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Image Segmentation and Edge Enhancement with
Stabilized Inverse Diffusion Equations

llya Pollak, Alan S. Willsky Fellow, IEEE and Hamid Krim Fellow, IEEE

SAR image of forest and grass

Abstract—We introduce a family of first-order multidimen-
sional ordinary differential equations (ODE’s) with discontinuous
right-hand sides and demonstrate their applicability in image
processing. An equation belonging to this family is an inverse
diffusion everywhere except at local extrema, where some sta-
bilization is introduced. For this reason, we call these equations
“stabilized inverse diffusion equations” (SIDE’s). Existence and
uniqueness of solutions, as well as stability, are proven for SIDE’s.
A SIDE in one spatial dimension may be interpreted as a limiting
case of a semi-discretized Perona—Malik equation [14], [15]. In an
experimental section, SIDE's are shown to suppress noise while
sharpening edges present in the input signal. Their application to i )
image segmentation is also demonstrated. Fig. 1. SARimage of trees and grass.
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Index Terms—DPiffusion, enhancement, scale-space, segmenta-, . . .
tion, sliding modes, synthetic aperture radar (SAR). is most often performed in the continuous setting, where an

image is identified with a function of two continuous spatial
variables, the implementation of such equations generally in-
. INTRODUCTION volves their discrete approximation. As a consequence, as We-

HE OBJECTIVE of this paper is to develop and ana|yz'@kert pointed out in [20], “a scale-space representation cannot

robust and fast image Segmentation a|gorithms_ They mwrform better than its discrete realization.” FO”OWing in the
be robust to pervasive, large-amplitude noise, which cannot ig®tsteps of his research on semi-discrete diffusions, we concen-
well characterized in terms of probabilistic distributions. This igate in this paper on semi-discrete scale spaces [i.e., continuous
because we are interested in applications such as synthetic alescale (or time) and discrete in space]. More specifically, the
ture radar (SAR) segmentation in which speckle noise is a wellain contribution of this paper is a new family of semi-discrete
known problem that has defeated many algorithms. (A prototypvolution equations which stably sharpen edges and suppress
ical SAR log-magnitude image of two textural regions—foregtoise. The starting point for the development of these equa-
and grass—is shown in Fig. 1.) Our methods must also be robtiaps is a discrete interpretation of anisotropic diffusions such
to blur, because many imaging techniques result in smoothgi that used by Perona and Malik [14], [15]. One motivation
images. For example, SAR image formation has a natural bf@f the work in [14] and [15] is achieving both noise removal
associated with it, due to the finite aperture used in forming t@@d edge enhancement through the use of an equation which,
image. in essence, acts as an unstable inverse diffusion near edges and

The algorithms we introduce are motivated by the great ras & stable linear-heat-equation-like diffusion in homogeneous

cent interest in using evolutions specified by partial differed€gions without edges. In the sense that we will make both pre-
tial equations (PDE’s) as image processing procedures for tagiée and conceptually clear, the evolutions that we introduce
such as edge enhancement and segmentation, among other§ay, be viewed as a conceptually limiting case of such diffu-

[4], [12], [14]-[18], [21]. While the analysis of these technique§ions. These evolutions have discontinuous right-hand sides and
act as inverse diffusions “almost everywhere” with stabilization

resulting from the presence of the discontinuities in the vector
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neighbors (except the first and last particles, which are only con-
nected to one neighbor). Every spring whose vertical extent is
has energy&(v), i.e., the energy of the spring between tith
and(n + 1)st particles isF(u,+1 — u, ). We impose the usual

Fy  requirements on this energy function:
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Fig. 2. Spring-mass model.

o ) Then the derivative oF(v), which we refer to as “the force
diffusions such as that of Perona and Malik, as well as the dfﬁhction” and denote by'(v), satisfies

continuous equations that we introduce in Section Ill. The im-

plementation of such a discontinuous equation naturally results F(0) =0,
in a recursive region merging algorithm. In Section 1V, we point F(v) >0 forv > 0
out its principal differences from Koepflat al’s [9] region- - ’
princip p [9] reg F(v) = — (). 3)

merging procedure for minimizing the Mumford—Shah func-

tional [11]. The rest of that section is devoted to exploring thge 5150 callF(v) a “force function” andE(v) an “energy”
links with other important work in the field: the total variation; _E(v) satisfies (2) and-F(v) satisfies (3). We make the
approach [2], [16]; shock filters of Osher and Rudin [12]; thg, o ement of the particles non-conservative by stopping it after
robust variational formulation of Geman and Reynolds [7]; and ¢ 411 period of timeAt and restarting with zero velocity.

the stochastic modeling approach of Zhu and Mumford [2Zi\ote that this will make our equation non-hyperbolic.) We as-
Because of the discontinuous right-hand side of our equatioggme that during one such step, the total fdige= — F(u,, —
some care must be taken in defining solutions, but as we Sh8W+1) — F(un — un_1), acting (;n thenth particle Stay’; ap-

in Section V, once this is done, the resulting evolutions hayg,yimately constant. The displacement during one iteration is

a number of important properties. Moreover, as we have inglzgnortional to the product of acceleration and the square of the
cated, they lead to very effective algorithms for edge enhanggse interval:

ment and segmentation, something that we demonstrate in Sec- )
i i i At
tion VI. In particular, as we will see, they can produce sharp Un(t + AL) — up(t) = (At)

Fy
enhancement of edges in high noise as well as accurate segmen- 2 M,
tations of very noisy imagery such as SAR imagery subject It_%tting At — 0, while fixing 2M,, /At = m,,, wherem, is a
severe speckle. positive constant, leads to

