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Recently, adaptive approximation techniques have become popular for ob-
taining parsimonious representations of large classes of signals. These methods
include method of frames, matching pursuit, and, most recently, basis pursuit.
In this work, high resolution pursuit (HRP) is developed as an alternative to
existing function approximation techniques. Existing techniques do not always
efficiently yield representations which are sparse and physically interpretable.
HRP is an enhanced version of the matching pursuit algorithm and overcomes
the shortcomings of the traditional matching pursuit algorithm by emphasizing
local fit over global fit at each stage. Further, the HRP algorithm has the same
order of complexity as matching pursuit. In this paper, the HRP algorithm is

1 This research was conducted with support provided in part by ARO under Grant DAAL03-92-G-01
ARPA under Grant F49620-93-1-0604, AFOSR under Grants F49620-95-1-0083 and F49620-96-1-0455, N
under Grant GC123913NGD, and the French Consulate in Boston.

428

1063-5203/98 $25.00
Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.



HIGH RESOLUTION PURSUIT 429

developed and demonstrated on 1D functions. Convergence properties of HRP
are also examined. HRP is also suitable for extracting features which may then
be used in recognition. © 1998 Academic Press

1. INTRODUCTION

Recently, adaptive approximation techniques have become popular for obtaining
simonious representations of large classes of signals. In these techniques, the goa
find the representation of a functibas a weighted sum of elements from an overcomple
dictionary. That is,

f= E A9y, (1)

yel

where the set gy|y € I'} is redundant. Many possible representations ekist in this
redundant dictionary. Several methods have been suggested to find the “optimal” re
sentation of the form of (1), including method of frames [4], best orthogonal basis |
matching pursuit [11], and basis pursuit [2]. The definition of “optimal” is applicatio
dependent.

For this work, the application of interest is feature extraction for object recognition
7, 10, 12]. Object recognition based on template-matching is performed by comparil
given data signal to a set of model signals and determining which model signal the
signal most closely resembles. To do this, signifideaturesare extracted from both the
object and the templates, and recognition is performed by comparing these object
template features. Thus, for our work, the “optimal” representation would be one wh
is hierarchical, stable, quickly computable, sparse, and physically interpretable. While
first three properties are self-explanatory, the last two need some explanation. A sy
representation is one in which a minimum number of dictionary elements are use
represent any function. If a function is synthesized as the sum of dictionary elements,
a sparsity preserving representation would be precisely those elements used to con
the signal. In general, a physically interpretable representation is one in which each:
of (1) relates directly to the geometric (e.g., size and location of subparts) characteri
of the function or the underlying object. For example, Fig. 1 shows a high resolution ra
return from a Cessna 310 aircraft. Each of the peaks in the signal is related to phy:
features of the plane [13]. One physically interpretable representation is where each
of (1) corresponds to one of the peaks of the signal.

Existing adaptive approximation techniques do not always yield representations \
the desired characteristics as summarized in [2]. The method of frames and best ort
onal basis tend towards solutions which are not sparsity preserving and are unab
resolve closely spaced features. Matching pursuit (MP) is also unable to resolve clo
spaced features. Finally, basis pursuit (BP) produces representations which pre:
sparsity and resolve closely spaced features, but is computationally complex. In ligk
the desired representation characteristics outlined above, an alternative to existing
tion approximation techniques is developed in this paper. This new technique,
resolution pursuit (HRP), is an enhanced version of the MP algorithm. HRP was de
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FIG. 1. Sample of Cessna high resolution radar profile.

oped to overcome the shortcomings of the traditional MP algorithm by emphasizing Ic
fit over global fit without significantly increasing the computational complexity of MF
This paper concentrates on the development of HRP in one dimension.

This paper is organized as follows. Section 2 summarizes two adaptive approxima
schemes: MP and BP. Section 3 describes the HRP algorithm and discusses conver
issues. Sections 4 and 5 present numerical examples of the performance of the
algorithm.

2. ADAPTIVE APPROXIMATION OF SIGNALS

In this section, a brief description of relevant adaptive schemes for signal approxima
is presented. In particular, we describe the MP [11] and BP [2] algorithms. The followi
definitions will be used throughout the paper. Edte a signal in a Hilbert spac¥. Let
{g,/|y € I'} = 9 be a set of dictionary vectors witlg,| = 1 for allg, € %. Further,
this dictionary will be redundant (e.g., a dictionary that contains a wavelet frame). 1
functionf will be decomposed as the weighted sum of dictionary elements as in (1).
signal representation is then given by

n—-1
f= z )\igyi + R f1 (2)

i=0

whereR" f is the residual in am-term sum. Often, we choose to approximbtay the
n-term sum in (2).

