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A Multiscale Hypothesis Testing
Approach to Anomaly Detection and
Localization from Noisy Tomographic Data
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Abstract—n this paper, we investigate the problems of anomaly at finer resolutions. In addition, the anomaly detection and
detection and localization from noisy tomographic data. These |ocalization problems raise issues that surface in many other

are characteristic of a class of problems that cannot be optimally contexts. Thus, a second objective of this paper is to provide
solved because they involve hypothesis testing over hypothesis ) ’

spaces with extremely large cardinality. Our multiscale hypothe- some 'ns,'ght into these more general 'SSU?S'

sis testing approach addresses the key issues associated with this 1N particular, a fundamental characteristic of a large class

class of problems. A multiscale hypothesis test is a hierarchical se- of signal and image analysis problems is that they involve

quence of composite hypothesis tests that discards large portionshypothesis testing over hypothesis spaces of extremely large
of the hypothesis space with minimal computational burden and cardinality—so large that enumeration of all hypotheses and

zooms in on the likely true hypothesis. For the anomaly detection hausti - . tati IV infeasible. Thi
and localization problems, hypothesis zooming corresponds to exhaustive comparison 1S computationally ‘infeasible. S

spatial zooming—anomalies are successively localized to finer andcharacteristic is present in the specific problems considered
finer spatial scales. The key challenges we address include how toin this paper, since the enumeration of all possible anomalies
hierarchically divide a large hypothesis space and how to process |eads to a very large hypothesis space. Large hypothesis spaces
the data at each stage of the hierarchy to decide which parts 554 grise in other applications including detection of regions

of the hypothesis space deserve more attention. To answer the _ . . " .
former we draw on [1] and [7]-[10]. For the latter, we pose and of interest for automatic target recognition from wide-area

solve a nonlinear optimization problem for a decision statistic imagery as well as model-based object recognition.

that maximally disambiguates composite hypotheses. With no  Such problems thus invite efficient hierarchical approaches.
more computational complexity, our optimized statistic shows Qur approach achieves great efficiency by discarding large
substantial improvement over conventional approaches. We pro- parts of the hypothesis space with minimal computational

vide examples that demonstrate this and quantify how much burd d L I t of the hvpothesi
performance is sacrificed by the use of a suboptimal method PUrden and zooming in on a smaller part or the hypothesis

as compared to that achievable if the optimal approach were Space to be scrutinized more extensively and, perhaps, ex-
computationally feasible. haustively. We call this hypothesis zooming methodology a

Index Terms—Anomaly detection, composite hypothesis testing, mumsc‘_”“e hypothesis te,SMSHT)' As depicted in _F'g' 1, an .
hypothesis zooming, nonlinear optimization, quadratic program- MSHT is a scale-recursive sequence of composite hypothesis
ming, tomography. tests that increasingly disambiguates hypotheses at finer scales
and zooms in on one element of the global set of hypotheses,
H £ {H,,}MZ}. At the top (or coarsest) scale, the MSHT
divides H into a family of possibly overlapping subsets, and

N THIS PAPER, we present a new approach to hierarchicghen chooses one of these subsets, discarding all the others.

multiresolution anomaly detection and localization fl’OﬂSimi|ar|y' at subsequent scales, the remaining hypotheses are
noisy tomographic data. This problem is of interest in severgivided into subsets, all but one of which are discarded.
areas of active research. For example, it arises in nondestrNgte that the statistical decision problem at each scale is a
tive evaluation as well as adaptive tomographic reconstructigbmposite hypothesis testing problem in which one composite
from limited data in which one attempts to use degrees Rypothesi§ H, C H, is selected for finer scale investigation.
freedom frugally by localizing areas of interest to be imaged There are several questions that must be addressed in formu-
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Fig. 1. MSHT. Composite hypotheses indicated by dashed lines are discarded, shaded ones retained.

S hyp we could solve the problem optimally using a generalized
- likelihood ratio test (GLRT) [14] as follows. At a coarse
level in the hierarchy, we would enumerate all hypotheses,
H,,, process the data to choose among these optimally, and
then choose the composite hypothedf,, that contains this
optimal choice. Since an underlying assumption for problems
of interest here is that complete enumeration and comparison
is unacceptably complex, we limit our consideration to the
class of decision rules that have acceptable computational
complexity. By no means do we provide a complete solution
to the problem of finding the best decision rule under a
) ~_ complexity constraint, since ranking the relative complexities
Fig. 2. Coarse-scale subdivisions. Subdivis®n corresponds td,.. R1 of different decision rules is difficult and the characterization
is shaded and with a solid border. of all decision rules with complexity less than some specified

level is both ill posed and prohibitively complex. What we
been used in [9] and [10] for the detection and localizatiotho provide, however, is a solution within a specific class of
of anomalies in inverse scattering data and is standard in thecision rules that includes what can be thought of as the
image segmentation community [1], [7], [8]. We also adopnatural” choices. In the process, we highlight issues that are
this method for dividing our hypothesis space by definingf importance in any composite hypothesis testing problem.
composite hypothesi&l,, as containing all hypothese#],,,, For anomaly detection and localization in imaging appli-
which correspond to anomalies with support within a region &#tions, there is an obvious first choice for the decision
the image domain which we denaf®,. Fig. 2 illustrates this Statistic and decision rule to be used at a particular stage

at the coarsest scale at which the regidtisare suyp X shyp in the hypothesis zooming procedure. Specifically, for each

in size. Composite hypotheses at finer scales have smaflefpPosite hypothesidf,,, at that stage, compute a likelihood

cardinality and, in the anomaly detection and localizatiopfatistic for the hypothesis that an anomaly has support over

problems, naturally correspond to regions of smaller area &t¢ €ntire region &,,. The decision rule is simple: keep

that hypothesis zooming and spatial zooming coincide. "€ composite hypothesi#/,, corresponding to the largest
The second important question is: Once composite hypotﬁ'g—e“hmd statistic:

ses are defined, how should the data be processed at each

stage in the hierarchy in order to determine which composite

hypotheses to discard? We need to address this question in li Afs an aside, we note that for problems in which the data are in a different
t?omain from the image (e.g., tomographic problems), the calculation of the

of the _faCt thaf‘t CompUtal:'onal compIeX|ty IS a ke.y CONCerlelihood statistic is most easily done directly in the data domain rather then
In particular, if computational load were not an issue, thesy first forming an image and then calculating the statistic [13].

