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A Canonical Correlations Approach to Multiscale
Stochastic Realization

William W. Irving and Alan S. Willsky Fellow, IEEE

Abstract—\We develop a realization theory for a class of multi- This algorithm incorporates noisy measurements of a given
scale stochastic processes having white-noise driven, scale-recurmultiscale process to calculate both smoothed estineatels
sive dynamics that are indexed by the nodes of a tree. Given the 45qnciated error covariances. Another algorithm has been
correlation structure of a 1-D or 2-D random process, our methods d | d for likelihood calculati 1711 trast to tradi
provide a systematic way to realize the given correlation as the .eve ope or. G 09 C"f‘ culation [ _]' il CONrast to trad
finest scale of a multiscale process. Motivated by Akaike’s use of tional 2-D optimal estimation formulations based on Markov
canonical correlation analysis to develop both exact and reduced- random fields, which lead to iterative algorithms having a
order model for time-series, we too harness this tool to develop per-pixel computational complexity that typically grows with
multiscale models. We apply our realization scheme to build re- 546 size, these multiscale algorithms are noniterative and

duced-order multiscale models for two applications, namely linear h ixel lexity ind dent of i - 18
least-squares estimation and generation of random-field sample ave a per-pixel complexity independent of image size [18],

paths. For the numerical examples considered, least-squares es{19]. Substantial computational savings can thus result, as
timates are obtained having nearly optimal mean-square errors, evidenced by exploitation of the multiscale framework in many
even with myltiscale models of |OW qrder.. AIthough bO'[h field est!- applications, including computer vision (e.g., calculation of
mates and field sample paths exhibit a visually distracting blocki- -, yica) flow [19]), remote sensing (e.g., optimal interpolation
ness, this blockiness is not an important issue in many applications. S . o .
For such applications, our approach to multiscale stochastic real- of sea level varlat|0ns_ in the North PaC|f|_c Ocean_from satellite
ization holds promise as a valuable, general tool. measurements, treating the ocean as either static [11], or more
recently as dynamic [12]) and geophysics (e.g., characterizing
spatial variations in hydraulic conductivity from both point and
nonlocal measurements [6]).
In exactly the same way that Kalman filtering requires the
. INTRODUCTION prior specification of a state-space model before least-square
N THIS PAPER, we exploit well-established controkestimation or likelihood calculation can be carried out, so does
concepts to develop a realization theory for the classultiscale statistical processing require such prior modeling.
of multiscale stochastic processes introduced in [4], [5]he techniques developed in this paper provide the needed
These processes have white-noise driven, scale-recursivedeling tools: given the correlation structure of a 1-D or
dynamics, directly analogous to the time-recursive dynami2sD random process,these tools can be used to realize the
of Gauss-Markov time-series models. Experimental and thearrelation as the finest of a multiscale process. Because there
oretical results have demonstrated that this class of processdygpically a conflict between model complexity and accuracy,
is quite rich statistically; the self-similarity of fractionalwe mainly focus on the case where a constraint is imposed on
Brownian motion can be represented [5], as can any given 1tk allowed model state dimension; the objective then is to build
wide-sense (WS) reciprocal process or 2-D Markov randoanmodel whose finest-scale correlation structure best matches
field (WSMRF) [18]: Complementing this statistical richnesghe desired correlation, subject to the dimension constraint.
are the efficient image processing algorithms to which mul- Our focus on realizindinestscale statistics is motivated by
tiscale models lead. For example, a scale-recursive algoritline not insignificant class of applications in which the finest
has been developed that directly generalizes the Kalmseale is really the only one of interest. For instance, in many
filter and related Rauch—Tung-Striebel (RTS) smoother [Sinage-processing applications (such as de-noising problems
[15], or terrain segmentation [17]), the finest-scale process is a
pixel-by-pixel representation of the image, the measurements
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is to estimate the parameter. For all of these problems, the Root node
multiscale framework provides an efficient statistical approach

for obtaining estimates and error covariances or calculating
likelihoods, even though every other aspect of these problems
involves only the finest scale.

Our approach to multiscale stochastic realization takes advan- SY
tage of the close relationship the problem shares with its more
traditional, time-series counterpart. To clarify this relationship,
we first observe that each node in-¢h order tree hagchildren
and a single parent, and hence partitions the remaining nodes
into (¢+1) subtrees, one associated with each of these child and
parent nodes. (A second-order tree, which is often used to index SS‘:/V\E% ——
multiscale representations of time series, is illustrated in Fig. 1.) Es g
Related to this partitioning property is the Markov property that
multiscale processes possess:(if) is the value of the state atrig. 1. The first four levels of a second-order tree are shown. The parent of
nodes, then conditioned om(s) the states in the correspondingiodes is denoted by and the two offspring are denoted by, andsor.

(4+ 1) sublrees of nodes extending away fromre uncorre: [T 140 vecort. andc: contn, espectuey. he festscae sae
lated [18]. The connection to the time-series realization problem

is that in both contexts, the role of state information is to provide
an information interface among subsets of the process. This jin
terface must store just enough process information to make { o X .
corresponding process subsets conditionally uncorrelated. ed, a“?‘ a measure_of dec_orrelatlon Is defined. In Sect|_on I.”'
key challenge is that while in the time-series case this interfa modeling problem is precisely formulated, and a solution is

is between two subsets of the process (i.e., the past and theﬁt?—senteg for th?\;:ars]e thlat full-ordr:a " exgc:.modelts)lare .sought.
ture), in the multiscale case, the interface is amondiple(i.e., en,dlrf1 eﬁtlon L he ﬁo utionto the rr}no edlng pdro gm IS pre-
(¢ + 1)) subsets of the process. sented for the more challenging case that reduced-order, approx-

We exploit the connection between the time-series and mfﬂlate models are so_ught. _In Sect_lon V. two numencgl examples
re presented, and finally in Section VI, a summary is provided.