2.1. Matching Pursuit

Matching pursuit (MP) is a recursive, adaptive algorithm for signal decomposition [1
The matching pursuit algorithm builds up the signal representation one element at a t
picking the most contributive element at each step. The element chosenndh thtep is
the one which minimize$R" f|| as defined in (2). In particular, the residual at stage
given by
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FIG. 2. Box splines. (a) A box splindy(x); (b) a cubic box splineb=b*b*b(x).

Rf=R"'f - AnOyn, 3)

where
A= (R, g, 4)
g, = argmaxR"* f, g,)|. (5)

96D

Thus, the element which minimiz¢R" f|| is the one which maximizg$R"~* f, g.)|. In
other words, the standard inner product is used as the measure of similarity betwee
function and the dictionary elements and the “most similar” element is chosen at €
stage. Note that the element which maximizes the similarity meak®®,* f, g.)|, is
the same one which maximizgR"* f — R" f||. The MP algorithm yields a cumulative
decomposition of

n—-1

f= E <RI f! gyi> g'yi + R'f. (6)

i=0

The MP approach works well for many types of signals. It has been shown to be espec
useful for extracting structure from signals which consist of components with wide
varying time-frequency localizations [11]. MP is a greedy algorithm in the sense that
element chosen at each step is the one which absorbs the most remaining energy
signal. In practice, this results in an algorithm that sacrifices local fit for global fit and th
is unable to meet our feature extraction goals.

To illustrate this drawback in MP, consider the following example constructed usi
cubic b-splines. Note that a cubic b-spligéx) (Fig. 2b) can be obtained by convolving
a box splineb(x) (Fig. 2a) with itself three times. Scaled versions of this cubic b-splir
are of the formg(2'x). Asj — +, the cubic b-splines become finer in scale (i.e., mor
localized in time). A cubic b-spline function at scgland translatiort will be denoted
g;.., or, equivalentlyg, wherey is a joint index over scale and translation= (j, t).
The twin peaks functiorf, illustrated in Fig. 3, is the sum of two cubic b-splines at th
same scale but different, nearby translates. Let the dictidhargnsist of cubic b-splines
at a wide range of translates and scales, including those used to cofisfacthe twin
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FIG. 3. (&) The twin peaks function and first element chosen by MP. (b) The projection graph is the in
product of the function with each dictionary element which is indexed by scale and translation. This figure st
the contour of the projection graph. X marks the maximum inner product. O marks the location of true elem
of the function.

peaks example, the first element chosen by MP is one which does not match either c
two functions which are the true componentsfofThis is illustrated in Fig. 3a which
shows the original function and the first element chosen bydJR, The projection graph
is the inner product of the function with each dictionary element which is indexed by sc
and translation. The contour of the projection graph shown in Fig. 3b gives us more ins
into the behavior of MP for this case. In fact, the proximity of the two components o
leads to a maximum of the similarity function (the inner product) which is not at tl
correct translation and scale of either element. The first MP residual, shown in Fig. 4a,
a large negative component fat= 0 where the original function was positive. Thus,
instead of finding significant features of the signal, MP has effectively introduced n
“non-features” which the algorithm will have to account for by fitting additional elemen
This problem is further compounded as subsequent elements are chosen by MP in an
to correct the initial mistake. Figure 4b shows the first ten MP elements. Note that n
of these elements corresponds to the physical features of the function.

Comparison of f and i First ton elomants chosan by Matching Pursuit
T

0.}

FIG. 4. (a) First residual generated by MP. (b) The first ten elements picked by MP.
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2.2. Basis Pursuit

The basis pursuit (BP) principle [2] is to find the decomposition given in (1) whic
minimizes the*-norm of the coefficienta,,. The examples presented in [2] indicate tha
basis pursuit yields decompositions which are sparse and physically meaningful. T
they do not exhibit problems in picking out the two adjacent cubic b-splines in the tv
peaks example. An important drawback in the implementation of BP is that of compt
tional complexity. Since basis pursuit decompositions are based on solving a large-s
optimization problem, there exist examples where the decomposition may not be c
pleted in a reasonable amount of time, as stressed in [2]. Two algorithms are propos
[2] to implement the basis pursuit principle: the simplex method and interior po
methods. For a signal of length and a dictionary ofQ elements, the BP principle
implemented using the simplex method requires an averag@(QfP) calculations,
though it could require as many &2° — 1)0(QP) calculations. The complexity of
interior point methods depends on the implementation. Interior point methods are typic
polynomial inQ andP [5, 6]. Thus, the implementation of basis pursuit is computational
intensive.

