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A Canonical Correlations Approach to Multiscale
Stochastic Realization
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Abstract—We develop a realization theory for a class of multi-
scale stochastic processes having white-noise driven, scale-recur-
sive dynamics that are indexed by the nodes of a tree. Given the
correlation structure of a 1-D or 2-D random process, our methods
provide a systematic way to realize the given correlation as the
finest scale of a multiscale process. Motivated by Akaike’s use of
canonical correlation analysis to develop both exact and reduced-
order model for time-series, we too harness this tool to develop
multiscale models. We apply our realization scheme to build re-
duced-order multiscale models for two applications, namely linear
least-squares estimation and generation of random-field sample
paths. For the numerical examples considered, least-squares es-
timates are obtained having nearly optimal mean-square errors,
even with multiscale models of low order. Although both field esti-
mates and field sample paths exhibit a visually distracting blocki-
ness, this blockiness is not an important issue in many applications.
For such applications, our approach to multiscale stochastic real-
ization holds promise as a valuable, general tool.

Index Terms—Least squares methods, realization theory, simu-
lation, singular value decomposition, stochastic processes.

I. INTRODUCTION

I N THIS PAPER, we exploit well-established control
concepts to develop a realization theory for the class

of multiscale stochastic processes introduced in [4], [5].
These processes have white-noise driven, scale-recursive
dynamics, directly analogous to the time-recursive dynamics
of Gauss-Markov time-series models. Experimental and the-
oretical results have demonstrated that this class of processes
is quite rich statistically; the self-similarity of fractional
Brownian motion can be represented [5], as can any given 1-D
wide-sense (WS) reciprocal process or 2-D Markov random
field (WSMRF) [18].1 Complementing this statistical richness
are the efficient image processing algorithms to which mul-
tiscale models lead. For example, a scale-recursive algorithm
has been developed that directly generalizes the Kalman
filter and related Rauch–Tung–Striebel (RTS) smoother [5].
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1The definition and properties of wide-sense reciprocal processes and
WSMRFs are nicely summarized in [8].

This algorithm incorporates noisy measurements of a given
multiscale process to calculate both smoothed estimatesand
associated error covariances. Another algorithm has been
developed for likelihood calculation [17]. In contrast to tradi-
tional 2-D optimal estimation formulations based on Markov
random fields, which lead to iterative algorithms having a
per-pixel computational complexity that typically grows with
image size, these multiscale algorithms are noniterative and
have a per-pixel complexity independent of image size [18],
[19]. Substantial computational savings can thus result, as
evidenced by exploitation of the multiscale framework in many
applications, including computer vision (e.g., calculation of
optical flow [19]), remote sensing (e.g., optimal interpolation
of sea level variations in the North Pacific Ocean from satellite
measurements, treating the ocean as either static [11], or more
recently as dynamic [12]) and geophysics (e.g., characterizing
spatial variations in hydraulic conductivity from both point and
nonlocal measurements [6]).

In exactly the same way that Kalman filtering requires the
prior specification of a state-space model before least-square
estimation or likelihood calculation can be carried out, so does
multiscale statistical processing require such prior modeling.
The techniques developed in this paper provide the needed
modeling tools: given the correlation structure of a 1-D or
2-D random process,2 these tools can be used to realize the
correlation as the finest of a multiscale process. Because there
is typically a conflict between model complexity and accuracy,
we mainly focus on the case where a constraint is imposed on
the allowed model state dimension; the objective then is to build
a model whose finest-scale correlation structure best matches
the desired correlation, subject to the dimension constraint.

Our focus on realizingfinest-scale statistics is motivated by
the not insignificant class of applications in which the finest
scale is really the only one of interest. For instance, in many
image-processing applications (such as de-noising problems
[15], or terrain segmentation [17]), the finest-scale process is a
pixel-by-pixel representation of the image, the measurements
are noisy observations of some subset of the pixels, and the
objective is either to estimate the value of each image pixel
[15] or to calculate the likelihood of the observations [17].
Similarly, in distributed parameter estimation problems (such
as those arising in remote sensing [12] or geophysics [6]), the
finest-scale process is a sampled version of the parameter of
interest (e.g., hydraulic conductivity [6]), the measurements are
noisy observations related to the parameter, and the objective

2The terminology 1-D, 2-D, or multidimensional random process is used here
to indicate that the dimension of the independent variable of the process is 1-D,
2-D, or multidimensional.
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is to estimate the parameter. For all of these problems, the
multiscale framework provides an efficient statistical approach
for obtaining estimates and error covariances or calculating
likelihoods, even though every other aspect of these problems
involves only the finest scale.

