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ABSTRACT: There are a number of applications in which linear noise models are in- 

appropriate. In this paper, the use of bilinear noise modela in circuits and devices is 

considered. Several physical problems are studied in this framework. These include circuils 

involving varying parameters (such as variable resistance circuits constructed using Jield- 

effect transistors), the effect of switching jitter on sampled data system performance and 

communication systems involving voltage-controlled oscillators and phase-lock loops. In 

addition, several types of analytical techniques for stochastic bilinear systems are con- 

sidered. Speci$cally, the moment equations of Brockett for bilinear systems driven by white 

noise are discussed, and closed-form expressions for certain bilinear systema (those that 

evolve on abelian or solvable Lie groups) driven by white or colored noise are derived. 

In addition, an approximate statistical technique involving the use of harmonic expansions 

is described. 

I. Zntroduction 

Although linear models are extremely useful in many applications, there 
are large classes of problems of practical importance for which such models 
and the associated analytical techniques are inappropriate. It is therefore of 
interest to determine classes of nonlinear models that are of practical 
importance and that lend themselves to detailed analysis. The class of 
bilinear systems is such a class. A number of authors (1-17) have investigated 
the properties of deterministic and stochastic bilinear systems and have 
developed analytical tools that are almost as powerful as the corresponding 
tools for linear systems. The mathematical techniques used in these studies 
have varied, but the tools of Lie thoery and harmonic analysis have been 
particularly useful (1-5, 8-16). 

In this paper, we investigate the use of stochastic bilinear models in the 
study of certain networks and devices. The treatment is by no means a 
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thorough investigation of this subject; it is rather our intention to indicate 
the value of stochastic bilinear models. To this end, we present a variety 
of physical systems that can be modeled by noisy bilinear systems, and we 
then discuss several techniques for analyzing such models. In addition, 
several simple examples are included to indicate how these tools can be 
applied. 

II. Random Bilinear Systems 

The deterministic bilinear model studied in (l-5) is 

k(t) = A, -+- g u&t) Ai 1 x(t), (1) 
i=l 

where the Ai are given n x n matrices, the ui are scalar inputs and x is 
either an n-vector or an n x n matrix. As discussed in [l], we note that 
Eq. (1) is general enough to include the case of additive control-i.e. by 
state augmentation we can reduce an equation of the form 

2(t) = 
[ 
B, + 5 Ui(t) Bi x(t) + C”(t) 

i=l I 
(2) 

to an equation of the form (1). Also, we note that if we apply bilinear feed- 
back to the system (I)-i.e. if we take 

u&t) = vi(t) c; x(t) + w&t), (3) 

where x is a vector, the vi and wi are controls and cl is the transpose of Ci, 
our system equation becomes 

A,+igl[vi(t)c:x(t) +w,(t)IAi dt). 
I (4) 

This equation involves products of state variables, and by including several 
feedback paths around our original bilinear system we can obtain arbitrary 
polynomials in the state variables. Such models will be important later 
when we consider several systems that contain product-type nonlinearities 
or involve feedback around bilinear systems. 

The system of primary interest to us is that given by (1) ‘in which we 
allow the ui to be stochastic processes. In considering such an equation, one 
must be careful to use the appropriate stochastic calculus. That is, while the 
rules of Stratonovich calculus are identical to the usual rules of calculus, 
the physically more appealing Ito calculus requires certain “correction 
terms” [see (21) for details]. For instance, if u(t) is a vector zero mean white 
noise process with 

E[u(t) u(s)] = R(t) s(t - s) (5) 

104 Journal of The Franklin Institute 



Analysis of Bilinear Noise Models in Circuits and Devices 

the Ito stochastic differential analog of Eq. (1) is (8, 12) 

&(t) = A,+; ,! Rij(t) AiAj dt + 2 A,dv,(t) z(t), 
Z&l 1 i=l I 

where v is the integral of u [i.e. v is a Brownian motion]. 
Note that there are no correction terms to Eq. (1) if u is “smoother” 

than white noise. For instance, this is the case if u is generated by a finite 
dimensional linear diffusion process 

d&t) = H(t) t(t) dt + G(t) dw(t) + a(t) dt, (7) 

4) = fl5(% (8) 

where 01, P, G and H are known and w is a standard Brownian motion 
process (E[dw(t)dw’(t)] = Idt). Also, if we augment the state x with the 
variable 5 [x by itself is not a Markov process, but the pair (x, 5) is], our new 
state equation involves products of state variables. Finally, we note that, 
as in (l), one can consider the matrix versions of Eqs. (1) and (6)-i.e. 
replace the n-vector z(t) with the n x n matrix X(t), with initial condition 
X(0) = I. We then have 

x(t) = X(t)x(o) (9) 

and thus, assuming that x(0) is independent of the noise, by studying the 
matrix versions of (1) and (6) we can obtain statistical results for the vector 
version with arbitrary initial conditions. 

