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Abstract—In this paper, we investigate the problems of anomaly
detection and localization from noisy tomographic data. These
are characteristic of a class of problems that cannot be optimally
solved because they involve hypothesis testing over hypothesis
spaces with extremely large cardinality. Our multiscale hypothe-
sis testing approach addresses the key issues associated with this
class of problems. A multiscale hypothesis test is a hierarchical se-
quence of composite hypothesis tests that discards large portions
of the hypothesis space with minimal computational burden and
zooms in on the likely true hypothesis. For the anomaly detection
and localization problems, hypothesis zooming corresponds to
spatial zooming—anomalies are successively localized to finer and
finer spatial scales. The key challenges we address include how to
hierarchically divide a large hypothesis space and how to process
the data at each stage of the hierarchy to decide which parts
of the hypothesis space deserve more attention. To answer the
former we draw on [1] and [7]–[10]. For the latter, we pose and
solve a nonlinear optimization problem for a decision statistic
that maximally disambiguates composite hypotheses. With no
more computational complexity, our optimized statistic shows
substantial improvement over conventional approaches. We pro-
vide examples that demonstrate this and quantify how much
performance is sacrificed by the use of a suboptimal method
as compared to that achievable if the optimal approach were
computationally feasible.

Index Terms—Anomaly detection, composite hypothesis testing,
hypothesis zooming, nonlinear optimization, quadratic program-
ming, tomography.

I. INTRODUCTION

I N THIS PAPER, we present a new approach to hierarchical,
multiresolution anomaly detection and localization from

noisy tomographic data. This problem is of interest in several
areas of active research. For example, it arises in nondestruc-
tive evaluation as well as adaptive tomographic reconstruction
from limited data in which one attempts to use degrees of
freedom frugally by localizing areas of interest to be imaged
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at finer resolutions. In addition, the anomaly detection and
localization problems raise issues that surface in many other
contexts. Thus, a second objective of this paper is to provide
some insight into these more general issues.

In particular, a fundamental characteristic of a large class
of signal and image analysis problems is that they involve
hypothesis testing over hypothesis spaces of extremely large
cardinality—so large that enumeration of all hypotheses and
exhaustive comparison is computationally infeasible. This
characteristic is present in the specific problems considered
in this paper, since the enumeration of all possible anomalies
leads to a very large hypothesis space. Large hypothesis spaces
also arise in other applications including detection of regions
of interest for automatic target recognition from wide-area
imagery as well as model-based object recognition.

Such problems thus invite efficient hierarchical approaches.
Our approach achieves great efficiency by discarding large
parts of the hypothesis space with minimal computational
burden and zooming in on a smaller part of the hypothesis
space to be scrutinized more extensively and, perhaps, ex-
haustively. We call this hypothesis zooming methodology a
multiscale hypothesis test(MSHT). As depicted in Fig. 1, an
MSHT is a scale-recursive sequence of composite hypothesis
tests that increasingly disambiguates hypotheses at finer scales
and zooms in on one element of the global set of hypotheses,

. At the top (or coarsest) scale, the MSHT
divides into a family of possibly overlapping subsets, and
then chooses one of these subsets, discarding all the others.
Similarly, at subsequent scales, the remaining hypotheses are
divided into subsets, all but one of which are discarded.
Note that the statistical decision problem at each scale is a
composite hypothesis testing problem in which one composite
hypothesis1, , is selected for finer scale investigation.

There are several questions that must be addressed in formu-
lating and solving problems in the manner we have described.
The first is: how should a large hypothesis space be divided
hierarchically so that hypothesis zooming can proceed? For
anomaly detection in imaging (e.g., tomographic) problems
there is a natural choice—grouping hypotheses spatially, i.e.,
subdividing the region of interest at a succession of resolutions
so that anomalies can be localized to finer and finer spatial
scales. This is not an original idea, and, in particular, it has

1We use a tilde(~�) to indicate composite hypotheses and quantities and ob-
jects associated with them to distinguish these from individual (noncomposite)
hypotheses and their associated similar objects.
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Fig. 1. MSHT. Composite hypotheses indicated by dashed lines are discarded, shaded ones retained.