Our approach to multiscale stochastic realization takes advan-
tage of the close relationship the problem shares with its more
traditional, time-series counterpart. To clarify this relationship,
we first observe that each node in a-th order tree haschildren
and a single parent, and hence partitions the remaining nodes
into subtrees, one associated with each of these child and
parent nodes. (A second-order tree, which is often used to index
multiscale representations of time series, is illustrated in Fig. 1.)
Related to this partitioning property is the Markov property that
multiscale processes possess: if is the value of the state at
node , then conditioned on the states in the corresponding

subtrees of nodes extending away fromare uncorre-
lated [18]. The connection to the time-series realization problem
is that in both contexts, the role of state information is to provide
an information interface among subsets of the process. This in-
terface must store just enough process information to make the
corresponding process subsets conditionally uncorrelated. The
key challenge is that while in the time-series case this interface
is between two subsets of the process (i.e., the past and the fu-
ture), in the multiscale case, the interface is amongmultiple(i.e.,

) subsets of the process.
We exploit the connection between the time-series and mul-

tiscale realization problems by adapting to the multiscale con-
text work done in [1] and [2] on reduced-order time-series mod-
eling. The work in [1] and [2] addresses two issues. First, for
exact realizations, a method is devised for finding the minimal
dimension and corresponding information content of the state.
Second, for reduced-order, approximate realizations, a method
is devised for measuring the relative importance of the compo-
nents of the information interface provided by the state, so that
a decision can be made about which components to discard in
a reduced-order realization. The latter is accomplished using a
classical tool from multivariate statistics, namelycanonical cor-
relation analysis[13]. We decompose our multiscale problem
of decorrelating jointly process subsets into a collec-
tion of problems of decorrelating pairs of process subsets.
We then demonstrate that with respect to a particular decor-
relation metric, canonical correlation analysis can in principle
be used to solve optimally each of the pairwise decorrelation
problems. Furthermore, these pairwise solutions can be concate-
nated to yield a sub-optimal solution to the multi-way decorre-
lation problem. The solution to this decorrelation problem leads
readily to values for all the multiscale model parameters.

We apply our realization scheme to build reduced-order mul-
tiscale models for two applications, namely linear least-squares
estimation and generation of random-field sample paths. For the
numerical examples considered, we obtain least-squares esti-
mates having mean-square errors that are nearly optimal, even
with multiscale models of very low order. Although both field
estimates and field sample paths exhibit a visually distracting
blockiness, this blockiness is not really an issue in many appli-
cations. For such applications, our approach to multiscale real-
ization holds promise as a valuable, general tool.

Fig. 1. The first four levels of a second-order tree are shown. The parent of
nodes is denoted bys�
 and the two offspring are denoted bys� ands� .
The random vectors� and � contain, respectively, the finest-scale state
information that does and does not descend from the nodes.

The remainder of this paper is organized in the following way.
In Section II, the multiscale framework is more formally intro-
duced, and a measure of decorrelation is defined. In Section III,
the modeling problem is precisely formulated, and a solution is
presented for the case that full-order, exact models are sought.
Then, in Section IV, the solution to the modeling problem is pre-
sented for the more challenging case that reduced-order, approx-
imate models are sought. In Section V, two numerical examples
are presented, and finally in Section VI, a summary is provided.
Details of the proofs are relegated to Appendices A–C at the end
of the paper.

II. PRELIMINARIES

A. State-Space Models onth-Order Trees

The models introduced in [4], [5], [19] describe multiscale
stochastic processes indexed by nodes on atree. A th-order
tree is a pyramidal structure of nodes connected such that each
node (other than the leaf nodes) hasoffspring nodes. We
associate with each nodea vector-valued state , where
in general, the state vectors at the th level of the tree
(for ) can be interpreted as information about
the -th scale of the process. In keeping with the conventions
established in [4], [5], we define an upward (fine-to-coarse)
shift operator such that is the parent of node , and a
corresponding set of downward (coarse-to-fine) shift operators

, such that the offspring of node are
given by . Fig. 1 depicts an example of the
relative locations of , , and , in a second-order tree.

The dynamics implicitly providing a statistical characteriza-
tion of have the form of an autoregression in scale

(1)

This regression is initialized at the root node, , with a
state variable having mean zero and covariance . The
term represents white driving noise, uncorrelated across
scale and space, and also uncorrelated with the initial condition

; this noise is assumed to have mean zero and covariance
. Since and are zero-mean, it follows that
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is a zero-mean random process.3 Furthermore, since the driving
noise is white, the correlation structure of the process
is characterized completely by and the auto-regression pa-
rameters and for all nodes .

The statistical structure of multiscale processes can be ex-
ploited to yield an extremely efficient algorithm for estimating

, based upon noisy observations . These observations
take the form

where the noise is white, has covariance , and is un-
correlated with at all nodes on the tree. Just like the Kalman
filter and the RTS smoother, this estimation algorithm has a re-
cursive structure, and yields both state estimates and associated
error covariances. For a multiscale process having states of di-
mension and indexed on a tree with nodes, the number of
required computations is . Thus, the algorithm is quite
efficient, particularly when the dimension of the state vectors is
low.

B. Markov Property of Multiscale Processes

Multiscale processes possess an important Markov property,
stemming directly from the whiteness of . To describe the
form of this property of interest to us, we associate with each tree
node a set , where contains all of the finest-scale nodes
that descend from. We also associate with each nodethe
random vectors and . The random vector contains the
elements of the set , stacked into a vector, while

contains the elements of the complementary set
, stacked into a vector. These conventions

are illustrated in Fig. 1. It will sometimes prove convenient to
denote by ; we freely use both forms. To relate
and , we introduce the matrix , where is the
linear least-squares estimate of, given , and is a node
or represents a set of nodes.