ZZZ. Linear Networks with Random Parameters 

Let a(t) be the vector of stochastic parameters of a linear network, and 
suppose that the network is described by the state equations 

i(t) = A[4t)l x(t) + B[&)l u(t), (10) 

y(t) = c[4t)l x(t) +D[41 u(t). (11) 
As indicated in Section II, we assume that a(t) is a vector stochastic process; 
a(t) may be either a vector white noise [as in Eq. (5)] or a correlated process 
generated by a linear diffusion process [as in Eqs. (7) and (S)]. If the system 
matrices in Eqs. (10) and (11) depend linearly on 01 (and 01 is correlated), we 
have the noisy bilinear equations 

i(t) = A, + 5 ai Ai 1 I z(t) + B0-t 2 a{(t) Bi 
I 

u(t), 
i=l i=l 

y(t) = Co + 2 ai Ci 1 [ X(t) + Do + E ai Di 
I 

u(t). 
i=l i=l 

(12) 

If 01 is a vector of independent white noises, we must model the network 
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with the bilinear Ito equations [see Eqs. (5) and (S)] 

dz(t) = A,dt+ E&A;dt+ :A,d/3,(t) 1 [ x(t)+ &dt+ $&d,%(t) 
i=l i=l 1 u(t), (14) 

i=l 

do = Ccdt + ~ tCi Ai dt + ~ Cid13i(t) x(t) + D, dt + ~~~~i dial U(t) (‘5) 
i=l i=l 1 [ 

(where g is formally the integral of y). 
An example of a class of electrical networks that give rise to noisy bilinear 

equations such as Eqs. (12)-( 15) are networks containing junction field- 
effect transistors (JFET’s) used as voltage-controlled resistors (VCR’s) 
(23,24). The field-effect tetrode (25), thin-film transitor (TFT) (23) and 
MOSFET may also be used as voltage-controlled resistors, and models 
similar to the one which we will develop are applicable to these devices. 

Consider the JFET volt-ampere characteristics in the region before 
pinch-off, where the drain source voltage V,, is small. These characteristics 
are a family of straight lines through the origin with slope equal to the 
drain-source conductance g,, which is, to a close approximation, a linear 
function of the gate-source voltage V,,. In fact, we have 

ga = WLS-V,), (16) 

where K is a function of the geometry of the channel, and the pinch-off 
voltage VP is the negative voltage that removes all free charge from the 
JFET channel. For our purpose here, it is sufficient to consider a simplified 
model of the VCR which neglects noise and high frequency capacitive 
effects (24), as in Fig. 1. 

By incorporating VCR’s, we now construct an example of a noisy bilinear 
network, illustrated in Fig. 2. Assume that we have three identical VCR’s 
with noisy gate-source voltages K(t), G(t), G(t). These noisy voltages are 

vGs-i 9 = K’VGs-$1 

FIG. 1. A voltage-controlled resistor. 

FIG. 2. A noisy bilinear network involving VCR’s 
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assumed to be correlated noises generated by a second network containing 
shot and thermal noise sources, which can be modeled as white, Gaussian 
stochastic processes (22). Neglecting all other noise sources in both networks 
and assuming that the operational amplifiers in Fig. 2 have infinite gain, 
infinite input impedance and infinite output admittance, the network is 
described by the state equations 

or 

210) = - JW#) - v,l xl(t) - mw) -&I %W, (17) 

%P) = - aF;(t) -&I %(O (18) 

& A,,+ $v,(t)A$ 1 x(t). (19) 
i=l 

This noisy bilinear equation evolves on a solvable Lie group (26). We analyze 
this case in detail in Section VII. 

IV. Switching Jitter in Sampled Data Systems 

Consider the system depicted in Fig. 3. We have a linear system with 
transfer function G(s), which we assume has the time-invariant realization 

k(t) = Ax(t) + bv(t), (20) 

y(t) = c’x(t). (21) 

Assuming perfect operation of the sample and hold, we have 

v(t) = u(kT), kT<t<(k+l)T, (22) 

u(t) = r(t) -Q(t). (23) 

Therefore, we have 

x[(k+ 1) T] = exp (AT)x(kT) + 
(J’ 

rexp [A(T - t)] dt bu(kT). (24) 
0 i 

One source of noise in sampled data systems is “switching jitter”-i.e. 
the physical devices used as switches have inherent irregularities that lead 

T Sample u(kT) Y 

Hold 

FIG. 3. A sampled d&a feedback system. 
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to randomness in switching times (27). Therefore, suppose there is a change 
6, in the kth switch time. Let xk be the state at the kth switch time. Then, 
to first order in S,, Eq. (24) becomes 

X k+I = exp (AT) (I + AS,) xk + (s aexp[A(T-t)]dt+exp(AT)Sk bu,. (25) 
0 I 

For simplicity, assume that r = 0, then u = - Kc’x, so Eq. (25) is a discrete 
time stochastic bilinear system, where 6, plays the role of the random input. 