Il. A SPRINGMASS MODEL FOR CERTAIN EVOLUTION . 1
Up = —— (F(U'n-l—l - U/n) - F(U'n - U'n—l))v

EQUATIONS My,
As we indicated in the introduction, the focus of this paper is n=12--N, )
on discrete-space, continuous-time evolutions of the followiRgiy the conventionsiy = w; anduy41 = uy imposed by
general form: the absence of springs to the left of the first particle and to the
alt) = Flu)(t) right of the last particle. We will refer ten,, as “the mass of
’ thenth particle” in the remainder of the paper. Note that (4) is

u(0) =uo, @) a (weighted) gradient descent equation for the following global
wherew is either a discretized signal, i.e., &point discrete energy:
sequencey = (ug, ---, ux)? € RY), or anN-by-N image N-1
whose jth entry in theith row is u;; (w € RY"). The ini- E(u) = Z E(uign — ;). (5)
tial conditionwuo corresponds to the original signal or image i=1

to be processed, andt) then represents the evolution of thi
?(l)?r(l)aﬂrr;age at time (scale) resulting in a scale-space fam|lythese notions.

= b= oo . Lo Example 1: A linear force functionF'(v) = v leads to the

The nonlinear operators of interest in this paper canbe con-__ .~ . . .
. ) . . . . semi-discrete linear heat equation

veniently visualized through the following simple mechamcaﬁ
model. For the sake of simplicity in visualization, let us first
suppose that € RY is a one-dimensional (1-D) sequence, and
interpretu(t) = (u1(t), -+, un(t))T in (1) as the vector of This corresponds to a simple discretization of the 1-D linear heat
vertical positions of theV particles of massed/;, ---, My, equation and results in evolutions which produce increasingly
depicted in Fig. 2. The particles are forced to move aldhg low-pass filtered and smoothed versions of the original signal
vertical lines. Each particle is connected by springs to its twg,. [ |

SThe examples below, where we set, = 1, clearly illustrate

un = Unp+1 — 2U/n + Un—1-
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In general, we calF'(v) a “diffusion force” if, in addition to
(3), it is monotonically increasing:
Ki|K
v < v = F(vr) < F(va), (6) ‘ ;
which is illustrated in Fig. 3(a). We shall call the corresponding (a) (b) (c)

energy a “diffusion energy” and the corresponding evolution (4) _ - ' -

a “diffusion.” The evolution in Example 1 is clearly a diffy-F19- 3. Force functions: (a) diffusion, (b) inverse diffusion, and (c)
. » . . " Perona—Malik.

sion. We callF'(v) an “inverse diffusion force” if— F'(v) sat-

isfies (3) and (6), as illustrated in Fig. 3(b). The corresponding

evolution (4) is called an “inverse diffusion.” Inverse diffusions

have the characteristic of enhancing abrupt differenca<ior-

responding to “edges” in the 1-D sequence. Such pure inverse

diffusions, however, lead to unstable evolutions (in the sense

that they greatly amplify arbitrarily small noise). The following Fig. 4. Force function for a stabilized inverse diffusion equation.
example, which is prototypical of the examples considered by

Perona and Malik, defines a stable evolution that captures g{|. STaBILIZED INVERSE DIFFUSION EQUATIONS (SIDE’s):
least some of the edge enhancing characteristics of inverse dif- THE DEEINITION

fusions. . . . . . .
In this section, we introduce a discontinuous force function,

Example 2: Taking F(v) = —(v/K)?), as illustrated Lo ) : .
xamp IngF'(v) = v exp(~(v/K)") . Ir]asultlng in a system (4) that has discontinuous right-hand

in Fig. 3(c), yields a 1-D semi-discrete (continuous in scale al L6 (RHS) Such . ved h Co |
discrete in space) version of the Perona—Malik equation [1%, e ( ). Such equations received much attention in contro

Egs. (3.3), (3.4), and (3.12)]. In general, given a positive co 1eory because of the wide usage of relay switches in automatic
L e ’ Malik force of control systems. More recently, deliberate introduction of dis-

continuities has been used in control applications to drive the
state vector onto lower-dimensional surfaces in the state space
[19]. As we will see, this objective of driving a trajectory onto
F(v) has a unique maximum at= K, a Igvyer—dinjer}sio_na! surface also has vaILSIe in image ana}lysisI
and in particular in image segmentation. Segmenting a signa
Fon) = F(va) = (for] = K)o = K) < 0. (7)o image, represented as a high-dimensional vagteonsists
We shall call the corresponding energy a “perona—Mal®f evqlving it so that it is _driven onto a comparatively Iow-_di-
energy” and the corresponding evolution equation rgens_,lonal sgbspace whl_ch_ corresponds to a segme_ntatlon of
“Perona—Malik equation of thicknes&.” As Perona and the signal or image domgm |nto_ a small number of_ regions.
Malik demonstrate (and as can also be inferred from o,urThe type of force funcuon of |_nterest to us here is |IIustr§ted
results), evolutions with such a force function act like inverdd F19- 4_' Mqre pre_c_lsely, we W'S_h to con3|der_force funct_lons
diffusions in the regions of high gradient and like usual diff’ (v) Which, in addition to (3), satisfy the following properties:

stantX’, we shall call a force’(v) a “Perona—
thicknessK” if, in addition to (3), it satisfies the following con-
ditions:

fusions elsewhere. They are stable and capable of achieving Fl(v) <0 for v # 0
some level of edge enhancement depending on the exact form o ’
of F(v). n F(07) >0
Finally, to extend our mechanical model of Fig. 2 to images, F(v) =F(v2) & v1 = va. 9)

we simply replace the sequence of vertical lines along whi
the particles move with afv-by-N square grid of such lines.
The particle at locatio, j) is connected by springs to its four
neighbors(i — 1, j), (¢, s + 1), (i + 1, ), (¢, j — 1), except