Fig. 2. Coarse-scale subdivisions. Subdivision~Rn corresponds to~Hn. ~R1

is shaded and with a solid border.

been used in [9] and [10] for the detection and localization
of anomalies in inverse scattering data and is standard in the
image segmentation community [1], [7], [8]. We also adopt
this method for dividing our hypothesis space by defining
composite hypothesis as containing all hypotheses, ,
which correspond to anomalies with support within a region of
the image domain which we denote . Fig. 2 illustrates this
at the coarsest scale at which the regionsare
in size. Composite hypotheses at finer scales have smaller
cardinality and, in the anomaly detection and localization
problems, naturally correspond to regions of smaller area so
that hypothesis zooming and spatial zooming coincide.

The second important question is: Once composite hypothe-
ses are defined, how should the data be processed at each
stage in the hierarchy in order to determine which composite
hypotheses to discard? We need to address this question in light
of the fact that computational complexity is a key concern.
In particular, if computational load were not an issue, then

we could solve the problem optimally using a generalized
likelihood ratio test (GLRT) [14] as follows. At a coarse
level in the hierarchy, we would enumerate all hypotheses,

, process the data to choose among these optimally, and
then choose the composite hypothesis,, that contains this
optimal choice. Since an underlying assumption for problems
of interest here is that complete enumeration and comparison
is unacceptably complex, we limit our consideration to the
class of decision rules that have acceptable computational
complexity. By no means do we provide a complete solution
to the problem of finding the best decision rule under a
complexity constraint, since ranking the relative complexities
of different decision rules is difficult and the characterization
of all decision rules with complexity less than some specified
level is both ill posed and prohibitively complex. What we
do provide, however, is a solution within a specific class of
decision rules that includes what can be thought of as the
“natural” choices. In the process, we highlight issues that are
of importance in any composite hypothesis testing problem.

For anomaly detection and localization in imaging appli-
cations, there is an obvious first choice for the decision
statistic and decision rule to be used at a particular stage
in the hypothesis zooming procedure. Specifically, for each
composite hypothesis, , at that stage, compute a likelihood
statistic for the hypothesis that an anomaly has support over
the entire region . The decision rule is simple: keep
the composite hypothesis corresponding to the largest
likelihood statistic.2

2As an aside, we note that for problems in which the data are in a different
domain from the image (e.g., tomographic problems), the calculation of the
likelihood statistic is most easily done directly in the data domain rather then
by first forming an image and then calculating the statistic [13].
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Approaches of this type have been proposed and used in
the literature [9]–[12]. A principle objective of this paper is
to demonstrate that we can achieve much better performance
with the same level of complexity by choosing the decision
statistics in a significantly different manner. To understand this,
note that the statistic mentioned in the preceding paragraph
corresponds to a hypothesis that, in some sense, “covers”
all of the hypotheses that comprise a composite hypothesis

. Thus, this statistic sacrifices sensitivity to each individ-
ual hypothesis in in order to achievesomesensitivity
to all of the hypothesis in . In contrast, the statistics
used in the computationally intractable but optimal GLRT
have, as we shall see,significantlygreater sensitivity to each
of hypotheses in a composite hypothesis. Our aim is to
find statistics that approach the sensitivity of those used
in the GLRT but with the same computational simplicity
as that required for the “natural” decision rule described
previously.

In this paper, we limit ourselves to a class of decision
rules based on the computation of a single affine function of
the measured data for each composite hypothesis. However,
we design these affine statistics to maximize their utility for
the job for which they will be used. In particular, since
each such statistic will be used to decide whether or not to
discard its associated composite hypothesis, we aim to design
a statistic that maintains strong sensitivity to the hypotheses
that comprise the corresponding composite hypothesis and
has minimal sensitivity to all other hypotheses. Using this
philosophy, we are led to an interesting optimization problem,
the solution of which is a decision statistic that is quite
different from and superior to the natural choices. In particular,
these optimized statistics do a far better job of increasing
separation between composite hypotheses.

