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Recently, adaptive approximation techniques have become popular for ob-
taining parsimonious representations of large classes of signals. These methods
include method of frames, matching pursuit, and, most recently, basis pursuit.
In this work, high resolution pursuit (HRP) is developed as an alternative to
existing function approximation techniques. Existing techniques do not always
efficiently yield representations which are sparse and physically interpretable.
HRP is an enhanced version of the matching pursuit algorithm and overcomes
the shortcomings of the traditional matching pursuit algorithm by emphasizing
local fit over global fit at each stage. Further, the HRP algorithm has the same
order of complexity as matching pursuit. In this paper, the HRP algorithm is
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developed and demonstrated on 1D functions. Convergence properties of HRP
are also examined. HRP is also suitable for extracting features which may then
be used in recognition. © 1998 Academic Press

1. INTRODUCTION

Recently, adaptive approximation techniques have become popular for obtaining par-
simonious representations of large classes of signals. In these techniques, the goal is to
find the representation of a functionf as a weighted sum of elements from an overcomplete
dictionary. That is,

f 5 O
g{G

lggg, (1)

where the set {ggug { G} is redundant. Many possible representations off exist in this
redundant dictionary. Several methods have been suggested to find the “optimal” repre-
sentation of the form of (1), including method of frames [4], best orthogonal basis [3],
matching pursuit [11], and basis pursuit [2]. The definition of “optimal” is application
dependent.

For this work, the application of interest is feature extraction for object recognition [1,
7, 10, 12]. Object recognition based on template-matching is performed by comparing a
given data signal to a set of model signals and determining which model signal the data
signal most closely resembles. To do this, significantfeaturesare extracted from both the
object and the templates, and recognition is performed by comparing these object and
template features. Thus, for our work, the “optimal” representation would be one which
is hierarchical, stable, quickly computable, sparse, and physically interpretable. While the
first three properties are self-explanatory, the last two need some explanation. A sparse
representation is one in which a minimum number of dictionary elements are used to
represent any function. If a function is synthesized as the sum of dictionary elements, then
a sparsity preserving representation would be precisely those elements used to construct
the signal. In general, a physically interpretable representation is one in which each term
of (1) relates directly to the geometric (e.g., size and location of subparts) characteristics
of the function or the underlying object. For example, Fig. 1 shows a high resolution radar
return from a Cessna 310 aircraft. Each of the peaks in the signal is related to physical
features of the plane [13]. One physically interpretable representation is where each term
of (1) corresponds to one of the peaks of the signal.

Existing adaptive approximation techniques do not always yield representations with
the desired characteristics as summarized in [2]. The method of frames and best orthog-
onal basis tend towards solutions which are not sparsity preserving and are unable to
resolve closely spaced features. Matching pursuit (MP) is also unable to resolve closely
spaced features. Finally, basis pursuit (BP) produces representations which preserve
sparsity and resolve closely spaced features, but is computationally complex. In light of
the desired representation characteristics outlined above, an alternative to existing func-
tion approximation techniques is developed in this paper. This new technique, high
resolution pursuit (HRP), is an enhanced version of the MP algorithm. HRP was devel-

429HIGH RESOLUTION PURSUIT



oped to overcome the shortcomings of the traditional MP algorithm by emphasizing local
fit over global fit without significantly increasing the computational complexity of MP.
This paper concentrates on the development of HRP in one dimension.

This paper is organized as follows. Section 2 summarizes two adaptive approximation
schemes: MP and BP. Section 3 describes the HRP algorithm and discusses convergence
issues. Sections 4 and 5 present numerical examples of the performance of the HRP
algorithm.

2. ADAPTIVE APPROXIMATION OF SIGNALS

In this section, a brief description of relevant adaptive schemes for signal approximation
is presented. In particular, we describe the MP [11] and BP [2] algorithms. The following
definitions will be used throughout the paper. Letf be a signal in a Hilbert space*. Let
{ ggug { G} 5 $ be a set of dictionary vectors with\gg\ 5 1 for all gg { $. Further,
this dictionary will be redundant (e.g., a dictionary that contains a wavelet frame). The
function f will be decomposed as the weighted sum of dictionary elements as in (1). The
signal representation is then given by

f 5 O
i50

n21

l iggi 1 Rn f, (2)

whereRn f is the residual in ann-term sum. Often, we choose to approximatef by the
n-term sum in (2).