3. HIGH RESOLUTION PURSUIT

The objective of high resolution pursuit is to obtain the computational speed of MP as \
as the physically meaningful representations of BP. In this section, the HRP algorithm, w
parallels the MP algorithm, is developed. First, a new, more locally sensitive simila
measure is proposed. Second, the HRP algorithm is outlined. Third, to gain additional in:
into the HRP algorithm, we discuss an alternative interpretation of HRP.

Let us begin by developing our intuition about the MP similarity measure using cu
b-spline dictionaries. For the case of cubic b-spline dictionaries, the inner product (the
similarity measure) of with dictionary elemeng,, can be shown to be a weighted averag
of the inner products dfwith finer scale dictionary elements. Note that any cubic b-splir
may be written as the sum of finer scale cubic b-splines which are also diction
elements. For example, using the notation introduced in Subsectiorg;2.Inpay be
written as the weighted sum of finer scale cubic b-splines which are all at the same s
j + k; that is,

L

Ot = E Ci0j+kt- (7)

i=1

This is illustrated in Fig. 5 fok = 1 andk = 2. Following this idea, and for later
convenience, let us define for each element in the cubic b-spline dictiogaryan
associated set of indicels,(k). The functions which are indexed by(k) are the function
g, and the dictionary elements at the finer sgale k which when properly weighted and
summed yieldy,.” That is,

2 Of course, one could imagine combinations of finer scale cubic b-splines that are not all at the same
which also sum tay; ,. For this work, we will use the definition given in (8).
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(a) k=1. (b) k=2.
FIG. 5. Weighted sum of cubic b-splines at scale- k yields a cubic b-spline at scaje

LK) = {y, (§ + k ]9, = 2 Gt ®)

Thus, (7) can be written equivalently as

9,= > Cg:. 9)

iely(k)

Sinceg; . may be represented as the weighted sum of finer scale cubic b-splines, the i
product(f, g; ) may also be expressed in terms of finer scale inner products,

(f, gp = 2 i (f, Gjrke) = 2 c (f, o). (10)

i=1 i€ly(k)

In other words, the inner product 6indg, may be interpreted as the weighted averag
of the inner product of with high resolution dictionary elements.

The above interpretation of the MP similarity measure yields intuition about what fo
a new, more locally sensitive similarity measure might take. Even though each of
high resolution correlations in (10){{, i)} i/ (9. is sensitive to local structure, the
(weighted) averaging process of (10) rendefs g,) relatively insensitive to local
structure. One can imagine that some other combination of the high resolution cort
tions, {(f, gi>}ie,y(k), might yield a new measure of similarity betweandg,, which
is more sensitive to local mismatch. Intuitively, this new similarity measure should
dominated by worst local fit. For example, the minimum ()f,{gi>}i€|7(k) is dominated
by worst local fit.

The similarity measure we propose is essentially the minimum ojér gi>|}ie,v(k).
Our new similarity measurex(f, g,), is given by

s(f, g,) = m(f, g,)s(f, g,) (11)

Kol
st = min g, o)

(12)
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1 i 9 o foral € 1.(k)
(9, 9y Y
= f! i .
Mt e =) 1 M9 e 1,(K) (13
(9, 9y
0 otherwise.

The denominator of( f, g,) is a normalization factor which yield¥(g,, g,) = 1. The
termm(f, g,) is included to assure that oscillatory functions yield a similarity measu
of zero with coarse scale dictionary elements.

In the HRP algorithm at each step, the similarity function betwB8rf and each
elementg, for all g, € & is calculated. For HRP, the similarity between titk residual,
R" f, and a dictionary elemeng,, is given byS(R" f, g,) = m(R" f, g,)s(R"f, g,) as
defined in (12) and (13). In the HRP algorithm, the element chosen athhgtep,g.,, is
given by

g, = arg maxS(R" f, g,)|. (14)

yel
The (h + 1)st residual is then generated as
R* f=R"f—- SR, g,) Oy (15)

Additional insight may be gained through the following alternative interpretation of t
HRP algorithm. As we now discuss, the element which sohamatrainednaximization
of [R"* f — R" f| is the same one which maximizes the HRP similarity measur
|S(R" 1, gy)|. This is analogous to the development of MP in Subsection 2.1 where
noted that the element which maximizé®"~* f — R" f| was the same one which
maximized the inner product similarity measure. Consider the maximizatigR"of" f —
R" f|| whereR" f is given in (15) under the constraints