In this paper, we develop the MSHT methodology and
optimized statistic design for the tomographic anomaly de-
tection and localization problems and also present results to
quantify how well our methods work. Of particular interest to
us are quantifying i) how much performance is sacrificed by
using a suboptimal method as compared to that achievable if
exhaustive hypothesis enumeration and comparison were com-
putationally feasible; and ii) how much better our approach
is compared to one based on the natural choice of decision
statistics. In addition, as we have stated, one of our objectives
in this paper is to lay out what we believe to be the key issues
in large hypothesis testing problems more generally, and in
the conclusion to this paper we provide a discussion of some
of the issues and questions which we believe our work brings
into sharper focus.

This paper is organized as follows. In Section II we
outline all modeling assumptions and set up the problems
considered in this paper. We discuss two types of decision
statistics in Section III—a conventional likelihood statistic
and our optimized statistic. Section IV includes pseudo-code
for our MSHT algorithm and considers the computational
complexity of this and the optimal approach. Examples
are provided in Section V. Closing remarks and a discus-
sion of some complements and extensions are found in
Section VI.

Fig. 3. Tomographic projections with strip indicator functionsSi(x; y).

II. PROBLEM FORMULATION

A. Observation Equation

We model tomographic data collection with the equation

(1)

where is the th datum, is a real function of two
spatial variables representing the object,is the th sample
measurement noise. The function is one over theth
strip and zero elsewhere. Data acquisition with these functions
is illustrated in Fig. 3. We let be the number of projections
(angular positions) and we assume these positions are equally
spaced in the interval . The number of equally spaced
samples per projection angle is . Finally, for computational
purposes, the object, , is discretized in a rectangular
pixel basis so that

(2)

where is one over the th pixel and zero elsewhere
and there are pixels corresponding to a field.

Combining (1) and (2) we find that

(3)

where , , and are vectors containing the data values, field
pixel values, and noise values, respectively. The field vector,
, is lexicographically ordered and and are formed by

stacking the values obtained at each projection. For example,
where contains the data values

at the th projection angle. The components of the matrix
are given by

(4)

for and . Equation (3),
coupled with whatevera priori knowledge we have about
and , represents our observational model. The tomographic
projection matrix, , captures a discrete representation of the
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strip integrals. The application of to is called the projection
of .

B. Models

Our notion of an anomaly is a localized region of the image
domain which differs statistically from our prior set of expec-
tations of the image. Therefore, we statistically characterize
an anomaly-free background and define a parameterized class
of anomalies. We model the field,, as a superposition of a
field, , which contains, at most, a single anomaly from this
class and an anomaly-free background field,. That is,

(5)

The anomaly field and background field are statistically inde-
pendent.

The class of anomalies we consider is parameterized by an
intensity, , a size, , and a position, as follows. The
anomaly field, , is zero everywhere except over a square
patch where it is constant. Our notation is

(6)

where and is the lexicographically ordered
indicator vector associated with an field which is zero
everywhere except over the support area with upper
left corner at pixel where takes the value one.
The size, , and location, , are unknown. We assume
knowledge, however, of the minimum possible size, , and
the maximum possible size, , the anomaly can be where

.
While the class of anomalies we consider is restrictive, the

methodology we present in this paper can be applied to other
enumerable anomaly classes. We focus on anomalies that are
constant intensity squares in some known size range for clarity
of presentation, since our main focus is on presenting a new
methodology for large hypothesis testing problems and not to
accurately model any particular type of anomaly.

The background field, , is a zero-mean, wide sense sta-
tionary (WSS), Gaussian random field with known covariance

. We consider two types of background covariance statistics
in our examples in Section V—white and fractal. The fractal
background has a power spectral density of the form
where is frequency. Additional structural details are found
in [3] and [5]. We consider a fractal background because fractal
fields accurately model a wide range of natural textures [15].