The Markov property, as it relates explicitly to the finest scale,
can now be stated as follows [7]:

...
...

...

(2)

with

uncorrelated (3)

We use this property to relate the dimension of to the cor-
relation among the vectors . Toward this
end, (2) and (3) together imply that

(4)

(Here and elsewhere, we adhere to the notational convention
that is the covariance of random vectorand is the

3The mean ofx(�) can be set to any arbitrary value, by suitably adjusting the
mean ofx(0) andw(�).

cross-covariance of random vectorsand ). By elementary
linear algebra [22], the rank of the cross-covariance in (4) is
upper-bounded by the rank of , which in turn is upper-
bounded by the dimension of . The following proposition
thus follows.

Proposition 1:

dimension rank

If the finest-scale covariance must match exactly some
prespecified covariance, then this proposition provides a lower
bound on the required multiscale state dimension. In the rather
likely case that the involved cross-covariance matrices have full
rank, this dimension constraint becomes quite stringent. Thus,
to keep the multiscale estimation algorithm computationally ef-
ficient, we find considerable motivation to turn to reduced-order
(approximate) realizations.

C. The Generalized Correlation Coefficient

For the purposes of developing reduced-order models, it will
prove convenient to have a scalar measure of the correlation
among a collection of random vectors. We thus introduce a
so-calledgeneralized correlation coefficient. In keeping with
standard conventions, we define as follows the correlation co-
efficient between two scalar valued random variables

and :

if for

otherwise.
(5)

Then, for a pair of vector-valued random variablesand ,
we define their generalized correlation coefficient by

where the dummy argument (for ) is a column vector
having the same dimension as. Finally, we extend the defini-
tion of to a collection of random vectors ,
in the following way:

Each of these correlation coefficients has a conditioned ver-
sion. To define them, we first let random vectorcontain the
conditioning information. Also, we let , where
(here and elsewhere) we adhere to the convention that is
the linear least-squares estimate ofgiven . Finally, we define

(6)

III. FORMULATION AND INITIAL INVESTIGATION OF

REALIZATION PROBLEM

The realization problem of interest in this paper is to build
a multiscale model, indexed on a given tree structure, to re-
alize some prespecified, finest-scale covariance. We begin with
a random vector , having the prespecified covariance and
having an established correspondence with the finest scale of the
given tree. For example, might be a random field (written for



IRVING AND WILLSKY: A CANONICAL CORRELATIONS APPROACH TO MULTISCALE STOCHASTIC REALIZATION 1517

simplicity as a vector), with the finest scale of the tree (e.g., a
quadtree) being a pixel-by-pixel representation of the field. Our
objective is to specify values for the model parameters ,

and , to achieve the best match possible between the
actual, realized covariance and the desired covariance .
In making the specification, we impose on each nodea dimen-
sion constraint

dimension (7)

With the dimension constraint imposed, Proposition 1 shows
that it may not be possible to achieve strict equality between

and , thus justifying our distinct notation for each. For
convenience, we also introduce the random vectorsand .
These are defined to have the same relation toas and
have to . To be more precise, suppose that theth component
of maps to the th ( th) component of ; then,
the th component of maps to the th ( th)
component of , where has the same dimension as

. It will sometimes prove convenient to denote by
; we freely use both forms.

A. Full-Order Realizations

When the dimension constraint is discarded, the realization
problem becomes conceptually simpler and exact realizations
(i.e., realizations for which ) become possible. We
begin by analyzing this case.

A notable class of multiscale processes in the context of exact
realizations is those in which each state variable is a linear
function of the finest-scale process

(8)

A state vector obeying this relationship can clearly be seen
to represent an aggregate (coarse) description of the finest-scale
process descending from. We refer to the matrix associ-
ated with node as the node’sinternal matrix, and we refer to
multiscale processes for which (8) holds asinternal realiza-
tions. The notion of internal stochastic realizations is standard
in time-series analysis [16], [20], with our use of the concept
representing a natural adaptation.

Our interest in internal realizations stems from the conve-
nient fact that the model parameters , , and can
be specified completely in terms of the internal matrices and
the finest-scale covariance. In other words, once values values
for the internal matrices have been determined, values for the
model parameters , and follow easily. To see
this fact, we begin by substituting (8) evaluated at into

and using the fact that to
yield

(9)

The parameters and can then be computed by noting
that (1) represents the linear least-squares prediction of
based upon , plus the associated prediction error

(10)

Comparing (1) and (10), and using standard results from linear
least-squares estimation, the model parameters can be seen to
satisfy the following relations:

(11a)

(11b)

Finally, again using (8) and the facts that and
, the covariances appearing in (11a) and (11b)

can be expressed as simple functions of the internal matrices
and the finest-scale covariance

(12a)

(12b)

A natural question at this point is how to devise the internal
matrices for an extact, internal realization of a given finest-scale
covariance. At the finest-scale nodes, the internal matrices are
easy to determine; they are implicitly defined by the associa-
tion between finest-scale nodes and the components of. For
example, if each scalar component of is assigned to a dis-
tinct finest-scale node, then clearly for each finest-scale
node. At any coarse-scale node(i.e., any nodes above the finest
scale), a necessary condition for (2) and (3) to hold in an exact,
internal model is that fulfill the following decorrelating role:

(13)

The necessity of (13) can be justified in the following manner:

Here, the first equality follows from the facts that the realiza-
tion is exact and internal, the second equality follows from the
definitions of and the conditional generalized correlation
coefficient, and the final equality follows from (2) and (3).