B hyp
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Approaches of this type have been proposed and used in
the literature [9]-[12]. A principle objective of this paper is
to demonstrate that we can achieve much better performance
with the same level of complexity by choosing the decision
statistics in a significantly different manner. To understand this,
note that the statistic mentioned in the preceding paragraph
corresponds to a hypothesis that, in some sense, “covers”
all of the hypotheses that comprise a composite hypothesis
H,,. Thus, this statistic sacrifices sensitivity to each individ-
ual hypothesis inH,, in order to achievesome sensitivity
to all of the hypothesis inH,. In contrast, the statistics
used in the computationally intractable but optimal GLRT
have, as we shall sesignificantlygreater sensitivity to each
of hypotheses in a composite hypothesis. Our aim is to
find statistics that approach the sensitivity of those used
in the GLRT, but with the same compqtatlonal S|mpI|§:|ty Fig. 3. Tomographic projections with strip indicator functiofigx, y).
as that required for the “natural” decision rule described
previously.

In this paper, we limit ourselves to a class of decision Il. PROBLEM FORMULATION
rules based on the computation of a single affine function of
the measured data for each composite hypothesis. HowewerObservation Equation
we design these affine statistics to maximize their utility for \we model tomographic data collection with the equation
the job for which they will be used. In particular, since
each such statistic will be used to decide whether or not to gi :/ fla,y)Si(z,y) de dy + v; (1)
discard its associated composite hypothesis, we aim to design R?
a statistic that maintains strong sensitivity to the hypothesgsere ¢; is the ith datum, f(z,y) is a real function of two
that comprise the corresponding composite hypothesis ajshtial variables representing the objegtjs the ith sample
has minimal sensitivity to all other hypotheses. Using thisieasurement noise. The functiéi(z,y) is one over theth
philosophy, we are led to an interesting optimization problersirip and zero elsewhere. Data acquisition with these functions
the solution of which is a decision statistic that is quitg illustrated in Fig. 3. We |eNq5 be the number of projections
different from and superior to the natural choices. In particulaangular positions) and we assume these positions are equally
these optimized statistics do a far better job of increasirgaced in the interve, 7). The number of equally spaced
separation between composite hypotheses. samples per projection angle . Finally, for computational

In this paper, we develop the MSHT methodology angurposes, the object(z,v), is discretized in a rectangular
optimized statistic design for the tomographic anomaly dgixel basis so that
tection and localization problems and also present results to
guantify how well our methods work. Of particular interest to
us are quantifying i) how much performance is sacrificed by
using a suboptimal method as compared to that achievable if
exhaustive hypothesis enumeration and comparison were covrere p;(x, y) is one over thejth pixel and zero elsewhere
putationally feasible; and ii) how much better our approadind there aréV;, pixels corresponding to & x [V field.
is compared to one based on the natural choice of decisiorCombining (1) and (2) we find that
statistics. In addition, as we have stated, one of our objectives g=Tf+v 3)
in this paper is to lay out what we believe to be the key issues
in large hypothesis testing problems more generally, and whereg, f, andv are vectors containing the data values, field
the conclusion to this paper we provide a discussion of sorpiel values, and noise values, respectively. The field vector,
of the issues and questions which we believe our work bI’iI’]ﬂSis |exicographically ordered ang and v are formed by
into sharper focus. stacking the values obtained at each projection. For example,

This paper is organized as follows. In Section Il wg = [g7" gI' ... g% |7 whereg; contains the data values
outline all modeling assumptions and set up the problemasthekth projection angle. The components of the maffix
considered in this paper. We discuss two types of decisiafe given by
statistics in Section lll—a conventional likelihood statistic
and our optimized statistic. Section IV includes pseudo-code [T];; :/ Si(z,y)p;(z,y) dz dy 4
for our MSHT algorithm and considers the computational R?
complexity of this and the optimal approach. Examplesr i = 1,.--,Ny,Ng and j = 1,---,N,. Equation (3),
are provided in Section V. Closing remarks and a discuseupled with whatevea priori knowledge we have about
sion of some complements and extensions are found and f, represents our observational model. The tomographic
Section VI. projection matrix, T, captures a discrete representation of the

TOMOGRAPHIC
DATA

IMAGE DOMAIN

Np
fy) =" fipi(e,y) (2)
j=1
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strip integrals. The application & to f is called the projection  Notice that, even when the background is whii& (s

of f. diagonal), the data are correlated due to the structure of the
tomographic projection matrixXT.
B. Models Fig. 4 illustrates an example of the kind of anomaly and

background field that are considered in this paper. Projec-

Our_ notlo_n of an anomgly_ is a localized region of the MaYns of £ are also shown with and without the addition of
domain which differs statistically from our prior set of expec-

. ) L “noise. Fig. 4(a) and (b) are views of the image domain while
tations of the image. Therefore, we statistically characten'z_ﬁ: 4(c) and (d) are views of the data domain
an anomaly-free background and define a parameterized clags' '
of anomalies. We model the field, as a superposition of a

field, f,, which contains, at most, a single anomaly from thig' Problem Statement

class and an anomaly-free background fi€ld, That is, The anomaly detection problem is to determine whether or
not f, is identically zero. The anomaly localization problem
f=1f,+15. (5) is to determine the values of the Sizgi, < s < Smax and