One important problem related to sampled data systems is the problem 
of stability (28). For instance, the equations we are considering are general 
enough to allow us to study pulse-amplitude modulation systems (PAM) and 
pulse-width modulation (PWM) systems in the quasi-linear (unsaturated) 
range (29-31) and perhaps such switched electrical networks as d.c. to d.c. 
converters (32). In all of these systems the question of stability about some 
operating point is of great importance. A great deal of effort (28-32) has 
been devoted to the study of deterministic aspects of the stability of these 
systems, but relatively little is known about effects of stochastic phenomena, 
such as switching jitter, on system stability [see (30) for examples of some 
rather complicated and as yet unexplained simulation results for a PWM 
system ; these phenomena may be due to system randomness]. 

Returning to our bilinear model including jitter effects, we note that 
Nelsen (27) found that for tunnel diodes the 6, can be taken as an independent 
sequence of identically distributed Gaussian random variables. This is 
essentially a shot noise effect. Nelsen also found a flicker noise (l/f) jitter 
phenomenon associated with “reverse” switching [see (27)], but for the 
present treatment we will concentrate on the shot noise problem [note that 
our present setting can handle flicker noise effects if we use the model of 
Horowitz (35) that produced l/f noise as a linear combination of the outputs 
of a bank of linear filters driven by independent white noises]. 

Some of the techniques that we will present in Sections VI-VIII can be 
adapted to consider discrete time bilinear models, such as Eq. (25) ; however, 
since we are essentially concerned with continuous-time models in this paper, 
we will derive a continuous-time analog of (25) that can be studied instead. 
Of course, such an analogue can be useful only in certain cases. For instance, 
if the switching time T is substantially smaller than any of the system time 
constants, the overall system may closely resemble a continuous-time 
system [note that this requirement-that switching frequency be much larger 
than system bandwidth-is one of the conditions that is often assumed 
when studying PWM stability in the quasi-linear range (30)]. Letting T 
become infinitesimally small and assuming that 6, = dw(t), where w is a 
Brownian motion process with 

E[dw2(t)] = p(t) dt 

we obtain the stochastic differential equation 

dx(t) = {[A - Kbc’] [dt + dw(t)] + ;q(t) [A - Kbc’12 dt)x(t), 

(26) 

(27) 
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where the last term inside the braces is the correction term described in 
Section II. 

As an example, consider the case of a double integrator 

G(s) = +a. 

In this case, a realization of the forms (20) and (21) is obtained by taking 

A=[; ;], b=[;], c’=[l 01. 

Then, in the unity feedback (K = 1) case, we have 

A-W = 

dx(t) = 
- &(t) dt dt + dw(t) 

- [dt + dw(t)] - tq(t) dt 1 x(t). 

(28) 

(29) 

(30) 

As is well known, a linear system with system matrix given by (29) defines 
an oscillator, and the properties of (30) have been well studied (S-10). In 
fact, as discussed in (&lo), (30) defines an equation evolving on the Lie 
group SO(2) or, equivalently, on the unit circle X1 in the plane. 

Examining (30), we see that it appears to define a damped harmonic 
oscillator ; however, the damping terms ( - $a dt) are simply correction terms 
and do not provide any damping [see (99) and (36) for further comments 
on this mathematical question]. In fact [see (S-10) and Eq. (52)], the solution 
of (30) is 

x(t) = 
[ 

cos [t + w(t)] sin [t + w(t)] - sin [t + w(t)] 00s [t + w(t)] 1 WV (31) 

and we can interpret q as the reciprocal of the “oscillator coherence time” (37). 
Thus we see that in this case switching jitter can cause phase incoherencies. 

We close this section by noting that the procedure outlined here can be 
carried out for the case in which the circuit of interest has several switches. 
In this case, the continuous-time stochastic differential equations that arise 
involve several (usually independent) Brownian motion processes and will be 
of the form given in Eq. (6). 