As we now show, (13) is not onlynecessaryfor an exact,
internal realization, but is alsosufficientfor building an exact
realization.

Proposition 2: Suppose that for all nodes, the matrices
satisfy (13), and that the multiscale system matrices , ,
and are defined in terms of the matrices via (9) and

(14a)

(14b)

Then, for any nodes and at the same scale (possibly with
)

(15)

A proof of Proposition 2 is contained in Appendix A. The fol-
lowing special case of the proposition is of particular interest.

Corollary 1: If the conditions in Proposition 2 hold, then
.

Proof: For any and at the finest scale, the internal ma-
trices and are identity matrices, and hence (15) implies
that . But also, by definition,
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. Thus, , and the corollary immediately fol-
lows. QED

To summarize, there is a three-stage procedure for realizing
exactly any desired finest-scale covariance: (i) establish a cor-
respondence between finest-scale nodes and components of the
vector , thereby implicitly specifying for each finest-scale
node, (ii) find a matrix satisfying (13) for every coarse-scale
node,4 and finally (iii) substitute the resulting values into
(9), (14a), and (14b) to calculate values for , , and .
An attractive feature of this procedure is that it decomposes the
realization problem into a collection of independent subprob-
lems, each myopically focused on determining the information
content of the state vector at a single node to fulfill the decorre-
lating role (13). In the case that is either a wide-sense, bilat-
eral Markov random process or aWSMRFdefined on a discrete
lattice, this realization approach is particularly attractive, since
the matrices can be determined by inspection; this fact is
proved by construction in [18], which provides a nice, concrete
illustration of the ideas presented in this section. We hasten to
add, however, that even in the WSMRF case, the state vectors
for an exact realization will typically have an impractically high
dimension, and thus the construction is mainly of interest for
motivating our approach to reduced-order modeling.

B. Reduced-Order Realizations

For the rest of the paper, we reinstate the constraint (7) on
multiscale model state dimension. With this constraint in effect,
we no longer look for matrices that fulfill the decorrelation
condition (13) exactly; instead, we look for matrices that do the
best decorrelation job possible, subject to the dimension con-
straint. Specifically, we seek matrices satisfying

(16)

where is the set of matrices having or fewer rows (and
a number of columns implicitly defined by context). We refer
to (16) as thedecorrelation problem. Once values for the
matrices have been found, we mimic our approach to the full-
order realization problem: values for the multiscale parameters

, and are set using (9), (14a), and (14b). Thus,
our reduced-order modeling procedure is identical to our three-
stage, full-order modeling procedure (see Section III-A), except
that now condition (16) is used in lieu of condition (13).

There are several comments to make about this modeling ap-
proach. First, the approach shares with its full-order counterpart
the computational benefit that we can find all the model parame-
ters in a single sweep from coarse to fine scales, determining
for each node as we go along, and thereby implicitly specifying

, and . We emphasize, though, that the condition
(16) is a heuristic one. Certainly, this condition is reasonable,
from a myopic, node-by-node view of the realization problem;
however, the conditiondoes notprovide tight control over the
overall match between and . Indeed, an open research
challenge is to find a way to build a reduced-order model, in
which the parameters , and are chosen explicitly
to minimize some global measure of the discrepancy between

4The choiceW = I , so thatx(s) = � , is universally valid, though of very
little practical use, owing to the high dimension forx(s) to which it leads.

and . This problem appears to be very challenging. We
will focus only on the more myopic problem of solving (16).

As an additional comment, models constructed with our ap-
proach will not in general be internal realizations (i.e., (8) will
not hold in general). Consequently, the matrices should be
viewed in general as merely auxiliary constructs that aid in set-
ting values for the parameters , and .

Finally, the definition of the generalized correlation coeffi-
cient makes it clear that for any given matrix

where is a matrix whose rows form an orthonormal basis
for the row space of . Hence, defining the set to be the
subset of having orthonormal rows, we see that

Thus, without loss of optimality, we can replace the constraint
set in (16) with the set . When convenient, we will
freely make this replacement.

IV. DECORRELATINGSETS OFRANDOM VECTORS

A. Decorrelating a Pair of Random Vectors

We here analyze a special case of the decorrelation prob-
lems in which there are only two vectors to decorrelate. De-
noting these vectors by and and stacking them as

, our objective is to find the optimal matrix solu-
tion to the following optimization problem:

(17)

Playing a central role in the solution is a standard result from
canonical correlation theory. For the purposes of stating this re-
sult precisely, we denote the rank of the covariance ma-
trix by (for ), and the rank of by . Also,
we let be an identity matrix having rows and columns.

Theorem 1: There exist matrices and , of dimension
and , respectively, such that

and

The matrix has dimension and is given by
, where ,

; for a given , the matrix
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is unique. Finally, is the Moore–Penrose pseudoinverse
of , and is given by , .