location (¢, 7) of the anomaly if indeed one is present. The
The anomaly field and background field are statistically indgptimal solution to these problems includes one hypothesis,
pendent. H,,, for each possible anomaly size,,, and each possible
The class of anomalies we consider is parameterized by|gbation of the anomaly’s upper left hand COMEiryy, jm ),
intensity, ¢, a size,s, and a position(i, ) as follows. The where
anomaly field,f,, is zero everywhere except over a square
patch where it is constant. Our notation is $m € {Smin, Smin + 1, -+, Smax — 1, Smax},  (9)
irnv"rn S 1727"'7N_37n 1 2- 10
£, = cb(s,i,) ©) Himadn) €14 v 4o
The optimal decision statistics are likelihood ratios and the
wherec > 0 and b(s, %, j) is the lexicographically ordered optimal decision rule is a likelihood ratio test. While the
indicator vector associated with @ x N field which is zero optimal test is straightforward, it is computationally infeasible
everywhere except over the x s support area with upper for all but trivial-sized problems. Therefore, we propose the
left corner at pixel(i, j) whereb(s, 4, j) takes the value one. MSHT as an efficient and effective alternative.
The size,s, and location,(z, ), are unknown. We assume
knowledge, however, of the minimum possible sizg;,, and D. Composite Hypothesis Structure

tlhe<ma>.<|m<um zOSS'blezZ;‘“aX’ the anomaly can be where An MSHT has two main high-level characteristics: the form
= Smin = 8 S Smax ; of the composite hypotheses and the form of the statistics

While the class of anomalies we consider is restrictive, trhesed to decide which composite hypotheses to discard. In this

methodology we present in this paper can be applle_d to Othseerction, we define the form of the composite hypotheses. We
enumerable anomaly classes. We focus on anomalies that%:

constant intensity squares in some known size range for clat fer discussion of decision statistics to Section II1. For clarity
-NSity Sq . . ge 0 presentation and notational simplicity, we specify in detail
of presentation, since our main focus is on presenting a n W

methodology for large hypothesis testing problems and not ly the coarsest scale composite hypothesis test of the MSHT.

accurately model any particular type of anomaly e processing at other scales follows by analogy.
The background fieldf,, is a zero-mean, wide sense sta- Fig. 2 provides an interpretation of the composite hypothe-

. : . . _>*“Ses. Composite hypothest, contains hypotheses that corre-
tionary (WSS), Gaussian random field with known covanancsegond to anomalies with support entirely within thg, x si,

A. We consider two types of background covariance statistic ion denoted ag,,. For example, all hypotheses associated

in our examples in Section V—uwhite and fractal. The fraCt%NFi?rI] anomalies with suppoentirely within the shaded region
background has a power spectral density of the fdrfw? bp y g

wherew is frequency. Additional structural details are foun(lj“”‘t?elecﬂlz1 belong toH;. We associate each composite hypoth-

. . . . < A - K . .
in [3] and [5]. We consider a fractal background because fractal with an indicator functiob,, = b(skyp, in, jn), Which is

: ; he over the regiork,,, and zero elsewhere. The composite
fields accurately model a wide range of natural textures [15]. . ) :
. S ypothesis regions overlap by at least,, — 1 pixels so that
The additive measurement noise,is assumed to be a zero- . . ) X .
. . " .~ each possible anomaly lies entirely within at least one region.
mean, white, WSS, Gaussian random vector with mten)slty_l_hiS ensures that — B U Ho U Ha U H
and is statistically independent of the background and anomaly i it
fields. Therefore, the data are jointly Gaussian, as folldws:
[ll. DECISION STATISTICS
g ~ N(cTh(s,i,7), Ag) (7) " In this section, we specify the form of the decision statistics
for the coarsest scale composite hypothesis test of a MSHT.
where The statistics at subsequent scales are easily understood by
_ T analogy. We will discuss two types of decision statistic. The
Ag = TAT" + AL (8) first type, discussed in Section llI-A, is a coarse-scale likeli-
3The notationx ~ A’(m, P) means thak is a Gaussian random vector 100 statistic of the form used in [9]., [10] for problem.s similar.
with meanm and covarianc®. to the ones addressed here. As discussed in Section I, while
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Fig. 4. (a) Fractal background;,. (b) Superposition of the background shown in (a) and an anomaly near the upper left corner. (c) Projection of the
anomaly plus background field. The horizontal axis is the projection nuraligr = 32). The vertical axis is the sample numbeN, = 50). (d)
Measurement noise has been added to the projections.
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this statistic is natural and intuitive, it sacrifices considerabdnd the resulting decision rule consists of choosing the largest
sensitivity to achieve computational simplicity. We use thisf these four values.
statistic as a benchmark against which to compare what weNote that at this coarsest scale in the MSHT, we have that
call anoptimized statistiavhich we discuss in Section I1I-B. N N N N

(Thi)" Az Th; = (Th;)" A 'Th;, 4,j=1,2,3,4.
A. Coarse-Scale Likelihood Statistics (12)

As discussed in the introduction, the coarse-scale likelihoqgis follows from the symmetry of the composite hypothesis
statistic associated with composite hypothefis is the 10g- regions, the fact that we have a complete set of data, and
likelihood ratio to discriminate between a single hypothesige wide sense stationarity @f Consequently, at this level
for a coarse-scale anomaly with support over the entire regi@@ can drop the second term in (11), as it has no influence
R,, and the hypothesis that no anomaly exists. To derive tBg the decision rule. Note, however, that relations such as
coarse-scale likelihood Sta“SUC we associate with eHQh (12) need not hold at Subsequent Sca|es since the Composr[e
a coarse-scale anomaly; = b,, whereb,, as defined in hypothesis regions do not have the requisite symmetry. Despite
Section 11-D, is the indicator function faf,,. this, we have found by simulation that the two sides of (12) are

From (7) and standard results in hypothesis testing [14], W@ proximately equal. They differ by only 5-10% depending
find that the |Og-|ike|ih00d for each of these four hypotheses& the exact parameters of the prob|em (i_e_7 whether the
given by an affine operation on the observed dgtayamely packground is fractal or white, the size of the regions, etc.).