:s;a\/lv%rrlf 3I(|)znaet|i?1n[lp]rggge[r2]s oayr:gssgg?o:g ;?grﬂlfg;?:;e; g@_etails of the proofs are relegated to Appendices A—-C at the end
eling. The work in [1] and [2] addresses two issues. First, f(?lI the paper.
exact realizations, a method is devised for finding the minimal
dimension and corresponding information content of the state.
Second, for reduced-order, approximate realizations, a meth®dState-Space Models gth-Order Trees

is devised for measuring the relative importance of the compo

nents of the information interface provided by the state, so t behastic processes indexed by nodes orea@ A gth-order
a decision can be made about which components to discar ek is a pyramidal structure of nodes connected such that each

a reduced-order realization. The latter is accomplished usinggde (other than the leaf nodes) haeffspring nodes. We
classical tool from multivariate statistics, nameanonical cor- < ciate with each nodea vector-valued state(s) wHere

relation analy3|s[_13]. We decompose our multls.cale problen?n general, the;™ state vectors at theuth level of the tree
of decorrelating jointly(q + 1) process subsets into a collec—fOr m = 0,1,...) can be interpreted as information about

tion of g problems of decorre_lating pairs of process SUbSeYfe 1,-th scale of the process. In keeping with the conventions
We t_hen demonstrate_ that with r(_aspect to a partlc_:ular_ decg"s'tablished in [4], [5], we define an upward (fine-to-coarse)
relation metric, canonical correlation analysis can in princip ift operatory such thatsy is the parent of nodes, and a

be used to solve optimally each of the pairwise decorrelatiofosnonding set of downward (coarse-to-fine) shift operators
problems. Furthermore, these pairwise solutions can be concate- . _ 4 o

d ield b-ontimal soluti h i q ., ¢ = 1,2,...,q, such that the; offspring of nodes are
na_te to yield a su -opt|ma SO u_t|on to the m_ut|-way ECOMeiven by sau, sa, . . ., say,. Fig. 1 depicts an example of the
lation problem. The solution to this decorrelation problem lea

il | tor all th ltiscal del dlative locations of, s7¥, andsaq, san in a second-order tree.
readily to values for all the multiscale model parameters. The dynamics implicitly providing a statistical characteriza-

We apply our realization scheme to build reduced-order myjg, of z(s) have the form of an autoregression in scale
tiscale models for two applications, namely linear least-squares

estimation and generation of random-field sample paths. For the z(s) = A(s)z(s7) + w(s). (1)
numerical examples considered, we obtain least-squares esti-

mates having mean-square errors that are nearly optimal, eV¥éis regression is initialized at the root node—= 0, with a

with multiscale models of very low order. Although both fieldstate variable:(0) having mean zero and covarianBé0). The
estimates and field sample paths exhibit a visually distractitgrm w(s) represents white driving noise, uncorrelated across
blockiness, this blockiness is not really an issue in many appdieale and space, and also uncorrelated with the initial condition
cations. For such applications, our approach to multiscale real0); this noise is assumed to have mean zero and covariance
ization holds promise as a valuable, general tool. Q)(s). Sincez(0) andw(s) are zero-mean, it follows that(s)

The remainder of this paper is organized in the following way.
e>ection II, the multiscale framework is more formally intro-

Il. PRELIMINARIES

“The models introduced in [4], [5], [19] describe multiscale
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is a zero-mean random procédsurthermore, since the driving cross-covariance of random vectarsand ). By elementary

noisew(s) is white, the correlation structure of the process) linear algebra [22], the rank of the cross-covariance in (4) is

is characterized completely #(0) and the auto-regression pa-upper-bounded by the rank @,,), which in turn is upper-

rametersd(s) and@(s) for all nodess # 0. bounded by the dimension af s). The following proposition
The statistical structure of multiscale processes can be éxus follows.

ploited to yield an extremely efficient algorithm for estimating Proposition 1:

z(+), based upon noisy observation§). These observations

take the form dimensiorz(s)) 2 max ra”k(meifmj) :

y(s) = O(s)z(s) + v(s) If the finest-scale covariancE:, must match exactly some
_ ) . ) ) prespecified covariance, then this proposition provides a lower
where the nc_nsez(s) Is white, has covarlancR(s)_, andis un- po 04 on the required multiscale state dimension. In the rather
correlated withi(-) atall nodes on the tree. Just like the Kalmafy oy, case that the involved cross-covariance matrices have full

filter and the RTS smoother, this estimation algorithm has a '€ink, this dimension constraint becomes quite stringent. Thus,

cursive structure, and yields both state estimates and associ% ep the multiscale estimation algorithm computationally ef-

error covariances. For a multiscale process having states ofglija e find considerable motivation to turn to reduced-order
mension\ and indexed on a tree witN nodes, the number of (approximate) realizations

required computations i€( N A®). Thus, the algorithm is quite
efficient, particularly when the dimension of the state vectors¢s. The Generalized Correlation Coefficient

low. For the purposes of developing reduced-order models, it will

prove convenient to have a scalar measure of the correlation

among a collection of random vectors. We thus introduce a

Multiscale processes possess an important Markov propedy. calledgeneralized correlation coefficientn keeping with
stemming directly from the whiteness @fs). To describe the gandard conventions, we define as follows the correlation co-

form of this property of interest to us, we associate with each trggicient p(m,72) between two scalar valued random variables
nodes a setF;, whereF, contains all of the finest-scale nodes,71

that descend froms. We also associate with each nosi¢he

random vectorg, and¢,.. The random vectof, contains the _Luws P S 0. fori=1.2
: i i (m,m) =9 VPl "o o

elements of the sdtz(s); o € F;}, stacked into a vector, while PRI 0 e therwi

¢se contains the elements of the complementary{s¢t); o € OIherwise.

For—{z(o);0 € F,}, stacked into a vector. These conventionShen, for a pair of vector-valued random variabigsand s,

are illustrated in Fig. 1. It will sometimes prove convenient twe define their generalized correlation coefficig(, 772) by

denote¢.- by & ,.; we freely use both forms. To relatg

B. Markov Property of Multiscale Processes

andns:

(®)

. . . = — T T
andz(s), we introduce the matrifl,|,, whereH,,|,z(s) is the p(n,m2) = }Tllag Lo (ffm, fime)}
linear least-squares estimatedof givenz(s), ando is a node )
or represents a set of nodes. where the dummy argumelfit (for ¢ = 1, 2) is a column vector
The Markov property, as it relates explicitly to the finest scal@aving the same dimension a5 Finally, we extend the defini-
can now be stated as follows [7]: tion of p(-, -) to a collection of random vectors , 72, . . ., 7,
- in the following way:
Ssal H5a1|5 §sai|s ( ) ( )
gsa HS(y |s Ssa s oM,M2, - Mk Emaxﬁ iy 75 )-
o= =" e+ s
' : - Each of these correlation coefficients has a conditioned ver-
Ssagi Hooginls oarginls sion. To define them, we first let random vectorontain the
(2)  conditioning information. Also, we le}; = 1;— E (;]z), where
with (here and elsewhere) we adhere to the conventiorthalty ) is

the linear least-squares estimate:afiveny. Finally, we define

2(5),Eaar]sr Esaz)ss + - 1 Esagyr s UNCOITEIAtE  (3) DO T2s o T 2) = P (it T2 0) - ©6)

We use this property to relate the dimension:¢$) to the cor-

relation among the vecto&sa, ; {says -+ - §sa, .y, - TOWard this

> [ll. FORMULATION AND INITIAL INVESTIGATION OF
end, (2) and (3) together imply that