KR f, g = (R" 1, g foralli € 1,(k) (16)

sign(R"f, g;)) = sign(R"* f, g;)) foralli € (k). a7

These constraints are intuitively pleasing. The constraint in (16) captures the idea tha
projection of the residual should decrease both globally and locally. In other wogls, if
is well matched td, then the projection of the residual ordg should decrease, and the
projection of the residual onto all the local structures which make.uf.e., g; for i ¢
I(K)) should decrease. The constraint in (17) captures the idea that the decompos
should not introduce “non-features” such as those introduced by MP in the twin pe
example. It is important to note that the two constraints effectively balance one ano
and together imply that the projection onto all local structureg, ahust decrease, but not
so much as to introduce a change in sign. The element which maxifji?es f — R"

f|| under constraints (16) and (17) is the same one which maxirf&B8~* f, g,)|. This
result is shown in Appendix A.
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One further note about the paramekewhich essentially controls the depth of the
resolution of the HRP algorithm is that the HRP decomposition will change as a funct
of k, as will be illustrated in Subsection 4.1. Wheis set to zero, the HRP decomposition
will be identical to the MP decomposition and insensitive to the local structures of 1
signal. At the other extreme whén— =, the fine scale elements kf(k) approach Diracs
and the HRP decomposition will be highly sensitive to noise in the signal. kheam be
used to build robustness into the HRP algorithm. The appropriate vakissa@ine which
provides physically meaningful features but is still robust to noise. For our wdr&s
been chosen empirically.

Finally, note that the HRP algorithm may be used with many dictionaries (e.
wavelets, wavelet packet, and local cosine dictionaries) and is not limited to dictiona
where coarse scale elements may be constructed as the weighted sum of finer
elements. In the preceding discussion, we have concentrated on cubic b-spline dictior
which have the property that coarse scale elements may be exactly constructed a
weighted sum of finer scale elements and, thus, we were able to dgfieas given in
(8). In Section 5, the HRP algorithm is extended to wavelet packet dictionaries which :
allow 1,(k) to be defined as in (8). For general dictionaries, however, it may not
possible to represent coarse scale elements exactly as the sum of finer scale eleme
this case, it would be necessary to specify for each dictionary elegyemtocal family
I, which consists of finer scale functions which somehow capture the local behagigr of

3.1. Exponential Convergence

In this section, the properties of the HRP algorithm for finite discrete funcfipdor
0 <t = P are studied. The main result of this subsection shows that if the dictidhan
is complete then the HRP algorithm produces residuals whose norms decay exponen
The following lemma proves that at each step the similarity function must be bounc
below by a fraction of the energy of the current residual. A crucial element of this pre
is the assumption that the dictionary contains all elemgpfy of the form

g,[t] = o[t — r] foro<r=P, (18)
where
1 fort=0
o[t] = { 0 otherwise. (19)

Note that by definitiorS(f, [t — r]) = f[r].
Lemma 1. For a dictionaryI” which contains elements of the form given(118),
n 1 n
IS(R"f, g, 2ﬁIIR fll. (20)

Proof. The similarity function will always be greater than the valueR5ff at any
particular point. That is,
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IS(R"f, g,,)| = |R"f[r]] foranyr. (21)
This follows because, by definition,

g, = arg supS(R" f, g,)|, (22)

yel

and§[t — r] € ' andS(R" f, 8[t — r]) = R" f[r]. This implies

IS(R"f, g,n)| = supgR™[r]]. (23)
Further,
P
IR"fI2= 2 [Rf[r][? (24)
r=1
IR"f]|* = P(sup|R[r]])? (25)
which implies
n 1 n
sup|R" f[r]| = —= R f]. (26)
; \P
It follows that,
n 1 n
IS(R"f, 9,)] Z*EIIR fl. (27)
\j

The following theorem shows that for a complete dictionary which contains eleme
of the form given in (18), the HRP algorithm yields residuals whose energies de
exponentially.

Theorem 1. For a dictionaryI” which contains elements of the form given(118),

1/2
IR™ ] = (1 - P) IR f]. (28)

Proof. Note that

IR™LE[2 = |R 2 — 2S(R"f, g,)(R"f, g, + SR, 9,,). (29)
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FIG. 6. (a) The HRP similarity graph is the HRP similarity measure between the function and es
dictionary element which is indexed by scale and translation. This figure shows the contour of the HRP simil
graph. O marks the location of true elements of the function which are the same as the maxima of the
similarity graph. (b) First ten elements for the twin peaks example using HRP.

From the definition of the similarity function, we know

’(Rn fv gyn>| = S(Rn f! gyn) (30)
sign(R"f, g,») = sign(S(R"f, g,)). (31)
This implies
R |2 = [IR"f|> = S(R", gyn).- (32)
Lemma 1 then implies
1
[RM 2= R — EIIR“fH2 (33)
=|R"f|J} 1 ! 34
= IR fIF{ 1~ 5] (34)
a. HRP resolution depth 0 b. HRP resolution depth 1 c. HRP resolution depth 2
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-5 0 5 -5 0 5 -5 0 5

FIG. 7. Changes in the HRP decomposition of the twin peaks signal as the resolution depth (i.e., the v
of k) is changed. Each subfigure shows the first few elements of the HRP decomposition for a different v
ofk. @k =0; (b)k =1; (c)k = 2.
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Narm of Residuals for MP and HRP
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FIG. 8. Comparison of MP and HRP residual norms for the twin peaks example.