V. Noise Models in Communication Systems 

As has been discussed in recent papers (11,36), bilinear models arise quite 
naturally in a number of communication applications. For example, we shall 
see that the dynamic model of a noisy oscillator involves stochastic bilinear 
equations. In addition, many receiver-demodulators involve the multipli- 
cation of the received signal (usually corrupted by additive noise) by a signal 
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at the same carrier frequency and 90” out of phase. Examples are homodyne- 
detectors for AM and FM signals (29) and phase-lock loops (PLL) for angle 
tracking and demodulation (37). Such multiplications of inputs (received 
signals) by internally generated signals are precisely the types of mechanisms 
that one finds in bilinear circuit models. For the sake of this discussion, we 
limit our attention to an analysis of certain angle modulation problems 
involving additive receiver noise. Similar analyses can also be carried out 
for AM problems and for communication problems involving nonadditive 
noise, such as the multiplicative noise model associated with Rayleigh 
fading channels (37). The reader is referred to (11) for results for some of 
these problems. 

Consider the situation depicted in Fig. 4. Let a(t) denote the time function 
that is to be transmitted via an angle modulation system. Assuming that 

FIG. 4. Illustrating an a,ngle modulation system, including modulator, 
channel and PLL demodulator. 

the power spectral density of a is a proper rational function, we can think of 
a as being generated as the output of a “shaping filter” driven by white 
noise 

d&t) = Ff(t) dt + G dw(t), (32) 

a(t) = h’&), (33) 

where w is an m-dimensional standard Brownian motion process. As illus- 
trated in Fig. 4, we wish to take the signal a(t), perhaps perform some further 
filtering on it and then transmit the resulting signal O(t) via a phase modula- 
tion system-i.e. we wish to transmit the signal 

s(t) = J(2P) sin [w, t + e(t)], (34) 

where W, is a carrier frequency. Note that O(t) = a(t) corresponds to simple 
phase modulation and e(t) = a(t) leads to a frequency demodulation problem. 
One method for generating a signal such as (34) is to use a voltage-controlled 
oscillator (VCO) with e(t) as the input. As discussed in (37), such a device is 
subject to phase drift or incoherencies which are often modeled as Brownian 
motion. In this case, the signal that is actually transmitted is 

s(t) = J(2P) sin [w, t + O(t) +$(t)]. (35) 
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A dynamic model of the VCO is 

[ :$;I=[ 

- +qdt W, dt + de(t) + d+(t) x1(t) 
- w,dt + de(t) + d+(t) -&qdt I[ I xk?(t) 

3 (36) 

s(t) = J(2P) xz(tL (37) 

where q/2 is the appropriate correction term. That is, if we write 0 = 0i + 8,, 
where e1 is of bounded variation and e2 is not (i.e. it contains Brownian 
motion terms), we have 

q dt = E[dBz,(t)] + E[d+2(t)]. (38) 

Note that regarding 4 and 4 as noisy inputs, (36) represents a stochastic 
bilinear system. In fact, comparing (36) with (30), we see that (36) also 
defines an equation on SO(S). 

The signal that is received and is to be demodulated [to provide an estimate 
of a(t)] is 

t(t) = s(t) +h(t), (39) 

where k(t) is an additive noise process due to extraneous signals reaching 
the receiver and to electrical noise in the receiver circuitry. In many cases, 
the noise h(t) is well modeled as a white noise process [e.g. shot and thermal 
noise are often quite important; see (29)]. 

One often used demodulation system is the PLL depicted in Fig. 4. The 
PLL estimates the phase of s(t) and obtains an estimate of a(t) based on this 

phase estimate. As illustrated in Fig. 4, we generate an estimate 8+$ of 
the frequency deviation (from w,) of s, and generate the signal 

E(t) = J(2) cos [w, t + (Ott) +$(t) + $qt)] (40) 

as the output of a VCO driven by b+$ and by the VCO phase drift $. For a 
detailed discussion of the PLL, refer to (37). We note only that the VCO in 
the feedback loop of the PLL is described by a stochastic bilinear equation 
similar to (36), and the product i(t) E(t) represents a bilinear feedback as in (3). 
Thus the overall system depicted in Fig. 4 consists of linear and bilinear 
components and, as discussed in Section II, we can show that the overall 
system equations contain only polynomial-type nonlinearities. 

We note that the PLL filter in Fig. 4 is only an approximation to the 
optimal demodulator. As discussed in (ll), the optimal demodulator is an 
infinite dimensional system consisting of an infinite bank of coupled tracking 
filters, each of which can be described by bilinear equations. Furthermore, 
finite dimensional approximations with polynomial dynamics (arising from 
polynomial feedback around several of the bilinear tracking filters) are 
derived in (ll), and performance improvements over the optimal PLL are 
reported. 