REALIZATION PROBLEM

Pepoiton, = Hsai|SPac(S)H3;j|5 (T #£ 7). 4 The realization problem of interest in this paper is to build
a multiscale model, indexed on a given tree structure, to re-
(Here and elsewhere, we adhere to the notational conventigiye some prespecified, finest-scale covariance. We begin with
that P, is the covariance of random vectorand P, is the 5 random vectog,, having the prespecified covarianBe, and
3The mean of:(-) can be set to any arbitrary value, by suitably adjusting thB@Ving an established correspondence with the finest scale of the
mean ofz(0) andw(-). given tree. For example, might be a random field (written for
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simplicity as a vector), with the finest scale of the tree (e.g.,@omparing (1) and (10), and using standard results from linear
quadtree) being a pixel-by-pixel representation of the field. Olgast-squares estimation, the model parameters can be seen to
objective is to specify values for the model paramef@(8), satisfy the following relations:

A(-) and@(-), to achieve the best match possible between the .

actual, realized covariand@, and the desired covarianég,,. A(s) =Po(s)a(s9) Prsmy (11a)

In making the specification, we impose on each nodelimen- Q(s) =Py(s) — Px(s)x(s"/)Px—(i;/)PgEs)m(s;/)' (11b)

sion constraint,
Finally, again using (8) and the facts th&t, = P,, and
dimension(z(s)) < A;. (7)  Pee,. = Py, the covariances appearing in (11a) and (11b)
can be expressed as simple functions of the internal matrices
With the dimension constraint imposed, Proposition 1 showgid the finest-scale covariance
that it may not be possible to achieve strict equality between
P:, and P, ,, thus justifying our distinct notation for each. For Pr(s)a(s3) =WsPyox.- WE (12a)
convenience, we also introduce the random vegtgrandy ;.. Po(o) IWSPXSWST- (12b)
These are defined to have the same relatiopgtasé; andé .
have to,. To be more precise, suppose thatitrecomponent A natural question at this point is how to devise the internal
of & (&,-) maps to thew, (:)th (n.- (i)th) component ofy; then, matrices for an extact, internal realization of a given finest-scale
the ith component ofys (xs-) maps to thens(é)th (ns.(¢)th) covariance. At the finest-scale nodes, the internal matrices are
component ofyo, wherex; (xs:) has the same dimension asasy to determine; they are implicitly defined by the associa-
&5 (&5¢). It will sometimes prove convenient to denote: by tion between finest-scale nodes and the componengts.dfor

Xsaq1: We freely use both forms. example, if each scalar component)gf is assigned to a dis-
tinct finest-scale node, then cleaify, = 1 for each finest-scale
A. Full-Order Realizations node. At any coarse-scale nogg.e., any nodes above the finest

When the dimension constraint is discarded, the realizatio ale), a necessary condition for (2) and (3) to hold in an exact,

problem becomes conceptually simpler and exact realization ernal model is thaltV’, fulfill the following decorrelating role:

(i.e., realizations for whiclf;, = P,,) become possible. We
begin by analyzing this case.

A notable class of multiscale processes in the context of exaefe necessity of (13) can be justified in the following manner:
realizations is those in which each state variatile is a linear
function of the finest-scale process P (Xsars - Xoagra |WaXs) =0 (Esars - Esagra](8))

=p (é;aﬂsv [ERR ésozq+1> =0.

_ . . . Here, the first equality follows from the facts that the realiza-
A state vector:(s) obeying this relationship can clearly be seefjy, js exact and internal, the second equality follows from the

torepresentan aggfegate (coarse) description ,Of theﬁnes,t'sfﬂﬁnitions ofém. and the conditional generalized correlation
process descending from We refer to the matri¥V; associ- ¢qefficient, and the final equality follows from (2) and (3).
ated with nodes as the node’sternal matrix, and we refer to As we now show, (13) is not onlpecessanfor an exact

multiscale processes for which (8) holds asinternalrealiza- jnernq) realization, but is alssufficientfor building an exact
tions. The notion of internal stochastic realizations is Sta”dqréialization.

in time-series analysis [16], [20], with our use of the concept Proposition 2: Suppose that for all nodesthe W, matrices

representing a natural adaptation. satisfy (13), and that the multiscale system matrieé®), A(s),

Our interest in internal realizations stems from the convgth(s) are defined in terms of the’, matrices via (9) and
nient fact that the model parametd?$0), A(-), and@Q(-) can °

be specified completely in terms of the internal matrices and A(s) =W, Py, .. WL (Wor Py _WT_)*l (14a)
the finest-scale covariance. In other words, once values values e T

for the internal matrices have been determined, values for the Qs) =W P Wy = Als)WorlPyo Wo - (14D)
model parameter#(0), A(-) and Q(:) follow easily. To see tpen for any nodes andt at the same scale (possibly with
this fact, we begin by substituting (8) evaluatecsat 0 into . _ )

P(0) = E [#(0)z7(0)] and using the fact thak;, = P,, to

yleld PT(@)T(#) = WSPX_ng WtT' (15)

p (Xsoq » Xsagy - -+ Xsagq1 |W5Xs) =0. (13)

z(s) = W,&,. (8)

P(0) = WPy, wi. (9) A proof of Proposition 2 is contained in Appendix A. The fol-
lowing special case of the proposition is of particular interest.
The parameterd(s) andQ(s) can then be computed by noting Corollary 1: If the conditions in Proposition 2 hold, then
that (1) represents the linear least-squares prediction(of Py, = Fg,.
based upor:(s¥), plus the associated prediction error Proof: For anys andt at the finest scale, the internal ma-
tricesW, andW, are identity matrices, and hence (15) implies
x(s) = E [x(s)|x(s7)] + w(s). (10) that Posyary = Py, But also, by definition,P, ). =
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Pe¢,. Thus, P, , = Fr ¢, and the corollary immediately fol- P, andF,. This problem appears to be very challenging. We
lows. QED will focus only on the more myopic problem of solving (16).

To summarize, there is a three-stage procedure for realizingAs an additional comment, models constructed with our ap-
exactly any desired finest-scale covariance: (i) establish a cpreach will not in general be internal realizations (i.e., (8) will
respondence between finest-scale nodes and components ofiitehold in general). Consequently, tHé, matrices should be
vectoryy, thereby implicitly specifyingV, for each finest-scale viewed in general as merely auxiliary constructs that aid in set-
node, (ii) find a matriX¥V, satisfying (13) for every coarse-scalding values for the parametef¥0), A(-) andQ(-).
node4 and finally (iii) substitute the resulting’; values into Finally, the definition of the generalized correlation coeffi-
(9), (14a), and (14b) to calculate valuesf(0), A(-),andQ(-). cient makes it clear that for any given matiix;

An attractive feature of this procedure is that it decomposes th?
realization problem into a collection of independent subpro-\Xsau > Xsaz, - - o Xsagsr | WsXs)
lems, each myopically focused on determining the information = P(Xsars Xsazs - » Xsagsr | WaXs)

content of the state vector at a single node to fulfill the decorre- .. ) )

lating role (13). In the case that, is either a wide-sense, bilat-WhereW; is a matrix whose rows form an orthonormal basis

eral Markov random process or aWSMRFdefined on a discrd® the row space ofV;. Hence, defining the set’, to be the

lattice, this realization approach is particularly attractive, sin&/PSet oM having orthonormal rows, we see that

the W, matrices can be determined by inspection; this fact is_ - _

proved by construction in [18], which p>r/ovidr:es a nice, concretects, © (ses Xaoa o Xoay 2 [Wixs)

illustration of the ideas presented in this section. We hasten to = min p(Xsays Xsazs - > Xsagss|WXs)-

add, however, that even in the WSMRF case, the state vectors WEM,

for an exact realization will typically have an impractically highthus, without loss of optimality, we can replace the constraint

dimension, and thus the construction is mainly of interest f@ew\/t)\s in (16) with the set\V,,. When convenient, we will

motivating our approach to reduced-order modeling. freely make this replacement.