%pontrasting this form of a force function to the Perona—Malik
function in Fig. 3, we see that in a sense one can view the
discontinuous force function as a limiting form of the contin-

for the particles in the four corners of the square (which onRPYS force function in Fig. 3(c). However, because of the dis-
P q %ontinuity at the origin of the force function in Fig. 4, there

have two neighbors each), and the rest of the particles on IS a question of how one defines solutions of (4) for such a

boundary of the square (which have three neighbors). This frrce function. Indeed, if (4) evolves toward a point of discon-

rangement is reminiscent of (and, in fact, was suggested by) the". .
o . : inuity of its RHS, the value of the RHS of (4) apparently de-
resistive network of [14, Fig. 8]. The analog of (4) for images IE’ends on the direction from which this point is approached [be-

then causeF'(0™) # F(07)], making further evolution nonunique.
i — 1 (Flugpr s — i) — Flui — it ;) We therefore need a special definition of how the trajectory
Y my L W Ly of our evolution proceeds at these discontinuity poinEsr
4+ Fug ja1 — wig) — Flug — i j—1)), (8) this definition to be useful, the resulting evolution must satisfy
well-posedness properties: the existence and uniqueness of so-
withi = 1,2,---, N, j = 1,2 ---  N,and the con- lutions, as well as stability of solutions with respect to the ini-
ventionSuojj = UL,jy UN+1,j = UN,jy W0 = U1 and

- . d by th b f . id IHaving such a definition is crucial because, as we will show in Section V,
ui, N+1 = %i, N IMposed by the absence of springs outside ?zt) will reach a discontinuity point of its RHS in finite time, starting with any

1<+<N,1<5<N. initial condition.
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Fig. 5. A horizontal spring is replaced by a rigid link.

tial data. In the rest of this section we describe how we defifiég. 5. The evolution can then naturally be thought of as a se-
solutions to (4) for force functions (9). Assuming the resultinguence of stages: during each stage, the right-hand side of (11)
evolutions to be well-posed, we demonstrate that they have thecontinuous. Once the solution hits a discontinuity surface
qualitative properties we desire, namely that they both are stabfethe right-hand side, the state reduction and reassignment
and also act as inverse diffusions and hence enhance edgesoiVe:,,,’s, described above, takes place. The solution then
address the issue of well-posedness and other properties in $eceeeds according to the modified equation until it hits the
tion V. next discontinuity surface, etc. This definition of a solution is
Consider the evolution (4) with'(v) as in Fig. 4 and (9) and reminiscent of the pixel-grouping method used by Bouman
with all of the massesn,, equal to 1. Notice that the RHS ofand Sauer in [2] for solving a nondifferentiable optimization
(4) has a discontinuity at a poiatif and only if «; = w; 4, for problem.
somei between 1 andV — 1. It is when a trajectory reaches Notice that such an evolution automatically produces a mul-
such a point that we need the following definition. In terms oftiscale segmentation of the original signal if we view each com-
our spring-mass model of Fig. 2, once the vertical positions pound particle as a region of the signal. Viewed as a segmenta-
andu, 41 of two neighboring particles become equal, the sprirtipn algorithm, our evolution can be summarized as follows.

connecting them is replaced by a rigid link. In other words, the 1) Start with the trivial initial segmentation: each sample is
two particles are simply merged into a single particle whichis 3 distinct region.

twice as heavy (Fig. 5), yielding the following modification of ~ 2) Evolve (11) until the values in two or more neighboring

(4) forn =déandn =i+ 1 regions become equal.
] ] . 3) Merge the neighboring regions whose values are equal.
Uy = Uit = 5 (F(uit2 — wig1) — Fu —ui-1)). 4) Go to step 2.

. . . o _ The same algorithm can be used for 2-D images, which is
(The differential equations fot # ¢, ¢+ 1 do not change.) Sim- immediate upon rewriting (11):

ilarly, if m consecutive particles reach equal vertical position,
they are merged into one particle of masg1l < m < N): 1

‘TL' = F n. . 9y 12
U, - Z (Un,; — Un, )Pij (12)
Up = -+ = un+rnfl n; €Ay,
1
= (F(U'N+m - U'n+mfl) - F(Un — U/nfl)) where
m my, Mmass of the compound partickg (= number of pixels

if g1 7 U = Upgr =+ i '
Up—1 7 Un = Unt1 in the region,;);

= Untm-—2 = Untm—1 7 Untm- (10) A,. set of the indexes of all the neighbors »f, i.e., of
all the compound patrticles that are connected tby
springs;
number of springs between regionsandn; (always
1in 1-D, but can be larger in 2-D).
1 Just as in 1-D, two neighboring regions andn. are merged
Up, = (F(un;y — tn,;) = Ftn;, = tn,_,)), by replacing them with one regionof massn,, = m,,, +m,,
i and the set of neighbots,, = A,., U A, \{n1, na}.
We close this section by describing one of the basic and most
important properties of these evolutions, namely that the evo-
L=mnp <mng <---<mpy <ny <N, lution is stable but nevertheless behaves like an inverse diffu-
Nig1 = Ni + My, (11) sion. Notice that a force functiof'(v) satisfying (9) can be
represented as the sum of an inverse diffusion f@tgév) and
The compound particle described by the vertical positicen positive multiple of sigfv): F(v) = Fyu(v) + Csign(v),
u,, and massm,. consists ofm,, unit-mass particles,,, whereC = F(0%) and—F;,(v) satisfies (3) and (6). There-
Un;+1, " Un,+m,, —1 that have been merged, as shown ifore, if u,, , — u,, andw,, — u,,_, are of the same sign

Notice that this system is the same as (4), but with possibly
unequal masses. It is convenient to rewrite this equation so as tg
explicitly indicate the reduction in the number of state variables:

Up; =Up;+1 = " = unri—"ln;*l?
wherei =1, ---p,
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[which means that.,,. is not a local extremum of the sequencenuch more complete bibliography in [10]. In particular, [10, Ch.

