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Image Segmentation and Edge Enhancement with
Stabilized Inverse Diffusion Equations

Ilya Pollak, Alan S. Willsky, Fellow, IEEE, and Hamid Krim, Fellow, IEEE

Abstract—We introduce a family of first-order multidimen-
sional ordinary differential equations (ODE’s) with discontinuous
right-hand sides and demonstrate their applicability in image
processing. An equation belonging to this family is an inverse
diffusion everywhere except at local extrema, where some sta-
bilization is introduced. For this reason, we call these equations
“stabilized inverse diffusion equations” (SIDE’s). Existence and
uniqueness of solutions, as well as stability, are proven for SIDE’s.
A SIDE in one spatial dimension may be interpreted as a limiting
case of a semi-discretized Perona–Malik equation [14], [15]. In an
experimental section, SIDE’s are shown to suppress noise while
sharpening edges present in the input signal. Their application to
image segmentation is also demonstrated.

Index Terms—Diffusion, enhancement, scale-space, segmenta-
tion, sliding modes, synthetic aperture radar (SAR).

I. INTRODUCTION

T HE OBJECTIVE of this paper is to develop and analyze
robust and fast image segmentation algorithms. They must

be robust to pervasive, large-amplitude noise, which cannot be
well characterized in terms of probabilistic distributions. This is
because we are interested in applications such as synthetic aper-
ture radar (SAR) segmentation in which speckle noise is a well-
known problem that has defeated many algorithms. (A prototyp-
ical SAR log-magnitude image of two textural regions—forest
and grass—is shown in Fig. 1.) Our methods must also be robust
to blur, because many imaging techniques result in smoothed
images. For example, SAR image formation has a natural blur
associated with it, due to the finite aperture used in forming the
image.

The algorithms we introduce are motivated by the great re-
cent interest in using evolutions specified by partial differen-
tial equations (PDE’s) as image processing procedures for tasks
such as edge enhancement and segmentation, among others [1],
[4], [12], [14]–[18], [21]. While the analysis of these techniques
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Fig. 1. SAR image of trees and grass.

is most often performed in the continuous setting, where an
image is identified with a function of two continuous spatial
variables, the implementation of such equations generally in-
volves their discrete approximation. As a consequence, as We-
ickert pointed out in [20], “a scale-space representation cannot
perform better than its discrete realization.” Following in the
footsteps of his research on semi-discrete diffusions, we concen-
trate in this paper on semi-discrete scale spaces [i.e., continuous
in scale (or time) and discrete in space]. More specifically, the
main contribution of this paper is a new family of semi-discrete
evolution equations which stably sharpen edges and suppress
noise. The starting point for the development of these equa-
tions is a discrete interpretation of anisotropic diffusions such
as that used by Perona and Malik [14], [15]. One motivation
for the work in [14] and [15] is achieving both noise removal
and edge enhancement through the use of an equation which,
in essence, acts as an unstable inverse diffusion near edges and
as a stable linear-heat-equation-like diffusion in homogeneous
regions without edges. In the sense that we will make both pre-
cise and conceptually clear, the evolutions that we introduce
may be viewed as a conceptually limiting case of such diffu-
sions. These evolutions have discontinuous right-hand sides and
act as inverse diffusions “almost everywhere” with stabilization
resulting from the presence of the discontinuities in the vector
field defined by the evolution. As we will see, the scale space
of such an equation is a family of segmentations of the original
image, with larger values of the scale parametercorresponding
to segmentations at coarser resolutions. Moreover, in contrast to
continuous evolutions, the ones introduced here naturally define
a sequence of logical “stopping times,” i.e., points along the evo-
lution endowed with useful information, and corresponding to
times at which the evolution hits a discontinuity surface of its
solution field.

In the next section we begin by describing a convenient me-
chanical analog for the visualization of many spatially-discrete
evolution equations, including discretized linear or nonlinear
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Fig. 2. Spring-mass model.

diffusions such as that of Perona and Malik, as well as the dis-
continuous equations that we introduce in Section III. The im-
plementation of such a discontinuous equation naturally results
in a recursive region merging algorithm. In Section IV, we point
out its principal differences from Koepfleret al.’s [9] region-
merging procedure for minimizing the Mumford–Shah func-
tional [11]. The rest of that section is devoted to exploring the
links with other important work in the field: the total variation
approach [2], [16]; shock filters of Osher and Rudin [12]; the
robust variational formulation of Geman and Reynolds [7]; and
the stochastic modeling approach of Zhu and Mumford [22].
Because of the discontinuous right-hand side of our equations,
some care must be taken in defining solutions, but as we show
in Section V, once this is done, the resulting evolutions have
a number of important properties. Moreover, as we have indi-
cated, they lead to very effective algorithms for edge enhance-
ment and segmentation, something that we demonstrate in Sec-
tion VI. In particular, as we will see, they can produce sharp
enhancement of edges in high noise as well as accurate segmen-
tations of very noisy imagery such as SAR imagery subject to
severe speckle.