While nothing in the sequel relies upon the approximate

~ - _ 1. - R equality of the two sides of (12) at finer scales, we mention

ta(g) = (Tb")TAglg - §(Tb")TAngb"’ it to illustrate that one can, to some degree of approximation,
n=1,2,3,4 (11) use a linear rather than an affine statistic at all scales.
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B. Optimized Statistics and all pairs(j,, k,) € A;. This quadratic program may be
In this section, we design a statistic that is no morsPlved using, for example, methods described in [6]. Since the

computationally complex than the coarse-scale likelihood raff@!ution depends only on the data covariance matrix and the

but is much more sensitive and discriminating. The statistic wgucture of the hypothesis space, but not on the data itself,
design is affine in the observed data and has the form solving the quadratic program is an off-line procedure. Once
y is found, a; is given by

li(g)=alg+d;, i=1,234. (13) A-1QT%
a; = &_ (21)
Roughly, our objective in designing such a statistic is to choose . /yTQAg—lQTy

the vectora; and the constant; to force’; to be significantly . o . _

larger, on average, wheH; is true than when it is false. ThatNote that in optimizing over all affine functions of the tomo-
is, we would like?; to have a large separation between its med#aphic data, we implicitly consider the coarse-scale likelihood
when anyH; € H; is true and its mean when arfyy, ¢ H; statistic as well as all affine functions of any affine reconstruc-
is true. Since doubling the magnitude af will double this tion of the image. Therefore, preprocessing the data with any
difference in mean values, we normalize this difference by ti@éfine reconstruction routine (like convolution backprojection)
standard deviation of;. cannot result in a better statistic.

More precisely, we define
B IV. MSHT ALGORITHM AND COMPUTATIONAL COMPLEXITY
mi; 2 E[f; | Hj] = cal Th; + d; (14)
o? 2 var[/; | Hj] = a;ngai (15) A. The MSHT Algorithm

) Given the hierarchical hypothesis space decomposition de-
2
wherg we have mtroducepl t_he shortha_md notat_lmp — _ scribed in Section II-D and either choice of decision statistic
b(sﬂ"“’ki) for the _anomaly|nd|cator_f_unct|on asso_uate_d W'_”Eiiscussed in Section Ill, the MSHT algorithm detects and
hypothe3|sHj ' No_t_|ce that fche co_ndmonal mean 1S affine MNocalizes an anomaly in the coarse-to-fine manner described
a; while the conditional variance is quadraticap Also note in Section I. At each scale other than the finest one of
that the conditional variance is independent;of four subdivisions of the remaining part of the image domain

Tr;le criterion \I'Ye gddeFr’t Is to rEaX|m|ze ';he ;Ivorstl-{}:ase d("‘?s selected for finer-scale investigation. The scale-recursion
smallest) normalized difference between; for H; € H; and o inates at a scale at which the optimal iegeasible and
my, for Hy, & H; whereg; is used for normalization. That at which the regionsk, are no smaller tham ., X Smax.

is, we choosea; and d; as the solution to the optimizationrhen having localized the anomaly to an area significantly
problem smaller than the entire image domain, the optimal test is
AT ST . MG — Mg performed, which includes only hypotheses associated with
a7 di]’ =arg e o (16)  anomalies in that area. Finally, the statistic value associated
with the selected hypothesis is compared with a threshold.
where A; £ {(j, k) | H; € H; and Hy, ¢ H;}. Substituting in If it is larger than the threshold, the associated hypothesis is
the definitions of (14) and (15), we find that the constapnt, selected, otherwise it is declared that no anomaly exists.
cancels and the optimization problem reduces to The following pseudocode summarizes the algorithm. The
- - inputs to the algorithm are the region to investigate (initialized
4 — argmax min o Th, —a Tbk_ (17) to the entire image domain) and the scale number (initialized
a  (jk)eA valAga to one). The output is a hypothesis H or the decision that
R no anomaly exists.
Since we are free to choosk to be any value whatsoever we pseudocodedd = MSHT(/, R, scale):
shall setd; = 0 in the sequel. Also notice that the anomaly 1) If scale is finest possible, perform optimal test on

intensity ¢ is independent of, j, k, d, anda and so can anomalies inR. Call the selected hypothests and the
be dropped from the optimization problem. As is shown in associated statistic value Then
Appendix A, using Lagrange duality theory, this problem can

: ~ | H, if £>n
be reformulated as the quadratic program H= {“no anomaly,” otherwise. (22)

y =argminy’ QA 'QTy (18)  2) Otherwise, subdivide the regiddinto four overlapping
Y T squares where the amount of overlap is at leggt. — 1.
subject to{e y=1 (19) Denote these squardd, for n = 1,2,3, 4.
yz0 3) For each subdivisiodk,, compute the statistié,,.
where 4) Let k be such thatl, > 4,, Vk # n. Call H =

MSHT(Zy, Ry, scale+ 1).
(Tbjl - Tbkl)T T( B )

Q2 |[(Thy, =Thi,)" | and e2[1 1 1 --- 1 B. Computational Complexity

Our primary motivation for applying an MSHT to the
(20) anomaly detection and localization problems is that the optimal
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hypothesis test is too computationally costly. The MSHT

formulates fewer hypotheses than the optimal test and isg
therefore more efficient. In this section we quantify this claim (?_t')
by calculating the computational complexity of the optimal ¢

algorithm and the MSHT algorithm. To do so, we will compute 510 I

the number of operations per hypothesis and the number ofg
hypotheses formulated in each algorithm. ®

Both the optimal test and the MSHT formulate affine statis-
tics that requireO(N4N;) operations (adds and multiplies). §
This result follows from the fact that an affine statistic is T
an inner product between two lengif, NV, vectors plus the ‘51
addition of an offset term. Since each hypothesis requires the;
same constant amount of work fany affine statistic, the £
overall complexity of either algorithm scales with the number 2

8

]

4

T
Z10't

of hypotheses formulated regardless of what affine statistic is 10°

used. Hence, we take the number of hypotheses formulated as
a measure of algorithmic complexity.

831

2_

OPTIMAL

MSHT

10
LINEAR DIMENSION OF IMAGE (N, LOG SCALE)

10°

First consider the optimal test. Suppose the linear siZ®- 5 Complexity of the optimal algorithm (top curve), and an MSHT
ottom curve). The vertical-axis is the number of hypotheses (log scale), the

of the square field isV and that we know the minimum horizontal-axis is the linear dimension of the field (log scale). Bgrg: = 4

and maximum possible size of the anomady;;, and s,
respectively. The number of hypotheses formulatety/ig; =
S (N —r+ 1) = O(N?).