2.1. Matching Pursuit

Matching pursuit (MP) is a recursive, adaptive algorithm for signal decomposition [11].
The matching pursuit algorithm builds up the signal representation one element at a time,
picking the most contributive element at each step. The element chosen at thenth step is
the one which minimizes\Rn f \ as defined in (2). In particular, the residual at stagen is
given by

FIG. 1. Sample of Cessna high resolution radar profile.
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Rn f 5 Rn21 f 2 lnggn, (3)

where

ln 5 ^Rn21 f, ggn& (4)

ggn 5 arg max
gg{$

u^Rn21 f, gg&u. (5)

Thus, the element which minimizes\Rn f \ is the one which maximizesu^Rn21 f, gg&u. In
other words, the standard inner product is used as the measure of similarity between the
function and the dictionary elements and the “most similar” element is chosen at each
stage. Note that the element which maximizes the similarity measure,u^Rn21 f, gg&u, is
the same one which maximizes\Rn21 f 2 Rn f \. The MP algorithm yields a cumulative
decomposition of

f 5 O
i50

n21

^Ri f, ggi& ggi 1 Rn f. (6)

The MP approach works well for many types of signals. It has been shown to be especially
useful for extracting structure from signals which consist of components with widely
varying time-frequency localizations [11]. MP is a greedy algorithm in the sense that the
element chosen at each step is the one which absorbs the most remaining energy in the
signal. In practice, this results in an algorithm that sacrifices local fit for global fit and thus,
is unable to meet our feature extraction goals.

To illustrate this drawback in MP, consider the following example constructed using
cubic b-splines. Note that a cubic b-splineg( x) (Fig. 2b) can be obtained by convolving
a box splineb( x) (Fig. 2a) with itself three times. Scaled versions of this cubic b-spline
are of the formg(2jx). As j 3 1`, the cubic b-splines become finer in scale (i.e., more
localized in time). A cubic b-spline function at scalej and translationt will be denoted
gj ,t, or, equivalently,gg whereg is a joint index over scale and translation,g 5 ( j , t).
The twin peaks function,f, illustrated in Fig. 3, is the sum of two cubic b-splines at the
same scale but different, nearby translates. Let the dictionary$ consist of cubic b-splines
at a wide range of translates and scales, including those used to constructf. For the twin

FIG. 2. Box splines. (a) A box spline,b( x); (b) a cubic box spline,bpbpbpb( x).
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peaks example, the first element chosen by MP is one which does not match either of the
two functions which are the true components off. This is illustrated in Fig. 3a which
shows the original function and the first element chosen by MP,gg0. The projection graph
is the inner product of the function with each dictionary element which is indexed by scale
and translation. The contour of the projection graph shown in Fig. 3b gives us more insight
into the behavior of MP for this case. In fact, the proximity of the two components off
leads to a maximum of the similarity function (the inner product) which is not at the
correct translation and scale of either element. The first MP residual, shown in Fig. 4a, has
a large negative component att 5 0 where the original function was positive. Thus,
instead of finding significant features of the signal, MP has effectively introduced new
“non-features” which the algorithm will have to account for by fitting additional elements.
This problem is further compounded as subsequent elements are chosen by MP in an effort
to correct the initial mistake. Figure 4b shows the first ten MP elements. Note that none
of these elements corresponds to the physical features of the function.

FIG. 3. (a) The twin peaks function and first element chosen by MP. (b) The projection graph is the inner
product of the function with each dictionary element which is indexed by scale and translation. This figure shows
the contour of the projection graph. X marks the maximum inner product. O marks the location of true elements
of the function.

FIG. 4. (a) First residual generated by MP. (b) The first ten elements picked by MP.
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2.2. Basis Pursuit

The basis pursuit (BP) principle [2] is to find the decomposition given in (1) which
minimizes thel1-norm of the coefficientsln. The examples presented in [2] indicate that
basis pursuit yields decompositions which are sparse and physically meaningful. Thus,
they do not exhibit problems in picking out the two adjacent cubic b-splines in the twin
peaks example. An important drawback in the implementation of BP is that of computa-
tional complexity. Since basis pursuit decompositions are based on solving a large-scale
optimization problem, there exist examples where the decomposition may not be com-
pleted in a reasonable amount of time, as stressed in [2]. Two algorithms are proposed in
[2] to implement the basis pursuit principle: the simplex method and interior point
methods. For a signal of lengthP and a dictionary ofQ elements, the BP principle
implemented using the simplex method requires an average of2(Q2P) calculations,
though it could require as many as2(2P 2 1)2(QP) calculations. The complexity of
interior point methods depends on the implementation. Interior point methods are typically
polynomial inQ andP [5, 6]. Thus, the implementation of basis pursuit is computationally
intensive.

3. HIGH RESOLUTION PURSUIT

The objective of high resolution pursuit is to obtain the computational speed of MP as well
as the physically meaningful representations of BP. In this section, the HRP algorithm, which
parallels the MP algorithm, is developed. First, a new, more locally sensitive similarity
measure is proposed. Second, the HRP algorithm is outlined. Third, to gain additional insight
into the HRP algorithm, we discuss an alternative interpretation of HRP.