VI. Moment Equations for Bilinear Systems Driven by White Noise 

One approach to the analysis of systems driven by white noise involves 
the computation of differential equations for the moments of the state x(t). 
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Our approach follows that of Brockett (3,4). We assume that the n-vector 
x(t) satisfies the Ito equation 

W) = 
i 
-4, + t$liA$ x(t) dt + ,&$ x(t) d/W), (41) 

where the fli are independent Brownian motion processes with unit variance. 
Recall that the number of linearly independent homogeneous polynomials of 
degree p in n variables [i.e. f(c~r, . . . , cc,) = cpf(xl, . . . , cc,)] is given by 

(42) 

We choose a basis for this N(n,p)-dimensional space of homogeneous 
polynomials in (x1, . . . , xn) consisting of the elements 

J[( p”, ) ( p-$ ) . . . ( p-p1;--I)] 

x xpxg? . . . (43) 

If we denote the vector consisting of these basis elements (ordered lexico- 
graphically) by xbl, then 

II x IIP = II &I IL (44) 

where 11 x II = J(x’x). It is clear that if x satisfies the linear differential equation 

k(t) = Ax(t) (45) 

then C&J] satisfies a linear differential equation 

i@‘(t) = Ablx[p’(t). (46) 

The matrix A,, can be easily computed from A, and in fact is a linear function 
of A [so that (OLA +B),, = CXA,,+B,,]. For an interpretation of A,, as a 
linear operator on symmetric tensors of degree p, see (4,38). We note only 
that the eigenvalues of A,, are all possible sums of p eigenvalues of A. 

Brockett has shown that if x satisfies (41), then x[pI satisfies 

dx[p’(t) = AoI,, +; .E (AiJ2 
1 

x[P’(t) dt + 2 AilP, apI d/$(t). (47) 
2-l i=l 

Taking expected values, we get the pth moment equation 

~ww)l~ = [ AOrpl + f 2 (Ai[pl)2 I E[x["l(t)I Aop E[x[P’(t)I. (43) 
2=1 

Note that the pth moment equation is linear and is uncoupled from the 
other moments. Thus, we can state the following stability definition and 
theorem (15) : 
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Dejinition 1 

A vector random process x is pth-order asymptotically stable if 

limE[x@l(t)] = 0. 
t+m 

(49) 

The process is pth order stable if E[x[“l(t)] remains bounded for all t. A system 
described by a stochastic differential equation is pth-order (asymptotically) 
stable if the solution x is pth-order (asymptotically) stable for all initial 
conditions x(0) independent of the noises driving the equations and such 
that E[@l(O)] < co. 

Theorem I 

System (41) is pth-order asymptotically stable if and only if D, has all 
its eigenvalues in the left half-plane [Re (X) < 01. The system is pth-order 
stable if D, has its eigenvalues in Re (X) < 0, and if h is an eigenvalue with 
Re (h) = 0, then X is a simple zero of the minimal polynomial of D, (39). 

For examples illustrating this result, see (3), (14) and (15). 

VIZ. The Colored Noise Case-Closed Form Expressions 

We now wish to consider the moment analysis of the stochastic equation 

(X(t) = bo +jiai(t) Ai] X(t), X(0) = 1, (50) 

where 01 is a correlated Gaussian vector stochastic process and X is an n x n 
transition matrix (40) [note that (50) can be interpreted as an ordinary 
differential equation]. 

In this case the procedure of the previous section does not apply, as X is 
no longer a Markov process. If we augment the state with the noise variables 
to obtain a Markov process (as described in Section II), our dynamical 
equations involve products of state variables. In this case, the moment 
evolution equations become coupled and closed-form expressions cannot be 
found in general. 

There is a special subclass of equations of the type (50) for which we can 
obtain exact closed-form expressions for the moments of X (in terms of the 
statistics of a~). This class can be easily described with the aid of several 
Lie theoretic concepts. 

Definition 2 

A matrix Lie algebra 9 is a subspace of the vector space Rnxn of n x n 
matrices such that if A, BE 2, then their commutator product 

[A,B]pAB-BA 

is also in 9. Given any subset 
Lie algebra which contains S. 
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We refer the reader to (l-5 and 8-16) for detailed discussions of the 
significance of Lie-theoretic concepts in the study of the properties of 
bilinear systems. We note only that the structure of the Lie algebra 

{&A,, . . ..&}A is intimately related to the dynamical characteristics of 
Eqs. (l), (6) and (50). In the rest of this section we will explore the conse- 
quences of restricting attention to a particular subclass of Lie algebras. 

Dejnition 3 

A matrix Lie algebra 3 is solvable if the derived series of subalgebras 

_cp) = 2, 

z(nfl) = [ytn), Zp(n)] A {[A, B] j A, BE _LP(n)}, n > 0, 1 
(51) 

- 

terminates in (0). 2 is abelian if _!Z’ (l) = (0). We note that 9 being solvable 
is equivalent to the existence of a complex nonsingular matrix P such 
that PBP-1 is upper triangular (zero below diagonal) for all BE_Y (26). 