Now consider the MSHT algorithm. Its computational com-

and spin = 1.

TABLE |

DETAILS RELATING TO THE EXAMPLES PRESENTED INSECTION V

plexity is a function of, among other parameters, the scal@ection | Ficld | Background | Ny | Ns | Swin | Smax | Snom | Ston
at which the hypothesis zoom terminates and exhaustive . Size F"Zd scale 1 | scale 2
. . . AV 16 x 16 | fractal & white | 16 | 24 4 4 10 N/A
enumeration of all remaining hypotheses is conducteql (SteRr 511516 ot T e 0 N/A
1 of the above pseudocode) and the amount by which thev-c [ 32x32 fractal 32 | 50 | 4 4 18 11

regionsR,, overlap. We may neglect the effect of overlapping
in our order-of-magnitude calculation, since the overlapping is

on the order Obyax AN smax < N. Therefore, the number of feasible. We focus on the coarsest scale because it is the scale
hypotheses formulated &/\sut = O(log V) 4+ C where the )

constant(”, accounts for the number of hypotheses formulateac} which the composi_te. hypothgses a_re largest in car_din_a!ity
in the finest-scale exhaustive enumeration step. If the fine@f‘—d’ therefore, most difficult to disambiguate [10]. That s, itis

scale exhaustive enumeration step is conducted at a scal@tdfiS stage that the MSHT should have its greatest difficulty
which the R,, are on the order 0., X s... then C is and, thus, is most in need of maximally sensitive statistics.

negligible sinces,.. < N. In Section V-C, we conclude with examples illustrating the
Fig. 5 displays the number of hypotheses for the optimgerformance of a “full” MSHT algorithm (one that continues
and MSHT algorithms as a function @ for s,,;, = 1 and past the coarsest scale and successively localizes the anomaly
smax = 4. For the case illustrated, it is assumed that the the finest possible scale). This full algorithm includes three
exhaustive enumeration step of the MSHT is conducted ateales, the two coarsest scales are composite hypothesis tests.
scale at which theR,, are syax X smax. AS Can be seen in By the third scale, the anomaly has been sufficiently localized
Fig. 5, the difference in the number of hypotheses considerggl that full enumeration and comparison of the remaining
is quite large. For example, for a 512 512 image (i.e., pypotheses is feasible. Hence, an optimal test on the remaining
N = 512), the MSHT considers about 30 hypothésasile hypotheses is performed at the third scale of the full algorithm.
the optimal algorithm considers just over®l8ypotheses. The data in all our examples are simulated based on the
models presented in Section II-B and we include examples
V. EXAMPLES corresponding to two different field sizes. The examples in

In this section, we present several types of examples. Firsgctions V-A and V-B correspond to a 6 16 field while
in Section V-A, we introduce a means of directly comparine examples in Section V-C correspond to a;332 field.
the sensitivity of a coarse-scale likelihood statistic with thadthe parameters of the problem addressed in each section are
of an optimized statistic. In Section V-B we investigate thdetailed in Table I. Throughout this section, a “false alarm”
performance of the first, coarsest-stage of an MSHT algorithmacurs when no anomaly exists but a “no anomaly” decision
in several cases of differing data quality for problems a§ not returned by the algorithm. A “detection” occurs when an
sufficiently small size so that comparison to the optimal test émomaly exists and the true composite hypothesis (Section V-

4Under the assumptions stated in this section (i.e., ignoring overlap etcB)) or hypOtheSIS (Sectlon V-C) 's selected.

1t iheseBEfOre proceeding to examples, we present the definitions of

the number of hypotheses considered in an MSHT is the number of hypothese - . :
considered per scale (four) times the number of sodtes, (N/smax)). signal-to-noise ratiofSNR) andanomaly-to-background ratio
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12 Column

@ (b)

Fig. 6. p1; with a white background at SNR: 1. (a) For the coarse-scale likelihood statistic. (b) For the optimized statistic. Pixek) corresponds
to f. = b(4,m,n).

, as follows: comprise the composite hypothesls. The unshaded portions
(ABR) foll ise th ite h hedis. Th haded

trace(TATT) of these plots correspond fd; ¢ H, i.e., these are values of
A d

SNR= (23) p1; we would like to be significantly smaller. In both figures,
trace(AI) plot (a) corresponds to the coarse-scale likelihood statistic and
ABR 2 frfa ' (24) Plot (b) to the optimized statistic.
trace(A) The shape of both plots in Fig. 6 exhibit precisely the

The SNR measures the relative power between the projeché@é of behavior we want. The value gf; is relatively
background and the additive noise, while the ABR measurBigh for H; € H, (shaded region) and relatively low for

the relative power between the anomaly and background fields. ¢ Hi (unshaded region). Notice, however, that for the
optimized statistic [Fig. 6(b)] there is a more abrupt transition

A. Direct Comparison of Statistics between the shaded and unshaded regions as compared to
e coarse-scale likelihood statistic [Fig. 6(a)]. Note that at

S - e is coarsest stage (and at any stage prior to the final one),
of the optimized statistics over the coarse-scale Ilkellhooo r objective is todiscard hypotheses andiot to make an
statistics. What we will show is that the optimized statis-

absolute decision about the presence or absence of an anomaly

tics are more sens!t|\{e and @scnmmau_ng than th? Coarsfisis is considered at the final stage). As a consequence,
scale likelihood statistics. We illustrate this by examining the . - A
It is the sharpness of the transition and thedative (not

standard-deviation-normalized mean values of the two Sta.téﬁisolute) sizes of thp,; between the shaded and unshaded
tics conditioned on the hypotheses of a particular realization

of the anomaly detection and localization problems. For theoIons that are of importance. Thus, while it might appear

. that sensitivity is lost in Fig. 6(b) because the values in the
. . sﬁaded regions are somewhat lower than in Fig. 6(a), this
only the coarsest scale and we consider anomalies of size