Let us begin by developing our intuition about the MP similarity measure using cubic
b-spline dictionaries. For the case of cubic b-spline dictionaries, the inner product (the MP
similarity measure) off with dictionary elementgg can be shown to be a weighted average
of the inner products off with finer scale dictionary elements. Note that any cubic b-spline
may be written as the sum of finer scale cubic b-splines which are also dictionary
elements. For example, using the notation introduced in Subsection 2.1,gj ,t may be
written as the weighted sum of finer scale cubic b-splines which are all at the same scale,
j 1 k; that is,

gj,t 5 O
i51

L

cigj1k,ti. (7)

This is illustrated in Fig. 5 fork 5 1 and k 5 2. Following this idea, and for later
convenience, let us define for each element in the cubic b-spline dictionary,gg, an
associated set of indices,Ig(k). The functions which are indexed byIg(k) are the function
gg and the dictionary elements at the finer scalej 1 k which when properly weighted and
summed yieldgg.2 That is,

2 Of course, one could imagine combinations of finer scale cubic b-splines that are not all at the same scale
which also sum togj ,t. For this work, we will use the definition given in (8).
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I g~k! 5 $g, ~ j 1 k, ti!ugg 5 O
i51

L

cigj1k, ti%. (8)

Thus, (7) can be written equivalently as

gg 5 O
i{Ig~k!

cigi. (9)

Sincegj ,t may be represented as the weighted sum of finer scale cubic b-splines, the inner
product^ f, gj ,t& may also be expressed in terms of finer scale inner products,

^ f, gj,t& 5 O
i51

L

ci ^ f, gj1k,ti& 5 O
i{Ig~k!

ci ^ f, gi&. (10)

In other words, the inner product off andgg may be interpreted as the weighted average
of the inner product off with high resolution dictionary elements.

The above interpretation of the MP similarity measure yields intuition about what form
a new, more locally sensitive similarity measure might take. Even though each of the
high resolution correlations in (10), {^ f, gi&} i{Ig(k), is sensitive to local structure, the
(weighted) averaging process of (10) renders^ f, gg& relatively insensitive to local
structure. One can imagine that some other combination of the high resolution correla-
tions, {^ f, gi&} i{Ig(k), might yield a new measure of similarity betweenf andgg, which
is more sensitive to local mismatch. Intuitively, this new similarity measure should be
dominated by worst local fit. For example, the minimum of {^ f, gi&} i{Ig(k) is dominated
by worst local fit.

The similarity measure we propose is essentially the minimum over {u^ f, gi&u} i{Ig(k).
Our new similarity measure,S( f, gg), is given by

S~ f, gg! 5 m~ f, gg!s~ f, gg! (11)

s~ f, gg! 5 min
i{Ig~k!

u^ f, gi&u
u^gi, gg&u

(12)

FIG. 5. Weighted sum of cubic b-splines at scalej 1 k yields a cubic b-spline at scalej .
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m~ f, gg! 5 5 11 if
^ f, gi&

^gi, gg&
. 0 for all i { I g~k!

21 if
^ f, gi&

^gi, gg&
, 0 for all i { I g~k!

0 otherwise.

~13!

The denominator ofs( f, gg) is a normalization factor which yieldsS( gg, gg) 5 1. The
term m( f, gg) is included to assure that oscillatory functions yield a similarity measure
of zero with coarse scale dictionary elements.

In the HRP algorithm at each step, the similarity function betweenRn f and each
elementgg for all gg { $ is calculated. For HRP, the similarity between thenth residual,
Rn f, and a dictionary element,gg, is given byS(Rn f, gg) 5 m(Rn f, gg)s(Rn f, gg) as
defined in (12) and (13). In the HRP algorithm, the element chosen at thenth step,ggn is
given by

ggn 5 arg max
g{G

uS~Rn f, gg!u. (14)

The (n 1 1)st residual is then generated as

Rn11 f 5 Rn f 2 S~Rn f, ggn! ggn. (15)

Additional insight may be gained through the following alternative interpretation of the
HRP algorithm. As we now discuss, the element which solves aconstrainedmaximization
of \Rn21 f 2 Rn f \ is the same one which maximizes the HRP similarity measure,
uS(Rn21 f, gg)u. This is analogous to the development of MP in Subsection 2.1 where we
noted that the element which maximized\Rn21 f 2 Rn f \ was the same one which
maximized the inner product similarity measure. Consider the maximization of\Rn21 f 2
Rn f \ whereRn f is given in (15) under the constraints

u^Rn f, gi&u # u^Rn21 f, gi&u for all i { I g~k! (16)

sign~^Rn f, gi&! 5 sign~^Rn21 f, gi&! for all i { I g~k!. (17)

These constraints are intuitively pleasing. The constraint in (16) captures the idea that the
projection of the residual should decrease both globally and locally. In other words, ifgg

is well matched tof, then the projection of the residual ontogg should decrease, and the
projection of the residual onto all the local structures which make upgg (i.e., gi for i {