The additive measurement noise,, is assumed to be a zero-
mean, white, WSS, Gaussian random vector with intensity
and is statistically independent of the background and anomaly
fields. Therefore, the data are jointly Gaussian, as follows:3

(7)

where

(8)

3The notationx � N (m;P) means thatx is a Gaussian random vector
with meanm and covarianceP.

Notice that, even when the background is white (is
diagonal), the data are correlated due to the structure of the
tomographic projection matrix, .

Fig. 4 illustrates an example of the kind of anomaly and
background field that are considered in this paper. Projec-
tions of are also shown with and without the addition of
noise. Fig. 4(a) and (b) are views of the image domain while
Fig. 4(c) and (d) are views of the data domain.

C. Problem Statement

The anomaly detection problem is to determine whether or
not is identically zero. The anomaly localization problem
is to determine the values of the size and
location of the anomaly if indeed one is present. The
optimal solution to these problems includes one hypothesis,

, for each possible anomaly size, , and each possible
location of the anomaly’s upper left hand corner, ,
where

(9)

(10)

The optimal decision statistics are likelihood ratios and the
optimal decision rule is a likelihood ratio test. While the
optimal test is straightforward, it is computationally infeasible
for all but trivial-sized problems. Therefore, we propose the
MSHT as an efficient and effective alternative.

D. Composite Hypothesis Structure

An MSHT has two main high-level characteristics: the form
of the composite hypotheses and the form of the statistics
used to decide which composite hypotheses to discard. In this
section, we define the form of the composite hypotheses. We
defer discussion of decision statistics to Section III. For clarity
of presentation and notational simplicity, we specify in detail
only the coarsest scale composite hypothesis test of the MSHT.
The processing at other scales follows by analogy.

Fig. 2 provides an interpretation of the composite hypothe-
ses. Composite hypothesis contains hypotheses that corre-
spond to anomalies with support entirely within the
region denoted as . For example, all hypotheses associated
with anomalies with supportentirelywithin the shaded region
labeled belong to . We associate each composite hypoth-
esis with an indicator function , which is
one over the region , and zero elsewhere. The composite
hypothesis regions overlap by at least pixels so that
each possible anomaly lies entirely within at least one region.
This ensures that .

III. D ECISION STATISTICS

In this section, we specify the form of the decision statistics
for the coarsest scale composite hypothesis test of a MSHT.
The statistics at subsequent scales are easily understood by
analogy. We will discuss two types of decision statistic. The
first type, discussed in Section III-A, is a coarse-scale likeli-
hood statistic of the form used in [9], [10] for problems similar
to the ones addressed here. As discussed in Section I, while
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(a) (b)

(c) (d)

Fig. 4. (a) Fractal background,fb. (b) Superposition of the background shown in (a) and an anomaly near the upper left corner. (c) Projection of the
anomaly plus background field. The horizontal axis is the projection number(N� = 32). The vertical axis is the sample number(Ns = 50). (d)
Measurement noise has been added to the projections.

this statistic is natural and intuitive, it sacrifices considerable
sensitivity to achieve computational simplicity. We use this
statistic as a benchmark against which to compare what we
call anoptimized statisticwhich we discuss in Section III-B.

A. Coarse-Scale Likelihood Statistics

As discussed in the introduction, the coarse-scale likelihood
statistic associated with composite hypothesis is the log-
likelihood ratio to discriminate between a single hypothesis
for a coarse-scale anomaly with support over the entire region

and the hypothesis that no anomaly exists. To derive the
coarse-scale likelihood statistic, we associate with each
a coarse-scale anomaly: where , as defined in
Section II-D, is the indicator function for .

From (7) and standard results in hypothesis testing [14], we
find that the log-likelihood for each of these four hypotheses is
given by an affine operation on the observed data,, namely

(11)

and the resulting decision rule consists of choosing the largest
of these four values.