Smin = Smax = 4. The comparison between the statistics wilt not the case. Indeed, because of the sharper transition in

be made for two types of background, fractal and white. |g._6(b), Fhe optimized sta_tistic does a significantly_ bette_r jqb
To make the comparison, recall the definitionsrof; and at disambiguating composite hypotheses, as we will verify in

5 . = . .. the next section.
7. The former is the mean value of statisfijcassociated with . . . .
= . . L o While Fig. 6 shows that there is some enhancement using
R;, which is depicted in Fig. 2 conditioned on hypothe&is th timized statistic for th f a white backaround
The latter is the associated variance. We define the standat i OF! t be statistic ﬁ i N casi ora 'de ackg Oll“' i d
deviation-normalized conditional mean as IS point becomes much stronger I we consider a correlate
background field as we do in Fig. 7. In particular, in Fig. 7 the
a Myj .
pij = —. (25) background has a fractal covariance structure. In the case of
ai Fig. 7(a), we see tha is sensitive to the wrong hypotheses.
The value of,; indicates how sensitivg is to hypothesig?;. That is, there existi;, ¢ H; and H; € H; for which i1, >
Figs. 6 and 7 illustrate values pf ; for the case of a white 11;. Moreover, there is no clear, sharp transition between
and fractal background respectivelySR = 1. The 2-D bar the shaded and unshaded regions in Fig. 7(a). Therefore, in
at position(m, n) in the plots of these figures corresponds tthe case of the fractal background, the coarse-scale likelihood
the hypothesis thaf, = b(4,m,n). The shaded regions of statistic is ineffective. Comparing Fig. 7(a) with Fig. 7(b) we
these 2-D bar charts are the areas we wish to be large; tba¢ that the optimized statistic is significantly better than
is, these correspond to valuesaf; for hypothesesH;, that the coarse-scale likelihood statistic—it is sensitive to the

. . . . . . .th
In this section, we illustrate in a direct way the superlorlty
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(@) (b)

Fig. 7. p1; with a fractal background at SNR 1. (a) For the coarse-scale likelihood statistic. (b) For the optimized statistic. @ixel) corresponds
to f. = b(4,m,n).

correct hypotheses and is highly discriminating between thoséh optimized statistics (middle curve in each plot); and

hypotheses that belong t; and those that do not. Thoughcoarse-scale MSHT algorithm with coarse-scale likelihood
we shall not provide the corresponding figures for the thresatistics (bottom curve in each plot). The anomaly considered
other coarse-scale composite hypothe§§§7 Hs, IL), the is f, = ¢b(4,6,6) where ¢ varies with the ABR. The

same conclusions apply. background is fractal and SNR 1. Table Il indicates the
number of hypotheses formulated for each of the three methods
B. Coarse-Scale Performance considered here.

In the previous section, we saw that the optimized statisticsF'g' 8 unquestionably illustrates the superiority of the opti-

do a significantly better job at discriminating coarse-sca Ized statistic over the coarse-scale likelihood statistic. At

composite hypotheses as compared with the conventional 16} i QBZS ;g?.s(;.(éa:)set'sgr?:)erm'\gsg; pir?rﬂﬁgcio:fgség?e
likelihood statistics. In this section we continue to illustrat@P % Isticoutp using

this point and also illustrate how much performance is lost l.(e“hOOd statistic by a wide margin. Indeed, in all but

using a suboptimal algorithm as compared with the optima'g' 8(2), the ROC's for the coarse-scale MSHT using coarse-

. : cale likelihood statistics do not stray far from a probability
(and computationally complex) GLRT. To make this Iatte?f detection of 0.2, the performance level théihd guessing

point, we must focus on a realization of the problem, which' & S

is sufficiently small so that the optimal test can be conducte%‘.:h'eveg' In fapt, even in F'.g'.S(a)’ at an ABR of 9.1, the
Therefore, as described in Table I, we continue to conside %arse-scalg likelihood Stat!StICS are not much better than
small field (16< 16) and only the coarsest scale. In contrast Ind guessing. These experimental results support the analyt-

. - . .cal on f the previ ion—th rse-scale likelih
betweens,,;, = 3 and spax = 4, inclusive® 9gp y

In this section, we compare the performance of three aqggggre;r.:lo tt?]i OS:}?rlrizdncséact)lfs'rlhcé coarse-scale MSHT with
gorithms for coarse-scale anomaly detection and localization, paring P W

One algorithm is the GLRT. The other two are similar to thgptimized statistics to the optimal GLRT provides us with a

coarsest scale of a MSHT. For these, statistics associated v%ﬁ”mt'f'ca.t'on of t_he perf"”‘.“?‘”ce loss due to the use of a
four coarse-scale regions (shown in Fig. 2) are computed. omputationally simpler decision rule. There are two pieces

largest is compared to a threshold. If it is above the threshof} é]l_r:ggn;art;onn ;OO?)XSQF;ET S#g: {ﬁ:gt-sé (‘)I'Ele ];:sr:'ﬁz;m)tsg
its associated region is declared as containing the anom ! 9 whi ' y mini

Otherwise, a “no anomaly” decision is returned. oYperformance as compared to the optimal test. For example,

In Fig. 8, we illustrate receiver operator characteristic> Fig. 8(a) indicates, the performance loss in using the coarse-

(ROCY curves at different ABR's for the three methodsscale MSHT with affine statistics at ABR’s of about 9 or larger
is quite small.