(tny, * -5 uUn, )], then (11) can be written as 3] contains a very nice discussion of region merging segmen-
tation algorithms, starting with Brice and Fennema’s [3] and
Ty, = L (Fya(tn,y — tn;) — Fia(tn, — un,_,)). (13) Pavlidis’ [13], which may be considered as ancestors to both

M, [9], the snakes [8], and our SIDE'’s.

If 2, > Uy, @NAuy,, > up,_, (i.€.,u,, iS alocal maximum), ] o

then (11) is B. Shock Filters and Total Variation
1 Replacing the discrete vectaft) with a functionu(t, =) of

ln; = —— (Fia(un, o —tn,) = Fia(un, —un,_,)—2C). (14) a continuous spatial variablg and replacing first differences

: with derivatives in (4), we see that, fas,, = 1, (4) is a dis-

If 2wy, < p,, @Ndu,, < u,,_, (i.€.,u,, isalocal minimum), cretization ofu, = 9/9x[F(u,)], where letter indexes denote
then (11) is corresponding partial derivatives. Expanding the SIDE force
1 function again ag'(v) = F4(v) + C sign(v), we obtain:

Up; = m— (Ed(uni+1 _uni)_Ed(uni _uni—1)+20)' (15) 9
- up = C = [sign(uz)] + Fg(1e ) uee (16)
Equation (13) says that the evolution is a pure inverse diffusion Az
at the points which are not local extrema. It is not, however, e first of the RHS terms is the 1-D version of the gradient
globalinverse diffusion, since pure inverse diffusions drive locglescent on total variation, proposed independently by Bouman
maxima to+-co and local minima te-oc and thus are unstable. and Sauer for edge-preserving tomographic reconstruction [2]
In contrast, (14) and (15) show that at local extrema, our evolging py Rudin, Osher, and Fatemi for image restoration [16]. It
tion is an inverse diffusion plus a stabilizing term which guarafas very good noise removal properties, but, if used alone, it
tees that the local maxima do not increase and the local minifggy yitimately blur the signal. IfF,q(v) = —(1/2)v|v|, then
do not decrease. For this reason, we call the new evolution (1l second term is equal to the RHS of one of the shock filters
(12) a “stabilized inverse diffusion equation” (*SIDE”), a forc&onsidered by Osher and Rudin in [12]. It is excellent for edge
function satisfying (9) a “SIDE force,” and the correspondingnhancement, but, as mentioned in [12], it cannot remove noise

energy a “SIDE energy.” (and, in fact, if our simple discretization scheme is used, it will
be unstable and noise-enhancing). Thus, our equation combines
IV. RELATED APPROACHES the noise-suppressive properties of the total variation approach

A. Mumford—-Shah, Geman—Reynolds, and Zhu—Mumford With the edge-sharpening features of shock filters.
Using the system of ODE’s (4) as a starting point for our

tio-r:h;njliﬁuEstfroartce edfitrj]n;itéorf(rz)sglfsf'?ne?hg] g:gg fgr'ﬁ:ésesneecr'investigatipns, rather than PDE (16), is due_ to thfe v_ariety of
E(v) which is concave éverywhere except at zero and ng}ﬁ_terpretanons (15) may have. Indegd, Fhe discontinuity of thg
differentiable at zero, and which looks like [for example RHS leads one to interpret the equation in the weak sense, while
’ 1 ) ' no theory of weak solutions of such an equation is known to
arctan(v) or 1 — (1 + |v[)™"]. In this case, the global en- us. Moreover, the numerical solutions depend on the discretiza-

ergy (5) is similar to the first term of the image restoratio?l((%n scheme employed—which is also true of the Perona—Malik

moﬂﬁgg,g' ci:rr:'aa T fa?]gt.iﬁy[gggdig]’eas .\I'Ivglrlloas 'tr? tﬁzlﬁ% uation. In contrast, much more can be said about (4)—in par-
. P 1al funct - AS We Wl Wi *"ticular, there are no difficulties in defining what one means by

perimental section, this not only leads to sharp segmentanogssdution_,, An interesting theoretical question, which remains

but also allows our method to be more robust to heavy-tailed . . . ,
. : ) . . 0h our agenda, is on the relations of the solutions of SIDE’s and
noise than algorithms which use quadratic energy terms. S'Qﬁ%se of (16)
our equations are implemented via recursive region merging, ’
it is instructive to compare them with other recursive region
merging algorithms, such as Koepfler, Lopez, and Morel's [9]
implementation of Mumford—Shah [11] segmentation, in which The SIDE'’s described in the two preceding sections enjoy
merging of neighboring regions occurs if it reduces the energynumber of interesting properties which validate and explain
Ens(u) = (u—uo)T (w — uo) + Al. (Herel is the total length their adaptability to segmentation problems. We first examine
of the boundaries, andl is a scale parameter: a largkrim- the SIDE’s in one spatial dimension for which we can make the
poses greater penalty on boundaries, which results in a coaterngest statements.

segmentatiom.) The first term of this functional makes it non- We define then;th discontinuity hyperplane of a SIDE (11)