One can show (14-17) that closed form expressions for the moments of X 
in (50) can be obtained if {Ao, . . . , Am}A is solvable. We will not describe the 
details of this procedure and refer the reader to the references. Instead, we 
will illustrate the analysis by means of examples. The simplest example 
occurs when {Ao, . . . , Am}A is abelian, in which case the solution of (50) may 
be expressed as 

Thus the statistics of X are completely determined by those of the integral 
of the noise process 01. This result is also applicable to the case when 01 is 
white, and in particular to the examples of Sections IV and V which evolve 
on the abelian Lie group SO(Z) [ see (S-10) for further details]. 

Consider now the network of Fig. 2 and Eq. (19), which evolves on the 
solvable Lie group of 2 x 2 upper triangular matrices. The equation for the 
transition matrix is 

x(t) = 
[ 

qJ -WI Kv$ - v,(t)1 
0 my7 - K(t)1 I XV), x6-v = I, (53) 

where E(t) are assumed to be zero-mean jointly Gaussian correlated stochastic 
processes with known covariance. By a simple change of notation, (53) 

becomes 

B(t) = o 
[ 

- wdt) - w&) 
- %@I 1 

x(t), X(O) = I, (54) 

where w(t) = [wl(t),w,(t),w,(t)]’ has a mean value of -K&(1, 1, 1)' and 
known covariance P(t, T) = Ef{w(t) -&w(t)]) {W(T) - E[w(T)]}‘~]. Since 

X21@) = 0 
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for all t, (54) implies 

&r(t) = -%(t)X1l(% X,,(O) = 1, (55) 

-L(~) = - %(t) -&&) - +2(t) X&), X,,(O) = 0, (56) 

&z(t) = -WI(t) X,,(t), X,,(O) = 1. (57) 

The solutions to (55)-(57) are 

(58) 

(59) 

X,,(t) = exp[ -j:q(u)dGj. (60) 

In order to evaluate the expected value of the exponential of a random 
variable, we make use of the characteristic function (21). The characteristic 
function of a Gaussian random vector with mean m and covariance P is 

M,(u) = E[exp (iu’x)] = exp (iu’m - &‘Pu). (61) 

Since the exponents in (58)-(60) are Gaussian random variables, we evaluate 
the characteristic function of the exponents at u = -i to obtain 

(62) 

(63) 

The closed-form expression for E[X,,(t)] is somewhat more complicated, but 
it is based upon the same principle. First we define the Gaussian random 
vector y(7) = [x(T),w~(T)]’ where 

Z(T) = - 
j 

1 
w3(u) da - 

7 s 

T 
wl(u) da. 

0 
(64) 

Then if we denote the mean and covariance of y(7) by m(~) and &(T), 

respectively, some simple calculations show that 

m(t) = [KV, t, - KVp], (65) 

’ + ss ‘Mu,, 4 do, da,, 
0 0 

(66) 

&Z(T) = &U(T) = j)&> 0) do + j$du, 7) da, 

&k) = P&T, 7). 

(67) 

(68) 
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If e, = [l,O] and e2 = [0, 11, we have 

W%(4exp Cz(7)lI = ezRcd~) exp [eId~)lI = -i(+W [Mv(uI, %,)I lc-i,o) 

= WQ +&WI exp WQ t + Q4M~)l. (69) 
Thus E[X,,(t)] satisfies 

&&a(t)] = 
s 

‘[KG +&la(T)] exf’ [K& t + +&n(T)] d7, (70) 
0 

where &is and &a2 are given in (66) and (67). The solution x(t) of (19) is then 
X(t)x(O) and, if x(0) is independent of the noise process, 

-@[WI = -@X(t)1 JPW)l. (71) 

The analysis of this section (and its extension to arbitrary solvable Lie 
algebras) can be used to study the stochastic stability of systems containing 
multiplicative colored noise-i.e. once we have obtained closed-form 
moment equations, we can study these expressions to determine stability 
conditions as a function of system parameters (15-17). For instance, in the 
above example suppose we assume that V,, V, and V, are independent with 
E[K(t)] = 0, i = 1,2,3, and 

E[E(t)&(t+T)] = U~eXp(-ailT/), ai>O, i = 1,2,3. (72) 

In this case the system is first-order asymptotically stable if and only if 

V, < - max (K4/a,, Ko2,/a,). (73) 

In the next section we discuss a method of approximate analysis for 
systems for which these exact techniques are not applicable. We also refer 
the reader to (17) for a sufficient condition for the stochastic stability of a 
particular system of the form (50) in which {Ao, . . . . A,} is not solvable. 
The method of analysis involves the “bounding” of the original system by 
a second system of the type (50) in which the relevant Lie algebra is solvable. 
The generalization of this technique to other than this one example remains 
an open problem. 

