. Another goal is to determine
the boundary between gray and white matter in the brain. The
estimate of the edge-strength function displayed in Fig. 9 does
a good job at indicating likely boundaries both of the ventricles
and of the gray and white matter.

VII. CONCLUSION

In this paper, we have described a new approach to the recon-
struction and segmentation of noise corrupted signals and im-
ages. The points of departure for our work are the variational
formulation of Mumford and Shah [2] and, more explicitly, the
relaxed variational formulation of Ambrosio and Tortorelli [5].



SCHNEIDERet al.: SEGMENTATION AND RECONSTRUCTION OF SIGNALS AND IMAGES 467

The latter formulation leads to the simultaneous computation
of both a reconstructed signal or image and an edge-strength
function which provides a measure of the likely locations of
edges or abrupt changes in the image or signal values.

The contributions of this paper are several. First, we provide
precise statistical interpretations of the steps involved in esti-
mating both the reconstructed signal or image and the edge-
strength function. This interpretation not only establishes an in-
tellectual bridge to statistical estimation, but it also leads di-
rectly to the extension of the algorithm to produce error vari-
ances for the reconstructed image and edge-strength function.

Moreover, this statistical interpretation leads us to another
significant extension and new algorithm, in the case of 2-D
image processing. In particular, replacing the random field
image models implied by the variational formulations in [1],
[7] with a multiscale prior model with similar characteristics
yields an extremely efficient algorithm for the simultaneous
estimation of the reconstructed image and edge-strength func-
tion. Furthermore, the new algorithm can efficiently compute
the variances of the errors in these estimates. The algorithm
for computing both estimates and error variances given a
multiscale model has constant computational complexity per
pixel. In contrast, the best known algorithm for computing
estimates and error variance given a random field model has
a complexity per pixel that increases as the square root of the
total number of pixels.

In addition to these substantial computational advantages, we
have also demonstrated the efficacy of these algorithms through
several experimental studies. In 1-D, we demonstrated the ac-
curacy of the error variance calculations that our algorithm au-
tomatically produces for the reconstructed image. In 2-D, we
also demonstrated the ability of our algorithm to produce reli-
able estimates even in the presence of very high noise. In partic-
ular, we demonstrated that the estimates of edge-strength func-
tions produced by our approach are much more robust to noise
than image gradient maps. Thus, the edge-strength function es-
timates can be subsequently processed to produce robust and
accurate edge estimates, e.g., by thresholding [1] or more so-
phisticated methods such as curve evolution [8].
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