V. PROPERTIES OFSIDE’s

robust to noise outliers. This term quadratically penalizes thy S,,, = {v € R w,, = u,,  }, i = 1,---,p — L
difference between the initial image and its approximatipn Sometimes it is more convenient to work with the veatoe
thereby causing very large outliers present in the original image,,, - - -, vnp_l)T € Rr~! of the first differences ofi: v,,, =

uo to reappear i, even for large values of. The absence of w,,,, , — u,,, fori =1, ---, p — 1. We abuse notation by also

such a term from the SIDE energy allows the evolution to difienotingS,,, = {v € R*~!: v,,, = 0}.

fuse strong bursts of noise, making it robust. On such hyperplanes, we defined the solution of a SIDE as
Since the exhaustive survey of variational models in imagdlee solution to a modified, lower-dimensional, equation whose

processing is beyond the scope of this paper, we defer to RES is continuous 08,,,. In what follows, we will assume that
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steady state in finite time, which establishes its well-posedness
for infinite time intervals.

We call u,,,, with ¢ € {2, ---, p — 1} a local maximum
(minimum) of the sequenc@uy,, - -, un,) if wn, > Upn,,
(#n, < Un,,,). The pointu,, is a local maximum (minimum)
if Upy > Uny (Un, < Up,); uyn, is alocal maximum (min-
imum) if w,, > un, | (un, < un,_,). Similarly, a region of a

Fig. 6. Solution field near discontinuity surfaces. 2-D image is a local maximum (minimum) if its value is larger
(smaller) than the values of its neighbors. Rephrasing this def-

the SIDE force functiot’(v) is sufficiently regular away from inition in terms of our spring-mass model, a maximum (min-
zero, so that the ODE (11), restricted to the domain of continuiinum) is a particle with all its attached springs directed down-
of its RHS, is well-posed. As a result, existence and uniquenegard (upward). Therefore, we immediately have [as we saw in
of solutions of SIDE’s immediately follow from the existencg14) and (15)] that the maxima (minima) are always pulled down
and uniqueness of solutions of ODE’s with continuous RH®up):
Continuous dependence on the initial data is also guaranteed faProperty 1—Maximum PrincipleEvery local maximum is
a trajectory segment lying inside a region of continuity of thdecreased and every local minimum is increased by a SIDE.
RHS. In order to show, however, that the solutions that we havaerefore,
defined are continuous with respect to initial conditions over
arbitrary time intervals, we must take into account the presence | (t)] < max |u,(0)] for ¢ > 0. 17)
of discontinuities on the RHS. In particular, what we must show "
is that trajectories that start very near a discontinuity surfaceyUsing this result, we can prove the following.
remain close to one that starts on the surface. More preciselyproperty 2—Finite Evolution TimeA SIDE, started atzg =
we need to be able to show that a trajectory whose initial poim()’ Ly ooy U, ~)7¥, reaches its equilibrium (i.e., the poiat=
is very close taS,, will, in fact, hit 5,,;. In the literature on (4, ... 4,)T whereu; = --- = uy = 1/N Zf\;l o, ;) in
differential equations and control theory [5], [19], the behavigite time.
that our differential equations exhibit is referred to as “sliding  proof: The sum of the vertical positions of all unit-mass
modes.” Specifically, as proven in the Appendix, the behaviggrticles is equal to the sum of the vertical positions
of our evolution near discontinuity hyperplanes satisfies the fdf the compound particles, weighted by their masses:

lowing: SN wun = 3P, un,m,,. The time derivative of this
Lemma on Sliding:Let o be a permutation of quantity is zero, as verified by summing up the rlght hand sides
(n1, -+, mp-1), and m an integer between 1 and — 1, of (11). Therefore, the mean vertical positiony V) S-"_, w,,
and Iet is constant throughout the evolution. Writing (11) for
™ p—1 t = 1, 4n, = (1/mp, ) F(tn, — un,), We see that the
S = ﬂ Sote) \( U So(q)> ) leftmost compound particle is stationary onlypif= 1, i.e.,
g=m+1 if all unit-mass particles have the same vertical position:
) Up, = U1 = U = --- = uy. Since the mean is conserved the
Then, aw approaches from any quadrartwe have: unique steady stateis = --- = uy = (1/N) Z ¥ g . To
lim(4,() SIGN(vy(g))) < O forg=1,---,m, prove that i.t is reaghed in finite time, we use the fgct that a SIDE
force function assigns larger force to shorter springs. If we put
and for at least one this inequality is strict. B L =2 max, |u,(0)|, then the maximum principle implies that

Intuitively, and as illustrated in Fig. 6, this lemma states that our system there cannot exist a spring with vertical extent
the solution field of our equation near any discontinuity surfadarger thanl. at any time during the evolution. Therefore, the
points toward that surface. As a consequence, a trajectory whiake of decrease of the absolute maximum, according to (11), is
hits such a surface may be continuously extended to “slidet leastF'(L)/N [becausel'(L) is the smallest force possible
along the surface, as shown in [5] and [19]. For this reas@mthe system, and/ is the largest mass]. Similarly, the absolute
the discontinuity surfaces are commonly referred to as “slidimginimum always increases at least as quickly. They will meet
surfaces.” In our case, a simple calculation verifies that the dye later than at = LN/(2F (L)), at which point the sequence

namics along such a surface, obtained through any of the thi€é) must be a constant sequence. [ |
classical definitions in [5] and [19], correspond exactly to the The above property allows us immediately to state the well-
definition given in the preceding section. posedness results as follows.