II. A SPRING-MASS MODEL FOR CERTAIN EVOLUTION

EQUATIONS

As we indicated in the introduction, the focus of this paper is
on discrete-space, continuous-time evolutions of the following
general form:

(1)

where is either a discretized signal, i.e., an-point discrete
sequence ( ), or an -by- image
whose th entry in the th row is ( ). The ini-
tial condition corresponds to the original signal or image
to be processed, and then represents the evolution of this
signal/image at time (scale), resulting in a scale-space family
for .

The nonlinear operators of interest in this paper can be con-
veniently visualized through the following simple mechanical
model. For the sake of simplicity in visualization, let us first
suppose that is a one-dimensional (1-D) sequence, and
interpret in (1) as the vector of
vertical positions of the particles of masses ,
depicted in Fig. 2. The particles are forced to move along
vertical lines. Each particle is connected by springs to its two

neighbors (except the first and last particles, which are only con-
nected to one neighbor). Every spring whose vertical extent is
has energy , i.e., the energy of the spring between theth
and st particles is . We impose the usual
requirements on this energy function:

for

(2)

Then the derivative of , which we refer to as “the force
function” and denote by , satisfies

for

(3)

We also call a “force function” and an “energy”
if satisfies (2) and satisfies (3). We make the
movement of the particles non-conservative by stopping it after
a small period of time and restarting with zero velocity.
(Note that this will make our equation non-hyperbolic.) We as-
sume that during one such step, the total force

, acting on the th particle, stays ap-
proximately constant. The displacement during one iteration is
proportional to the product of acceleration and the square of the
time interval:

Letting , while fixing , where is a
positive constant, leads to

(4)

with the conventions and imposed by
the absence of springs to the left of the first particle and to the
right of the last particle. We will refer to as “the mass of
the th particle” in the remainder of the paper. Note that (4) is
a (weighted) gradient descent equation for the following global
energy:

(5)

The examples below, where we set , clearly illustrate
these notions.

Example 1: A linear force function leads to the
semi-discrete linear heat equation

This corresponds to a simple discretization of the 1-D linear heat
equation and results in evolutions which produce increasingly
low-pass filtered and smoothed versions of the original signal

.
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In general, we call a “diffusion force” if, in addition to
(3), it is monotonically increasing:

(6)

which is illustrated in Fig. 3(a). We shall call the corresponding
energy a “diffusion energy” and the corresponding evolution (4)
a “diffusion.” The evolution in Example 1 is clearly a diffu-
sion. We call an “inverse diffusion force” if sat-
isfies (3) and (6), as illustrated in Fig. 3(b). The corresponding
evolution (4) is called an “inverse diffusion.” Inverse diffusions
have the characteristic of enhancing abrupt differences incor-
responding to “edges” in the 1-D sequence. Such pure inverse
diffusions, however, lead to unstable evolutions (in the sense
that they greatly amplify arbitrarily small noise). The following
example, which is prototypical of the examples considered by
Perona and Malik, defines a stable evolution that captures at
least some of the edge enhancing characteristics of inverse dif-
fusions.

Example 2: Taking , as illustrated
in Fig. 3(c), yields a 1-D semi-discrete (continuous in scale and
discrete in space) version of the Perona–Malik equation [15,
Eqs. (3.3), (3.4), and (3.12)]. In general, given a positive con-
stant , we shall call a force a “Perona–Malik force of
thickness ” if, in addition to (3), it satisfies the following con-
ditions:

has a unique maximum at

(7)

We shall call the corresponding energy a “Perona–Malik
energy” and the corresponding evolution equation a
“Perona–Malik equation of thickness .” As Perona and
Malik demonstrate (and as can also be inferred from our
results), evolutions with such a force function act like inverse
diffusions in the regions of high gradient and like usual dif-
fusions elsewhere. They are stable and capable of achieving
some level of edge enhancement depending on the exact form
of .

Finally, to extend our mechanical model of Fig. 2 to images,
we simply replace the sequence of vertical lines along which
the particles move with an -by- square grid of such lines.
The particle at location is connected by springs to its four
neighbors: , , , , except
for the particles in the four corners of the square (which only
have two neighbors each), and the rest of the particles on the
boundary of the square (which have three neighbors). This ar-
rangement is reminiscent of (and, in fact, was suggested by) the
resistive network of [14, Fig. 8]. The analog of (4) for images is
then

(8)

with and the con-
ventions , , and

imposed by the absence of springs outside of
, .

Fig. 3. Force functions: (a) diffusion, (b) inverse diffusion, and (c)
Perona–Malik.