B. Reduced-Order Realizations IV. DECORRELATING SETS OFRANDOM VECTORS
For the rest of the paper, we reinstate the constraint (7) Qn

multiscale model state dimension. With this constraint in effect,

we no longer look foi¥, matrices that fulfill the decorrelation ~We here analyze a special case of the decorrelation prob-

condition (13) exactly; instead, we look for matrices that do tHeéms in which there are only two vectors to decorrelate. De-

best decorrelation job possible, subject to the dimension cditing these vectors by, and; and stacking them ag =

T . L K " . .
straint. Specifically, we seeW’, matrices satisfying (i m3 )", our objective is to find the optimal matrix solu-
tion to the following optimization problem:

Decorrelating a Pair of Random Vectors

We=arg min 9 (xsa,,X ce X |Wx (16)
P, ¢ e ) W= arg amin o OnomWin). (17)
4 A
where M, is the set of matrices having, or fewer rows (and ) ) o
a number of columns implicitly defined by context). We refer Playing a central role in the solution is a standard result from
to (16) as thedecorrelation problemOnce values for th&V. canonical correlation theory. For the purposes of stating this re-
matrices have been found, we mimic our approach to the fufilt Precisely, we denote the rank of thex n; covariance ma-

order realization problem: values for the multiscale parametdf& £» by (for< = 1,2), and the rank of%,,,,, by m.». Also,
P(0), A(-) andQ(-) are set using (9), (14a), and (14b). Thudve letl,, be an identity matrlx h{iWhg rows and co!umns:
our reduced-order modeling procedure is identical to our three-Theorem 1:There exist matrice§’ and 73, of dimension
stage, full-order modeling procedure (see Section Ill-A), exceptt * "1
that now condition (16) is used in lieu of condition (13). 7, 0 p p T 0 T
There are several comments to make about this modeling ap- < T ) <qu“ }’,1"2 ) < o T )
proach. First, the approach shares with its full-order counterpart > 2 2

andmes x nga, respectively, such that

12

the computational benefit that we can find all the model parame- T
tersin a single sweep from coarse to fine scales, determifiing _ Iy, D
for each node as we go along, and thereby implicitly specifying DT I,

P(0), A(-) andQ(-). We emphasize, though, that the condition

(16) is a heuristic one. Certainly, this condition is reasonab%r,]

from a myopic, node-by-node view of the realization problem; " 0 I,, D " 0 T
however, the conditiomoes notprovide tight control over the < 0 Tj) <DT I, ) < 0 Tj)

overall match betwee®:, and P,,. Indeed, an open research P P
challenge is to find a way to build a reduced-order model, in = <P{~“ P ) .
mmne2 n2

which the parameteB(0), A(-) andQ(-) are chosen explicitly
to minimize some global measure of the discrepancy betwethe matrixD has dimensionn; x m2 and is given byD =

iag (L ) = diag . > dp >
4The choicelV, = I, o thatz(s) = £.., is universally valid, though of very 1128 (D ’ 0)’ whereD dlr_‘g(dl’ dz;-odmy) 1 2 da =
little practical use, owing to the high dimension fafs) to which it leads. dy > -+ > dp,, > 0;foragiven(P,,, P,,, Py.»,), the matrix



IRVING AND WILLSKY: A CANONICAL CORRELATIONS APPROACH TO MULTISCALE STOCHASTIC REALIZATION 1519

Dis unique. Finally,Z;" is the Moore—Penrose pseudoinvers®nce these facts are established, the results (19a) and (19b) then
of T;, and is given byl = P, TF, (i = 1,2). follow. In particular, with regard to (19a), we have the following
We refer to the triple of matriceq, 75, D) as thecanonical sequence of identities:
correlation matricesassociated witli»; , 72). For convenience,
we introduce truncated versions’Bf (for ¢ = 1, 2), denoted by
T 1 and defined to contain the firgtrows of 1;; as a special
case, we defind} to contain the firstn;, rows ofZ}. Results
very similar to Theorem 1 can be found in several places, in-
cluding [3] and [9]. A proof of the theorem, as exactly stated
here, can be found in [14]. As these proofs reveal, the calculere first equality follows from (18c), the second from (20a), the
tion of the canonical correlation matrices can be carried out irtltird from (18a) and the fourth from (20a). The result (19b) can
numerically sound fashion using the singular value decompobe proved from (20b) in a very similar fashion; the details are
tion; this calculation require®(N?) floating point operations, omitted. QED
whereN = max(ng,ne). The important point to note about this proposition is that
We use Theorem 1 to perform a change of basis on the vectsdving (17) is essentially a problem of calculating the canon-
n1 andr), to simplify maximally the correlation between themical correlation matrices associated with , 72). Indeed, (17)
and thus to simplify analysis of the decorrelation problem. Prean be solved simultaneously for all values\dby calculating

in p 1474

pin p(n, 1| W)

= min p W) =p Iy 0
‘;,rél/r&\p(ul,uzl p1) = plps p2| (In 0) p1)

0)T1m) = dag1.

= p(n1, 2| (1 (1)

ceeding, we define the random vectgrg:; andyu. via
p=0d 1), =T, (i=1,2)

where thanks to Theorem %; andy. have covariance

P — PH1 PHle — Im1 D
n =\ PT P, DT I,

Ve

and the transformation froifa , 72) to (pe1, pe2) is invertible in

just once these canonical correlation matrices.

B. Decorrelating Multiple Random Vectors

We now turn to the general decorrelation problem (16), for
which we develop a suboptimal solution. This solution has an
intuitively appealing structure motivated by the solution to the
simpler problem (17). We emphasize that to the best of our
knowledge, the task of characterizing tbptimal solution to

(16) is an unsolved problem.

Our approach is to decompose the decorrelation problem into
a collection ofg subproblems. In théh subproblem, we focus
on decorrelating.., from x,., for all j # ¢; specifically, we
exploit Proposition 3 to solve

a mean-square sense

Eﬁm—ﬁwﬂm—ﬂmfl=m (i=1,2).