4. HRP WITH b-SPLINE DICTIONARIES

4.1. Twin Peaks Revisited

Recall the twin peaks example of Section 2 for which MP yielded unintuitive resul
The twin peaks signal is constructed as the sum of two dictionary elements at scale 32
translationt = £0.3281. Thecontour plot of the HRP similarity function for fitting the
first element is shown in Fig. 6 and clearly shows two maxima at the scale and transla
which correspond to the features of the original signal. This is in contrast to the analog
contour plot for MP (see Fig. 3b) which had a single maxima at scale 40 and transla
t = 0. The coherent structures of this signal are captured by the first two elements of
HRP approximation. The first ten elements of the HRP decomposition are shown in
6. Since HRP chooses two reasonable elements in the first stages, subsequent ele
serve to refine the fit rather than to correct mistakes from previous stages.

As discussed earlier, the HRP decomposition will be affected by the depth at which
family 1,(k) is constructed. Figures 7a—7c show the coherent features of the H
decomposition with depths zero, one, and two, respectively. At a depth of zero, F
reduces to MP. By choosing the paramétemwe can choose among the three decompc
sitions shown in Fig. 7. Figure 8 compares the residual norms for MP and HRP for
twin peaks example up to 1024 elements. We can identify three distinct regions
convergence. In the first region, from approximately element 1 through 10, both al
rithms generate residuals whose norms decay at very similar rates. In the next region,
approximately element 10 to 200, both algorithms produce residuals whose norms d
at an exponential rate, but the MP residual norms are lower than HRP residual horm
these first two regions, both algorithms behave as greedy procedures and favor c
features over fine features. Around element 200, we see a third region where the
residuals continue to decay at an exponential rate, but the HRP residuals decay at
much faster than exponential. Once the residuals only have structure at the finest .
(i.e., Diracs), HRP will only extract Diracs. On the other hand, MP will continue to extre
coarser features. Thus, HRP more accurately reflects the true structure of the residu

30One can imagine that, in a feature extraction setting, the first two elements would provide a g
approximation to the signal and could be used as features of the signal.
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a. First ten elements for MP
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FIG. 9. First ten elements for the gong example for MP and HRP.

other words, MP continues to behave as a greedy procedure, but HRP ceases to beh
a greedy way.

4.2. The Gong Signal

The dashed function in Fig. 9 is the envelope of a gong signal, a signal which hz
sharp attack followed by a slow decay. The ideal decomposition would capture the at
with elements well localized in time and would not place elements prior to the attack
the signal. Figure 9 shows the first ten elements of the MP and HRP decomposition:
the gong signal. HRP does not place elements before the attack. On the other hanc
places elements prior to the attack which results in subsequent negatively weig
elements which are “non-features.”

4.3. High Resolution Radar Examples

Recall the profile of a Cessna 310 airplane shown in Fig. 1 where each of the peal
this signal corresponds to physical features of the airplane. Figure 10 shows the |
decomposition withk = 2 of the signal shown in Fig. 1. HRP extracts each of th
significant features separately.

The HRP algorithm produces features which are robust to noise. First, consider n
due to small differences in the imagining geometry. Figures 11a and 11b show two |
range resolution signatures of the Cessna plane at slightly different viewing angles.
two signals are very similar in their coherent structures, but they are not identical.
HRP algorithm with resolution depth of two extracts a very similar set of features for 1
two signals. Table 1 lists the first five features (scales and translations) extracted fron
two signals. Figure 11c shows a graphical comparison of the features extracted for the

4 n the feature extraction/object recognition context, it will be necessary to develop a stopping rule so tha
algorithm does not overfit the noise. This type of stopping rule is application dependent, and therefore, be
the scope of this paper.
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< 10° Individuat elements picked by HRP to fit Cessna profile

Lo Sl
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FIG. 10. Elements extracted by HRP at depth 2.

