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Abstract

This paper introduces a simple new approach to object recognition from silhouettes. This new approach utilizes features
extracted using an adaptive approximation technique called high-resolution pursuit (HRP). In this work, a comparatively
small set of HRP features and a simple recognition scheme are used. We demonstrate the strengths of the HRP-based
recognition scheme by discriminating among 17 military aircraft. The HRP-based algorithm matches the performance of
a widely studied method based on Fourier descriptors in the presence of boundary, scale and orientation variations, and
surpasses the performance of the Fourier descriptor-based algorithm in the presence of occlusion and localized silhouette
variations. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Object recognition from silhouettes is a problem with
substantial literature and history in computer vision
[1—7]. The ideal recognition system is one that is robust
to orientation variations, scale variations, and boundary
perturbations as well as localized distortions. Localized
distortions, such as the presence or absence of underwing
stores on an airplane, have been especially difficult for
systems based on global features (e.g. Fourier descrip-
tors) [8]. In this paper, we develop an alternative ap-
proach to object recognition from silhouettes. In contrast
to current approaches in model-based silhouette recogni-

tion, our approach utilizes features extracted using an
adaptive approximation technique called high-resolution
pursuit (HRP) [9,10]. The set of HRP features are local,
and therefore, robust to localized silhouette variations
and occlusion, yet the recognition algorithm based on
HRP features is remarkably simple. Indeed, in addition
to contributing a highly competitive yet simple algorithm
for this particular recognition application, an equally
important objective of this paper is the demonstration of
the potential of a new approach to feature extraction that
has a number of very attractive properties. As we will
show, the set of HRP features have a clear physical
interpretation in terms of the objects being recognized. In
other words, each of the elements in the HRP representa-
tion are directly related to the geometric (e.g. size and
location of subparts) characteristics of the object.
The HRP-based features are parsimonious in that a
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Fig. 1. Silhouettes of the military airplanes which make up the
data set.

Fig. 2. Grayscale image of a viggen aircraft.

comparatively small set of such features capture all of the
information needed for recognition; that is, the feature
extraction procedure effectively focuses information. In
addition, the statistical variability of the features for each
object class is modest, allowing us to easily characterize
probability density functions which describe the variabil-
ity of the features. Finally, the extraction of HRP-based
features is a computationally simple task.

In this paper, we describe and evaluate this HRP-
based feature extraction and object recognition scheme.
Our proposed approach is to use the HRP algorithm to
extract a set of features which quantify the size and
location of the subparts of the object. Since a number of
researchers [1,2,3,10] have based their recognition
schemes on a 1-D representation of the silhouette, we do
as well. In particular, we use HRP to extract features
from a 1-D representation of the silhouette, namely, the
centroidal distance profile (CDP) [2,4,10]. The HRP
algorithm is used to construct a feature vector of low
dimension, and recognition is performed using this fea-
ture vector and an M-ary hypothesis testing scheme.

We demonstrate the HRP-based algorithm by dis-
criminating among the seventeen military airplanes
shown in Fig. 1. Similar data sets have been used in
a number of other articles [6,7,10—12]. These types of
silhouettes may be generated from gray scale images,
such as the one shown in Fig. 2, using any one of a num-
ber of edge detectors [13—16], segmentation algorithms
[17], or active contour models [18]. This data set is
a fairly challenging one since it contains some planes
which are very similar. For example, Planes d 2, 9, and
10 are similar to one another and Planes d4, 15 and 16
are similar to one another. Planes d 7, 12 and 17 are
considered swept wing aircraft. Our experimental results
show that this approach using a low-dimensional HRP-
based feature vector is robust to boundary perturbations,
scale and orientation variations. Further, the local nature
of the HRP-based features allows us to deal easily with
moderate levels of occlusion and localized silhouette
variation without a significant change in the algorithm.

For comparison, we present recognition results on the
airplane dataset using one of the more widely-studied
methods based on Fourier descriptors (FD) [1,10]. The
notable benefits of the FD-based algorithm include its
small computational burden, its robustness to orienta-
tion and scale variation, and its rejection of boundary
noise. These are benefits that are matched in the HRP-
based algorithm. However, the FD-based algorithm uses
an order of magnitude more features than the HRP-
based algorithm to achieve the same level of perfor-
mance. Moreover, since the features in the FD-based
algorithm are nonlocal, the algorithm performs poorly in
the presence of localized silhouette variations and occlu-
sion. In fact, even moderate levels of occlusion require
a significant change in the algorithm [6], and the perfor-
mance of the modified algorithm to date is at a low level

of granularity. That is, this modified algorithm is only
able to distinguish some broad classes of objects rather
than individual shapes. In contrast, the HRP-based algo-
rithm significantly surpasses the performance of the FD-
based algorithm in the presence of localized silhouette
variations and occlusion.

The outline of this paper is as follows. Section 2
describes the CDP, the FD-based recognition algorithm,
and the general HRP algorithm. Section 3 details
the HRP-based recognition algorithm and Section 4
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Fig. 3. The CDP, f, for Plane d1 calculated at equally spaced points along the boundary.

demonstrates the strengths of this HRP-based recogni-
tion algorithm using both real and simulated data. Fi-
nally, Section 5 presents some conclusions and areas for
future work.

2. Preliminaries

In this section, we begin by describing a 1-D repres-
entation of the silhouette, some models used to create
noisy silhouettes, and a classification technique based on
Fourier descriptors. Then, we describe the HRP algo-
rithm as a general adaptive approximation technique.

2.1. Centroidal distance profile

For this work, we will use the centroidal distance
profile (CDP) [2,10] as a 1-D representation of the air-
plane silhouettes. Specifically, if (x(n), y (n)) are an ordered
sequence of boundary points which are equidistant along
the boundary, then the CDP f (n) is given by

f (n)"J(x(n)!X
c
)2#(y(n)!½

c
)2 , (1)

where (X
c
,½

c
) is the centroid of the object [2]. Fig. 3

shows the CDP, f, for Plane d1. This CDP starts at the
tip of the nose and proceeds in a counterclockwise direc-
tion. From this figure, we note that the physical features
of the plane are clearly identifiable in the CDP. The four

peaks in the profile correspond to the nose, wing d1, tail,
and wing d2, respectively.

One drawback of the CDP is that it essentially dis-
cards angular information. Clearly, it is not possible to
reconstruct the original boundary from the CDP alone.
The additional information needed to construct the orig-
inal boundary is the angular profile, h(n). For boundary
points (x(n), y(n)), the angular profile h(n) is given by

h(n)"arctanA
y(n)!½

c
x (n)!X

c
B . (2)

The CDP and the angular profile are simply the repres-
entation of the boundary in polar coordinates centered at
the centroid of the silhouette. This angular information
will be useful in Section 3.