Fig. 4. Force function for a stabilized inverse diffusion equation.

III. STABILIZED INVERSEDIFFUSION EQUATIONS (SIDE’s):
THE DEFINITION

In this section, we introduce a discontinuous force function,
resulting in a system (4) that has discontinuous right-hand
side (RHS). Such equations received much attention in control
theory because of the wide usage of relay switches in automatic
control systems. More recently, deliberate introduction of dis-
continuities has been used in control applications to drive the
state vector onto lower-dimensional surfaces in the state space
[19]. As we will see, this objective of driving a trajectory onto
a lower-dimensional surface also has value in image analysis
and in particular in image segmentation. Segmenting a signal
or image, represented as a high-dimensional vector, consists
of evolving it so that it is driven onto a comparatively low-di-
mensional subspace which corresponds to a segmentation of
the signal or image domain into a small number of regions.

The type of force function of interest to us here is illustrated
in Fig. 4. More precisely, we wish to consider force functions

which, in addition to (3), satisfy the following properties:

for

(9)

Contrasting this form of a force function to the Perona–Malik
function in Fig. 3, we see that in a sense one can view the
discontinuous force function as a limiting form of the contin-
uous force function in Fig. 3(c). However, because of the dis-
continuity at the origin of the force function in Fig. 4, there
is a question of how one defines solutions of (4) for such a
force function. Indeed, if (4) evolves toward a point of discon-
tinuity of its RHS, the value of the RHS of (4) apparently de-
pends on the direction from which this point is approached [be-
cause ], making further evolution nonunique.
We therefore need a special definition of how the trajectory
of our evolution proceeds at these discontinuity points.1 For
this definition to be useful, the resulting evolution must satisfy
well-posedness properties: the existence and uniqueness of so-
lutions, as well as stability of solutions with respect to the ini-

1Having such a definition is crucial because, as we will show in Section V,
(4) will reach a discontinuity point of its RHS in finite time, starting with any
initial condition.
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Fig. 5. A horizontal spring is replaced by a rigid link.

tial data. In the rest of this section we describe how we define
solutions to (4) for force functions (9). Assuming the resulting
evolutions to be well-posed, we demonstrate that they have the
qualitative properties we desire, namely that they both are stable
and also act as inverse diffusions and hence enhance edges. We
address the issue of well-posedness and other properties in Sec-
tion V.

Consider the evolution (4) with as in Fig. 4 and (9) and
with all of the masses equal to 1. Notice that the RHS of
(4) has a discontinuity at a pointif and only if for
some between 1 and . It is when a trajectory reaches
such a point that we need the following definition. In terms of
our spring-mass model of Fig. 2, once the vertical positions
and of two neighboring particles become equal, the spring
connecting them is replaced by a rigid link. In other words, the
two particles are simply merged into a single particle which is
twice as heavy (Fig. 5), yielding the following modification of
(4) for and :

(The differential equations for do not change.) Sim-
ilarly, if consecutive particles reach equal vertical position,
they are merged into one particle of mass( ):

if

(10)

Notice that this system is the same as (4), but with possibly
unequal masses. It is convenient to rewrite this equation so as to
explicitly indicate the reduction in the number of state variables:

where

(11)

The compound particle described by the vertical position
and mass consists of unit-mass particles ,

that have been merged, as shown in

Fig. 5. The evolution can then naturally be thought of as a se-
quence of stages: during each stage, the right-hand side of (11)
is continuous. Once the solution hits a discontinuity surface
of the right-hand side, the state reduction and reassignment
of ’s, described above, takes place. The solution then
proceeds according to the modified equation until it hits the
next discontinuity surface, etc. This definition of a solution is
reminiscent of the pixel-grouping method used by Bouman
and Sauer in [2] for solving a nondifferentiable optimization
problem.

Notice that such an evolution automatically produces a mul-
tiscale segmentation of the original signal if we view each com-
pound particle as a region of the signal. Viewed as a segmenta-
tion algorithm, our evolution can be summarized as follows.

1) Start with the trivial initial segmentation: each sample is
a distinct region.

2) Evolve (11) until the values in two or more neighboring
regions become equal.

3) Merge the neighboring regions whose values are equal.
4) Go to step 2.
The same algorithm can be used for 2-D images, which is

immediate upon rewriting (11):

(12)

where
mass of the compound particle (= number of pixels
in the region );
set of the indexes of all the neighbors of, i.e., of
all the compound particles that are connected toby
springs;
number of springs between regionsand (always
1 in 1-D, but can be larger in 2-D).

Just as in 1-D, two neighboring regions and are merged
by replacing them with one regionof mass
and the set of neighbors .