Note that at this coarsest scale in the MSHT, we have that

(12)

This follows from the symmetry of the composite hypothesis
regions, the fact that we have a complete set of data, and
the wide sense stationarity of. Consequently, at this level
we can drop the second term in (11), as it has no influence
on the decision rule. Note, however, that relations such as
(12) need not hold at subsequent scales, since the composite
hypothesis regions do not have the requisite symmetry. Despite
this, we have found by simulation that the two sides of (12) are
approximately equal. They differ by only 5–10% depending
on the exact parameters of the problem (i.e., whether the
background is fractal or white, the size of the regions, etc.).
While nothing in the sequel relies upon the approximate
equality of the two sides of (12) at finer scales, we mention
it to illustrate that one can, to some degree of approximation,
use a linear rather than an affine statistic at all scales.
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B. Optimized Statistics

In this section, we design a statistic that is no more
computationally complex than the coarse-scale likelihood ratio
but is much more sensitive and discriminating. The statistic we
design is affine in the observed data and has the form

(13)

Roughly, our objective in designing such a statistic is to choose
the vector and the constant to force to be significantly
larger, on average, when is true than when it is false. That
is, we would like to have a large separation between its mean
when any is true and its mean when any
is true. Since doubling the magnitude of will double this
difference in mean values, we normalize this difference by the
standard deviation of .

More precisely, we define

(14)

(15)

where we have introduced the shorthand notation
for the anomaly indicator function associated with

hypothesis . Notice that the conditional mean is affine in
while the conditional variance is quadratic in. Also note

that the conditional variance is independent of.
The criterion we adopt is to maximize the worst-case (i.e.,

smallest) normalized difference between for and
for where is used for normalization. That

is, we choose and as the solution to the optimization
problem

(16)

where and . Substituting in
the definitions of (14) and (15), we find that the constant,,
cancels and the optimization problem reduces to

(17)

Since we are free to choose to be any value whatsoever we
shall set in the sequel. Also notice that the anomaly
intensity is independent of , and and so can
be dropped from the optimization problem. As is shown in
Appendix A, using Lagrange duality theory, this problem can
be reformulated as the quadratic program

(18)

subject to (19)

where

...

and

(20)

and all pairs . This quadratic program may be
solved using, for example, methods described in [6]. Since the
solution depends only on the data covariance matrix and the
structure of the hypothesis space, but not on the data itself,
solving the quadratic program is an off-line procedure. Once

is found, is given by

(21)

Note that in optimizing over all affine functions of the tomo-
graphic data, we implicitly consider the coarse-scale likelihood
statistic as well as all affine functions of any affine reconstruc-
tion of the image. Therefore, preprocessing the data with any
affine reconstruction routine (like convolution backprojection)
cannot result in a better statistic.

IV. MSHT ALGORITHM AND COMPUTATIONAL COMPLEXITY

A. The MSHT Algorithm

Given the hierarchical hypothesis space decomposition de-
scribed in Section II-D and either choice of decision statistic
discussed in Section III, the MSHT algorithm detects and
localizes an anomaly in the coarse-to-fine manner described
in Section I. At each scale, other than the finest, one of
four subdivisions of the remaining part of the image domain
is selected for finer-scale investigation. The scale-recursion
terminates at a scale at which the optimal testis feasible and
at which the regions are no smaller than .
Then, having localized the anomaly to an area significantly
smaller than the entire image domain, the optimal test is
performed, which includes only hypotheses associated with
anomalies in that area. Finally, the statistic value associated
with the selected hypothesis is compared with a threshold.
If it is larger than the threshold, the associated hypothesis is
selected, otherwise it is declared that no anomaly exists.

The following pseudocode summarizes the algorithm. The
inputs to the algorithm are the region to investigate (initialized
to the entire image domain) and the scale number (initialized
to one). The output is a hypothesis in or the decision that
no anomaly exists.