Cessna profiles. Second, consider noise due to a simulated specular flash. Figur
shows a Cessna high range resolution signature plus a simulated specular flash. The
decomposition in the presence of this type of noise is identical except for an additic
feature corresponding to the specular flash, as illustrated in Fig. 12b. Third, HRP is ro
to additive Gaussian noise. Figure 13a shows a Cessna profile corrupted with adc
Gaussian noise witlr = 10*. Figure 13b shows the first five HRP features extracted fro
the noisy profile as well as the first five HRP features extracted from the noiseless prc
Again, a very similar set of features is extracted in the presence of Gaussian noise
illustrate the stability of the HRP features in the presence of additive Gaussian noise
created 100 noisy Cessna profiles in the same way and extracted HRP features from
of them. For each of these profiles, the scale of the first HRP feature was 18.4 anc
translation of the first HRP features varied between 1.28 and 1.30. Figure 13c shot

Y10° () Cessna Profile #1

2r g
150 4
1
os A/\/\ ]
S
2 -1 o

1 2 a 4

x 10° {b) Cessna Profile #2

e
-4 -3 -2 -1 0 1 2 3 4

x10° {6} Comparison of features extracted from two nearby Cessna profiles
5 - T T

2 —— 115 elements for Profila 1
-~ 1815 elements for Profile 2

FIG. 11. Comparison of two nearby Cessna profiles. (a) Cessna Profile No. 1. (b) Cessna Profile No. Z
Comparison of elements extracted from the two Cessna profiles.
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TABLE 1
Comparison of First Five Elements Extracted From Two Nearby Cessna Profiles

ja ty iz t; is t3 ja ty is ts

Profile #1 18.4 1.29 13.9 3.25 18.4 2.63 16.0 —-0.67 16.0 0.69
Profile #2 18.4 1.24 16.0 3.20 18.4 2.57 16.0 —0.74 18.4 0.58

Note.Variablesj; are scales ant are translations.

histogram of the translation parameter of the first HRP feature for the 100 nc
realizations. This result indicates that the HRP features are robust in the presenc
additive Gaussian noise.

5. HRP WITH WAVELET PACKET DICTIONARIES

In this section, the structure of wavelet packet dictionaries will be described and
HRP algorithm using wavelet packet dictionaries will be demonstrated.

5.1. The Wavelet Packet Dictionary Structure

This section will highlight the structure of the wavelet packet dictionary as it relates
HRP. More complete reviews of the wavelet packet decomposition may be found in
14]. The wavelet packet dictionary is a collection of the wavelet functignsy), and
scaling functionsg;(x), used in the wavelet packet decomposition. Linear combinatio
of the scaling functions at scajeyield the wavelet and scaling functions at the nex

x 10° Cessna Profile Corrupted by a Simulated Specular Flash
25 T T u T T T T
2r 4
1.5F q
1k 4
0.5 1
AN L L L ) L L
-4 -3 -2 -1 0 1 2 3 4
x10° First 15 Elements Chosen by HRP

2 ]
1.5 1
1 -
05 :
RNV AVAN ,
-3 -2 -1 0 1 2 3

4 4

FIG. 12. HRP decomposition of Cessna profile corrupted by a simulated specular flash.
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FIG. 13. (a) Cessna profile corrupted by additive Gaussian noise. (b) Comparison of HRP features extrz
from a Cessna profile corrupted by Gaussian noise with HRP features extracted from the noiseless profil
Histogram of the translation parameter of the first HRP element extracted from 100 noisy Cessna profiles. |
in each profile is additive Gaussian noise with= 10°.

coarser scalg, — 1. These linear combinations are specified by the conjugate mir
filters h; andh,.” That is,

¢-a(x) = 2 hynle(x — 27n) (35)
P10 = 2 hlnldy(x — 27n). (36)

Note the following important properties of the wavelet packet dictionary. First, eleme
of the wavelet packet dictionary will still be labelgg, wherey is now a joint index over
scale, translation, and frequency. This is in contrast to the cubic b-spline dictionary wit
was indexed only by scale and translation. Second, dictionary elements at a given sca
the weighted sum of elements at a finer scale. Recall that the HRP algorithm devel
in Section 3 required only that each dictionary elemgpt,have an associated de(k)
which containsy plus the indices of the finer scale elements which when propel
weighted and summed yielfl,. Thus, the wavelet packet dictionary is appropriate for us
with HRP.

5.2. Simulated Examples

In this section, we show that HRP with wavelet packet dictionaries is also able to ext
signal structure and highlight the strengths and weaknesses of HRP with wavelet pe
dictionaries. Note that the HRP algorithm with wavelet packet dictionaries exactly
before and the intuition developed for cubic b-spline dictionaries translate in a strai
forward way to wavelet packet dictionaries.

5 We have useti, andh, to refer to the conjugate mirror filters which are usually referred to asdg. This
notation was used to avoid confusion with our dictionary elemgnts
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FIG. 14. Results for the carbon signal. (a) The carbon signal which consists of the sum of four diction
elements. (b) The HRP decomposition which resolves all four elements. (c) The BP decomposition which
resolves all four elements. (d) The MP decomposition which blurs the elements of the signal.