We close this section by describing one of the basic and most
important properties of these evolutions, namely that the evo-
lution is stable but nevertheless behaves like an inverse diffu-
sion. Notice that a force function satisfying (9) can be
represented as the sum of an inverse diffusion force and
a positive multiple of sign : sign ,
where and satisfies (3) and (6). There-
fore, if and are of the same sign
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[which means that is not a local extremum of the sequence
], then (11) can be written as

(13)

If and (i.e., is a local maximum),
then (11) is

(14)

If and (i.e., is a local minimum),
then (11) is

(15)

Equation (13) says that the evolution is a pure inverse diffusion
at the points which are not local extrema. It is not, however, a
globalinverse diffusion, since pure inverse diffusions drive local
maxima to and local minima to and thus are unstable.
In contrast, (14) and (15) show that at local extrema, our evolu-
tion is an inverse diffusion plus a stabilizing term which guaran-
tees that the local maxima do not increase and the local minima
do not decrease. For this reason, we call the new evolution (11),
(12) a “stabilized inverse diffusion equation” (“SIDE”), a force
function satisfying (9) a “SIDE force,” and the corresponding
energy a “SIDE energy.”

IV. RELATED APPROACHES

A. Mumford–Shah, Geman–Reynolds, and Zhu–Mumford

The SIDE force function defined in the previous sec-
tion and illustrated in Fig. 4 results in the SIDE spring energy

which is concave everywhere except at zero and non-
differentiable at zero, and which looks like [for example,

or ]. In this case, the global en-
ergy (5) is similar to the first term of the image restoration
model of D. Geman and Reynolds [7], as well as to Zhu and
Mumford’s potential function [22]. As we will show in the ex-
perimental section, this not only leads to sharp segmentations,
but also allows our method to be more robust to heavy-tailed
noise than algorithms which use quadratic energy terms. Since
our equations are implemented via recursive region merging,
it is instructive to compare them with other recursive region
merging algorithms, such as Koepfler, Lopez, and Morel’s [9]
implementation of Mumford–Shah [11] segmentation, in which
merging of neighboring regions occurs if it reduces the energy

. (Here is the total length
of the boundaries, and is a scale parameter: a largerim-
poses greater penalty on boundaries, which results in a coarser
segmentation .) The first term of this functional makes it non-
robust to noise outliers. This term quadratically penalizes the
difference between the initial image and its approximation,
thereby causing very large outliers present in the original image

to reappear in , even for large values of. The absence of
such a term from the SIDE energy allows the evolution to dif-
fuse strong bursts of noise, making it robust.

Since the exhaustive survey of variational models in image
processing is beyond the scope of this paper, we defer to the

much more complete bibliography in [10]. In particular, [10, Ch.
3] contains a very nice discussion of region merging segmen-
tation algorithms, starting with Brice and Fennema’s [3] and
Pavlidis’ [13], which may be considered as ancestors to both
[9], the snakes [8], and our SIDE’s.

B. Shock Filters and Total Variation

Replacing the discrete vector with a function of
a continuous spatial variable, and replacing first differences
with derivatives in (4), we see that, for , (4) is a dis-
cretization of , where letter indexes denote
corresponding partial derivatives. Expanding the SIDE force
function again as sign , we obtain:

sign (16)

The first of the RHS terms is the 1-D version of the gradient
descent on total variation, proposed independently by Bouman
and Sauer for edge-preserving tomographic reconstruction [2]
and by Rudin, Osher, and Fatemi for image restoration [16]. It
has very good noise removal properties, but, if used alone, it
will ultimately blur the signal. If , then
the second term is equal to the RHS of one of the shock filters
considered by Osher and Rudin in [12]. It is excellent for edge
enhancement, but, as mentioned in [12], it cannot remove noise
(and, in fact, if our simple discretization scheme is used, it will
be unstable and noise-enhancing). Thus, our equation combines
the noise-suppressive properties of the total variation approach
with the edge-sharpening features of shock filters.

Using the system of ODE’s (4) as a starting point for our
investigations, rather than PDE (16), is due to the variety of
interpretations (16) may have. Indeed, the discontinuity of the
RHS leads one to interpret the equation in the weak sense, while
no theory of weak solutions of such an equation is known to
us. Moreover, the numerical solutions depend on the discretiza-
tion scheme employed—which is also true of the Perona–Malik
equation. In contrast, much more can be said about (4)—in par-
ticular, there are no difficulties in defining what one means by
a “solution.” An interesting theoretical question, which remains
on our agenda, is on the relations of the solutions of SIDE’s and
those of (16).

V. PROPERTIES OFSIDE’s

The SIDE’s described in the two preceding sections enjoy
a number of interesting properties which validate and explain
their adaptability to segmentation problems. We first examine
the SIDE’s in one spatial dimension for which we can make the
strongest statements.