Pseudocode. MSHT scale :

1) If scale is finest possible, perform optimal test on
anomalies in . Call the selected hypothesis and the
associated statistic value. Then

if
“no anomaly,” otherwise.

(22)

2) Otherwise, subdivide the region into four overlapping
squares where the amount of overlap is at least .
Denote these squares for .

3) For each subdivision compute the statistic .
4) Let be such that . Call

MSHT scale .

B. Computational Complexity

Our primary motivation for applying an MSHT to the
anomaly detection and localization problems is that the optimal
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hypothesis test is too computationally costly. The MSHT
formulates fewer hypotheses than the optimal test and is
therefore more efficient. In this section we quantify this claim
by calculating the computational complexity of the optimal
algorithm and the MSHT algorithm. To do so, we will compute
the number of operations per hypothesis and the number of
hypotheses formulated in each algorithm.

Both the optimal test and the MSHT formulate affine statis-
tics that require operations (adds and multiplies).
This result follows from the fact that an affine statistic is
an inner product between two length vectors plus the
addition of an offset term. Since each hypothesis requires the
same constant amount of work forany affine statistic, the
overall complexity of either algorithm scales with the number
of hypotheses formulated regardless of what affine statistic is
used. Hence, we take the number of hypotheses formulated as
a measure of algorithmic complexity.

First consider the optimal test. Suppose the linear size
of the square field is and that we know the minimum
and maximum possible size of the anomaly: and ,
respectively. The number of hypotheses formulated is

.
Now consider the MSHT algorithm. Its computational com-

plexity is a function of, among other parameters, the scale
at which the hypothesis zoom terminates and exhaustive
enumeration of all remaining hypotheses is conducted (Step
1 of the above pseudocode) and the amount by which the
regions overlap. We may neglect the effect of overlapping
in our order-of-magnitude calculation, since the overlapping is
on the order of and . Therefore, the number of
hypotheses formulated is where the
constant, , accounts for the number of hypotheses formulated
in the finest-scale exhaustive enumeration step. If the finest-
scale exhaustive enumeration step is conducted at a scale at
which the are on the order of then is
negligible since .

Fig. 5 displays the number of hypotheses for the optimal
and MSHT algorithms as a function of for and

. For the case illustrated, it is assumed that the
exhaustive enumeration step of the MSHT is conducted at a
scale at which the are . As can be seen in
Fig. 5, the difference in the number of hypotheses considered
is quite large. For example, for a 512 512 image (i.e.,

), the MSHT considers about 30 hypotheses4 while
the optimal algorithm considers just over 10hypotheses.

V. EXAMPLES

In this section, we present several types of examples. First,
in Section V-A, we introduce a means of directly comparing
the sensitivity of a coarse-scale likelihood statistic with that
of an optimized statistic. In Section V-B we investigate the
performance of the first, coarsest-stage of an MSHT algorithm
in several cases of differing data quality for problems of
sufficiently small size so that comparison to the optimal test is

4Under the assumptions stated in this section (i.e., ignoring overlap, etc.),
the number of hypotheses considered in an MSHT is the number of hypotheses
considered per scale (four) times the number of scales(log

2
(N=smax)).

Fig. 5. Complexity of the optimal algorithm (top curve), and an MSHT
(bottom curve). The vertical-axis is the number of hypotheses (log scale), the
horizontal-axis is the linear dimension of the field (log scale). Heresmax = 4
and s

min
= 1.

TABLE I
DETAILS RELATING TO THE EXAMPLES PRESENTED INSECTION V

feasible. We focus on the coarsest scale because it is the scale
at which the composite hypotheses are largest in cardinality
and, therefore, most difficult to disambiguate [10]. That is, it is
at this stage that the MSHT should have its greatest difficulty
and, thus, is most in need of maximally sensitive statistics.