The lemma on sliding, together with the well-posedness Property 3—Well-Posednes$or any initial conditionu;, a
of SIDE'’s inside their continuity regions, directly impliesSIDE has a unique solutiagf(¢) satisfyingu*(0) = uf. More-
the overall well-posedness of 1-D SIDE’s: for finit€, the over, for any suchy and anye > 0, there exists @ > 0 such
trajectory from¢ = 0 to ¢ = 7" depends continuously on itsthat|uo — uj| < & implies [u(t) — u*(t)| < e for ¢ > 0, where
initial point. As shown in Property 2 to follow, a SIDE reaches a(t) is the solution of the SIDE with the initial conditias,. m
) . As we pointed out in the introductory section, a SIDE evo-
In Rp—1 aquadrant containing a vector= (ai, - -, a,—1)7 such that . . L . . . .
a; £ 0fori=1,---,p—1listheseQ = {b € Rr—'- b;a; > 0 for lUtion defines a natural set of hitting times which intuitively
i=1,--,p— 1} should be of use in characterizing features in an image. For this
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to be true, however, we would need some type of continuity tifis system stays closer tharto the solution of the SIDE with
this hitting time sequence. Specifically, lgt(uo) denote the the same initial condition and fordés(v). [ |
“nth hit time,” i.e., the time when the solution startingat We note that if the smoothing kerngk (v) is appropriately
reaches the sliding hyperplaitg, . By Property 2, this is a fi- chosen, then the resultirg (v) will be a Perona—Malik force
nite number. Lew(t) be “a typical solution” if it never reaches function of thicknessk. (For example, one easy choice for
two different sliding hyperplanes at the same timéu(0)) # px(v) is a multiple of the indicator function of the interval
t;(u(0)) if 4 # j. One of the consequences of the Lemma dr-kK; K].) Thus, semi-discrete Perona—Malik evolutions with
Sliding is that a trajectory that hits a single hyperpl&hedoes smallK are regularizations of SIDE’s, and consequently a SIDE
so transversally (that is, cannot be tangent to it). Since trajecto-1-D can be viewed as a limiting case of a Perona—Malik-type
ries vary continuously, this means that nearby solutions also &itolution. However, as we will see in the next section, the SIDE
S,.. Therefore, for typical solutions the following holds. evolutions appear to have some advantages over such regular-
Property 4—Stability of Hit Timeslf «(¢) is a typical solu- ized evolutions even in 1-D.
tion, all solutions with initial data sufficiently close #(0) get As we stated at the start of this section, the analysis and prop-
onto surfaces,, in the same order agt). B erties we have just derived have focused on SIDE’s for 1-D sig-
The sequence in which a trajectory hits surfaggss anim- nals. Let us close this section by commenting on the properties
portant characteristic of the solution. Property 4 says that, foo&SIDE’s in 2-D. The existence and uniqueness of solutions
typical solutionu(t), the (strict) ordering of hit times, («(0)) again follow easily from our construction of solutions. Prop-
is stable with respect to small disturbances(f): erty 1 (the maximum principle) is easily inferred from the 2-D
spring-mass model. Property 2 (finite evolution time) also car-
t, (w(0)) < t, (w(0)) < -+ < tyy_, (u(0)) (18) ries over, with the same proof. There is, however, no analog of
the lemma on sliding in 2-D: it is easy to show that the solu-
where(ny, ---, ny_1) is a permutation of 1, ---, N — 1). tions in the vicinity of a discontinuity hyperplane of (12) do
For the purposes of segmentation and edge detection, the dil necessarily slide onto that hyperplane. Therefore, there is
interesting output occurs at thede— 1 time points, since they N0 global continuous dependence on the initial data. In partic-
are the only instants when the segmentation of the initial signidf", the sequence of hitting times and associated discontinuity
changes (i.e., when regions are merged and edges are erafédfjes does not depend continuously on initial conditions, and
While a thorough investigation of how to use these hitting timé¥!r SIDE evolution does not correspond to a limiting form of
and in particular how to stop a SIDE so as to obtain the bestPerona-Malik evolution in 2-D but in fact represents a de-
segmentation is an open one, the fact that our choice is limitededly different type of evolutionary behavior. Several factors,
to a finite set of time points provides us with both a naturdlowever, indicate the value of this new evolution and also sug-
sequence of segmentations of increasing granularity and withgg#t that a weaker stability result can be proven. First of all, as

the very least, some simple stopping rules. For example, if tRBOWN in the experimental results in the next section, SIDE's
number of “useful” regionsr,;, is known or boundea priori, can produce excellent Segmentatlons in 2-D Images even in the

a natural candidate for a stopping time would#ye__, i.e., Presence of considerable noise. Moreover, thanks to the max-

the time when exactly regions remain. In the next section wdmum principle, excessively wild behavior of solutions is im-
illustrate the effectiveness of such a rule in the simplest caf®ssible, something that is again confirmed by the experiments
namely whernr = 2 so that we are seeking a partition of thé€f the next section. Consequently, the sequence of hit times (18)
field of interest into two regions. These results together wif#€S not seem to be very sensitive to the initial condition in that
the properties described here provide ample motivation forl2€ Presence of noise, while perhaps perturbing the ordering of
more detailed examination of the properties of the sequence#fing times and the sliding planes that are hit, seem to intro-
segmentations produced by a SIDE flow. Such an investigatiHce perturbations that are, in some sense, “small.” We are cur-
is currently ongoing. rently working on defining an appropriate metric on such hit-
We already mentioned that our definition of solutions oHNg plane/time sequences that captures this behavior and that
sliding surfaces for SIDE’s in one spatial dimension coincidedlows us to characterize stability that SIDE’s display in the ex-
with all three classical definitions of solutions for a generdi€riments described next.
equation with discontinuous right-hand side, which are pre-
sented in Filippov’s book [5, pp. 50-56]. We use a result of [5,
p. 95] to infer the following. VI. EXPERIMENTS
Property 5—Continuous Dependence on the RHEt us
consider a SIDE force functio#’s(v), and letpx(v) be a  Choosing a SIDE force function best suited for a particular
smoothing kernel of width: application is an open research question. For the examples
below, we use a very simple, piecewise-linear force function
F(v) = signv) — v/L. Note that, formally, this function
px(v) 2 0, Supfpx) = [~ £ K], /pl"(”) dv=1. do(ei not satri‘gf)z our éefinition (3) of a force function, since
it is negative forv > L. Therefore, in our experiments we
Let F(v) = [ Fs(w)px(v — w)dw be a regularized ver- always make sure that is larger than the dynamic range of
sion of Fs(v). Consider system (4) withe,, = 1 andF'(v) = the signal or image to be processed. In that case, thanks to
Fy(v). Then for anye, there is aK such that the solution of the maximum principle, we will havi:,;(¢) — u;(¢)| < L for
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any pair of pixels at any timeduring evolution, and therefore (2) fnitial signai: poley unit step () 33 regions left