Ig(k)) should decrease. The constraint in (17) captures the idea that the decomposition
should not introduce “non-features” such as those introduced by MP in the twin peaks
example. It is important to note that the two constraints effectively balance one another
and together imply that the projection onto all local structures ofgg must decrease, but not
so much as to introduce a change in sign. The element which maximizes\Rn21 f 2 Rn

f \ under constraints (16) and (17) is the same one which maximizesuS(Rn21 f, gg)u. This
result is shown in Appendix A.
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One further note about the parameterk which essentially controls the depth of the
resolution of the HRP algorithm is that the HRP decomposition will change as a function
of k, as will be illustrated in Subsection 4.1. Whenk is set to zero, the HRP decomposition
will be identical to the MP decomposition and insensitive to the local structures of the
signal. At the other extreme whenk3 `, the fine scale elements ofIg(k) approach Diracs
and the HRP decomposition will be highly sensitive to noise in the signal. Thus,k can be
used to build robustness into the HRP algorithm. The appropriate value ofk is one which
provides physically meaningful features but is still robust to noise. For our workk has
been chosen empirically.

Finally, note that the HRP algorithm may be used with many dictionaries (e.g.,
wavelets, wavelet packet, and local cosine dictionaries) and is not limited to dictionaries
where coarse scale elements may be constructed as the weighted sum of finer scale
elements. In the preceding discussion, we have concentrated on cubic b-spline dictionaries
which have the property that coarse scale elements may be exactly constructed as the
weighted sum of finer scale elements and, thus, we were able to defineIg(k) as given in
(8). In Section 5, the HRP algorithm is extended to wavelet packet dictionaries which also
allow Ig(k) to be defined as in (8). For general dictionaries, however, it may not be
possible to represent coarse scale elements exactly as the sum of finer scale elements. In
this case, it would be necessary to specify for each dictionary elementgg a local family
Ig which consists of finer scale functions which somehow capture the local behavior ofgg.

3.1. Exponential Convergence

In this section, the properties of the HRP algorithm for finite discrete functionsf [ t] for
0 , t # P are studied. The main result of this subsection shows that if the dictionaryG
is complete then the HRP algorithm produces residuals whose norms decay exponentially.

The following lemma proves that at each step the similarity function must be bounded
below by a fraction of the energy of the current residual. A crucial element of this proof
is the assumption that the dictionary contains all elementsgg[ t] of the form

gg@t# 5 d@t 2 r # for 0 , r # P, (18)

where

d@t# 5 H 1 for t 5 0
0 otherwise. (19)

Note that by definitionS( f, d[ t 2 r ]) 5 f [ r ].

LEMMA 1. For a dictionaryG which contains elements of the form given in(18),

uS~Rn f, ggn!u $
1

ÎP
\Rn f \. (20)

Proof. The similarity function will always be greater than the value ofRn f at any
particular point. That is,
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uS~Rn f, ggn!u $ uRn f @r #u for any r . (21)

This follows because, by definition,

ggn 5 arg sup
g{G

uS~Rn f, gg!u, (22)

and d[ t 2 r ] { G and S(Rn f, d[ t 2 r ]) 5 Rn f [ r ]. This implies

uS~Rn f, ggn!u $ sup
r

uRnf @r #u. (23)

Further,

\Rn f \2 5 O
r51

P

uRnf @r #u2 (24)

\Rn f \2 # P~sup
r

uRnf @r #u!2 (25)

.

which implies

sup
r

uRn f @r #u $
1

ÎP
\Rn f \. (26)

It follows that,

uS~Rn f, ggn!u $
1

ÎP
\Rn f \. (27)

The following theorem shows that for a complete dictionary which contains elements
of the form given in (18), the HRP algorithm yields residuals whose energies decay
exponentially.

THEOREM 1. For a dictionaryG which contains elements of the form given in(18),

\Rn11 f \ # S1 2
1

PD
1/ 2

\Rn f \. (28)

Proof. Note that

\Rn11 f \2 5 \Rn f \2 2 2S~Rn f, ggn!^R
n f, ggn& 1 S2~Rn f, ggn!. (29)

437HIGH RESOLUTION PURSUIT



From the definition of the similarity function, we know

u^Rn f, ggn&u $ S~Rn f, ggn! (30)

sign~^Rn f, ggn&! 5 sign~S~Rn f, ggn!!. (31)

This implies

\Rn11 f \2 # \Rn f \2 2 S2~Rn f, ggn!. (32)

Lemma 1 then implies

\Rn11 f \2 # \Rn f \2 2
1

P
\Rn f \2 (33)

5 \Rn f \2S1 2
1

PD . (34)

FIG. 6. (a) The HRP similarity graph is the HRP similarity measure between the function and each
dictionary element which is indexed by scale and translation. This figure shows the contour of the HRP similarity
graph. O marks the location of true elements of the function which are the same as the maxima of the HRP
similarity graph. (b) First ten elements for the twin peaks example using HRP.