The following lemma now provides the key simplification.
Lemma 1:

Wi i, = arg w}gﬂlh P (Xsass X(sa)e [Wxsa:)  (22)

(18a)
(18b)
(18c)

Pl m2\Wn) =p(pe, pio| W)
P (1, m2lWn) =p (s p2|WT )

in 5 Wn) = min p V).
w}g%p(m,nzl n) ‘¥2%Ap(ﬂlvﬂ2| 1)

where for now we treat,...,k, as free parameters. By
choosingV; , as in (22), we effectively decorrelajg.., from

Xsa, forall j # 4 at once; in particular, it is clear that
As a special case of (18a) and (18b), we note fiat, 7.) =

P41, p2). The lemma is a direct consequence of the definition 5 (sz_  Xsa; |Wi’kixwi) <p (sz_ X (sonr)e |Wi’kixwi)
of the generalized correlation coefficient, together with The- j i
orem 1; we omit the details of the proof. ’

Equipped with the foregoing theorem and lemma, we can Qi 5o, if the right side of (23) is small, then the left side will
solve (17). . also be for allj # 1.

Proposition 3: For0 < A < mq; andfori = 1,2 To see how we combin®, ., . .., W, x, to solve (16) ap-
proximately, let us consider the quantity

7

(23)

min g, m2| W) = p(n, nelliam) = datr. - (193)
WeM,

For A Z Mo ﬁ (Xsoqv Tt Xsozq |W1,k1X5a17 vy Wq,kq Xsaq) (24)
min (1, 72| W) = p (7717 772|T1771) —o0. (19b) which  we can express more succinctly ~as
WeEM, P(Xsars - Xsay |Ws(k1. ..., kq)xs) by defining the block-di-

agonal matrixW,(ky,...,k;) = diag(Wig,,..., Wer, ).
Since theth block component of this matrix has been specially
designed to decorrelate.., from x;a,, j # ¢, we intuitively
expect that all the block components will work together to
make (24) small. Furthermore, if

q
D ks
=1

Proof: In Appendix B, we demonstrate that far< m -

min p(pe, po| W) = p(pa, p2| (In 0) p1) = dags
W N,
(20a)
while for A > mq2

i p(pas p2lWin) = ppss paf (Imyy - 0) 1) =0.

(20b) (3)
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thenW,(k1,...,k,) € M.y, implying thatW, (kq,... k,) is Proof: The first inequality in (28) is a direct consequence
in the feasible set of the optimization problem (16), and canf the definition of the generalized correlation coefficient. The
indeed be used as an approximate solution to (16). second is then a direct consequence of the corollary to Proposi-
To characterize precisely the value of (24), we first must esen 4. QED
tablish a result describing the nonincreasing nature of the genThe important point to note about this proposition is that
eralized correlation coefficient as the amount of conditioning’, (%1, . .., k,) leads to a value for the objective function in (16)
information increases. thatis no greater than the maximum of the values obtained in the
Proposition 4: q subproblems (22). In other words, by concatenating together
_ _ L the solutions to the subproblems (22) into the block-diagonal
PUmy 2| Wini) < plnssm), 1 =1,2. (26) matrix W, (ki , ..., k,), we obtain an approximate solution to
Proof: In Appendix C, we demonstrate that (16) having a value upper-bounded by the maximum value of
P (s pa|Wigsa) < 7 (s, i) - 27) thesey solutions to (22). This observation suggests a way to se-

lect values for the parametefs, .. . , k,. In particular, subject
Once this fact is established, the result (26) follows. In partigs the constraint (25), we should choose these parameters to ful-

ular, we have the following sequence of relations: fill the following minimax condition:
(s m2|Wine) = p (e, p2|WiT ) (KT, k)
< p =D .
< p(pa, p2) = p(ne,m2) = arg min {‘Inax p(XsamX(soq)f Wi,ngsai)}- (29)
The first relation follows from (18b), the second from (27) and Kok (=11
the third from (18a). QED By choosing thé:; parameters in this fashion, we minimize the
We emphasize that if the conditioning information is not Hght side of (28b), which upper-bounds the left side of (28a).
function of eithem, or , alone, then the functiop(-, -|-) may ~The matrixW, (k. ...,k;) then serves as a suboptimal solu-
become an increasing one. For instance, if tion to (16).
P P 1 05 To describe the solution to (29), we denote by
m mnz ) — 2 (Tsa;» Tsaye> Dsi) the canonical correlation matrices
P Py, 05 1 : : ’

associated Witlix s, , X (sa;)- ), Where the diagonal elements of

thenp(n.,n2) = 0.5, but p(n1, m2lm + n2) = 1. D, ; are denoted by}, d5", . . .. For simplicity of exposition
We can, however, slightly strengthen Proposition 4 by renly, we assume thak; is strictly less than the rank of the

laxing our restriction thaall of the conditioning information be cross-covarianc®, . .. .. fori = 1,...q. Then, thanks to

a linear function of eithen; or#;; in lieu of this restriction, we Proposition 3, it follows that:

restricteach individual scalar componenf this conditioning

information to be a function of eitheg or 7. We state this re- P (Xsoss X(sar) Wik Xso ) = di'y 1.
sult as a corollary. Hence, the minimax definition (29) is equivalent to the fol-
Corollary 2; lowing, where we again impose the constraint (25):
P (e, nelWini, Wami, ) <p (m, m2lWimi, ) » (k... kD) = argkmiri {iﬂlax dZ7+1}
(i1,42) €{{1,2} x {1,2}} et A

This discrete optimization problem can easily be solved, once
the canonical correlation quantitie(sﬁmi,bs,i) associated
p (1, m2|Waini, , Wani, ) With (Xsa:: X(sa)e) have been calculated, for= 1,2,...,q

Proof:

= p<771 — EmWini, ), m2 — E(m|Wini,) W2 [14)
. C. Calculating the Canonical Correlation Matrices
X (mz — £ (i, |W177i1))> For problems of practical interest to us, the dimensiog of
_ . . andy;- can be on the order of a thousand (or greater), thus pro-
=P (771 —Em|Win),n2 - B (771|W177i1)> hibiting the exact calculation of the associated canonical cor-
= p(n,me|Wam,) . relation matrice77, D,). However, ifx, is a WSMRF, then

The first and third lines here represent direct applications of (6 W€ Show in this section, the caIcuIatFon(de, DS) can be
while the second line represents application of Proposition Simplified drastically; the structure of this simplification is im-

QED portant, because it leads naturally to a computationally simple
Using this corollary, we now return to consideration of théechnique for calculating an approximation(tf., D) in the
value of (24). case thaf lacks the WSMREF structure.
Proposition 5: Suppose that is a first-order, scalar-valued WSMRF over
a discrete lattice having dimensions 26@56. We focus on a
p (Xsau s Xsagry [Ws (k- kq)Xs) particular node for which x, andy,. contain the values of the