GLRT (top curve in each plot); coarse-scale MSHT algonthﬁ This comparison also identifies a range of ABR's over

®This means, of course, that, in contrast to the previous section, taghich the constraint of using a single affine statistic for each
optimized statistics are now designed to be sensitive to al 3 and all composite hypothesisﬁ is too severe, resulting in too great
ny )

4 x 4 anomalies. | f f lati h . | = |
6Note that an ROC curve for ahf-ary hypothesis test, unlike that for a loss of performance relative to the optimal test. For example,

a binary hypothesis test, need not go through the p¢int(detectio, the performance in Fig. 8(c) and even in Fig. 8(b) suggest that
Pr(false alarm) = (1,1) because more is required for a detection in the

M-ary hypothesis case. It is not enough that the null hypothesis is not choserf,Recall that there are five choices: “no anomaly” and the choice that an
the correct alternative hypothesis must be selected. anomaly exists in regio,, for n = 1,2,3,4.
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: . . . TABLE I
NUMBER OF HYPOTHESESFORMULATED BY THE
ALGORITHMS CONSIDERED IN SECTION V-B

I}/"f Algorithmn Number of Hypolheses Formulated
4 GLRT B 365

coarse-scale MSHT with coarse-scale likelihvod statistics 4
coarse-scale MSHT with optimized statistics 4

ey
T

e
o)

o
=)

i

statistic matched to each individual hypothesis. In contrast,
the coarse-scale MSHT algorithm using optimized statistics
as we have described it, uses a single affine statistic. An
obvious generalization is to useverat—say, four—optimized
o . . . ‘ ‘ . statistics for eachfIn, where each statistic is sensitive to a
033 0 02 04 06 08 1 different subset ofi,,. The resulting decision rule would then

PROBABILITY OF FALSE ALARM compute all 16 statistics and choose g corresponding to

@ the largest one. Fig. 9 depicts the result of applying such a rule

for the same cases shown in Fig. 8(b) and (c). We see from
Fig. 9 that this rule, which has four times the complexity of
e . the rule using a single statistic p&F,, has significantly better
(and in the cases shown nearly perfect) performance.

PROBABILITY OF DETECTION
I
ho

(=)
T

—_
T

o
©

C. Full Algorithm Performance

o
)

In this section, we illustrate an example for a full MSHT
s ] algorithm. In contrast to the problems considered in the
previous section, the one considered here is |dgédre field
is 32 x 32 and the anomaly considered fis = cb(4, 3,3)
wherec varies with the ABR. One optimized statistic is used
for each composite hypothesis in the tests at the first two
085 0 02 04 08 o8 1 scales of the algorithm. After the second scale, the anomaly

PROBABILITY OF FALSE ALARM has been localized to a 4 11 region, which is small enough

(b) that the optimal test can be performed over the hypotheses

corresponding to anomalies with support in that region. Further
details are provided in Table I. The background is fractal with
SNR = 1.

Fig. 10 illustrates ROC’s at two ABR’s. The top curve
corresponds to ABR= 5.1 and the bottom to ABR= 3.5. At
these ABR'’s, we see that performance is quite good, indicating
that the MSHT is indeed an effective way to navigate a large
hypothesis space to find the true hypothesis. At lower ABR's,
however, where performance is significantly below the level
we see here, additional statistics per composite hypothesis can
be used to increase performance levels, as discussed in the
previous section.

o
IS
.

PROBABILITY OF DETECTION
o
N

o
T

iy
T

o e e
kN o o]
. T .

PROBABILITY OF DETECTION
o
N

(=)
T

|
1@
oo
o

0 0.2 014 016 0j8
PROBABILITY OF FALSE ALARM ! VI. DISCUSSION AND CONCLUSION
(©) We have presented the multiscale hypothesis test with
Fig. 8. Comparison of three algorithms at different ABR's. In each plon“m'Zeq Sta.“St'CS as anew apprqach to the anqmaly.det-ecnon
ROC's for the GLRT (top curve), coarse-scale MSHT with optimized statisti@nd localization problems from noisy tomographic projections.

(middle curve), and coarse-sc_ale MSHT with coarse-scale likelihood statists have shown that, in certain data-quality regimes, this
(bottom curve) are shown. Five-hundred Monte Carlo runs were conduc

e ) ! ) ;
per data point and error bars are drawn plus and minus one standard devia&i’ﬂﬁ."amhma'a hypothesis zooming method can achieve good
The background is fractal and SNR 1. (a) ABR = 9.1. (b) ABR = 5.1.  performance with great efficiency. The key to achieving high

(€) ABR = 3.5. performance with low computational complexity is the design
highly selective statistics. We developed and solved an
timization problem for such statistics and, in several ways,
antified their superiority over conventional statistics.

at this range of ABR’s we need to consider more complé%{
decision rules to achieve near-optimal performance. The GLRP
and the optimization procedure we have described suggg‘é
a method fpr doing this. . Speuﬂpa!ly, the GLR~T involves 8This larger size prohibits the computation of Monte Carlo results based
the calculation ofmany affine statistics for eachi,,—one on the optimal test.
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Fig. 9. ROC's for the coarse-scale MSHT. For the top curves in each plot, four affine statistics were compufed per the bottom curves, one affine
statistic was computed. Five-hundred Monte Carlo runs were conducted per data point and error bars are drawn plus and minus one standard deviation.
The background is fractal, SNR: 1. (a) ABR = 5.1. (b) ABR = 3.5.

While we have developed the MSHT framework in the con- .
text of anomaly detection and localization from tomographic
data, we have touched on the fundamental issues relevant t01 1L
a broad class of problems—those involving large hypothesm
spaces. The key obstacles in dealing with large hypotheslg 4| .
spaces include how to organize the space for hypothesfs
zooming and how to process the data for efficient decisiom g g} ; 1
making. The MSHT framework as applied to the anomalys
detection and localization problems addresses these challengesg gl
and provides a guiding philosophy for solutions to similarﬂ—:'!3
large-hypothesis-space problems. Lo7t

In our development of the MSHT framework we have Q
imposed certain conditions, the relaxation of which suggest g gt 1
ways to achieve additional performance gain using the method-

ology we have described. For example, as we described in 08 . . . . . .
Section V-B, it is possible to generalize our approach by 02 0 R B OF MO SE R

designing several statistics per composite hypothesis. With this

extension, our approach provides a set of MSHT algorithri- 10- ROC's for the MSHT at two ABR's. Top: ABR= 5.1. Bottom:
ABR = 3.5. SNR=1, f, = ¢b(4, 3, 3) wherec varies with the ABR. The

ranglng from the S|mp|e3t (usmg one statistic per Composggckground is fractal, the number of Monte Carlo runs is 250 and error bars
hypothesis), to the fully optimal GLRT (using as many statise drawn plus and minus one standard deviation.