2.2. Silhouette Variations

For an algorithm for recognizing objects from silhou-
ettes to be of practical importance, the algorithm must
degrade gracefully in the presence of scale variation,
orientation variation, boundary perturbations, and vari-
ation due to occlusion. In this section, we illustrate some
of these possible variations, their effects on the CDP, and
describe models used in the literature to create these
silhouette variations.

The simplest variations are those due to a change in
scale, which results in a change in amplitude of the CDP,
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Fig. 4. Generating Gaussian perturbations perpendicular to the object contour. (a) Noisy boundary with p"40% and s"0.9. (b) The
corresponding noisy CDP. (c) Noisy boundary with p"40% and s"2.1. (d) The corresponding noisy CDP.

Fig. 5. Plane d1 with occlusion and the corresponding CDP.

and a change in orientation in the viewing plane, which
results in a circular shift of the CDP. Imaging conditions
such as lighting, reflectance, and haze may cause less
predictable perturbations in the boundary curve itself.

We will model these boundary perturbations using the
technique adopted by several other researchers [2,10,19]
where p percent of the boundary points are perturbed by
Gaussian noise which is perpendicular to the boundary.
That is, the nth boundary point goes from (x(n), y (n)) to
(x

c
(n), y

c
(n)) where

x
c
(n)"x (n)#dr cos(m(n)), (3)

y
c
(n)"y (n)#dr sin(m (n)), (4)

where d is the distance between boundary points n and
n#1, r is a random variable chosen from N(0, s2), and
m is the angle between the x-axis and the direction normal
to the boundary at point n. Fig. 4 shows a noisy version
of Plane d1 with p"40 and s"0.9 and the correspond-
ing CDP.

Occlusion may be caused by changes in lighting, reflec-
tance, haze, or the presence of other objects in the image.
In the article by Liu [12], occluded boundaries are cre-
ated by replacing a random, consecutive set of q percent
of the boundary points in a silhouette with a straight line.
Fig. 5 shows an occluded version of Plane d 1 with
q"10 and the corresponding CDP. Occlusion causes
two types of distortion in the CDP. First, since a portion
of the boundary is missing more boundary points will be
devoted to the remaining airplane features. As a result,
the scale of the remaining features has changed. For
example, comparing Figs. 3 and 5b, we note that as
a result of the occlusion the second wing in Fig. 5b
appears wider than the second wing in Fig. 3. Second, the
occlusion also causes a shift in the centroid which leads
to warping in the CDP.

2.3. Fourier descriptors

One well-studied class of techniques used to recognize
silhouettes is based on Fourier descriptors [1,5,10]. The
benefits of these techniques is their small computational
burden, robustness to scale and orientation variation,
and relative robustness to boundary perturbations. On
the other hand, these techniques deteriorate rapidly in
the presence of localized changes in the silhouette and
occlusion.
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Fig. 6. (a) A box spline, b(x). (b) A cubic box spline, g
u
(x)"b*b*b*b (x). (c) Any cubic b-spline is the weighted sum of finer scales cubic

b-splines at scale j#k as illustrated for k"1.

In an article by Kauppinen [10], the author constructs
a feature vector based on the normalized magnitude of
the Fourier transform of the CDP of a silhouette. If the
CDP of a silhouette has P samples and is given by f, and
the discrete Fourier transform of f is given by F, then the
feature vector y is given by

y"C
DF

1
D

DF
0
D
2

DF
P@2

D
DF

0
D D , (5)

where F
i
denotes the ith component of F. The classifica-

tion of silhouettes based on their Fourier descriptors is
done using a K nearest neighbor procedure [20]. In this
work, the number of points in the CDP will be P"256,
and the corresponding FD feature vector will consist of
128 elements. In contrast, the HRP-based recognition
scheme will use an order of magnitude fewer features.

2.4. HRP algorithm

Recently, adaptive approximation techniques
[9,21—23] have become popular for obtaining par-
simonious representations of large classes of signals. In
these adaptive approximation techniques, the goal is to
find a representation of a function f as a weighted sum
of elements from an overcomplete dictionary. That is, f
is represented as

f"+
c|!

jcgc, (6)

where the set Mgc Dc3!N is a redundant dictionary spann-
ing the space of possible functions. Since many possible
decompositions of f exist over this redundant dictionary,
the ‘‘optimal’’ decomposition is often application depen-
dent. Several techniques have been developed to find the
‘‘optimal’’ decomposition of f, including matching pursuit
[22], basis pursuit [23], and high-resolution pursuit
[8,9]. Matching pursuit chooses one element at a time
out of the dictionary such that the ¸2 norm of the mth

residual is minimized at each step, where the mth residual
is defined to be the difference between f and the first
m!1 terms in the decomposition and is denoted Rm f
where

Rm f"f!
m~1
+
n/0

j
n
gcn . (7)

As a result, the matching pursuit algorithm is a fast but
greedy algorithm which often sacrifices local fit (and
therefore physically meaningful features) for global fit.
Further, the matching pursuit algorithm may introduce
artifacts, namely significant new features at finer scales
because of its greedy approach. The basis pursuit algo-
rithm chooses all elements in the decomposition at once
by minimizing the l1 norm of the coefficients jc in Eq. (6).
Decompositions obtained using basis pursuit yield phys-
ically meaningful features but at an extreme computa-
tional price. Finally, high-resolution pursuit (HRP)
chooses one element at a time out of the dictionary by
optimizing an ¸2-like metric subject to a set of con-
straints which are designed to balance local fit with
global fit. In contrast to the other two techniques, HRP is
a fast algorithm, but is still able to extract physically
meaningful features; therefore, HRP is the adaptive ap-
proximation technique that will be used in this work.

The dictionary used with HRP is user specified and
should reflect prior knowledge about the types of signals
to be decomposed. HRP may be implemented with many
different dictionaries, such as wavelets and wavelet
packets. One dictionary that is well matched to the CDPs
and therefore will be particularly useful for this work is
the cubic b-spline dictionary. A cubic b-spline is a box
spline convolved with itself three times. Fig. 6 shows
a box spline b (x) and the resulting cubic b-spline g

u
(x).