< max p (Xsass X(sarye [Ws(k1, ..., kg)xs) (28a) field at the subsets of points displayed in Fig. 2(a). Specifically,
e b xs contains the values of the field at the 64 grid points marked
<, max 7 (Xoan X(aa)s Wo b Xoai) - (28D)  with circles, both filled and not filled, in the white region, while
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xYse CONtains the values at the all other grid points; subsets of ool DooDooooooDoon
these other grid points are marked with squares, both filled and 5000 0.0 0080000 0.0.0.00
. H 00 oo Dn oo on.0nog
not_fllled.AIsg, let/., andyige cqntamthevalues of, andy,- at _ COO0OODDODODDOODDOO
their respective bgundgry points, where these boundgry points SO e S EBEBERERDODO0
are marked with filled-in circles and squares, respectively. Fi- Douoome eeeeeeewD DD
nally, let®, andB,. be the selection matriceshat selectu, D eon : #¢00000OOCS : oo on
. ) D ® OO0 0OO0O0OO0CEe {8 258 08 8 s S

andus. from ys andx,., respectively: hnoOmeoooo0o00 e NEna D
Dooponp®te o000 OCeIRIDOnD

fs = Osxs andpge = O e x 0. (30) DpoomMeococoocooe|mnnon

R OpBoDoOmeoocoOocOOeMODOn

The key point is that i(TSﬂ,TSfi,D#) are the canonical cor- DopUoose eeeeeeemnoD

; ; CODONREREEERERENDOO0
relation matrices fofs, s ), then S hainbu bl wlinin frtle ooy s
~ ~ ~ ~ Do ooDooDoDonoDoD

__ N a7/ h T ;

T, =T¢0,, andD, = D. (31) DODOoODDDOEDDORDODOD
DoDoooooDoDoDoLooboog

Since the dimension qf,- is roughly5 x 10~ times the di-
mension ofy ., this approach reduces the computational cost
of determining(7}, D,) by roughly a factor of x 10°.

For non-Markov random fields, we modify our approach,
making the boundary region as thick as possible for eagh of
and xs-, subject to the constraint that the resulting veciars
and,- have dimension no greater than some prescribed limit.
Using the same graphical conventions as in Fig. 2(a), this idea
is illustrated in Fig. 2(b), where 132 is the limiting dimension
of both 1, and .. Oncep, and .- have been defined, we
proceed exactly as in the Markov case.

©

V. NUMERICAL EXAMPLES

In this section, we present numerical examples that suggest
the promise of our modeling approach. All models are indexed
on quadtrees. Also, for the purposes of calculating the canonical
correlation matrices (see discussion at end of Section IV-C), we
choose the selection matrices and®,- to have at most 260
rows. (b)

A. Reduced-Order Representations of Isotropic Random Fielglg. 2. ilustration of our approach to finding the canonical correlation

For our first example, we consider a scalar, wide-sense s gfﬁgﬁkﬁ\sﬁ‘;ﬂggen? ]fl’ve'ltg“ Xee) for (a) a first-order WSMRF, and (b) a
tionary, zero-mean, isotropic random fiey@m,n) that is of
interest in the geological sciences [21]. We build multiscale
models to realize the field (32) on a 128128 grid. We build  In Fig. 4(a), we display as a contour plot the exact correlation
four models, each involving a different constraint on the stafgnction (32). Then, in Fig. 4(b), we display as contour plots
dimension; the state dimension is constrained to be no greé{@ correlation function associated with our multiscale model of

than the respective values 64, 32, 16, and 8. order 8. Because our multiscale models have reduced order, they
The correlation function for this field can be expressed ankgad to correlation structures that are only approximately sta-
lytically as follows: tionary, and thus we must define carefully what is being plotted
in Fig. 4(b). Toward this end, we I6§ denote the random vector
Ry, (t,7) =E [y(m +i,n+ jly(m,n)] = Ry, (r) comprising the finest-scale of a multiscale process in which
f1- % (12) n % (%)3 0<r<{, (32) the state vectors are constrained to have dimension no greater
o >0 than 8. We denote thg, j)th component of§ by &5 (4, 7) (for

1,7 = 0,1,...,127). In terms of these conventions, Fig. 4(b)
wherer = /i2 + 52, and/ is the characteristic length of thedisplays contours of the functiaRs(-, -), where
function. A plot of this function fo = 80 is represented by
the solid curve in Fig. 3; we see from this plot that there is sig—R (m,n) = 1
nificant long-range correlation, at least relative to the €218 ST = (128 — m)(128 — n)

grid we are using. 127—m 127—n
8 /- . 8 /. .
. . . , iy X E t+m,j+n 6,7)] -
5A selectionmatrix consists solely of zeros and ones, with the additional re- Z Z [50 ( »J ) o ( ’J)]
striction that each row have exactly one nonzero component and each column =0 j=0

have at most one nonzero column. (33)
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Fig. 3. Comparison of (a) vertical and (b) horizontal slices of the correlatidrig- 4. These figures display contour plots associated Riffi(-, -), defined
contour plots in Fig. 4. Again, these plots are based on Monte Carlo simulatidh (32), with the contour levels at 0.9, 0.7, 0.5, 0.3, and 0.1. (a) The exact,
where each point is within 0.005 of its correct value with 95% confidence. desired correlation function. (The correlation function associated with a
multiscale model of order 32 is visually indistinguishable from this exact
function.) (b) The correlation function associated with a multiscale model of
. order 8. The latter has been determined by Monte Carlo simulation, using
We remark that for model orders greater than just 16, our mhough trials so that every estimated correlation value is within 0.005 of its

tiscale models capture virtually all of the significant correlatioperrect value.
structure.

Let us consider the use of these multiscale models to castationary white noise having covariance one, thus leading to
out linear least-squares estimation. In Fig. 5(a), we display the SNR of 0 dB [ince the signal also has a variance of one, as
original signal that we will be attempting to estimate. This signatdicated by (32)]. In Fig. 5(b), we display an estimate based
consists of 128 128 pixels and has a Gaussian distribution. Itisn our multiscale model of order 64. The sample MSE here
drawn from theexactdistribution implied by (32) witlY = 80. is 0.0498. While there is no computationally feasible way to
This field generation is effected by embedding the ¥2B8 determine the mean-square error of an optimal estimator for this
grid into a larger 256« 256 toroidal lattice, and extending theproblem, we can obtain a fairly tight lower bound for the optimal
definition of R,,,(-, -) to have periodic boundary conditions; forMSE. In particular, let us consider the problem of estimating the
£ = 80, this approach leads to a valid (i.e., positive definitejalue of the 256« 256 signal, from which our 128 128 signal
correlation function. has been extracted. Since this 26856 signal is stationary and

We consider two estimation problems related to the signalindexed on a toroidal lattice, exact calculations are possible.
in Fig. 5(a). For the first, we corrupt the signal with spatiallyn particular, for estimating this signal in 0 dB white noise, the
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() (d)