5.2.1. The carbon signal. Just as was the case for cubic b-spline dictionaries, HRP
able to resolve two elements from a wavelet packet dictionary which are closely spe
in time. Consider the signal carbon shown in Fig. 14a. This example is similar to
example considered in [2]. This signal is the sum of four elements: a Dirac, a sinusoid,
two wavelet packet atoms which are closely spaced in time. The dictionary used
Symmlet wavelet packet dictionary. We will use a time-frequency plane to display
decompositions chosen by each technique. In the time-frequency plane, each elem
represented by a rectangle where the weight of the element in the decompos
determines the darkness of the rectangle, the scale of the element determines the d
sions of the rectangle, and the frequency and translation determine the location. Fi
14b shows the time-frequency plane representation of the elements chosen by HRP
four elements of the signal are clearly visible: the horizontal line is the sinusoid, |
vertical line is the Dirac, and the two rectangles are the two wavelet packet atoms wi
are closely spaced in time. Thus, the HRP decomposition consists of precisely tl
elements used to synthesize the signal and is a sparsity preserving decompos
Similarly, the BP decomposition shown in Fig. 14c resolves all four elements. The H
and BP decompositions are identical, but HRP improves on the BP computation time
a factor of four. In contrast, the MP decomposition shown in Fig. 14d is not spars
preserving. The MP algorithm is able to extract the sinusoid and the Dirac, but is un:
to resolve the two elements which are closely spaced in time. Instead of choosing the
wavelet packet elements, MP chooses five elements that are clustered around the c
location but do not match the physical features of the signal.
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FIG. 15. (a) The gong signal. (b) Time-frequency plane for HRP. (c) Time-frequency plane for BP. |
Time-frequency plane for MP.

In the wavelet packet dictionary, it is also possible to construct a signal which is the ¢
of dictionary elements which share scale and translation characteristics but diffe
frequency characteristics. HRP is unable to resolve elements which are closely spac
frequency. The HRP similarity measure is defined in terms of finer scale elements wi
cover a wider frequency range. The finer scale elements yield even less frequ
resolution than the original coarse scale element. It follows that HRP as we h
developed it will be unable to resolve elements which are closely spaced in freque
One can imagine, however, developing an algorithm analogous to HRP to res
elements close in frequency. To summarize, the BP algorithm provides better decor
sitions but requires more computations in general. In a number of cases where e
resolution in space or resolution in frequency is desired, HRP does as well as BP but
a much smaller computational burden.

5.2.2. The gong signal.Figure 15a shows a gong signal. As was mentioned |
Subsection 4.2., this type of signal with a sharp attack followed by a slow decay
important in several signal processing applications. Again, the ideal decomposition w
capture the attack with elements well localized in time and would capture the corl
frequency of the modulation. Further, the ideal decomposition would not introdt
elements prior to the attack of the signal. That is, it would not introduce a pre-echo ef
which is particularly disturbing for audio signals.

Figures 15b—15d show the time-frequency plane results for HRP, BP, and MP, res
tively. The signal was analyzed using a wavelet packet dictionary constructed from
Daubechies six tap wavelet. We begin by discussing the BP decomposition. BP capt
the point of the attack by placing several elements which are concentrated in time arc
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FIG. 16. Rates of decay of the three methods.

t = 0.25 where the attack of the signal begins. In addition, BP does not place &
elements prior to the = 0.25 andtherefore the decomposition does not exhibit
pre-echo effect. The elements in the BP decomposition with0.25 capture the correct
frequency of the modulation and are well concentrated around this frequency. Thus
gives a decomposition which qualitatively displays the structure of the signal. The H
decomposition again captures the point of the attack by placing several elements whic
concentrated in time arourtd= 0.25. HRPdoes not include any elements prior to the
attack of the signal. However, qualitatively one might say that HRP does not do as \
as BP in capturing the correct frequency of the modulation since the HRP elements
t > 0.25 are not awell concentrated around the correct frequency of the modulation. N\
introduces several elements prior to the attack of the signal. That is, the MP decompos
includes several elements with< 0.25, prior to the attack of the signal. As a result, there
will be subsequent “non-features” in the reconstruction. Although the elements before
attack have a small weight, they significantly impact the reconstruction. Thus, the
reconstruction exhibits this pre-echo effect. Further, the MP decomposition is not as
concentrated around the correct frequency of the modulation as BP. Comparing the
of decay of the three methods (see Fig. 16), we see that BP decays at a rate faste
HRP. In conclusion, HRP does not surpass BP in the quality of the decompositic
However, HRP provides reasonable decompositions without the intensive compute
that may be required by BP.