A cubic b-spline at scale j and translation t will be
denoted g

j,t
(x) and is given by

g
j,t

(x)"J2jg (2j(x!t)), (8)
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where g(x)"g
u
(x)/DDg

u
(x) DD. The parameter j controls the

size of g
j,t

such that increasing j corresponds to a finer
scale, more localized function. In this work, we will often
use c to denote the pair ( j, t) so that gc (x)"g

j,t
(x). The

cubic b-spline dictionary then contains a set of functions
g
j,t

(x) over an appropriate range of scales and transla-
tions. Note that any cubic b-spline may be written as the
sum of finer scale cubic b-splines which also happen to be
dictionary elements. For example, g

j,t
may be written as

the weighted sum of finer scale cubic b-splines which are
all at the same scale, j#k, as is illustrated in Fig. 6c for
k"1.

The objective of HRP is to combine the speed of
matching pursuit with the ability of basis pursuit to
extract physically meaningful features. In particular, the
HRP algorithm guards against the introduction of arti-
facts or spurious features that may be introduced by the
matching pursuit algorithm. The basic idea behind HRP
is to decompose the function as the sum of the most
significant elements from the dictionary set. At each
iteration, the most significant element is defined to be the
one which maximizes the HRP similarity measure, which
has been designed to emphasize local fit accuracy. To
achieve the desired sensitivity to local fit, HRP requires
that each dictionary element, gc , be associated with
a user-specified set or subfamily, Ic , which should be
constructed of finer scale functions which somehow cap-
ture the local structure of gc . These subfamilies are an
integral part of the HRP algorithm and we will shortly
discuss them in more detail. The HRP similarity measure
between f and a particular dictionary element gc will be
denoted S( f, gc). To be sensitive to local fit, S( f, gc)
should reflect not only the similarity between f and gc,
but also the similarity between f and finer scale members
of the subfamily Ic which capture the important local
structures of gc. One might expect that some combina-
tion of MS f, g

i
T
gi|Ic

N would yield a similarity measure
which is sensitive to local fit. Intuitively, the HRP
similarity measure should be dominated by the worst
local fit over the set of functions in Ic . For example,
the minimum of MS f, g

i
T
gi|Ic

N would be dominated
by worst local fit. In fact, the HRP similarity measure,
which is given in Appendix A, is the minimum of
MS f, g

i
T
gi|Ic

N and therefore is dominated by worst local fit.
Appendix A also outlines the complete HRP algorithm.
Note the important role played by the subfamilies Ic in
the HRP algorithm. These subfamilies are used enforce
local fit accuracy, and the scale of the functions in
Ic specifies the scale to which local fit accuracy will be
enforced. That is, HRP will tolerate local mismatches as
long as they are at a finer scale than the functions in-
cluded in Ic.

For the cubic b-spline dictionary, one logical choice
for Ic is the set of finer scale dictionary elements at scale
j#k (i.e. at a relative scale k levels finer than gc itself )
which when properly weighted and summed yields gc.

That is,

Ic(k)"Gg
j`k,ti K gc"

L
+
i/1

c
i
g
j`k,tiH6 MgcN. (9)

Note that we have used the notation Ic (k) to indicate the
dependence of this set on the relative scale parameter k.
As k increases, the subfamily, Ic (k), includes finer scale,
more localized functions. Correspondingly, as k increases,
HRP will tend to enforce finer scale local fit.

The depth parameter, k, is a tuning parameter which is
used to incorporate prior knowledge about the relative
scales of important features and provide robustness in
the HRP algorithm. The parameter k can be held con-
stant or change at each step of the HRP algorithm. To
illustrate the effect of k, consider the following decompo-
sitions of a noisy CDP of Plane d1, where the noise has
been added as described in Section 2.2 with p"40%
and s"0.9. Fig. 7a shows a noisy CDP for Plane d1
and the first four elements of the decomposition obtained
using HRP with cubic b-splines dictionaries where the
subfamilies used are as given in (9) with k"1. For this
value of k, the HRP algorithm enforces local fit on a
fairly coarse scale and is therefore more tolerant of local
structural mismatch. As a result, the HRP decomposition
consists of coarse scale dictionary elements which are
not well matched to the local structures of the CDP. In
contrast, Fig. 7b shows the decomposition of the same
noisy CDP using HRP with k"2. For this value of k, the
subfamilies Ic consist of finer scale elements and therefore
HRP is less tolerant of local mismatch. The HRP ele-
ments for k"2 correspond to the physical features of
the plane. That is, from left to right, the HRP elements
correspond to the nose, the first wing, the tail, and the
second wing. Qualitatively, we might say that the ele-
ments in Fig. 7b corresponding to the nose and the wings
are a good fits to the CDP, but the element correspond-
ing to the tail is a poor fit since it is not well matched to
the profile over the entire tail. One can also imagine
letting k vary as a function of HRP element number.
Suppose we first use HRP with k"3 to extract two
elements, then use k"2 to extract a third element, and
then use k"1 to extract a fourth element. The results of
this decomposition are shown in Fig. 7c. This type of
variation scheme for k yields a desirable description of
the CDP since each element of the decomposition corres-
ponds to a physical feature of the object and accurately
describes that feature.

The HRP decomposition shown in Fig. 7c, where k
changes as a function of HRP element number, illustrates
some of the properties which make the HRP algorithm
attractive for feature extraction. First, by using such
a scheme to choose and vary k, the elements in the HRP
decomposition have a clear and accurate physical inter-
pretation in terms of the underlying object. Se-
cond, the HRP decomposition provides a parsimonious
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Fig. 7. Effect of k on the HRP decomposition. These graphs
show HRP decomposition of a noisy CDP from Plane d1 using
different values of k, the depth parameter. (a) k"1 (b) k"2 (c)
k varying at each step.

representation of the underlying signal. In the example in
Fig. 7c, a qualitatively accurate description of the noisy
CDP is obtained using only four dictionary elements.
Each HRP element is described by three parameters
(scale, translation, and magnitude) and therefore, one can
imagine constructing a feature vector of low dimension
which gives a qualitative description of the CDP. In
contrast, the traditional method based on FD utilizes
a 128-dimensional feature vector. Third, the elements of
the HRP decomposition shown in Fig. 7c are localized.
That is, the elements corresponding to adjacent physical
plane structures do not interfere with one another.

3. HRP-based recognition

Having illustrated some of the attractive properties of
features extracted by the HRP algorithm, we now turn
our attention to describing a feature extraction and rec-
ognition algorithm which takes advantage of these prop-
erties. Again, our basic approach is to use the HRP
algorithm to construct a feature vector of low dimension
which can then be used as the basis for recognition. In
this section, we begin by describing the HRP-based fea-
ture extraction process which is used for both for training
the algorithm and for recognition of unknown profiles.
Then, we describe the particulars of the training phase
of the algorithm. Finally, we describe the recognition
algorithm which is based on M-ary hypothesis testing
and the generalized likelihood ratio test.