Fig.5. These four figures relate to linear least-squares estimation of a signal having the isotropic correlation function in (32). (a) ThigoegiwihsGaussian
deviates, drawn from the exact distribution using FFT-based techniques. (b) Estimate of the sample path in (a), based on noisy, densely desitibeneehts

of the signal, with 0 dB SNR; a 64-th order multiscale model is used to obtain this estimate. (c) Locations of observed pixels, for a second egtamatentt;ex
these observed pixels provide only 1.11% coverage of the image. (d) Estimate of the sample path in (a), based on noiseless observations ofgihelsbserved
[displayed in (c)].

optimal, FFT-based estimator has an MSE of 0.0458, whidh11% coverage of the image region. Their irregular distribution
must lower-bound the MSE of an optimal estimator in our origs the key reason that FFT techniques are not useful. On the
inal estimation problem. By comparison, then, our measurether hand, in Fig. 5(d), we display the estimate that results from
MSE of 0.0498 is quite satisfactory. Although not shown inse of our multiscale model of order 64. In light of the sparsity
the figure, the same level of performance is also achieved bfyour measurement coverage, this estimate has impressively
our lower-order multiscale models; specifically, our models afaptured the coarse qualitative features of the true signal; in fact,
order 32, 16 and 8 achieve sample MSEs of 0.0501, 0.0533 @hd sample MSE of this estimate is only 0.1147.
0.0544, respectively, which are all close to the optimal.

The sepond_estimatiqn problem we cpnsider is one fpr whign_ Reduced-Order Representations of Warped-Version of
the FFT is of |I'Ft|e pracucal use. In_partlcula_r, we consider th@:dotropic Correlation Function
problem of estimating the signal displayed in Fig. 5(a), base
on noiseless measurements at the extremely sparse set of poinE®r our second example, we build multiscale representations
displayed in Fig. 5(c). These points, chosen as the realizatiorfof a stationary random field having a correlation function that is
a low-rate, homogeneous Poisson point process, provide oalwarped version of the isotropic correlation funct®p, (%, )
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Fig. 6. These figures display contour plots associated Rith(-, -), defined

in (34b), with the contour levels at 0.95, 0.85, 0.75, 0.6, 0.45, 0.3, and 0.15.
The exact, desired correlation function. (b) The correlation function associa
with a multiscale model of order 8. The latter has been determined by Mo%gjl

Fig. 7. Comparison of slices of correlation contour plots in the previous figure.
a) A slice along the direction of the major axis of the ellipses in part (a) of the
F?%]vious figure. (b) A slice along the direction of the minor axis of the ellipses
f%art (a) of the previous figure. Again, these plots are based on Monte Carlo
ulation, where each point is within 0.005 of its correct value with 95 percent

Carlo simulation, using enough trials so that every estimated correlation va| fidence

is within 0.005 of its correct value.

in (32). Our warped version, which we denote B, (k,1) is

We consider the problem of building a multiscale model, in-
defined as follows:

dexed on a quadtree, to realize the correlation function (34b) on
a 128x 128 grid. We constrain the multiscale model dimension

DN g
Ryy(fj‘]) =R (@.7) _ . (342) to the respective values of 64, 32, 16, and 8.
< v ) —(1 0) < cos 6  sind ) < L) In Fig. 6(b), we display as contour plots the correlation func-
7’ 0 4 —sing cost )\ j tion associated with a multiscale model of order 8. Just as in our
i :% — 1% (34b) previous example, we must carefully define the precise meaning

of these contours. As in the previous example, wéjetenote
The characteristic lengthof R, (¢, j) [see (32)] is again set to the random vector comprising the finest-scale of the particular
£ = 80. A contour plot of R}, (4, ) is displayed in Fig. 6(a), multiscale process in which the state vectors are constrained to
while slices of this correlation function along the directions dfiave dimension no greater than 8. We denotéihgth compo-
strongest and weakest correlation are displayed in Fig. 7(a) aveht of¢S by £5(4, j) (foré,5 = 0,1,...,127). Interms of these

(b), respectively. conventions, Fig. 6(b) displays contours of the functity-, -),
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(©) d)

Fig. 8. These four figures display sample paths of a random field having the correlation function given in (34b), for 82B?8ixel region. The sample paths
in (a), (b), (c), and (d) correspond to multiscale models of order 64, 32, 16, and 8, respectively, using Gaussian deviates.

whereR, (-, ) is defined in (33). We remark that for model or-model; for instance, as shown in Fig. 8(a), the 64-th order model
ders greater than or equal to 32, the contour plot becomes indséseffective in this regard. An alternative, arguably more elegant
tinguishable from the ideal, desired correlation in (a). To alloapproach to eliminating these artifacts is to use so-caNexl-
for more direct comparison of these contours, we overlay slickgping treemodels, in which distinct tree nodes correspond to
of them in Fig. 7(a) and (b) more specifically, Fig. 7(a) represverlapping portions of the image domain; this idea is described
sents a slice of the contour plots, along the direction of strong@sdetail in [14].
correlation, while Fig. 7(b) represents a slice of the contour plots
along the direction of weakest correlation.

In Fig. 8, we display sample paths of this random field using
Gaussian deviates, generated with our models of order 64, 32This paper develops elements of a theory for multiscale sto-
16, and 8. We see that unless a relatively high order modelcisastic realization, focusing on the problem of building mul-
used, the sample paths exhibit visually distracting blocky artiscale models to realize, either exactly or approximately, pre-
facts at the quadrantal boundaries. While in many applicatiospecified finest-scale statistics. A key challenge has beento gen-
these artifacts are devoid of any statistical significance, theyalize the time-series notion of state vectors serving as an inter-
may be important in other contexts. One way to eliminate thefsee between the past and the future of a random process. The
artifacts is to employ a relatively high-order model multiscalgeneralization is made by introducing a generalized correlation

VI. CONCLUSION
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coefficient, which is used to make precise the notion of muHere, the first equality follows from the structure (1) of the mul-

tiscale state vectors serving to decorrelate multiple subsetgis€ale dynamics, the second equality follows from the induction
a multiscale process. Once the reduced-order multiscale mbglpothesis, and the third equality follows by substitution of the
eling problem has been formalized, we harness canonical cexpression (14a) foA(s) together with the foregoing Lemma.

relation analysis to develop a suboptimal model-building algd+e proof of the proposition is now complete. QED
rithm. We demonstrate the practicality of this algorithm in prob-

lems of random-field estimation and generation. In the context APPENDIX B

of field generation, we demonstrate an ability to build multi- PROOF OFPROPOSITION3

scale processes having a finest-scale correlation matching ver

closely desired correlations. In the context of field eSt'mat'OnStabhshmgthe validity of (20a) and (20b). For this purpose, we
we build multiscale models that are in turn used to eff|C|entI
carry out least-squares estimation, with the resulting field es Iontlnue to use the notation established in Section IV-A.
mates having nearly optimal mean-square error, We begin by making explicit the connec_tlon between the
value of p(puy, p2|Wip1 ) and the cross-covariande between

i1 and 2. This connection is useful for proving both Propo-
sitions 3 and 4.