We refer to the triple of matrices as thecanonical
correlation matricesassociated with . For convenience,
we introduce truncated versions of(for ), denoted by

and defined to contain the first rows of ; as a special
case, we define to contain the first rows of . Results
very similar to Theorem 1 can be found in several places, in-
cluding [3] and [9]. A proof of the theorem, as exactly stated
here, can be found in [14]. As these proofs reveal, the calcula-
tion of the canonical correlation matrices can be carried out in a
numerically sound fashion using the singular value decomposi-
tion; this calculation requires floating point operations,
where .

We use Theorem 1 to perform a change of basis on the vectors
and , to simplify maximally the correlation between them,

and thus to simplify analysis of the decorrelation problem. Pro-
ceeding, we define the random vectors, and via

where thanks to Theorem 1, and have covariance

and the transformation from to is invertible in
a mean-square sense

The following lemma now provides the key simplification.
Lemma 1:

(18a)

(18b)

(18c)

As a special case of (18a) and (18b), we note that
. The lemma is a direct consequence of the definition

of the generalized correlation coefficient, together with The-
orem 1; we omit the details of the proof.

Equipped with the foregoing theorem and lemma, we can now
solve (17).

Proposition 3: For and for

(19a)

For

(19b)

Proof: In Appendix B, we demonstrate that for

(20a)
while for

(20b)

Once these facts are established, the results (19a) and (19b) then
follow. In particular, with regard to (19a), we have the following
sequence of identities:

(21)

The first equality follows from (18c), the second from (20a), the
third from (18a) and the fourth from (20a). The result (19b) can
be proved from (20b) in a very similar fashion; the details are
omitted. QED

The important point to note about this proposition is that
solving (17) is essentially a problem of calculating the canon-
ical correlation matrices associated with . Indeed, (17)
can be solved simultaneously for all values ofby calculating
just once these canonical correlation matrices.

B. Decorrelating Multiple Random Vectors

We now turn to the general decorrelation problem (16), for
which we develop a suboptimal solution. This solution has an
intuitively appealing structure motivated by the solution to the
simpler problem (17). We emphasize that to the best of our
knowledge, the task of characterizing theoptimal solution to
(16) is an unsolved problem.

Our approach is to decompose the decorrelation problem into
a collection of subproblems. In theth subproblem, we focus
on decorrelating from for all ; specifically, we
exploit Proposition 3 to solve

(22)

where for now we treat as free parameters. By
choosing as in (22), we effectively decorrelate from

for all at once; in particular, it is clear that

(23)

and so, if the right side of (23) is small, then the left side will
also be for all .

To see how we combine to solve (16) ap-
proximately, let us consider the quantity

(24)

which we can express more succinctly as
by defining the block-di-

agonal matrix .
Since the th block component of this matrix has been specially
designed to decorrelate from , , we intuitively
expect that all the block components will work together to
make (24) small. Furthermore, if

(25)
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then , implying that is
in the feasible set of the optimization problem (16), and can
indeed be used as an approximate solution to (16).

To characterize precisely the value of (24), we first must es-
tablish a result describing the nonincreasing nature of the gen-
eralized correlation coefficient as the amount of conditioning
information increases.

Proposition 4:

(26)

Proof: In Appendix C, we demonstrate that

(27)

Once this fact is established, the result (26) follows. In partic-
ular, we have the following sequence of relations:

The first relation follows from (18b), the second from (27) and
the third from (18a). QED

We emphasize that if the conditioning information is not a
function of either or alone, then the function may
become an increasing one. For instance, if

then , but .
We can, however, slightly strengthen Proposition 4 by re-

laxing our restriction thatall of the conditioning information be
a linear function of either or ; in lieu of this restriction, we
restricteach individual scalar componentof this conditioning
information to be a function of either or . We state this re-
sult as a corollary.

Corollary 2:

Proof:

The first and third lines here represent direct applications of (6),
while the second line represents application of Proposition 4.
QED

Using this corollary, we now return to consideration of the
value of (24).

Proposition 5:

(28a)

(28b)

Proof: The first inequality in (28) is a direct consequence
of the definition of the generalized correlation coefficient. The
second is then a direct consequence of the corollary to Proposi-
tion 4. QED

The important point to note about this proposition is that
leads to a value for the objective function in (16)

that is no greater than the maximum of the values obtained in the
subproblems (22). In other words, by concatenating together

the solutions to the subproblems (22) into the block-diagonal
matrix , we obtain an approximate solution to
(16) having a value upper-bounded by the maximum value of
these solutions to (22). This observation suggests a way to se-
lect values for the parameters . In particular, subject
to the constraint (25), we should choose these parameters to ful-
fill the following minimax condition:

(29)

By choosing the parameters in this fashion, we minimize the
right side of (28b), which upper-bounds the left side of (28a).
The matrix then serves as a suboptimal solu-
tion to (16).

To describe the solution to (29), we denote by
the canonical correlation matrices

associated with , where the diagonal elements of
are denoted by . For simplicity of exposition

only, we assume that is strictly less than the rank of the
cross-covariance , for . Then, thanks to
Proposition 3, it follows that:

Hence, the minimax definition (29) is equivalent to the fol-
lowing, where we again impose the constraint (25):

This discrete optimization problem can easily be solved, once
the canonical correlation quantities associated

with have been calculated, for
[14].