3.1. HRP-based feature extraction

Since our underlying goal is to extract features which
are suitable for object recognition, we must extract fea-
tures which are robust and statistically significant. There
are a number of questions to address in order to use HRP
to extract features which can be used to discriminate
among the planes in our data set. The particulars of the
HRP algorithm must be specified, including the number
of HRP elements to extract and the appropriate value(s)
of the tuning parameter k. Further, we examine a means
to incorporate the angular information, which is essen-
tially discarded by the CDP, to obtain a more robust
feature set. Finally, we touch briefly on the issue of
ordering the parameters extracted by HRP into a feature
vector.

3.1.1. HRP implementation
Drawing from the examples in Section 2.4, we can

specify the number of HRP elements and the appropriate
values of k. First, as we have already seen the four peaks
in the CDPs correspond to the four physical features of
the aircraft, namely, the nose, the wings, and the tail.
Given that CDPs for most planes in the data base exhibit
four similar robust features in the presence of noise, one
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1One could also imagine extracting more HRP elements from
each profile. While these subsequent HRP elements may provide
a better fit to the CDP, they are also less robust to noise and
therefore exhibit a greater variability.

Fig. 8. The boundary corresponding to Plane d1 with the tail
occulded

logical approach would be to extract four HRP elements
from each profile. Since each HRP element can be de-
scribed by three parameters (i.e. scale, translation, magni-
tude), this approach leads to a 12-dimensional feature
vector, which is an order of magnitude smaller than the
feature vector used in the FD-based algorithm.1 Second,
the tuning parameter k should be used to incorporate
prior knowledge so that HRP elements correspond to the
important physical features of the object and provide
robustness in the HRP decompositions. As the example
in Fig. 7c showed, allowing k to vary at each step in
HRP algorithm yields a physically meaningful and accu-
rate description of the CDP used in the example.
Through experimentation, we have found that using this
same pattern for k (i.e. k"3 for the first two elements,
k"2 for the third element, and k"1 for the fourth
element), in general, yields robust and accurate decompo-
sitions for the CDP’s from each of the planes in the data
set. Further, our experimentation results show that this
pattern of values for k yields qualitatively accurate de-
scriptions in the presence of several different values of
boundary noise and occlusional noise. Therefore, for
both the training and testing data, k will be 3 for the first
two elements, 2 for the third element and 1 for the fourth
element.

The output of the HRP-based feature extraction pro-
cedure described up to this point is a set of four vectors,
Me

1
, e

2
, e

3
, e

4
N, where each e

i
consists of the three para-

meters (scale, translation, and magnitude) which describe
each HRP element. In the next section, we replace the
scale and translation parameters with more robust angu-
lar equivalents.

3.1.2. Incorporating angular information
The angular profile, essentially discarded in the CDP

representation of a profile, is important for obtaining
robust HRP features. Recall that each of the four HRP
elements is represented by three parameters, scale, trans-
lation and magnitude. While the translation parameter
extracted using HRP can be highly variable due to noise
and occlusion, the equivalent angular position is much
more stable. The HRP scale parameters are somewhat
affected by boundary noise and most definitely affected
by occlusion, but rescaling the HRP scale parameters to
angular extent rather than translational extent along the
boundary leads to more stable features. By replacing the
HRP translation parameters with their angular equiva-
lents and rescaling the HRP scale parameters using the
slope of the angular profile, we obtain a more robust

feature vector in the face of boundary noise and occlu-
sion as well as variations in orientation and overall scale.

Replacing the HRP translation parameters with their
angular equivalents is straightforward. If h(n) is the angu-
lar profile accompanying the CDP, f (n), then the transla-
tional parameter t of each HRP element is replaced by
h(t).

To illustrate the variability of the HRP scale para-
meters in the presence of occlusion and to motivate our
rescaling of the HRP scale parameters, consider the
following example. Suppose we are given an occluded
silhouette of Plane d1 as shown in Fig. 8 and the
corresponding CDP as shown in Fig. 9a. Fig. 9a also
shows the HRP element which corresponds to the wing
feature in the occluded profile. For comparison, Fig. 9b
shows the CDP for an unoccluded version of Plane d1
and the HRP element which represents the wing feature.
We note that the scale parameter of the HRP element
which represents the wing feature in the occluded profile
is quite different from that of the HRP element which
represents the wing feature in the unoccluded profile.
Thus, the occlusion has caused a shift in the scale para-
meter extracted by HRP. However, we also observe that
the occlusion has also caused a change in the slope of the
angular profile over the support of the element corres-
ponding to the wing. The question we would like to
answer is: How can this change in the local slope of the
angular profile be used to account for the change in scale
in the HRP wing element in order to produce a robust
measure of ‘‘angular scale?’’

To see how this rescaling can be accomplished, con-
sider a single HRP feature. Specifically, suppose that
g
0
(n) is a cubic b-spline at scale j extracted from the CDP

f(n) and that a
0
(n) is the best fit line to the angular profile

h(n) over the support of g
0
(n). Then, the polar coordinates

(g
0
(n), a

0
(n)) trace out an approximation to a portion of

the boundary curve described by the polar coordinates
(f (n), h (n)). Actually, the approximating curve, (g

0
(n),

a
0
(n)), may be represented by many different pairs of

polar coordinates of the form (g(n), a (n)) where g is a
cubic b-spline and a is a line. For example, the curve
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Fig. 9. A comparison of HRP elements corresponding to the wing of Plane d1 for the occluded and unoccluded profiles.

(g
0
(n), a

0
(n)) may also be represented by (g(n), a(n)) where

g is a cubic b-spline with half the support of g
0
(i.e. a cubic

b-spline at scale j#1) and a is a straight line with double
the slope of a

0
. Generalizing this intuition, we obtain

a relationship for normalizing the scale of any HRP
element based on the local slope of the angular profile.
Given that the scale of an HRP element extracted from
a CDP, f, is j and the slope of the corresponding angular
profile over the support of the element is s, then the
slope-adjusted scale will be given by B ( j) where

B( j )"j#log
2A

s
0
s B, (10)

where s
0
"2n/P and P is the number of points in the

CDP. The reference scale s
0

is the average slope of the
angular profile over the entire profile.