We define the th discontinuity hyperplane of a SIDE (11)
by , .
Sometimes it is more convenient to work with the vector

of the first differences of :
, for . We abuse notation by also

denoting .
On such hyperplanes, we defined the solution of a SIDE as

the solution to a modified, lower-dimensional, equation whose
RHS is continuous on . In what follows, we will assume that
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Fig. 6. Solution field near discontinuity surfaces.

the SIDE force function is sufficiently regular away from
zero, so that the ODE (11), restricted to the domain of continuity
of its RHS, is well-posed. As a result, existence and uniqueness
of solutions of SIDE’s immediately follow from the existence
and uniqueness of solutions of ODE’s with continuous RHS.
Continuous dependence on the initial data is also guaranteed for
a trajectory segment lying inside a region of continuity of the
RHS. In order to show, however, that the solutions that we have
defined are continuous with respect to initial conditions over
arbitrary time intervals, we must take into account the presence
of discontinuities on the RHS. In particular, what we must show
is that trajectories that start very near a discontinuity surface
remain close to one that starts on the surface. More precisely,
we need to be able to show that a trajectory whose initial point
is very close to will, in fact, hit . In the literature on
differential equations and control theory [5], [19], the behavior
that our differential equations exhibit is referred to as “sliding
modes.” Specifically, as proven in the Appendix, the behavior
of our evolution near discontinuity hyperplanes satisfies the fol-
lowing:

Lemma on Sliding:Let be a permutation of
, and an integer between 1 and ,

and let

Then, as approaches from any quadrant,2 we have:

sign for

and for at least one this inequality is strict.
Intuitively, and as illustrated in Fig. 6, this lemma states that

the solution field of our equation near any discontinuity surface
points toward that surface. As a consequence, a trajectory which
hits such a surface may be continuously extended to “slide”
along the surface, as shown in [5] and [19]. For this reason
the discontinuity surfaces are commonly referred to as “sliding
surfaces.” In our case, a simple calculation verifies that the dy-
namics along such a surface, obtained through any of the three
classical definitions in [5] and [19], correspond exactly to the
definition given in the preceding section.

The lemma on sliding, together with the well-posedness
of SIDE’s inside their continuity regions, directly implies
the overall well-posedness of 1-D SIDE’s: for finite, the
trajectory from to depends continuously on its
initial point. As shown in Property 2 to follow, a SIDE reaches a

2In , a quadrant containing a vectoraaa = (a ; � � � ; a ) such that
a 6= 0 for i = 1; � � � ; p � 1 is the setQ = fbbb 2 : b a > 0 for
i = 1; � � � ; p � 1g.

steady state in finite time, which establishes its well-posedness
for infinite time intervals.

We call , with a local maximum
(minimum) of the sequence if
( ). The point is a local maximum (minimum)
if ( ); is a local maximum (min-
imum) if ( ). Similarly, a region of a
2-D image is a local maximum (minimum) if its value is larger
(smaller) than the values of its neighbors. Rephrasing this def-
inition in terms of our spring-mass model, a maximum (min-
imum) is a particle with all its attached springs directed down-
ward (upward). Therefore, we immediately have [as we saw in
(14) and (15)] that the maxima (minima) are always pulled down
(up):

Property 1—Maximum Principle:Every local maximum is
decreased and every local minimum is increased by a SIDE.
Therefore,

for (17)

Using this result, we can prove the following.
Property 2—Finite Evolution Time:A SIDE, started at

, reaches its equilibrium (i.e., the point
where ) in

finite time.
Proof: The sum of the vertical positions of all unit-mass

particles is equal to the sum of the vertical positions
of the compound particles, weighted by their masses:

. The time derivative of this
quantity is zero, as verified by summing up the right-hand sides
of (11). Therefore, the mean vertical position
is constant throughout the evolution. Writing (11) for

, , we see that the
leftmost compound particle is stationary only if , i.e.,
if all unit-mass particles have the same vertical position:

. Since the mean is conserved, the
unique steady state is . To
prove that it is reached in finite time, we use the fact that a SIDE
force function assigns larger force to shorter springs. If we put

, then the maximum principle implies that
in our system there cannot exist a spring with vertical extent
larger than at any time during the evolution. Therefore, the
rate of decrease of the absolute maximum, according to (11), is
at least [because is the smallest force possible
in the system, and is the largest mass]. Similarly, the absolute
minimum always increases at least as quickly. They will meet
no later than at , at which point the sequence

must be a constant sequence.
The above property allows us immediately to state the well-

posedness results as follows.
Property 3—Well-Posedness:For any initial condition , a

SIDE has a unique solution satisfying . More-
over, for any such and any , there exists a such
that implies for , where

is the solution of the SIDE with the initial condition .
As we pointed out in the introductory section, a SIDE evo-

lution defines a natural set of hitting times which intuitively
should be of use in characterizing features in an image. For this



262 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 2, FEBRUARY 2000

to be true, however, we would need some type of continuity of
this hitting time sequence. Specifically, let denote the
“ th hit time,” i.e., the time when the solution starting at
reaches the sliding hyperplane . By Property 2, this is a fi-
nite number. Let be “a typical solution” if it never reaches
two different sliding hyperplanes at the same time:

if . One of the consequences of the Lemma on
Sliding is that a trajectory that hits a single hyperplanedoes
so transversally (that is, cannot be tangent to it). Since trajecto-
ries vary continuously, this means that nearby solutions also hit

. Therefore, for typical solutions the following holds.
Property 4—Stability of Hit Times:If is a typical solu-

tion, all solutions with initial data sufficiently close to get
onto surfaces in the same order as .