6. HRP COMPUTATIONAL COMPLEXITY

The HRP algorithm may be efficiently implemented by sampling the scale/shift spe
Recall the notation for the dictionary isg{,/|y € T'}. Suppose we construct a reduced
dictionary {gy|y ¢ I'g}. For the cubic b-spline dictionary, the reduced dictionary ha
scales) which are integers in the range j = log,(P), whereP is the length of the
signal, and 2evenly spaced translations. This reduced dictionary has a tofakoPP —

1 elements. LeH be the set of functions which form the subfamilies for all elements
the reduced dictionaryd = { g;} for i € I, andy € I'r. The HRP algorithm isitialized
by computing(f, g;) for all g; € H and(g,, g;) for all y € I" and allg; € H. This
initialization requires a one-time computation @fP?(log,(P))?) operations using the
FFT. The HRP similarity measu f, g.) for y € I'r may then be computed B(KC)
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operations wherg is the cardinality of the sét (k). The element which maximizesy( f,
gy)| over the reduced dictionary is an approximation to the element which maximi:
IS(f, g,)| over the unreduced dictionary. The element which maximigd, g.)|
unreduced dictionaryy.,,, could then be found using a Newton search strategy. Usil
(15), the inner productéRf, g;) for all g; € H can be computed as

<Rf1 g|> = <f1 g|> - S( f, gy0)<gyO! g|> (37)

Since each of the terms on the right hand side of (37) has been previously stored
calculation of(Rf, g;) for all g; € H takesO(KC) operations. Extending this argument,
we see that each iteration tak@gKC) = O(2PK) operations. The number of iterations
will typically be much smaller thai.

For the wavelet packet dictionary, the size of the reduced dictionaZy=sP log,(P).
This reduced dictionary has scalesvhich are integers in the range® j = log,(P),
27Ip frequency bins for scalp and 2 evenly spaced translations for every scale an
frequency bin. HRP using the wavelet packet dictionary can be initializ€(RAlog,(P))
operations by computingf, g;). Each iteration for HRP with the wavelet packet
dictionary requires the computation 8fR" f, g,), the computation ofg,,,, g;), and the
computation of(Rf, g;). This is a total ofO(KC) = O(KP log,(P)) operations per
iteration whereX is the cardinality of the sdt (k). Again, the number of iterations will
be much smaller thaR.

7. CONCLUSION

Existing approaches from function approximation did not meet our feature extract
goals. MP failed to resolve closely spaced features and BP was computationally inten
An alternative function approximation approach, HRP, was developed and demonstr
in this paper. In the same flavor as MP, HRP picks the most contributive element at
step. However, in HRP, the similarity function is modified to guide the decompositi
away from blurring adjacent features. The HRP similarity measure developed in this w
is one which is dominated by the worst local fit. We have demonstrated the HRP algori
on simulated and real 1D functions. Further, the exponential convergence of HRP
finite discrete functions was proven. Future research directions include a demonstratic
object recognition using HRP features and the extension of the HRP algorithm to
functions.

APPENDIX A: THE HRP SIMILARITY MEASURE

The element which maximiz¢R" f — R"~* f|| under constraints (16) and (17) also
maximizes the new similarity measui( f, gy)| as given in (12) and (13). Consider the
first stage residuaRf and letR, f be the residual produced by choosing some dictional
elementg,. That is,

R,f=f-sfg)g, (38)
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where$(f, g,) is a scalar. It follows that

IR, = £l = [S(f, g,)l. (39)

We begin by showing that for any dictionary elemestf, g,) as defined in (12) and (13)
maximizes|R, f — f| under constraints (16) and (17). Assume for now that

<f1 g|>
(9,, 9

>0 forall g; € 1. (k). (40)

For any dictionary element, constraint (16) may be simplified as

KR, f, gn| = [(f, gpl forall g, € 1,(k) (41)
IKf, gl — S(f, 9,49, 90| = [{f, 9 (42)
<gy1 gl> -
1-5(f,g,) 7o) =1 (43)
_ 2t
0=sit.g)= (9, O’ ()

where the last line follows because of (40). Further, for any dictionary element, constr
(17) may be simplified as

sign((Rf, g)) = sign((f, g))  forall g; € 1,(k) (45)

(Rf, giXf,g)=0 (46)

«(f, g0 — S(f, g,)<gi g))(f, @) =0 (47)
<f, g|>

S( f, gy) N <gy1 g|> , (48)

where the last line follows because of (40). The same derivation can be followed thro
for the case wheréf, g;)/(g,, g;) < 0 for all g; € |(K). For the case where the ratio
(f, 9)/{g,, g;) does not have the same sign forgllc 1 (k), the only value of5(f, g.)
which meets both constraints is zero. Thus, for any dictionary eleightg.) as defined
in (12) and (13) maximizegR, f — f| under constraints (16) and (17).

Further, the single dictionary element which maximi#Bsf — f|| under constraints
(16) and (17) is the same one which maximiz86f, g.)|.
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