3.1.3. Feature vector ordering
The output of the feature extraction procedure de-

scribed up to this point is a set of four vectors, Me
1
, e

2
, e

3
,

e
4
N, where each e

i
consists of three components, which

have been extracted by HRP and then modified to in-
clude angular information. One remaining topic for dis-
cussion is: how should these 12 parameters be organized
in a feature vector suitable for recognition? Ideally, we
would like to organize the HRP parameters in a feature
vector according to the physical features that they de-
scribe. That is, we would like to construct our feature
vector y to have the following structure:
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where j
nose

, t
nose

, and S
nose

are the scale, translation, and
magnitude, respectively, of the HRP element correspond-
ing to the nose feature in the CDP, and B ( j) is as defined
in Eq. (10). Thus, y is a vector of 12 components which
are derived from the parameters of the HRP elements. In
the training procedure, we know truth and therefore we
can order to achieve the ordering given in Eq. (11) more
easily. In Section 3.2, we describe how this was done and,
in particular, we will see that different orderings were
required for different aircraft. However, in the recogni-
tion algorithm, since the true aircraft is unknown, we
must define an ordering procedure that works on-line
and reflects possible variability in ordering and we de-
scribe this in Section 3.3.

Note that we will occasionally refer to Me
1
, e

2
, e

3
, e

4
N as

the elemental components of y. In contrast, when we refer
to the components of y we mean the individual para-
meters of the vector y as enumerated in Eq. (11). Further,
note that we have used the difference between the angular
parameter of the nose and all the other elements to
construct y. In doing so, we have used the stability of the
nose feature to circularly shift the other features and
obtain a level of orientation invariance.

3.2. Training procedure

Training data are used to construct the probability
density functions that will be incorporated in the recogni-
tion phase of the algorithm. The statistical variability of
the HRP-based features is modest, and therefore, we are
easily able to characterize the probability density func-
tions which accurately describe the variability of the HRP-
based features. In fact, as we will illustrate in this section,
the HRP features for each object class are well modeled
by the Gaussian and exponential cosine [24] distribu-
tions. The only assumption made about the training data
is that the orientation is known so that all the CDPs start
at the tip of the nose and proceed counter-clockwise.

For the training data, HRP-based features are extrac-
ted exactly as described in Section 3.1 and a feature
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Fig. 10. A histogram of training data for component d4 for Plane d1, and the corresponding Gaussian distribution model.

vector of form Eq. (11) is constructed in the following
manner. We have found that for all the aircraft in the
data set, the desired ordering can be obtained using
either the translation or the magnitude parameters ex-
tracted by the HRP algorithm, depending upon the air-
craft. Specifically, feature vectors extracted from all
aircraft except Planes d7 and d17 can be ordered ac-
cording to the HRP translation parameters. Specifically,
the nose is taken to be the HRP element which has
a translation t3[1,.1P] X [0.9P,P], where P is the num-
ber of points in the CDP, the element with the next
largest t is taken to be the first wing, the element with
the next largest t is taken to be the tail, and the
remaining element is taken to be second wing. Feature
vectors extracted from Planes d7 and d17 can be or-
dered according the HRP magnitude parameters. That is,
the nose is taken to be the HRP element with the max-
imum magnitude, the tail is taken to be the HRP element
with the next largest magnitude, and the wings are taken
to be the elements with the smallest magnitudes. Note
that since we have assumed that all the profiles are
oriented to begin at the tip of nose, h(t

/04%
)"!n/2 for all

the planes.
For each object class, the variability of the components

of the feature vector y is well modeled by the Gaussian
and exponential cosine distributions. Note that we as-
sume the components of y are independent so that the
conditional probability densities for each object class are

given by

py@Hm
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m
)"

12
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p
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i
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m
), (12)

where each hypothesis H
m

corresponds to a particular
plane from the data set. For each object class, the Gaus-
sian distribution provides a reasonably accurate repres-
entation for the variability of all the components of
y except for the angular parameters. That is, the variabil-
ity of components d1,3,4,6,7,9,10,12 of y is well approxi-
mated by
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where E
m,i

and p
m,i

are the mean and variance for com-
ponent i under hypothesis m. For each object class,
E
m,i

and p
m,i

are obtained from the sample means and
sample variances from the training data. To illustrate
that the Gaussian is a suitable model for the variability of
the HRP features, Fig. 10 shows a histogram of the
training data for component d4 of y for Plane d1 and
the corresponding Gaussian distribution model. The
remaining components (i.e. d2,5,8,11) of y are well
modeled by the exponential cosine distribution [24],
which is given by
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Fig. 11. The exponential cosine distribution and variance as
a function of a. (a) The exponential cosine distribution for
several values of a. (b) Variance of the exponential cosine distri-
bution as a function of a.

where I
0

is a zeroth-order modified Bessel function of
the first kind, E

m,i
is the mean of component i under

hypothesis m, and a
m,i

is a parameter related to the
variance of component i under hypothesis m. Fig. 11a
shows this exponential cosine distribution for E

m,i
"0

and several values of a. For large values of a, the ex-
ponential cosine distribution looks very similar to the
Gaussian distribution. The variance of this distribution is
given by

p2"
n
3
#4

=
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n/1

(!1)nI
n
(a)

n2I
0
(a)

. (15)

Fig. 11b shows the relationship between a and p. The
parameter E

m,i
is approximated as the sample mean of

y
i
of the training data for plane m. The parameter a

m,i
is

determined from the sample variance of y
i
of the training

data for plane m, together with Eq. (15).

3.3. Recognition algorithm

The basic recognition algorithm is an M-ary hypothe-
sis testing scheme which uses the conditional probability
distributions Eq. (12) obtained from the training proced-
ure described in Section 3.2. This basic hypothesis testing
algorithm is amended to include the generalized likeli-
hood ratio test [25] (GLRT) to accommodate the possi-
bility of switches in the elemental components of the
feature vector (due to errors in ordering the HRP fea-
tures) and the possibility that portions of the data vector
are corrupted because of occlusion (so that one or more
true features are not present in the silhouette and, conse-
quently, one or more of the HRP features do not repres-
ent useful features). The only assumption made in the
recognition phase is that coarse knowledge of the ori-
entation is available so that each CDP begins within
$30° of the tip of the nose.

In the recognition phase, HRP-based features are ex-
tracted from the CDP’s as described in Section 3.1 and
ordered according to the translation parameters of the
HRP elements in the following manner. The feature vec-
tor y is ordered according to translation so that the nose
is taken to be the HRP element which has a translation
t3[1,0.1P]X[0.9P,P], where P is the number of points in
the CDP, and the remaining elements are ordered ac-
cording to translation. In constructing the feature vector
y, we set h(t

nose
)"!n/2 and thereby adjust for the

coarse estimate of orientation. As a result, the algorithm
is insensitive to orientation variation of less than 30° in
magnitude (i.e. to variations consistent with our coarse
level knowledge of orientation).