The sequence in which a trajectory hits surfacesis an im-
portant characteristic of the solution. Property 4 says that, for a
typical solution , the (strict) ordering of hit times
is stable with respect to small disturbances in :

(18)

where is a permutation of .
For the purposes of segmentation and edge detection, the only
interesting output occurs at these time points, since they
are the only instants when the segmentation of the initial signal
changes (i.e., when regions are merged and edges are erased).
While a thorough investigation of how to use these hitting times
and in particular how to stop a SIDE so as to obtain the best
segmentation is an open one, the fact that our choice is limited
to a finite set of time points provides us with both a natural
sequence of segmentations of increasing granularity and with, at
the very least, some simple stopping rules. For example, if the
number of “useful” regions, , is known or boundeda priori,
a natural candidate for a stopping time would be , i.e.,
the time when exactly regions remain. In the next section we
illustrate the effectiveness of such a rule in the simplest case,
namely when so that we are seeking a partition of the
field of interest into two regions. These results together with
the properties described here provide ample motivation for a
more detailed examination of the properties of the sequence of
segmentations produced by a SIDE flow. Such an investigation
is currently ongoing.

We already mentioned that our definition of solutions on
sliding surfaces for SIDE’s in one spatial dimension coincides
with all three classical definitions of solutions for a general
equation with discontinuous right-hand side, which are pre-
sented in Filippov’s book [5, pp. 50–56]. We use a result of [5,
p. 95] to infer the following.

Property 5—Continuous Dependence on the RHS:Let us
consider a SIDE force function , and let be a
smoothing kernel of width :

supp

Let be a regularized ver-
sion of . Consider system (4) with and

. Then for any , there is a such that the solution of

this system stays closer thanto the solution of the SIDE with
the same initial condition and force .

We note that if the smoothing kernel is appropriately
chosen, then the resulting will be a Perona–Malik force
function of thickness . (For example, one easy choice for

is a multiple of the indicator function of the interval
.) Thus, semi-discrete Perona–Malik evolutions with

small are regularizations of SIDE’s, and consequently a SIDE
in 1-D can be viewed as a limiting case of a Perona–Malik-type
evolution. However, as we will see in the next section, the SIDE
evolutions appear to have some advantages over such regular-
ized evolutions even in 1-D.

As we stated at the start of this section, the analysis and prop-
erties we have just derived have focused on SIDE’s for 1-D sig-
nals. Let us close this section by commenting on the properties
of SIDE’s in 2-D. The existence and uniqueness of solutions
again follow easily from our construction of solutions. Prop-
erty 1 (the maximum principle) is easily inferred from the 2-D
spring-mass model. Property 2 (finite evolution time) also car-
ries over, with the same proof. There is, however, no analog of
the lemma on sliding in 2-D: it is easy to show that the solu-
tions in the vicinity of a discontinuity hyperplane of (12) do
not necessarily slide onto that hyperplane. Therefore, there is
no global continuous dependence on the initial data. In partic-
ular, the sequence of hitting times and associated discontinuity
planes does not depend continuously on initial conditions, and
our SIDE evolution does not correspond to a limiting form of
a Perona–Malik evolution in 2-D but in fact represents a de-
cidedly different type of evolutionary behavior. Several factors,
however, indicate the value of this new evolution and also sug-
gest that a weaker stability result can be proven. First of all, as
shown in the experimental results in the next section, SIDE’s
can produce excellent segmentations in 2-D images even in the
presence of considerable noise. Moreover, thanks to the max-
imum principle, excessively wild behavior of solutions is im-
possible, something that is again confirmed by the experiments
of the next section. Consequently, the sequence of hit times (18)
does not seem to be very sensitive to the initial condition in that
the presence of noise, while perhaps perturbing the ordering of
hitting times and the sliding planes that are hit, seem to intro-
duce perturbations that are, in some sense, “small.” We are cur-
rently working on defining an appropriate metric on such hit-
ting plane/time sequences that captures this behavior and that
allows us to characterize stability that SIDE’s display in the ex-
periments described next.