Lemma 3:Let W, € Ny, 0 < A < my, and letW;- be a
In this appendix, we prove Proposition 2. The followingnatrix whose rows form an orthonormal basis for the nullspace

th this appendix, we complete the proof of Proposition 3, by

APPENDIX A
PROOF OFPROPOSITION2

lemma is instrumental to the proof. of Wy. Then,
Lemma 2: Let s and¢ be nodes at a common, coarse scale of B L
atree, with internaIQmatriceWS andW, satisfying (13). Then, Py, W) = 01CCrmCGo {gi Wi Dan}  (392)
V(g edl,....q = mnax Wi Dgs||2 (39b)
P - P W (WP WE)" U
Xomorg Xaorg oo Vs (WaPx, '*1) whereG; andG- denote the following sets:
xW, P Wl (WP ,WE) " W, P : 35
S S 1
Proof: SinceW, andW, satisfy (13), it follows that: {g e R™g ( . DTWITWID) g= 1} )
E[(Xmi —E (Xsa; |WSXS)) Proof: It is sufficient to establish (39a); then, (39b) fol-
. lows by simple optimization theory. Proceeding, weWllét ¢
% (ij _E (ijthxt)) } -0 N, 0 < X < my. Itis easy to see that
] W, = p (1] W 40
and hence plpr, p2|Wipn) = p(py, pe|Wint) (40)
B . T wherepf and W/ are related respectively to, and W; via
Preasxia; = E [E (Osas[Waxs) Xt‘lj:| : (36) unitary (but otherwise arbitrary) matrix
Now, combining (36) with the fact that i =0T, Wl=WiU (41)
A -1
E (Xsoi [Waxs) = Pyo x, W (WP W)™ Waxs, To exploit this fact, we first le#¥ ;- be a matrix whose rows
the result (35) immediately follows. 0 form an orthonormal basis for the nullspacé®f, and sel/ =

D
Returning to the proof of Proposition 2, we proceed induc(WlT (W%)T), sothatW] = (I, 0). Also, we define
tively by scale. At the coarsest scale, (15) is automatically sat- .
isfied, thanks to (9). Now, suppose that (15) holds for states at /1 = /1 — E (W), iz = p2 — E (2| W)
scalemn, and consider the state$s) andxz(t) at scalem + 1.

L . with
There are two possibilities: either= ¢ ors # ¢. If s = ¢, then P P
4 v fre
Px(s)x(t) :A(S)Px(sxy)AT(s) + Q(S) PEHZ Pﬂz )
=A()Was Py, Wis AT (5) + Q(s) <0 0 ) < 0 )
= T 0 I, _ WD
WP, WL (37) _ . 1A 1 (42)
Here, the first equality follows from the structure (1) of the mul- <W1LD ) L., - DTWIW,D

tiscale dynamics, the second equality follows from the induction
hypothesis, and the third equality follows by substitution of theinally, we note that by elementary theory of least-squares esti-
expressions (14a) and (14b) fdfs) andQ(s). Turning to the mation
other possibility, ifs # ¢, then B
Pl melWip) = | max Pyt
Pr(sya(y =A5) Potomyam AT (1) e

=A()Wi3 Py, s Wi AT () where
=WsPy Wi (38) Flf{f%fTP,z;le}, Fy={f;/"P.,f=1}. QED
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As a direct consequence of this lemma

0§A<m12

A 2> mp (43)

_ dr+1;
p(pers 2| (In 0)pa) = {OM_I
This fact establishes (20b).
What remains is to establish (20a). The following lemma pro-
vides the needed argument.
Lemma 4: For A < mqo,

Lmin plper, po|Wipn) = plpen, po| (In - 0) p1) = daya.
/1 EN

Proof: Thanks to (43), it is sufficient to show that for all
W, e N)\

p gy, po|Wip1) > dayr. (44)
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However

. 2 2
— ||D
Juin {llg2113 = 11 Dg2ll3 }

min
g2#0

{gsz

{QQT (I - DTD) g2

92T (I — DTD) g2
(I — DTW1TW1D) g2

}

> min =
9270 93 g2
X min 9592
g2 70 gg(.[ — DTW1TW1D)92

eigmin (I - DT‘D) eigmin |:(I - DTW]EFWID) _1:|
(1-4d}) (1) (50)

_ _ _ whereeig, ;. (-) denotes the smallest eigenvalue of the enclosed
To establish (44), we fiXV, € N, Referring back to Lemma 3, matrix expression. In the third line, we have used Rayleigh’s

and in particular (39a), we devise particular valuesgioe G4

andgs € G5 for which
gi (Wi'D) g2 > dxpa (45)

thus implying thap(er, p2|[Wipn) 2 dagr.

principle [22], which asserts that for any pair of symmetric, pos-
itive definite matricesd and B

T
. z* Bz . 1
oo o7 Ay | Bmin (47°B)

To establish (45), we first note that at least one of the urfy combining (49) and (50), the desired result (46) is estab-

vectorse! , 3, ..., eX,, mustbelong to the row space Bf;,
which itself has a dimension ofi; — A; let us suppose that
¢l belongs, withh”Wi- = ¢T for someh € R™ ~*. Now,
exploiting the orthonormality of the rows &¥;-, we see that
h € Gy, and hence we leg; = h. Also, we letgs = e,
where the fact thabe; = d;e; = d; (WIL)Tgl, implies that
WiDe; = 0, so that indeed; € G. But for these values for

g1 andgy, gf (Wi-D)ga = d; > dxy1, thus establishing (45) (1]
and completing the proof. QED
The proof is now complete. QED 2
[3]
APPENDIX C
[4]

PROOF OFPROPOSITION4

In this appendix, we complete the proof of Proposition 4, by
establishing the validity of (27). For this purpose, we continue s
to use the notation established in Section IV-A.

We begin by fixingW;, which we assume without loss of
generality to have orthonormal rows. We know from (43) that
P, p2) = di. Combining this fact with (39b), it follows that

(6]

the Proposition will be proved if we can show that: 7]
: LDgol? < d2.
Juax [|Wi"Dgs|, < df (46) o
To establish (46), we first note that since the rows/6f- [9]
form an orthonormal basis for the null spacel&f, we have
thatVv z
(10]
2
=3 = Wizl + Wiz, (47)
(11]
SinceY g2 € Go,
9: (I =D'WIWiD) g2 = |lgell = Wi Dgell; = 1 (48)
we can apply (47) in (48) with = Dg- to see that ¢g» € G-
[13]

2
|Wi'Dgz||, = II1Dg2ll3 — llg2ll3 +1, Vg2 € Ga.  (49)

lished.

QED
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