The basic recognition algorithm is an M-ary hypothe-
sis testing scheme which uses the conditional probability
distributions developed in Section 3.2. The most likely
hypothesis is given by

H*
4
"arg max

H
m

py DH
m
(Y DH

m
), (16)

where we have included the subscript ‘‘4’’ to indicate that
this is a decision based on the four elemental components
in y and py@Hm

(YDH
m
) is as given by Eqs. (12)—(14). If the

underlying conditional distributions p
yi@Hm

(½
i
DH

m
) were all

Gaussian, then maximizing py@Hm
(YDH

m
) is equivalent to

minimizing a weighted distance. Since some of the under-
lying conditional distributions are exponential cosine
instead of Gaussian, maximizing py@Hm

(YDH
m
) is not pre-

cisely equivalent to minimizing a weighted distance.
Intuitively, however, since the exponential cosine may be
thought of as a Gaussian for large values of a, we can
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think of maximizing py@Hm
(YDH

m
) as being very close to

minimizing a weighted distance. This basic procedure is
amended in light of the following important caveats.

3.3.1. Feature vector ordering
For recognition, rather than training, we will always be

presented with a feature vector y that has been ordered
according to translation. For most aircraft, this ordering
is robust and stable so that the elements in the feature
vector correspond, in order, to the nose, the first wing,
the tail, and the second wing. For two aircraft (Planes d7
and d17), this ordering does not produce a stable feature
vector. For these aircraft, the probability density func-
tions are modified to include a nuisance variable, b,
corresponding to a random permutation of the elemental
components of y. For example, when evaluating the like-
lihood for hypothesis d7 in the recognition procedure,
the GLRT is used to determine which permutation of the
elemental components is most likely, as

b*"max
b

py@H7,b(Y DH
7
,b). (17)

Then, the quantity py@H7,b (YDH
7
,b*) is used to compute

the likelihood ratios in the M-ary hypothesis test. The
procedure for hypothesis d17 is analogous.

3.3.2. Occlusion
Further, as a result of occlusion, one or more of the

true object features (nose, wings, tail) maybe missing and
as a consequence one or more of the elemental compo-
nents of y may not represent a meaningful object feature.
However, since the HRP algorithm is locally based, the
remaining elemental components still give an accurate
description of the physical features of the underlying
plane. Thus, a reasonable model in such a case is to
include another nuisance variable corresponding to one
or more of the four features being essentially meaningless
for recognition. Again, the GLRT is used to determine
which if any of the features are meaningless due to occlu-
sion.

For example, suppose precisely one elemental com-
ponent has been affected by occlusion. In this case, the
GLRT is used to determine, for each aircraft hypothesis
H

m
, the element q* which is least likely to correspond to

a meaningful feature. Specifically,
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where E
i
refers to the elemental components of Y. Then,

the most likely hypothesis is chosen by excluding the
component which is least likely to be meaningful for each
hypothesis, as follows:
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py@Hm,q(YDH
m
,q*
m
), (20)

where we have included the subscript ‘‘3’’ to indicate that
this is a decision based on three elemental components
of y.

Similarly, suppose that precisely two elemental com-
ponents have been affected by occlusion, then using the
GLRT we can determine for each hypothesis H

m
which

two elemental components are least likely to correspond
to meaningful features. That is, find d*

m
where

d*
m
"argmax

d
py@Hm,d(Y DH
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,d) (21)

and

py@Hm,d(YDH
m
,d)"G

<
i|M1,2Npe

i@Hm
(EiDHm

) if d"1,

<
i|M1,3Npe

i@Hm
(EiDHm

) if d"2,

<
i|M1,4Npe

i@Hm
(EiDHm

) if d"3,

<
i|M2,3Npe

i@Hm
(EiDHm

) if d"4,

<
i|M2,4Npe

i@Hm
(EiDHm

) if d"5,

<
i|M3,4Npe

i@Hm
(EiDHm

) if d"6.

(22)

Then, determine the most likely hypothesis by excluding
the components which are least likely to be meaningful
for each hypothesis, as follows:

H*
2
"arg max

H
m

py@Hm,d(YDH
m
,d*

m
), (23)

where we have included the subscript ‘‘2’’ to indicate that
this is a decision based on two elemental components
of y.

The question now arises if we are given a unknown a
feature vector y extracted from CDP a silhouette which
may or may not be distorted due to occlusion, how does
one determine if zero, one or two elemental components
correspond to meaningless features and what is the most
likely hypothesis given the data. In other words, if
H*

4
OH*

3
OH*

2
, which hypothesis should we choose?

Our approach is to choose among H*
2
, H*

3
and H*

4
based

on the likelihoods associated with each of these results.
For convenience, let us define py@H*

2
(YDH*

2
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3
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2This is exactly the same training used in the Monte Carlo
simulations in the following sections.

Table 1
Percent correct classification of noisy versions of the grayscale
image shown in Fig. 2. The standard deviation of the estimate of
percent correct classification is about 8%

SNR per FD % HRP (%)
sample (d/s)

10 96.30 96.30
0 37.04 96.30

Recall our intuition that the M-ary hypothesis test based
on Gaussian and exponential cosine conditional densities
is roughly equivalent to minimizing a weighted distance.
Intuitively, since the distance between n elements will be
larger than the distance between n!1 elements, we ex-
pect

py@H*2
(YDH*

2
)'py@H*

3
(YDH*

3
)'py@H*4

(YDH*
4
). (27)

Thus, our modified decision rule becomes

H*"arg max(py@H*4
(YDH*

4
), py@H*

3
(YDH*

3
)/P,

py@H*2
(YDH*

2
)/P2), (28)

where P is an empirically determined term to penalize
the exclusion of signal features.

3.3.3. Scale invariance
Up until this point, we have not discussed the effect of

scale on our M-ary hypothesis testing plus GLRT recog-
nition scheme. Recall from Section 2.2 that scale vari-
ation in the silhouette leads to a change in amplitude in
the CDP. Also, note that amplitude variation in a signal
will only effect the magnitude parameter of the elements
of the HRP decomposition of that signal. Certainly, the
algorithm as we have described it will not be robust to
variations in the scale of the silhouette. However, robust
classification in the presence of scale variation of the
silhouette can be accomplished with a very simple change
in the basic algorithm. The basic M-ary hypothesis test-
ing plus GLRT algorithm can be made insensitive to
scale variation by normalizing each CDP by its average
value. That is, for both the training and testing data sets,
each CDP is normalized by its average value and the
recognition proceeds as previously outlined.