F(lus(t) — (1)) > 0. ?WMWVWWM TW

A. Experiment 1: 1-D Unit Step in High Noise Environment 5 e T o S0 100 180 200

(¢) 10 regions left (d) 2 regions left

We first test this SIDE on a unit step function corrupted by ac *
ditive white Gaussian noise whose standard deviation is eq ;
to the amplitude of the step, and which is depicted in Fig. 7(c_,
The remaining parts of this figure display snapshots of the SIL-=

i
a

50 100 150 200 (e} 50 100 150 200

| |
N =+ O =< N

.

|

evolution starting with the noisy data in Fig. 7(a), i.e., they coi-°
respond to the evolution at a selected Set_Of hlttln_g times. TPiS. . Scale space of a SIDE for a noisy unit step at location 100: (a) the
particular members of the scale space which are illustrated gfiginal signal and (b)—(d) representatives of the resulting SIDE scale space.
labeled according to the number of remaining regions. Note that
the last remaining edge, i.e., the edge in Fig. 7(d) for the hitting
time at which there are only two regions left, is located betwet
samples 96 and 97, which is quite close to the position of tl
original edge (between the 100th and 101st samples). In t ; W
example, the step in Fig. 7(d) also has amplitude that is clc_,
to that of the original unit step. In general, thanks to the st_-
bility of SIDE'’s, the sizes of discontinuities will be diminished ° so 100 is0 200 ° S0 1o 380 200
through such an evolution, much as they are in other evoluti
equations. However, from the perspective of segmentation t =2 2
is irrelevant, i.e., the focus of attention is on detecting and |
cating the edge, not on estimating its amplitude. °

This example also provides us with the opportunity to contra :;
the behavior of a SIDE evolution with a Perona—Malik evolutio o 50 100 150 200 o 50 100 150 200
and in fact to describe the behavior that originally motivated our
work. Specifically, as we noted in the discussion of PropertyFig. 8. Scale space of a Perona-Malik equation with a l&fgfer the noisy
of the previous section, a SIDE in 1-D can be approximated witffP °f Fig- 7
a Perona—Malik equation of a small thickndss Observe that
a Perona—Malik equation of a large thicknéssvill diffuse the

edge before removing all the noise. Consequently, if the obje 4 (& Three odoes a Oy oo
tive is segmentation, the desire is to use as small a valheasd s a
possible. Following the procedure prescribed by Perona, Shic= 2
and Malik in [15], we computed the histogram of the absolut® . !
ol

values of the gradient throughout the initial signal, and fixéd °

at90% of its integral. The resulting evolution is shownin Fig.¢ * % e . ;::n o
In addition to its good denoising performance, it also blurs tt , ° a
edge, which is clearly undesirable if the objective is a sharp s¢= a
mentation. The comparison of Figs. 7 and 8 strongly sugge = 2
that the smallei( the better. It was precisely this observatior * ! 1
that originally motivated the development of SIDE’s. Howeve ° °

100 150 200 (o] 50 100 150 200

while in 1-D a SIDE evolution can be viewed precisely as a limic®
of a Perona_Ma_“k evolution a&’ goes to _0’ there is still an Fig. 9. Scale space of a SIDE for a noisy blurred three-edge staircase: (a)
advantage to using the form of the evolution that we have dgise-free original signal, (b) its noisy realization, and (c), (d) representatives
scribed rather than a Perona—Malik evolution with a very smalithe resulting SIDE scale space.

value of K. Specifically, the presence of explicit reductions in

dimensionality_d_uring the evolution r_nake_s a SIDE impleme%l Experiment 2: Edge Enhancement in 1-D

tation more efficient than that described in [15]. Even for this

simple example the Perona—Malik evolution that produced theOur second 1-D example shows that SIDE’s can stably en-
result comparable to that in Fig. 7 evolved approximately fiieance edges. The staircase signal in the upper left-hand corner
times more slowly than our SIDE evolution. Although a SIDBf Fig. 9 was convolved with a Gaussian and corrupted by ad-
in 2-D cannot be viewed as a limit of Perona—Malik evolutionglitive noise. The evolution was stopped when there were only
the same comparison in speed of evolution is still true, althoufur regions (three edges) left. The locations of the edges are
in this case the difference in computation time can be orderswary close to those in the original signal. (As in the previous
magnitude. example, the amplitudes of the final signal are quite different
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Fig. 10. A unit step with heavy-tailed noise.
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ford—Shah functional [11], as implemented in MegaWave?2
software package from CEREMADE [6]. For that purpose, we
use Monte Carlo simulations on a unit step signal corrupted
by “heavy-tailed” noise which is, with high probability— ¢,
normally distributed withv = 0.1, and, with low probability

g, normally distributed withe = 1. A typical sample path, for

e = 0.05, is shown in Fig. 10. During each trial, each algorithm
was stopped when only two regions remained, and the resulting
jump location was taken as the output. The root mean squared
errors in locating the jump far = 0.05, e = 0.1, ande = 0.15

are shown in Fig. 11 (the solid line is Koepfler—Lopez—Morel,
the broken line is SIDE). The error bars are + two standard
deviations.