VZZZ. Approximate Analysis via Harmonic Expansions 

If the stochastic bilinear system of interest does not have the solvable 
Lie algebra structure described in the preceding section, or if we are con- 
sidering a system with polynomial nonlinearities (e.g. one obtained from 
a feedback or series interconnection of bilinear systems), we cannot in general 
obtain closed-form expressions for the moments of the state of the system. 
One basic reason for this is that the moment equations in the colored noise 
or polynomial nonlinearity case are “coupled forward” (i.e. the evolution 
of the nth moments depend on higher moments). In the last section we 
avoided this problem by obtaining integral expressions for the moments. 
However, in the general (nonsolvable) case, this trick does not work, and 
we are forced to seek approximate methods for moment calculation. 
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One such method that can be easily applied in the case of polynomial 
nonlinearities is the cumulants method (41, 14). In this method we approxi- 
mate higher order moments as a function of lower ones by truncating the 
Taylor series expansion of the logarithm of the characteristic function of the 
state. We will not discuss this method here and refer the reader to (41, 42 
and 14) for descriptions of the approach and comments on its relationship 
to other methods such as the so-called second-order or Gaussian approxi- 
mations (21). 

In this section we illustrate another approach which can be applied to 
problems in which the state is restricted to a compact subset of Euclidean 
space. This approach requires the use of harmonic expansions of probability 
distributions, and we will describe the basis for the method via an example. 
We note that Fourier series methods have been utilized by several authors 
(10, 11, 18-20) to study phase tracking and demodulation problems (such 
as those in Section V), and our example involves the utilization of techniques 
similar to those used in these references. At the end of this section we will 
describe an extension of the concepts devised here and in (10, 11 and 18-20) 
to larger classes of problems. 

Consider the communications problem of Fig. 4 and Section V. An 
important problem is the determination of the statistics of the PLL phase 
error. For example, if the received signal is of the form 

dr(t) = sin [w, t + w(t)] dt + dN(t), (74) 

where w and N are independent Brownian motions, and if the PLL is first 
order (the linear filter feeding back to the VCO is a constant gain), then the 
baseband model for the error in the estimate of the phase of the received 
signal is of the form (37) 

de(t) = -,sine(t)dt+pdv(t), (75) 

where E(dv) = 0, E(dv2) = dt, and 01 and /3 are known constants (a > 0). 
Fokker-Planck techniques have been used to obtain a closed-form 

expression for the steady-state density of e (37), but no such exact description 
exists for the transient behavior of the statistics of the phase error. As such 
information would be extremely useful in studying the phase acquisition 
characteristics of the loop (37), it is worthwhile considering approximate 
analyses of the transient behavior. If we expand the density for e(t) in a 
Fourier series 

p(e, t) = & I$ c,(t) exp (ine), (76) 
7100 

c:(t) = E{exp [&e(t)]} = c_n, (77) 

we see that in order to determine p, we must determine the coefficients c,, 
which provide a useful set of “moments” of e. 

A straightforward calculation (21) yields the evolution equation 

C,(t) = - &n[c,+,(t) -c,_,(t)] - &bzf32 c,(t). (78) 
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Note that these equations are linear and coupled forward and thus must be 
truncated or approximated in order to be solved. Several approximation 
methods have been suggested for problems such as these. One possibility 
(20) is to assume 

c, = 0, Vn>N, (79) 

but this approximation is invalid if our phase error is small. For example, 
if we know the phase exactly, then all of the c, are of the same order. Thus 
in high signal to noise ratio situations, the approximation (79) may not 
yield an accurate picture of loop behavior during acquisition. However, if 
we assume that the initial phase error is uniformly distributed on [0,2~], 
then c,(O) = 0 for all n # 0, and the approximation (79) may yield useful 
information about the early stages of acquisition. 