4. Results

In this section, we describe experiments to test our
HRP-based recognition algorithm. We begin by demon-
strating our approach on a grayscale image which has
been perturbed with white noise. Then, to obtain more
statistically significant and exhaustive results, we demon-
strate our approach on simulated data. The results using
simulated data indicate that this approach is robust to
boundary perturbations, scale variation, orientation
variations, distortions due to occlusion, and to localized
variations in the boundary.

For comparison, we also show results based on
Fourier descriptors (FD) and the K nearest neighbor test
with K"3. This approach based on FD was described in
Ref. (10) and was summarized in Section 2.3. Note that
this approach uses P/2 features where P is the number of
points in the CDP. In the experiments we describe in this
section P"256 so the FD technique uses 128 features. In

contrast, the HRP based technique uses a feature vector
with only 12 components.

4.1. Gray-scale image

We begin by demonstrating the HRP-based method
on silhouettes extracted from a gray-scale image pertur-
bed by white noise. The gray-scale image in Fig. 2 shows
a Viggen aircraft which is Plane d17 in our data set.
This image was perturbed by additive white Gaussian
noise and silhouette contours were extracted using
a snakes algorithm [26]. The recognition algorithm,
however, was not trained on the real imagery but rather
on noisy simulated data using the model described in
Section 2.2 with p"40% and s"0.9.2 The classification
results using the HRP-based algorithm and the FD-
based algorithms are shown in Table 1. For the sample
sizes used in these tests, the estimate of percent correct
classification have a standard deviation of 8%. These
results indicate that the performance of the HRP-based
algorithm far surpasses that of the FD-based algorithm
in the stressing case of high noise. In contrast, the HRP-
based algorithm does not degrade at all in the presence of
high noise.

However, to test the full merits of our algorithm in
a statistically meaningful way, we need a large and rich
set of samples spanning all classes of objects (i.e. all 17
planes) and a variety of different types of conditions.
Therefore, in the following five sections, we turn to
simulated data to demonstrate the strengths of our
HRP-based approach.

4.2. Boundary perturbations

Our first simulated experiment tests the performance
of the HRP-based algorithm in the presence of boundary
perturbations. We construct training and testing data
sets using the boundary perturbation model described in
Section 2.2 for p"40% and for several values of s. In
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Fig. 12. Classification results for noisy data generated using p"40% and s"0.9. For this experiment, the noise level in the training and
testing data was the same and there was no scale or orientation variation. This figure shows the percent correct classificationh of the
testing data for each plane and the one standard deviation error bars.

this section, there is no scale variation, orientation
variation, or variation due to occlusion in either the
testing or training data sets.

For the first experiment, both the training and testing
data sets consisted of noisy profiles generated using
p"40% and s"0.9. That is, the noise level was the
same for both the training and testing data. Fig. 12 shows
the percent correct classification of the testing data as
a function of plane number for both our HRP-based
technique and the FD nearest-neighbor classifier. Fig. 12
also shows the one standard deviation error bars for the

estimate of percent of correct classification for each
plane. Both techniques perform very well. The HRP
technique gives 99.42% correct classification overall and
the FD technique gives 99.65% correct classification
overall. Given that the standard deviation of the estimate
of the percent correct classification is about 2.5% for
each plane, we conclude that this difference in overall
performance is not statistically significant. These results
are included in the first row of Table 2, which summar-
izes all of the comparative results from this and sub-
sequent sections.
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Fig. 13. Classification results for noisy data generated using p"40% and s"2.1. For this experiment, the noise level in the training and
testing data was the same and there was no scale or orientation variation. This figure shows the percent correct classificationh of the
testing data for each plane and the one standard deviation error bars.

Table 2
Summary of the experimental results for Sections 4.2—4.6. For all
the results listed here the standard deviation for the estimate of
percent classification for each plane is 2.5%

Experimental Section FD (%) HRP (%)
description Number

Boundary noise, 4.2 99.65 99.42
p"40%, s"0.9
Boundary noise, 4.2 97.64 96.53
p"40%, s"1.5
Boundary noise, 4.2 91.37 94.51
p"40%, s"2.1
Bdy noise (40%, 2.1) 4.3 91.27 94.45
#rotation variation
Bdy noise (40%, 2.1) 4.4 91.37 90.01
#scale variation
Occlusion (q"10%) 4.5 89.66 94.74
Bdy noise (40%, 0.9) 4.6 12.58 92.72
#localized silhouette
variation

Next, noisy profiles were generated using p"40% and
s"1.5. Again, the noise level was the same for both the
training and testing data sets. The overall results for the
HRP-based and FD-based algorithm are listed in the
second row of Table 2. The overall percent correct classi-
fication is 96.53% for the HRP-based technique and
97.64% for the FD-based technique. Again, given that
the standard deviation of the estimate of the percent
correct classification 2.5% for each plane, we conclude
that this difference in overall performance is not statist-
ically significant. Similarly, noisy profiles were generated
using p"40% and s"2.1, and results are included in

the third row of Table 2. Fig. 13 shows the percent cor-
rect classification of the testing data as a function of
plane number for both our HRP-based technique and the
FD nearest neighbor classifier. The overall percent cor-
rect classification is 94.51% for the HRP-based technique
and 91.37% for the FD technique. Once again, the stan-
dard deviation of the estimate of percent correct classi-
fication for each plane is 2.5%. Thus, these results
indicate that the HRP-based technique has slightly better
overall performance, at a modest level of statistical signif-
icance.

4.3. Rotational noise

Next, we construct testing data which have unknown
rotational variation between $10° plus boundary per-
turbations generated with p"40% and s"2.1, the lar-
gest level of boundary perturbations. The training data
used was generated without rotation and with boundary
perturbations using p"40% and s"2.1. The overall
performance of the two techniques is included in the
fourth row of Table 2. The overall percent correct classi-
fication is 94.45% for the HRP-based technique and
91.27% for the FD technique. Once again, the standard
deviation of the estimate of percent correct classification
for each plane is 2.5%. Thus, these results indicate that
the HRP-based technique has slightly better overall per-
formance, at a modest level of statistical significance.

4.4. Scale variation

As we mentioned in Section 3.3.3, the basic M-ary
hypothesis testing plus GLRT algorithm can be made
insensitive to scale variation by normalizing each CDP
by its average value. That is, for both the training and
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Fig. 14. (a) The version of Plane d8 used in the training data.
(b) The version of Plane d8 used in the testing data.

testing data sets, each CDP is normalized by its average
value and the recognition proceeds as previously out-
lined. The performance of this scale insensitive version of
HRP is illustrated in the following experiment. For this
experiment, noisy CDP’s are generated as described in
Section 2.2 with p"40% and s"2.1 and normalized by
their average value. The overall performance of the two
techniques for this experiment is included in the fifth row
of Table 2. These results indicate that both techniques
perform similarly and the difference in the overall perfor-
mance is not statistically significant.