As anticipated, the quadratic term of the Mumford—Shah en-
ergy makes it nonrobust to heavy-tailed noise, and the perfor-
mance degrades considerably as the contamination probability
increases. At the same time, our method is very robust, even if
the outlier probability is as high as 0.15.

Note that neither of the two algorithms is optimal for this
simple 1-D problem, for which near-perfect results can be
achieved in a computationally efficient manner by very simple
procedures. The purpose of including this example is to provide
statistical evidence for our claim of robustness of SIDE’s.
This becomes very important for complicated 2-D problems,
such as the one considered in the next example, where simple
techniques no longer work.

Fig. 11. RMS errors for Monte-Carlo runs. (Koepfler—Lopez—Morel: soIicb Experiment 4: SIDE Evolutions in 2-D

line; SIDE: broken line).

1000 regions left 100 regions left

100 200
2 regions left SAR image: final segmentation

Both the sharpness of boundaries and robustness are also
evident in the image experiments. These properties are used
to advantage in segmenting the SAR image of Fig. 1 in which
only two textures are present (forest and grass). The scale
space is shown in Fig. 12 (with the intensity values of each
image scaled so as to take up the whole grayscale range), as
well as the resulting boundary superimposed onto the original
log-magnitude image. SAR imagery, such as the example
shown here, are subject to the phenomenon known as speckle,
which is present in any coherent imaging system and which
leads to the large amplitude variations and noise evident in the
original image. Consequently, the accurate segmentation of
such imagery can be quite challenging and in particular cannot
be accomplished using standard edge detection algorithms. For
example, the scale-space of the region-merging algorithm of
[9], as implemented in [6] and discussed above, is depicted in
Fig. 13. If evolved until two regions remain, it will find the
boundary around a burst of noise. In contrast, the two-region
segmentation displayed in Fig. 12(d) is very accurate.

Finally we note, that, as mentioned in Experiment 1,

Fig. 12. Scale space of a SIDE for the SAR image of trees and grass, andfie SIDE evolutions require far less computation time than

final boundary superimposed on the initial image.

Perona—Malik-type evolutions. Since in 2-D a SIDE evolution
is not a limiting form of a Perona—Malik evolution, the com-

from those of the initial condition. This is immaterial, since W%arison is not quite as Simple. However, in experiments that

are interested in segmentation, not in restoration.)

C. Experiment 3: Robustness in 1-D

we have performed in which we have devised Perona—Malik
evolutions that produce results as qualitatively similar to those
in Fig. 12 as possible, we have found that the resulting compu-

We now compare robustness of our algorithm to that edtional effort is roughly 130 times slower for thg0( x 201)
Koepfler, Lopez, and Morel's [9] minimization of Mum-image than our SIDE evolution.
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1000 regions left 100 regions left 2 regions left

100 100!

200 200

100 200 200 100 200

Fig. 13. Segmentations of the SAR image via the region-merging method [9].

VIlI. CONCLUSION v, =6 >00ry;, = -6 <0.Ifvy; = 6, then, by construction,

; i < v, |, implying F(v; ) > F(v;_ ., ), which makes the
In this paper we have presented a new approach to edge €n- gLl ) = a1
'S paper w vep W app g of (19) fori = ¢, nonpositivelims o v;, < 0. If m <

hancement and segmentation, and demonstrated its succe I then there is 4 bt 1 andh such that at least ¢

application to signals and images with very high levels of noisg, - t, en’ r?l::e |s?)f}eyv¢ert1h ant suchthatatleas on%o

as well as to blurry signals. Our approach is based on a new clg¥s "WO N€gnoors ot;; IS In the se (Vi 000 Ui,y ) AN
ose absolute value is therefore staying above; | > «

of evolution equations for the processing of imagery and signé{Y Without | f it s the left
which we have termed stabilized inverse diffusion equations 8rr_|vijfl| = €. Without loss of generality, ;uppose 't1s the e
ighbor:|v;,_, | > e. If m = p — 1, definej = 1. If our arbi-

SIDE’s. These evolutions, which have discontinuous right—haﬁ]& h b | to thisth
sides, have conceptual and mathematical links to other evoll@y ¢ happens to be equal to histhen

tion-based methods in signal and image processing, but th%y N Flu — Flv ) — Flo: Flo ) — F
also have their own unique qualitative characteristics and prop- (i) = Fvin) = Fluy)) = Flvi,0) > Floyy) ();

erties that, together with the promising results presented hes8d hence (19) for = i; has a strictly negative limit:
suggest the merit of several further lines of investigation—sugh, . ' . < 0. Similar reasoning for the case = —&
as proving stability in 2-D; developing methods for choosingads tolixjnéﬁo ¥, > 0, and, if it happens thaj - j, then
the force functiont” best suited to various applications; invesyy,, @i, > 0. ! n

tigating improved ways of extracting information from the se-

quence of hitting times and corresponding images; applying
SIDE’s to image restoration (e.g., by filtering the initial condi- )
tion within each region found by the SIDE); and understandinl\% The authors would like to thank C. Bouman, O. Faugeras, S.

the properties of the PDE (16) and its interpretations. allat, J.-M. Morel, and V. Utkin for stimulating discussions
and many suggestions that greatly improved this paper.
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