Another class of approximation methods involves the use of an “assumed 
density” [see (ll)]. In this approach one assumes that the density p(e, t) has 
a particular form that allows one to express higher order coefficients in 
terms of lower order terms. For example, an important density in the study 
of random phase problems is the folded normal density 

P(o,t) = &-iTaexp(-:n2y)exp[in(O-q)]. (80) 

This density has many of the properties of the Gaussian density in Rn [see 
(9-11, 13, 43 and 44)], and the real variables 7 and y can be given the 
interpretation of the mode and a measure of the spread of the density, 
respectively. For such a density, we have 

c, = 1 Cl p-1) cm. (81) 

If we use this approximation in (78), we can obtain a closed set of equations 
for ci, . I . , c,_~. For example, if we take n = 2, we obtain the equation 

c, = :01[~c1/2c~-l]-$!32c1. (92) 

We note that this approximation will also yield useful information about 
the early stages of acquisition [c,(O) = 0 = >c,(O) = 0 from (Sl)], and it may 
perform better than the approximation (79) in providing a good picture of 
the overall acquisition behavior of the loop. However, its behavior as we 
approach steady state is not completely accurate. The reason for this comes 
from an examination of the analytical expression and the shape of the 
steady-state density p(e, co) (37),[ pp. 57-591 

p(e,a) = 
exp[( 2a/f12)cose] 

2nIo(2a/p) ’ 

where IO is the modified Bessel function of the first kind of order 0 (45). The 
Fourier coefficients of (83) satisfy the relations 
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which can be solved (45) 

(35) 

Thus the steady-state density is not a folded normal, and thus the approxi- 
mation (81) is incorrect in the limit, and the resulting approximate analysis 
will lead to an incorrect steady state (if it reaches a steady state at all). 
However, the density (83) has a shape which is quite similar to the bell- 
shaped folded normal, and thus the approximate analysis obtained by use 
of the folded normal approximation may prove to be quite useful. 

A final approximation method is suggested by the exact steady state 
density itself. Choose N such that 

is sufficiently small [this can be done since the density is continuous (46)]. We 
then solve (78) for ] n ] < N using the steady-state value for cN in the C,,_, 
equation. Noting that the resulting set of linear equations are stable, we 
see that the solution of these equations will approach the correct steady- 
state values for cl, . . . , c~_.~. As we are essentially starting out with cN # 0, 
we may not obtain as accurate a picture of the initial part of the transient 
as if we used one of the other two approximations which have ~~(0) = 0 
[note that for N large cN(co) is very small, however]. Thus, we may wish to 
use one(of the first two approximations initially and then switch to this 
latter method in order to obtain a better picture of the overall transient 
behavior. 

The type of analysis described for this example can be extended to higher 
order phase-lock loops and more complex modulation than the Brownian 
phase modulation in (74). However, these higher order problems require 
more than straightforward Fourier analysis of phase error (e.g. we may have 
to take into account the presence of an unknown frequency offset). An 
indication of how one might extend our analysis to these more complex 
cases is given in (11) and (20). 

Finally, we note that the methods of analysis illustrated in this section 
can be extended to a much larger class of bilinear and nonlinear stochastic 
problems in which the tools of harmonic analysis on compact groups and 
homogeneous spaces can be used (16). For example, if we are studying 
rotation in three dimensions, one might consider an equation of the form (13) 

k(t) = [&4 W)] x(t)? 

Al=( ;1 i !), A,= 

(8’3) 

(I a -I’). A3=( i p, ;), (87) 

where the ci represent angular velocities (containing stochastic components) 
and x is either the position of a particle over a sphere (if x is a 3-vector) or 
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the orientation of a rigid body with respect to inertial space (if x is a 3 x 3 
orthogonal matrix). Refer to (13) and (16) for more on this particular problem 
and note here only that much as Fourier series methods proved useful in the 
one-dimensional rotation (i.e. phase process) case, the use of spherical 
harmonic analysis is most useful in the three-dimensional case. In fact, one 
can obtain analogs of the PLL in three dimensions (13, 47). 

We also note that there is a strong relationship between the x[pl moment 
equations in the white noise (Section VI) and the corresponding harmonic 
expansion of the density for x (assuming that the range of x is compact). In 
fact, in the white noise case the harmonic coefficients do not couple forward 
and one can in principle evaluate the lower order coefficients exactly. 
Refer to (3,4 and 16) for more on this question. 

IX. Conclusions 

In this paper, we have described several techniques that can be used to 
study the properties of certain random nonlinear models-the class of 
bilinear stochastic systems. We have also given several examples to indicate 
how such models might arise in the examination of nonlinear circuits and 
devices. We have seen that several concepts from the theory of Lie groups 
and algebras and from the theory of harmonic analysis are extremely useful 
in the study of such systems. 

We also note that many of the techniques described in this paper for the 
analysis of stochastic systems can also be used in the synthesis of nonlinear 
estimation systems for bilinear stochastic models. These results are discussed 
in (g-13), (16) and (18-20). Furthermore, with the development of new 
results (48, 49) relating nonlinear systems to equivalent bilinear systems, it 
appears that many of the results described in this paper and in the references 
may be extended to far larger classes of nonlinear stochastic systems. 
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