4.5. Occlusion

Next, we investigate the performance of the M-ary
hypothesis plus GLRT recognition approach in the pres-
ence of occlusion. For this experiment, the training data
set consists of CDPs with the smallest level of boundary
noise, i.e. p"40% and s"0.9. For the testing data set,
we construct CDPs corrupted by occlusion as described
by Liu [12] and summarized in Section 2.2 with
q"10%. That is, for the testing data set 10% of the
boundary is replaced by a straight line. The overall
performance of the two techniques for this experiment is
included in Table 2. The HRP technique shows 94%
correct classification while the FD technique shows only
88% correct classification, a statistically significant dif-
ference in which the classification errors have been cut in
half.

4.6. Localized silhouette variation

Next, we investigate the performance of the HRP-
based feature extraction and recognition scheme in the
presence of localized variation in the silhouette. Fig. 14a
shows the silhouette of Plane d8 in the database and
Fig. 14b shows a silhouette of Plane d8 carrying an
alternate load. The difference between these two silhou-
ettes is slight and is concentrated along the wings of the
aircraft. For this experiment, the training data is gener-
ated using the boundary perturbation model described in
Section 2.2 with p"40% and s"0.9 and the version of
Plane d8 is the same one used in the previous sections,
namely the one shown in Fig. 14a. The testing data,
however, consisted of noisy boundaries (p"40%,
s"0.9) of the version of Plane d8 shown in Fig. 14b
which carries an alternate load. In this case, the HRP-
based recognition scheme gave 92.72% correct classifica-
tion and the standard deviation of the estimate of the
percent correct classification was about 2.5%. In con-
trast, the FD-based technique yielded correct classifica-
tion of less than 15%. Thus, in the presence of localized
silhouette variation the performance of the HRP-based
recognition scheme far exceeds that of the FD-based
recognition scheme.

5. Conclusions

In this paper, we have illustrated a new algorithm for
feature extraction and object recognition based on high-
resolution pursuit (HRP). In the object recognition con-
text, the elements extracted by HRP are a new class of
features that describe the geometric (i.e. size and loca-
tion) properties of subparts of the object. The HRP-based
recognition approach demonstrated in this paper is fast
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and robust to many different types of variations (bound-
ary perturbation, orientation variation, scale variation,
occlusion, and localized silhouette variation). We have
demonstrated that this HRP-based approach is a highly
competitive algorithm for this particular recognition
problem. In fact, in the presence of variations due to
occlusion and localized variation in the silhouette, the
performance of the HRP-based method far surpasses the
performance of the FD-based method. An equally impor-
tant contribution of this paper is that it demonstrates one
of the first uses of the emerging methods of adaptive
function approximation to object recognition and clearly
shows the promise of such approaches.

The promising results of this work may be extended in
several different directions to obtain a more powerful
recognition system. One area for further research is the
development of more sophisticated coupled probabilistic
models of the HRP features. Even though the simple
probabilistic models using an independence assumption
provided promising results, the performance of the
HRP-based recognition scheme may be enhanced by
more sophisticated probabilistic models. In addition, one
might imagine developing Markov chain models which
capture the idea that the choice of HRP elements de-
pends on the previous elements extracted from the CDP.
Further, this work has already shown that the using the
coarsest features in the hierarchy of features extracted by
HRP leads to a competitive recognition algorithm, but
more HRP elements could be extracted from the CDPs.
The incorporation of additional HRP features may be
used for finer classification, although admittedly they will
exhibit greater uncertainty. Finally, the simple paradigm
of setting the tuning parameter k independent of object
class may be modified to obtain features which are
adapted to each object class.

6. Summary

This paper introduces a simple new approach to object
recognition from silhouettes. In contrast to current ap-
proaches in model-based silhouette recognition, this new
approach utilizes features extracted using an adaptive
approximation technique called high-resolution pursuit
(HRP). HRP is an attractive technique for feature extrac-
tion because it yields features that have a physical inter-
pretation, and does so in a computationally efficient
manner. Further, the HRP-based features effectively fo-
cus information so that a comparatively small set of such
features capture all the information needed for recogni-
tion and a very simple algorithm may be used in the
recognition process. Finally, the set of HRP features are
local, and therefore, robust to localized silhouette vari-
ations and occlusion.

As is demonstrated in this paper, the HRP-based fea-
ture extraction and object recognition scheme is a highly

competitive algorithm for this particular recognition
problem. We demonstrate the strengths of the HRP-
based recognition scheme by discriminating among 17
military aircraft. For comparison, we present recognition
results on the airplane dataset using one of the more
widely studied methods based on Fourier descriptors.
The HRP-based algorithm matches the performance of
the Fourier descriptors-based algorithm in the presence
of boundary, scale and orientation variations, and sur-
passes the performance of the Fourier descriptor-based
algorithm in the presence of occlusion and localized
silhouette variations.
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Appendix A. the hrp similarity measure and algorithm

The basic idea behind HRP is to decompose the func-
tion as the sum of the most significant elements from the
dictionary set. At each iteration, the most significant
element is defined to be the one which maximizes the
HRP similarity measure, which has been designed to
emphasize local fit accuracy. The HRP similarity
measure between f and any dictionary element gc is
defined to be

S( f, gc)"m( f, gc)s ( f, gc) (A1)

s( f, gc)" min
g
i
3Ic(k)

DS f, g
i
TD

DSg
i
, gcTD

(A2)

m( f, gc)"G
#1 if

S f, g
i
T

Sg
i
, gcT

'0 for all g
i
3Ic (k),

!1 if
S f, g

i
T

Sg
i
,gcT

(0 for all g
i
3Ic(k),

0 otherwise,

(A3)

where Ic (k) is as defined in Eq. (9). The first element
chosen by HRP is denoted gc0 and is given by

gc0"arg max
gc

DS(f,gc)D. (A4)

The function f is then decomposed as

f"S ( f, gc0)gc0#Rf, (A5)

where R f is the residual. Subsequent elements are
chosen similarly to be the best fit to the previous residual.
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That is,

gcn"argmax
gc

DS (Rnf, gc)D (A6)

where Rn f is the nth residual. This yields a cumulative
decomposition of

f"
m~1
+
n/0

S(Rnf, gcn)gcn#Rm f. (A7)
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