tics as there are individual hypotheses). This then provides a

systematic framework for identifying the minimally complexorrect composite hypothesis and ought to be redistributed. For
MSHT as a function of data quality and performance |evel. example, the next suggested composite hypothesis would not
Further extensions of our approach are also possible. fgglude hypotheses which are i but have a relatively low

example, in defining the MSHT, we have held the hierarchica{erage statistic value and would include hypotheses which are
hypothesis space decomposition fixed. For the problems @t in A but have a relatively large statistic value. Iterating
interest in this paper, the choice we have made (namellis process—i.e., redesigning the statistic to discriminate
defining H,, to correspond to anomalies in regid®,) is this new group of hypotheses from all others, identifying
natural. But, in more general problems, hypothesis spagfse that seem misplaced and redistributing them—provides
decomposition needs to be considered jointly with the da-systematic procedure for using our methodology to build
sign of decision statistics. In general, this is a prohibitivelgomposite hypotheses that are maximally distinguished by an
complex combinatorial problem. However, we expect thalgorithm using optimized statistics.

our framework can lead to feasible iterative algorithms for Finally, there are a number of ways to broaden the range
joint statistic design and hypothesis space decompositi@i. problems for which our approach is applicable. One way
An iterative procedure might start with an initial composités to relax the assumption that there is only one anomaly and
hypothesis (call itH) and its associated optimized statisticconsider multiple anomalies. One can apply our methodology
Then, using the type of information presented in Figs. 6 and multiple anomaly problems in two ways. The simplest
7, it can be determined which hypotheses are not placed in thed crudest way is to use the statistics designed for single
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anomalies but to retain multiple regions at each scale. Exaathaximize » and therefore implicitly maximizex? x. Hence,
how to decide how many regions to retain is an open problethe constraint”x < 1 is equivalent tox”x = 1.
Another, and more difficult approach, is to consider designingLet us call the optimal cost to the primal problet
optimized statistics that are sensitive to different numbeFor simplicity, we assume that exists and that < oc.
of anomalies in different areas of the image. Without thetroducing Lagrange multipliersr and ;, we define the
assumption of some additional structure this latter approakchgrangian cost function as
seems infeasible due to the combinatorics of the problem.

While we have focussed on a particular 2-D linear/Gaussian L(z,x,u,y) = z +y7 (Px — ze) + u(1 — x7x).  (30)
problem from tomography, we feel that the methodology

presented in this paper is applicable to a wider range of prafjyr aim is to find values for the Lagrange multipliers such
lems—Dboth linear/Gaussian and also nonlinear/non-Gaussigft maximizingL is the same as solving the primal problem.
For example, one could consider applying our optimizerg\ward this end we defind (1, y) A max. x L(z,X, 11, y).

tion procedure for statistics to nonlinear and/or non-Gaussifie function.J is the maximum of the Lagrangian cost as
problems by considering only second order statistical charagfynction of the Lagrange multipliers. It is straightforward
terizations. Three- and higher-dimensional problems could algpshow that in searching for thg and j: we must consider

be considered by appropriately changing the scale-recurspifly nonnegative values. It is also clear that the weak duality
division of the hypothesis space. For example, in three Qjationship,/(u,y) > 2, holds for all values of andy. The
mensions, one might define eight overlapping cubes rathgfa| problem attempts to find the smallest upper bound. In our
than four squares as shown in Fig. 2. The approach to findiggse it is not hard to show strong duality, i.e., that the smallest
optimized statistics would not change in hlgher—dlmensmn@bper bound is, in fact, tightmin, y J(11,y) = 2).

problems. . The dual problem therefore, is
Although our approach may be applied to other problems,

we have only explored those discussed in this paper. One i 97] = argmin J(p, y) (31)
feature of the problems explored here which we believe By ’

is relatively important is that tomographic data drghly . >0

nonlocal. It is this fact, we believe, that gives rise to the subject to y>0- (32)

confusion of composite hypotheses and necessitates the search
for better statistics. In other types of problems the conventionall that remains is to put the dual problem into a more useful
statistics may be adequate (see, for example, [10]). Howeviesm. To begin doing so, recall that is the maximum ofL
since our optimization procedure considers, as one possibilitwer all » andx. A necessary condition at the maximum bf
the conventional statistics (and all other affine statistics), oitethat the gradient of. is zero. Setting the partial derivative of
can only do better by using optimized statistics. L with respect taz and the gradient of with respect tax to
zero yields the conditiong”’e = 1 andx = iPTy. Plugging
APPENDIX
QUADRATIC PROGRAMMING
FORMULATION FOR OPTIMIZED STATISTICS

these conditions back intb yields J{u,y) = 1 + %.
Having found a workable expression féythe dual problem

is to minimize it. Using the fact that cannot be zero (or else
In this appendix, we show how to formulate the optimizatio& is unbounded) a necessary condition ficat the minimum is

problem f(_)r statistics posed in Section llI-B as a quadrat}fz % /yTPPTy_ Having found the optimak we plug this

programming problem. To do so we shall employ Lagrange

duality theory which is a standard technique for recastirigto J to getJ(ji,y) = \/y7PP?y. Putting all this together,

constrained optimization problems [2], [4]. The optimizatiothe dual problem is

problem we consider in Section IlI-B is

o - T T
X _ al'Th; — alThy, y = argminy PP’y (33)
a; = arg max *IlglenA- Ao (26) Ty _ 1
e & subject to{e g 0_ (34)
It is sufficient to consider vectora for which a®’Aga = 1. y=
Making a few additional notational changes, we rewrite the N A 12
problem as Recalling the fact thaP £ QA;'/? andx £ AY?a, we may
. rewrite the dual problem and the optimal primal solution as
X =argimaxz (27)  shown in Section I1I-B.
. Px—-2e2>0
subject to _ 28
) {1 -x'x>0 (28) ACKNOWLEDGMENT
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