VI. EXPERIMENTS

Choosing a SIDE force function best suited for a particular
application is an open research question. For the examples
below, we use a very simple, piecewise-linear force function

sign . Note that, formally, this function
does not satisfy our definition (3) of a force function, since
it is negative for . Therefore, in our experiments we
always make sure that is larger than the dynamic range of
the signal or image to be processed. In that case, thanks to
the maximum principle, we will have for
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any pair of pixels at any timeduring evolution, and therefore
.

A. Experiment 1: 1-D Unit Step in High Noise Environment

We first test this SIDE on a unit step function corrupted by ad-
ditive white Gaussian noise whose standard deviation is equal
to the amplitude of the step, and which is depicted in Fig. 7(a).
The remaining parts of this figure display snapshots of the SIDE
evolution starting with the noisy data in Fig. 7(a), i.e., they cor-
respond to the evolution at a selected set of hitting times. The
particular members of the scale space which are illustrated are
labeled according to the number of remaining regions. Note that
the last remaining edge, i.e., the edge in Fig. 7(d) for the hitting
time at which there are only two regions left, is located between
samples 96 and 97, which is quite close to the position of the
original edge (between the 100th and 101st samples). In this
example, the step in Fig. 7(d) also has amplitude that is close
to that of the original unit step. In general, thanks to the sta-
bility of SIDE’s, the sizes of discontinuities will be diminished
through such an evolution, much as they are in other evolution
equations. However, from the perspective of segmentation this
is irrelevant, i.e., the focus of attention is on detecting and lo-
cating the edge, not on estimating its amplitude.

This example also provides us with the opportunity to contrast
the behavior of a SIDE evolution with a Perona–Malik evolution
and in fact to describe the behavior that originally motivated our
work. Specifically, as we noted in the discussion of Property 5
of the previous section, a SIDE in 1-D can be approximated with
a Perona–Malik equation of a small thickness. Observe that
a Perona–Malik equation of a large thicknesswill diffuse the
edge before removing all the noise. Consequently, if the objec-
tive is segmentation, the desire is to use as small a value ofas
possible. Following the procedure prescribed by Perona, Shiota,
and Malik in [15], we computed the histogram of the absolute
values of the gradient throughout the initial signal, and fixed
at 90% of its integral. The resulting evolution is shown in Fig. 8.
In addition to its good denoising performance, it also blurs the
edge, which is clearly undesirable if the objective is a sharp seg-
mentation. The comparison of Figs. 7 and 8 strongly suggests
that the smaller the better. It was precisely this observation
that originally motivated the development of SIDE’s. However,
while in 1-D a SIDE evolution can be viewed precisely as a limit
of a Perona–Malik evolution as goes to 0, there is still an
advantage to using the form of the evolution that we have de-
scribed rather than a Perona–Malik evolution with a very small
value of . Specifically, the presence of explicit reductions in
dimensionality during the evolution makes a SIDE implemen-
tation more efficient than that described in [15]. Even for this
simple example the Perona–Malik evolution that produced the
result comparable to that in Fig. 7 evolved approximately five
times more slowly than our SIDE evolution. Although a SIDE
in 2-D cannot be viewed as a limit of Perona–Malik evolutions,
the same comparison in speed of evolution is still true, although
in this case the difference in computation time can be orders of
magnitude.

Fig. 7. Scale space of a SIDE for a noisy unit step at location 100: (a) the
original signal and (b)–(d) representatives of the resulting SIDE scale space.

Fig. 8. Scale space of a Perona–Malik equation with a largeK for the noisy
step of Fig. 7.

Fig. 9. Scale space of a SIDE for a noisy blurred three-edge staircase: (a)
noise-free original signal, (b) its noisy realization, and (c), (d) representatives
of the resulting SIDE scale space.

B. Experiment 2: Edge Enhancement in 1-D

Our second 1-D example shows that SIDE’s can stably en-
hance edges. The staircase signal in the upper left-hand corner
of Fig. 9 was convolved with a Gaussian and corrupted by ad-
ditive noise. The evolution was stopped when there were only
four regions (three edges) left. The locations of the edges are
very close to those in the original signal. (As in the previous
example, the amplitudes of the final signal are quite different
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Fig. 10. A unit step with heavy-tailed noise.

Fig. 11. RMS errors for Monte-Carlo runs. (Koepfler–Lopez–Morel: solid
line; SIDE: broken line).

Fig. 12. Scale space of a SIDE for the SAR image of trees and grass, and the
final boundary superimposed on the initial image.

from those of the initial condition. This is immaterial, since we
are interested in segmentation, not in restoration.)