C. Calculating the Canonical Correlation Matrices

For problems of practical interest to us, the dimension of
and can be on the order of a thousand (or greater), thus pro-
hibiting the exact calculation of the associated canonical cor-
relation matrices . However, if is a WSMRF, then

as we show in this section, the calculation of can be
simplified drastically; the structure of this simplification is im-
portant, because it leads naturally to a computationally simple
technique for calculating an approximation to in the
case that lacks the WSMRF structure.

Suppose that is a first-order, scalar-valued WSMRF over
a discrete lattice having dimensions 256256. We focus on a
particular node for which and contain the values of the
field at the subsets of points displayed in Fig. 2(a). Specifically,

contains the values of the field at the 64 grid points marked
with circles, both filled and not filled, in the white region, while
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contains the values at the all other grid points; subsets of
these other grid points are marked with squares, both filled and
not filled. Also, let and contain the values of and at
their respective boundary points, where these boundary points
are marked with filled-in circles and squares, respectively. Fi-
nally, let and be the selection matrices5 that select
and from and , respectively:

and (30)

The key point is that if are the canonical cor-

relation matrices for , then

and (31)

Since the dimension of is roughly times the di-
mension of , this approach reduces the computational cost
of determining by roughly a factor of .

For non-Markov random fields, we modify our approach,
making the boundary region as thick as possible for each of
and , subject to the constraint that the resulting vectors
and have dimension no greater than some prescribed limit.
Using the same graphical conventions as in Fig. 2(a), this idea
is illustrated in Fig. 2(b), where 132 is the limiting dimension
of both and . Once and have been defined, we
proceed exactly as in the Markov case.

V. NUMERICAL EXAMPLES

In this section, we present numerical examples that suggest
the promise of our modeling approach. All models are indexed
on quadtrees. Also, for the purposes of calculating the canonical
correlation matrices (see discussion at end of Section IV-C), we
choose the selection matrices and to have at most 260
rows.

A. Reduced-Order Representations of Isotropic Random Fields

For our first example, we consider a scalar, wide-sense sta-
tionary, zero-mean, isotropic random field that is of
interest in the geological sciences [21]. We build multiscale
models to realize the field (32) on a 128128 grid. We build
four models, each involving a different constraint on the state
dimension; the state dimension is constrained to be no greater
than the respective values 64, 32, 16, and 8.

The correlation function for this field can be expressed ana-
lytically as follows:

,
,

(32)

where , and is the characteristic length of the
function. A plot of this function for is represented by
the solid curve in Fig. 3; we see from this plot that there is sig-
nificant long-range correlation, at least relative to the 128128
grid we are using.

5A selectionmatrix consists solely of zeros and ones, with the additional re-
striction that each row have exactly one nonzero component and each column
have at most one nonzero column.

Fig. 2. Illustration of our approach to finding the canonical correlation
matrices associated with(� ; � ) for (a) a first-order WSMRF, and (b) a
non-Markov random field.

In Fig. 4(a), we display as a contour plot the exact correlation
function (32). Then, in Fig. 4(b), we display as contour plots
the correlation function associated with our multiscale model of
order 8. Because our multiscale models have reduced order, they
lead to correlation structures that are only approximately sta-
tionary, and thus we must define carefully what is being plotted
in Fig. 4(b). Toward this end, we let denote the random vector
comprising the finest-scale of a multiscale process in which
the state vectors are constrained to have dimension no greater
than 8. We denote the th component of by (for

). In terms of these conventions, Fig. 4(b)
displays contours of the function , where

(33)
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Fig. 3. Comparison of (a) vertical and (b) horizontal slices of the correlation
contour plots in Fig. 4. Again, these plots are based on Monte Carlo simulation,
where each point is within 0.005 of its correct value with 95% confidence.

We remark that for model orders greater than just 16, our mul-
tiscale models capture virtually all of the significant correlation
structure.

Let us consider the use of these multiscale models to carry
out linear least-squares estimation. In Fig. 5(a), we display the
original signal that we will be attempting to estimate. This signal
consists of 128 128 pixels and has a Gaussian distribution. It is
drawn from theexactdistribution implied by (32) with .
This field generation is effected by embedding the 128128
grid into a larger 256 256 toroidal lattice, and extending the
definition of to have periodic boundary conditions; for

, this approach leads to a valid (i.e., positive definite)
correlation function.

We consider two estimation problems related to the signal
in Fig. 5(a). For the first, we corrupt the signal with spatially

Fig. 4. These figures display contour plots associated withR (�; �), defined
in (32), with the contour levels at 0.9, 0.7, 0.5, 0.3, and 0.1. (a) The exact,
desired correlation function. (The correlation function associated with a
multiscale model of order 32 is visually indistinguishable from this exact
function.) (b) The correlation function associated with a multiscale model of
order 8. The latter has been determined by Monte Carlo simulation, using
enough trials so that every estimated correlation value is within 0.005 of its
correct value.