FIG. 7. Changes in the HRP decomposition of the twin peaks signal as the resolution depth (i.e., the value
of k) is changed. Each subfigure shows the first few elements of the HRP decomposition for a different value
of k. (a) k 5 0; (b) k 5 1; (c) k 5 2.
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4. HRP WITH b-SPLINE DICTIONARIES

4.1. Twin Peaks Revisited

Recall the twin peaks example of Section 2 for which MP yielded unintuitive results.
The twin peaks signal is constructed as the sum of two dictionary elements at scale 32 and
translationt 5 60.3281. Thecontour plot of the HRP similarity function for fitting the
first element is shown in Fig. 6 and clearly shows two maxima at the scale and translations
which correspond to the features of the original signal. This is in contrast to the analogous
contour plot for MP (see Fig. 3b) which had a single maxima at scale 40 and translation
t 5 0. The coherent structures of this signal are captured by the first two elements of the
HRP approximation. The first ten elements of the HRP decomposition are shown in Fig.
6. Since HRP chooses two reasonable elements in the first stages, subsequent elements
serve to refine the fit rather than to correct mistakes from previous stages.3

As discussed earlier, the HRP decomposition will be affected by the depth at which the
family Ig(k) is constructed. Figures 7a–7c show the coherent features of the HRP
decomposition with depths zero, one, and two, respectively. At a depth of zero, HRP
reduces to MP. By choosing the parameterk, we can choose among the three decompo-
sitions shown in Fig. 7. Figure 8 compares the residual norms for MP and HRP for the
twin peaks example up to 1024 elements. We can identify three distinct regions of
convergence. In the first region, from approximately element 1 through 10, both algo-
rithms generate residuals whose norms decay at very similar rates. In the next region, from
approximately element 10 to 200, both algorithms produce residuals whose norms decay
at an exponential rate, but the MP residual norms are lower than HRP residual norms. In
these first two regions, both algorithms behave as greedy procedures and favor coarse
features over fine features. Around element 200, we see a third region where the MP
residuals continue to decay at an exponential rate, but the HRP residuals decay at a rate
much faster than exponential. Once the residuals only have structure at the finest scale
(i.e., Diracs), HRP will only extract Diracs. On the other hand, MP will continue to extract
coarser features. Thus, HRP more accurately reflects the true structure of the residual. In

3 One can imagine that, in a feature extraction setting, the first two elements would provide a good
approximation to the signal and could be used as features of the signal.

FIG. 8. Comparison of MP and HRP residual norms for the twin peaks example.
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other words, MP continues to behave as a greedy procedure, but HRP ceases to behave in
a greedy way.4

4.2. The Gong Signal

The dashed function in Fig. 9 is the envelope of a gong signal, a signal which has a
sharp attack followed by a slow decay. The ideal decomposition would capture the attack
with elements well localized in time and would not place elements prior to the attack of
the signal. Figure 9 shows the first ten elements of the MP and HRP decompositions for
the gong signal. HRP does not place elements before the attack. On the other hand, MP
places elements prior to the attack which results in subsequent negatively weighted
elements which are “non-features.”

4.3. High Resolution Radar Examples

Recall the profile of a Cessna 310 airplane shown in Fig. 1 where each of the peaks in
this signal corresponds to physical features of the airplane. Figure 10 shows the HRP
decomposition withk 5 2 of the signal shown in Fig. 1. HRP extracts each of the
significant features separately.

The HRP algorithm produces features which are robust to noise. First, consider noise
due to small differences in the imagining geometry. Figures 11a and 11b show two high
range resolution signatures of the Cessna plane at slightly different viewing angles. The
two signals are very similar in their coherent structures, but they are not identical. The
HRP algorithm with resolution depth of two extracts a very similar set of features for the
two signals. Table 1 lists the first five features (scales and translations) extracted from the
two signals. Figure 11c shows a graphical comparison of the features extracted for the two

4 In the feature extraction/object recognition context, it will be necessary to develop a stopping rule so that the
algorithm does not overfit the noise. This type of stopping rule is application dependent, and therefore, beyond
the scope of this paper.