C. Experiment 3: Robustness in 1-D

We now compare robustness of our algorithm to that of
Koepfler, Lopez, and Morel’s [9] minimization of Mum-

ford–Shah functional [11], as implemented in MegaWave2
software package from CEREMADE [6]. For that purpose, we
use Monte Carlo simulations on a unit step signal corrupted
by “heavy-tailed” noise which is, with high probability ,
normally distributed with , and, with low probability
, normally distributed with . A typical sample path, for

, is shown in Fig. 10. During each trial, each algorithm
was stopped when only two regions remained, and the resulting
jump location was taken as the output. The root mean squared
errors in locating the jump for , , and
are shown in Fig. 11 (the solid line is Koepfler–Lopez–Morel,
the broken line is SIDE). The error bars are ± two standard
deviations.

As anticipated, the quadratic term of the Mumford–Shah en-
ergy makes it nonrobust to heavy-tailed noise, and the perfor-
mance degrades considerably as the contamination probability
increases. At the same time, our method is very robust, even if
the outlier probability is as high as 0.15.

Note that neither of the two algorithms is optimal for this
simple 1-D problem, for which near-perfect results can be
achieved in a computationally efficient manner by very simple
procedures. The purpose of including this example is to provide
statistical evidence for our claim of robustness of SIDE’s.
This becomes very important for complicated 2-D problems,
such as the one considered in the next example, where simple
techniques no longer work.

D. Experiment 4: SIDE Evolutions in 2-D

Both the sharpness of boundaries and robustness are also
evident in the image experiments. These properties are used
to advantage in segmenting the SAR image of Fig. 1 in which
only two textures are present (forest and grass). The scale
space is shown in Fig. 12 (with the intensity values of each
image scaled so as to take up the whole grayscale range), as
well as the resulting boundary superimposed onto the original
log-magnitude image. SAR imagery, such as the example
shown here, are subject to the phenomenon known as speckle,
which is present in any coherent imaging system and which
leads to the large amplitude variations and noise evident in the
original image. Consequently, the accurate segmentation of
such imagery can be quite challenging and in particular cannot
be accomplished using standard edge detection algorithms. For
example, the scale-space of the region-merging algorithm of
[9], as implemented in [6] and discussed above, is depicted in
Fig. 13. If evolved until two regions remain, it will find the
boundary around a burst of noise. In contrast, the two-region
segmentation displayed in Fig. 12(d) is very accurate.

Finally we note, that, as mentioned in Experiment 1,
the SIDE evolutions require far less computation time than
Perona–Malik-type evolutions. Since in 2-D a SIDE evolution
is not a limiting form of a Perona–Malik evolution, the com-
parison is not quite as simple. However, in experiments that
we have performed in which we have devised Perona–Malik
evolutions that produce results as qualitatively similar to those
in Fig. 12 as possible, we have found that the resulting compu-
tational effort is roughly 130 times slower for this ( )
image than our SIDE evolution.
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Fig. 13. Segmentations of the SAR image via the region-merging method [9].

VII. CONCLUSION

In this paper we have presented a new approach to edge en-
hancement and segmentation, and demonstrated its successful
application to signals and images with very high levels of noise,
as well as to blurry signals. Our approach is based on a new class
of evolution equations for the processing of imagery and signals
which we have termed stabilized inverse diffusion equations or
SIDE’s. These evolutions, which have discontinuous right-hand
sides, have conceptual and mathematical links to other evolu-
tion-based methods in signal and image processing, but they
also have their own unique qualitative characteristics and prop-
erties that, together with the promising results presented here,
suggest the merit of several further lines of investigation—such
as proving stability in 2-D; developing methods for choosing
the force function best suited to various applications; inves-
tigating improved ways of extracting information from the se-
quence of hitting times and corresponding images; applying
SIDE’s to image restoration (e.g., by filtering the initial condi-
tion within each region found by the SIDE); and understanding
the properties of the PDE (16) and its interpretations.

APPENDIX

PROOF OFLEMMA ON SLIDING

To simplify notation, we replace with in (11) and rewrite
the system in terms of :

(19)

We need to prove that if is any per-
mutation of , then, as approaches

, sign for
all integers between 1 and , and for at least one suchthe
inequality is strict (i.e., the trajectories entertransversally).
Note that for every point and every quadrant , we only
need to find one sequence of’s approaching from and
satisfying these inequalities. This is because the solutions vary
continuously inside each quadrant.

Fix at nonzero values, let

let initially , set , and drive to-
ward by letting go to zero. Take an arbitrary indexbetween
1 and . By our construction, is approaching zero, and either

or . If , then, by construction,
, implying , which makes the

RHS of (19) for nonpositive: . If
, then there is a between 1 and such that at least one of

the two neighbors of is in the set , and
whose absolute value is therefore staying above:
or . Without loss of generality, suppose it is the left
neighbor: . If , define . If our arbi-
trary happens to be equal to this, then

and hence (19) for has a strictly negative limit:
Similar reasoning for the case

leads to and, if it happens that , then
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