stationary white noise having covariance one, thus leading to
an SNR of 0 dB [ince the signal also has a variance of one, as
indicated by (32)]. In Fig. 5(b), we display an estimate based
on our multiscale model of order 64. The sample MSE here
is 0.0498. While there is no computationally feasible way to
determine the mean-square error of an optimal estimator for this
problem, we can obtain a fairly tight lower bound for the optimal
MSE. In particular, let us consider the problem of estimating the
value of the 256 256 signal, from which our 128 128 signal
has been extracted. Since this 256256 signal is stationary and
is indexed on a toroidal lattice, exact calculations are possible.
In particular, for estimating this signal in 0 dB white noise, the
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Fig. 5. These four figures relate to linear least-squares estimation of a signal having the isotropic correlation function in (32). (a) The original signal, with Gaussian
deviates, drawn from the exact distribution using FFT-based techniques. (b) Estimate of the sample path in (a), based on noisy, densely distributed measurements
of the signal, with 0 dB SNR; a 64-th order multiscale model is used to obtain this estimate. (c) Locations of observed pixels, for a second estimation experiment;
these observed pixels provide only 1.11% coverage of the image. (d) Estimate of the sample path in (a), based on noiseless observations of the observedpixels
[displayed in (c)].

optimal, FFT-based estimator has an MSE of 0.0458, which
must lower-bound the MSE of an optimal estimator in our orig-
inal estimation problem. By comparison, then, our measured
MSE of 0.0498 is quite satisfactory. Although not shown in
the figure, the same level of performance is also achieved by
our lower-order multiscale models; specifically, our models of
order 32, 16 and 8 achieve sample MSEs of 0.0501, 0.0533 and
0.0544, respectively, which are all close to the optimal.

The second estimation problem we consider is one for which
the FFT is of little practical use. In particular, we consider the
problem of estimating the signal displayed in Fig. 5(a), based
on noiseless measurements at the extremely sparse set of points
displayed in Fig. 5(c). These points, chosen as the realization of
a low-rate, homogeneous Poisson point process, provide only

1.11% coverage of the image region. Their irregular distribution
is the key reason that FFT techniques are not useful. On the
other hand, in Fig. 5(d), we display the estimate that results from
use of our multiscale model of order 64. In light of the sparsity
of our measurement coverage, this estimate has impressively
captured the coarse qualitative features of the true signal; in fact,
the sample MSE of this estimate is only 0.1147.

B. Reduced-Order Representations of Warped-Version of
Isotropic Correlation Function

For our second example, we build multiscale representations
for a stationary random field having a correlation function that is
a warped version of the isotropic correlation function
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Fig. 6. These figures display contour plots associated withR (�; �), defined
in (34b), with the contour levels at 0.95, 0.85, 0.75, 0.6, 0.45, 0.3, and 0.15. (a)
The exact, desired correlation function. (b) The correlation function associated
with a multiscale model of order 8. The latter has been determined by Monte
Carlo simulation, using enough trials so that every estimated correlation value
is within 0.005 of its correct value.

in (32). Our warped version, which we denote by is
defined as follows:

(34a)

(34b)

The characteristic lengthof [see (32)] is again set to
. A contour plot of is displayed in Fig. 6(a),

while slices of this correlation function along the directions of
strongest and weakest correlation are displayed in Fig. 7(a) and
(b), respectively.

Fig. 7. Comparison of slices of correlation contour plots in the previous figure.
(a) A slice along the direction of the major axis of the ellipses in part (a) of the
previous figure. (b) A slice along the direction of the minor axis of the ellipses
in part (a) of the previous figure. Again, these plots are based on Monte Carlo
simulation, where each point is within 0.005 of its correct value with 95 percent
confidence.

We consider the problem of building a multiscale model, in-
dexed on a quadtree, to realize the correlation function (34b) on
a 128 128 grid. We constrain the multiscale model dimension
to the respective values of 64, 32, 16, and 8.

In Fig. 6(b), we display as contour plots the correlation func-
tion associated with a multiscale model of order 8. Just as in our
previous example, we must carefully define the precise meaning
of these contours. As in the previous example, we letdenote
the random vector comprising the finest-scale of the particular
multiscale process in which the state vectors are constrained to
have dimension no greater than 8. We denote theth compo-
nent of by (for ). In terms of these
conventions, Fig. 6(b) displays contours of the function ,
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Fig. 8. These four figures display sample paths of a random field having the correlation function given in (34b), for a 128� 128 pixel region. The sample paths
in (a), (b), (c), and (d) correspond to multiscale models of order 64, 32, 16, and 8, respectively, using Gaussian deviates.

where is defined in (33). We remark that for model or-
ders greater than or equal to 32, the contour plot becomes indis-
tinguishable from the ideal, desired correlation in (a). To allow
for more direct comparison of these contours, we overlay slices
of them in Fig. 7(a) and (b) more specifically, Fig. 7(a) repre-
sents a slice of the contour plots, along the direction of strongest
correlation, while Fig. 7(b) represents a slice of the contour plots
along the direction of weakest correlation.

In Fig. 8, we display sample paths of this random field using
Gaussian deviates, generated with our models of order 64, 32,
16, and 8. We see that unless a relatively high order model is
used, the sample paths exhibit visually distracting blocky arti-
facts at the quadrantal boundaries. While in many applications,
these artifacts are devoid of any statistical significance, they
may be important in other contexts. One way to eliminate these
artifacts is to employ a relatively high-order model multiscale

model; for instance, as shown in Fig. 8(a), the 64-th order model
is effective in this regard. An alternative, arguably more elegant
approach to eliminating these artifacts is to use so-calledover-
lapping treemodels, in which distinct tree nodes correspond to
overlapping portions of the image domain; this idea is described
in detail in [14].