FIG. 9. First ten elements for the gong example for MP and HRP.
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Cessna profiles. Second, consider noise due to a simulated specular flash. Figure 12a
shows a Cessna high range resolution signature plus a simulated specular flash. The HRP
decomposition in the presence of this type of noise is identical except for an additional
feature corresponding to the specular flash, as illustrated in Fig. 12b. Third, HRP is robust
to additive Gaussian noise. Figure 13a shows a Cessna profile corrupted with additive
Gaussian noise withs 5 104. Figure 13b shows the first five HRP features extracted from
the noisy profile as well as the first five HRP features extracted from the noiseless profile.
Again, a very similar set of features is extracted in the presence of Gaussian noise. To
illustrate the stability of the HRP features in the presence of additive Gaussian noise, we
created 100 noisy Cessna profiles in the same way and extracted HRP features from each
of them. For each of these profiles, the scale of the first HRP feature was 18.4 and the
translation of the first HRP features varied between 1.28 and 1.30. Figure 13c shows a

FIG. 10. Elements extracted by HRP at depth 2.

FIG. 11. Comparison of two nearby Cessna profiles. (a) Cessna Profile No. 1. (b) Cessna Profile No. 2. (c)
Comparison of elements extracted from the two Cessna profiles.
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histogram of the translation parameter of the first HRP feature for the 100 noisy
realizations. This result indicates that the HRP features are robust in the presence of
additive Gaussian noise.

5. HRP WITH WAVELET PACKET DICTIONARIES

In this section, the structure of wavelet packet dictionaries will be described and the
HRP algorithm using wavelet packet dictionaries will be demonstrated.

5.1. The Wavelet Packet Dictionary Structure

This section will highlight the structure of the wavelet packet dictionary as it relates to
HRP. More complete reviews of the wavelet packet decomposition may be found in [9,
14]. The wavelet packet dictionary is a collection of the wavelet functions,c j( x), and
scaling functions,f j( x), used in the wavelet packet decomposition. Linear combinations
of the scaling functions at scalej yield the wavelet and scaling functions at the next

TABLE 1

Comparison of First Five Elements Extracted From Two Nearby Cessna Profiles

j1 t1 j2 t2 j3 t3 j4 t4 j5 t5

Profile #1 18.4 1.29 13.9 3.25 18.4 2.63 16.0 20.67 16.0 0.69
Profile #2 18.4 1.24 16.0 3.20 18.4 2.57 16.0 20.74 18.4 0.58

Note.Variablesj i are scales andti are translations.

FIG. 12. HRP decomposition of Cessna profile corrupted by a simulated specular flash.
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coarser scale,j 2 1. These linear combinations are specified by the conjugate mirror
filters h1 andh2.5 That is,

f j21~ x! 5 O
n52`

1`

h1@n#f j~ x 2 22jn! (35)

c j21~ x! 5 O
n52`

1`

h2@n#f j~ x 2 22jn!. (36)

Note the following important properties of the wavelet packet dictionary. First, elements
of the wavelet packet dictionary will still be labeledgg, whereg is now a joint index over
scale, translation, and frequency. This is in contrast to the cubic b-spline dictionary which
was indexed only by scale and translation. Second, dictionary elements at a given scale are
the weighted sum of elements at a finer scale. Recall that the HRP algorithm developed
in Section 3 required only that each dictionary element,gg, have an associated setIg(k)
which containsg plus the indices of the finer scale elements which when properly
weighted and summed yieldgg. Thus, the wavelet packet dictionary is appropriate for use
with HRP.

5.2. Simulated Examples

In this section, we show that HRP with wavelet packet dictionaries is also able to extract
signal structure and highlight the strengths and weaknesses of HRP with wavelet packet
dictionaries. Note that the HRP algorithm with wavelet packet dictionaries exactly as
before and the intuition developed for cubic b-spline dictionaries translate in a straight-
forward way to wavelet packet dictionaries.

5 We have usedh1 andh2 to refer to the conjugate mirror filters which are usually referred to ash andg. This
notation was used to avoid confusion with our dictionary elementsg.

FIG. 13. (a) Cessna profile corrupted by additive Gaussian noise. (b) Comparison of HRP features extracted
from a Cessna profile corrupted by Gaussian noise with HRP features extracted from the noiseless profile. (c)
Histogram of the translation parameter of the first HRP element extracted from 100 noisy Cessna profiles. Noise
in each profile is additive Gaussian noise withs 5 105.
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5.2.1. The carbon signal.Just as was the case for cubic b-spline dictionaries, HRP is
able to resolve two elements from a wavelet packet dictionary which are closely spaced
in time. Consider the signal carbon shown in Fig. 14a. This example is similar to an
example considered in [2]. This signal is the sum of four elements: a Dirac, a sinusoid, and
two wavelet packet atoms which are closely spaced in time. The dictionary used is a
Symmlet wavelet packet dictionary. We will use a time-frequency plane to display the
decompositions chosen by each technique. In the time-frequency plane, each element is
represented by a rectangle where the weight of the element in the decomposition
determines the darkness of the rectangle, the scale of the element determines the dimen-
sions of the rectangle, and the frequency and translation determine the location. Figure
14b shows the time-frequency plane representation of the elements chosen by HRP. The
four elements of the signal are clearly visible: the horizontal line is the sinusoid, the
vertical line is the Dirac, and the two rectangles are the two wavelet packet atoms which
are closely spaced in time. Thus, the HRP decomposition consists of precisely those
elements used to synthesize the signal and is a sparsity preserving decomposition.
Similarly, the BP decomposition shown in Fig. 14c resolves all four elements. The HRP
and BP decompositions are identical, but HRP improves on the BP computation time by
a factor of four. In contrast, the MP decomposition shown in Fig. 14d is not sparsity
preserving. The MP algorithm is able to extract the sinusoid and the Dirac, but is unable
to resolve the two elements which are closely spaced in time. Instead of choosing the two
wavelet packet elements, MP chooses five elements that are clustered around the correct
location but do not match the physical features of the signal.