VI. CONCLUSION

This paper develops elements of a theory for multiscale sto-
chastic realization, focusing on the problem of building mul-
tiscale models to realize, either exactly or approximately, pre-
specified finest-scale statistics. A key challenge has been to gen-
eralize the time-series notion of state vectors serving as an inter-
face between the past and the future of a random process. The
generalization is made by introducing a generalized correlation
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coefficient, which is used to make precise the notion of mul-
tiscale state vectors serving to decorrelate multiple subsets of
a multiscale process. Once the reduced-order multiscale mod-
eling problem has been formalized, we harness canonical cor-
relation analysis to develop a suboptimal model-building algo-
rithm. We demonstrate the practicality of this algorithm in prob-
lems of random-field estimation and generation. In the context
of field generation, we demonstrate an ability to build multi-
scale processes having a finest-scale correlation matching very
closely desired correlations. In the context of field estimation,
we build multiscale models that are in turn used to efficiently
carry out least-squares estimation, with the resulting field esti-
mates having nearly optimal mean-square error.

APPENDIX A
PROOF OFPROPOSITION2

In this appendix, we prove Proposition 2. The following
lemma is instrumental to the proof.

Lemma 2: Let and be nodes at a common, coarse scale of
a tree, with internal matrices and satisfying (13). Then,

(35)

Proof: Since and satisfy (13), it follows that:

and hence

(36)

Now, combining (36) with the fact that

the result (35) immediately follows. QED
Returning to the proof of Proposition 2, we proceed induc-

tively by scale. At the coarsest scale, (15) is automatically sat-
isfied, thanks to (9). Now, suppose that (15) holds for states at
scale , and consider the states and at scale .
There are two possibilities: either or . If , then

(37)

Here, the first equality follows from the structure (1) of the mul-
tiscale dynamics, the second equality follows from the induction
hypothesis, and the third equality follows by substitution of the
expressions (14a) and (14b) for and . Turning to the
other possibility, if , then

(38)

Here, the first equality follows from the structure (1) of the mul-
tiscale dynamics, the second equality follows from the induction
hypothesis, and the third equality follows by substitution of the
expression (14a) for together with the foregoing Lemma.
The proof of the proposition is now complete. QED

APPENDIX B
PROOF OFPROPOSITION3

In this appendix, we complete the proof of Proposition 3, by
establishing the validity of (20a) and (20b). For this purpose, we
continue to use the notation established in Section IV-A.

We begin by making explicit the connection between the
value of and the cross-covariance between

and . This connection is useful for proving both Propo-
sitions 3 and 4.

Lemma 3: Let , , and let be a
matrix whose rows form an orthonormal basis for the nullspace
of . Then,

(39a)

(39b)

where and denote the following sets:

Proof: It is sufficient to establish (39a); then, (39b) fol-
lows by simple optimization theory. Proceeding, we let

, . It is easy to see that

(40)

where and are related respectively to and via
unitary (but otherwise arbitrary) matrix

(41)

To exploit this fact, we first let be a matrix whose rows
form an orthonormal basis for the nullspace of, and set

, so that . Also, we define

with

(42)

Finally, we note that by elementary theory of least-squares esti-
mation

where



IRVING AND WILLSKY: A CANONICAL CORRELATIONS APPROACH TO MULTISCALE STOCHASTIC REALIZATION 1527

As a direct consequence of this lemma

(43)

This fact establishes (20b).
What remains is to establish (20a). The following lemma pro-

vides the needed argument.
Lemma 4: For ,

Proof: Thanks to (43), it is sufficient to show that for all

(44)

To establish (44), we fix . Referring back to Lemma 3,
and in particular (39a), we devise particular values for
and for which

(45)

thus implying that .
To establish (45), we first note that at least one of the unit

vectors must belong to the row space of ,
which itself has a dimension of ; let us suppose that

belongs, with for some . Now,
exploiting the orthonormality of the rows of , we see that

, and hence we let . Also, we let ,
where the fact that , implies that

, so that indeed . But for these values for
and , , thus establishing (45)

and completing the proof. QED
The proof is now complete. QED

APPENDIX C
PROOF OFPROPOSITION4

In this appendix, we complete the proof of Proposition 4, by
establishing the validity of (27). For this purpose, we continue
to use the notation established in Section IV-A.

We begin by fixing , which we assume without loss of
generality to have orthonormal rows. We know from (43) that

Combining this fact with (39b), it follows that
the Proposition will be proved if we can show that:

(46)

To establish (46), we first note that since the rows of
form an orthonormal basis for the null space of , we have
that

(47)

Since ,

(48)

we can apply (47) in (48) with to see that

(49)

However

(50)

where denotes the smallest eigenvalue of the enclosed
matrix expression. In the third line, we have used Rayleigh’s
principle [22], which asserts that for any pair of symmetric, pos-
itive definite matrices and

By combining (49) and (50), the desired result (46) is estab-
lished. QED
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