FIG. 14. Results for the carbon signal. (a) The carbon signal which consists of the sum of four dictionary
elements. (b) The HRP decomposition which resolves all four elements. (c) The BP decomposition which also
resolves all four elements. (d) The MP decomposition which blurs the elements of the signal.

444 JAGGI ET AL.



In the wavelet packet dictionary, it is also possible to construct a signal which is the sum
of dictionary elements which share scale and translation characteristics but differ in
frequency characteristics. HRP is unable to resolve elements which are closely spaced in
frequency. The HRP similarity measure is defined in terms of finer scale elements which
cover a wider frequency range. The finer scale elements yield even less frequency
resolution than the original coarse scale element. It follows that HRP as we have
developed it will be unable to resolve elements which are closely spaced in frequency.
One can imagine, however, developing an algorithm analogous to HRP to resolve
elements close in frequency. To summarize, the BP algorithm provides better decompo-
sitions but requires more computations in general. In a number of cases where either
resolution in space or resolution in frequency is desired, HRP does as well as BP but with
a much smaller computational burden.

5.2.2. The gong signal.Figure 15a shows a gong signal. As was mentioned in
Subsection 4.2., this type of signal with a sharp attack followed by a slow decay is
important in several signal processing applications. Again, the ideal decomposition would
capture the attack with elements well localized in time and would capture the correct
frequency of the modulation. Further, the ideal decomposition would not introduce
elements prior to the attack of the signal. That is, it would not introduce a pre-echo effect
which is particularly disturbing for audio signals.

Figures 15b–15d show the time-frequency plane results for HRP, BP, and MP, respec-
tively. The signal was analyzed using a wavelet packet dictionary constructed from the
Daubechies six tap wavelet. We begin by discussing the BP decomposition. BP captures
the point of the attack by placing several elements which are concentrated in time around

FIG. 15. (a) The gong signal. (b) Time-frequency plane for HRP. (c) Time-frequency plane for BP. (d)
Time-frequency plane for MP.
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t 5 0.25 where the attack of the signal begins. In addition, BP does not place any
elements prior to thet 5 0.25 andtherefore the decomposition does not exhibit a
pre-echo effect. The elements in the BP decomposition witht . 0.25capture the correct
frequency of the modulation and are well concentrated around this frequency. Thus, BP
gives a decomposition which qualitatively displays the structure of the signal. The HRP
decomposition again captures the point of the attack by placing several elements which are
concentrated in time aroundt 5 0.25. HRPdoes not include any elements prior to the
attack of the signal. However, qualitatively one might say that HRP does not do as well
as BP in capturing the correct frequency of the modulation since the HRP elements with
t . 0.25 are not aswell concentrated around the correct frequency of the modulation. MP
introduces several elements prior to the attack of the signal. That is, the MP decomposition
includes several elements witht , 0.25,prior to the attack of the signal. As a result, there
will be subsequent “non-features” in the reconstruction. Although the elements before the
attack have a small weight, they significantly impact the reconstruction. Thus, the MP
reconstruction exhibits this pre-echo effect. Further, the MP decomposition is not as well
concentrated around the correct frequency of the modulation as BP. Comparing the rates
of decay of the three methods (see Fig. 16), we see that BP decays at a rate faster than
HRP. In conclusion, HRP does not surpass BP in the quality of the decompositions.
However, HRP provides reasonable decompositions without the intensive computation
that may be required by BP.

6. HRP COMPUTATIONAL COMPLEXITY

The HRP algorithm may be efficiently implemented by sampling the scale/shift space.
Recall the notation for the dictionary is {ggug { G}. Suppose we construct a reduced
dictionary {ggug { GR}. For the cubic b-spline dictionary, the reduced dictionary has
scalesj which are integers in the range 0# j # log2(P), whereP is the length of the
signal, and 2j evenly spaced translations. This reduced dictionary has a total ofC 5 2P 2
1 elements. LetH be the set of functions which form the subfamilies for all elements of
the reduced dictionary,H 5 { gi} for i { Ig andg { GR. The HRP algorithm isinitialized
by computing^ f, gi& for all gi { H and ^gg, gi& for all g { G and all gi { H. This
initialization requires a one-time computation of2(P2(log2(P))2) operations using the
FFT. The HRP similarity measureS( f, gg) for g { GR may then be computed in2(KC)

FIG. 16. Rates of decay of the three methods.
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operations whereK is the cardinality of the setIg(k). The element which maximizes {S( f,
gg)u over the reduced dictionary is an approximation to the element which maximizes
uS( f, gg)u over the unreduced dictionary. The element which maximizesuS( f, gg)u
unreduced dictionary,gg0, could then be found using a Newton search strategy. Using
(15), the inner productŝRf, gi& for all gi { H can be computed as

^Rf, gi& 5 ^ f, gi& 2 S~ f, gg0!^gg0, gi&. (37)

Since each of the terms on the right hand side of (37) has been previously stored, the
calculation of^Rf, gi& for all gi { H takes2(KC) operations. Extending this argument,
we see that each iteration takes2(KC) 5 2(2PK) operations. The number of iterations
will typically be much smaller thanP.

For the wavelet packet dictionary, the size of the reduced dictionary isC 5 P log2(P).
This reduced dictionary has scalesj which are integers in the range 0# j # log2(P),
22jP frequency bins for scalej , and 2j evenly spaced translations for every scale and
frequency bin. HRP using the wavelet packet dictionary can be initialized in2(P2log2(P))
operations by computinĝ f, gi&. Each iteration for HRP with the wavelet packet
dictionary requires the computation ofS(Rn f, gg), the computation of̂ggn, gi&, and the
computation of^Rf, gi&. This is a total of2(KC) 5 2(KP log2(P)) operations per
iteration whereK is the cardinality of the setIg(k). Again, the number of iterations will
be much smaller thanP.

7. CONCLUSION

Existing approaches from function approximation did not meet our feature extraction
goals. MP failed to resolve closely spaced features and BP was computationally intensive.
An alternative function approximation approach, HRP, was developed and demonstrated
in this paper. In the same flavor as MP, HRP picks the most contributive element at each
step. However, in HRP, the similarity function is modified to guide the decomposition
away from blurring adjacent features. The HRP similarity measure developed in this work
is one which is dominated by the worst local fit. We have demonstrated the HRP algorithm
on simulated and real 1D functions. Further, the exponential convergence of HRP for
finite discrete functions was proven. Future research directions include a demonstration of
object recognition using HRP features and the extension of the HRP algorithm to 2D
functions.

APPENDIX A: THE HRP SIMILARITY MEASURE

The element which maximizes\Rn f 2 Rn21 f \ under constraints (16) and (17) also
maximizes the new similarity measureuS( f, gg)u as given in (12) and (13). Consider the
first stage residualRf and letRg f be the residual produced by choosing some dictionary
elementgg. That is,

Rg f 5 f 2 S~ f, gg! gg, (38)
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whereS( f, gg) is a scalar. It follows that

\Rg f 2 f \ 5 uS~ f, gg!u. (39)

We begin by showing that for any dictionary element,S( f, gg) as defined in (12) and (13)
maximizes\Rg f 2 f \ under constraints (16) and (17). Assume for now that

^ f, gi&

^gg, gi&
. 0 for all gi { I g~k!. (40)

For any dictionary element, constraint (16) may be simplified as

u^Rg f, gi&u # u^ f, gi&u for all gi { I g~k! (41)

u^ f, gi&u 2 S~ f, gg!^gg, gi&u # u^ f, gi&u (42)

U1 2 S~ f, gg!
^gg, gi&

^ f, gi&
U # 1 (43)

0 # S~ f, gg! #
2^ f, gi&

^gg, gi&
, (44)

where the last line follows because of (40). Further, for any dictionary element, constraint
(17) may be simplified as

sign~^Rf, gi&! 5 sign~^ f, gi&! for all gi { I g~k! (45)

^Rf, gi&^ f, gi& $ 0 (46)

~^ f, gi& 2 S~ f, gg!^gi, gi&!^ f, gi& $ 0 (47)

S~ f, gg! #
^ f, gi&

^gg, gi&
, (48)

where the last line follows because of (40). The same derivation can be followed through
for the case wherêf, gi&/^gg, gi& , 0 for all gi { Ig(k). For the case where the ratio
^ f, gi&/^gg, gi& does not have the same sign for allgi { Ig(k), the only value ofS( f, gg)
which meets both constraints is zero. Thus, for any dictionary element,S( f, gg) as defined
in (12) and (13) maximizes\Rg f 2 f \ under constraints (16) and (17).

Further, the single dictionary element which maximizes\Rg f 2 f \ under constraints
(16) and (17) is the same one which maximizesuS( f, gg)u.
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