In Section V-C, we conclude with examples illustrating the
performance of a “full” MSHT algorithm (one that continues
past the coarsest scale and successively localizes the anomaly
to the finest possible scale). This full algorithm includes three
scales, the two coarsest scales are composite hypothesis tests.
By the third scale, the anomaly has been sufficiently localized
so that full enumeration and comparison of the remaining
hypotheses is feasible. Hence, an optimal test on the remaining
hypotheses is performed at the third scale of the full algorithm.

The data in all our examples are simulated based on the
models presented in Section II-B and we include examples
corresponding to two different field sizes. The examples in
Sections V-A and V-B correspond to a 16 16 field while
the examples in Section V-C correspond to a 3232 field.
The parameters of the problem addressed in each section are
detailed in Table I. Throughout this section, a “false alarm”
occurs when no anomaly exists but a “no anomaly” decision
is not returned by the algorithm. A “detection” occurs when an
anomaly exists and the true composite hypothesis (Section V-
B) or hypothesis (Section V-C) is selected.

Before proceeding to examples, we present the definitions of
signal-to-noise ratio(SNR) andanomaly-to-background ratio
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(a) (b)

Fig. 6. �1j with a white background at SNR= 1. (a) For the coarse-scale likelihood statistic. (b) For the optimized statistic. Pixel(m;n) corresponds
to fa = b(4;m; n).

(ABR), as follows:

SNR (23)

ABR (24)

The SNR measures the relative power between the projected
background and the additive noise, while the ABR measures
the relative power between the anomaly and background fields.

A. Direct Comparison of Statistics

In this section, we illustrate in a direct way the superiority
of the optimized statistics over the coarse-scale likelihood
statistics. What we will show is that the optimized statis-
tics are more sensitive and discriminating than the coarse-
scale likelihood statistics. We illustrate this by examining the
standard-deviation-normalized mean values of the two statis-
tics conditioned on the hypotheses of a particular realization
of the anomaly detection and localization problems. For the
realization we focus on, summarized in Table I, we consider
only the coarsest scale and we consider anomalies of size

. The comparison between the statistics will
be made for two types of background, fractal and white.

To make the comparison, recall the definitions of and
. The former is the mean value of statisticassociated with
, which is depicted in Fig. 2 conditioned on hypothesis.

The latter is the associated variance. We define the standard-
deviation-normalized conditional mean as

(25)

The value of indicates how sensitive is to hypothesis .
Figs. 6 and 7 illustrate values of for the case of a white

and fractal background respectively at . The 2-D bar
at position in the plots of these figures corresponds to
the hypothesis that . The shaded regions of
these 2-D bar charts are the areas we wish to be large; that
is, these correspond to values of for hypotheses, , that

comprise the composite hypothesis. The unshaded portions
of these plots correspond to , i.e., these are values of

we would like to be significantly smaller. In both figures,
plot (a) corresponds to the coarse-scale likelihood statistic and
plot (b) to the optimized statistic.

The shape of both plots in Fig. 6 exhibit precisely the
type of behavior we want. The value of is relatively
high for (shaded region) and relatively low for

(unshaded region). Notice, however, that for the
optimized statistic [Fig. 6(b)] there is a more abrupt transition
between the shaded and unshaded regions as compared to
the coarse-scale likelihood statistic [Fig. 6(a)]. Note that at
this coarsest stage (and at any stage prior to the final one),
our objective is todiscard hypotheses andnot to make an
absolute decision about the presence or absence of an anomaly
(this is considered at the final stage). As a consequence,
it is the sharpness of the transition and therelative (not
absolute) sizes of the between the shaded and unshaded
regions that are of importance. Thus, while it might appear
that sensitivity is lost in Fig. 6(b) because the values in the
shaded regions are somewhat lower than in Fig. 6(a), this
is not the case. Indeed, because of the sharper transition in
Fig. 6(b), the optimized statistic does a significantly better job
at disambiguating composite hypotheses, as we will verify in
the next section.

While Fig. 6 shows that there is some enhancement using
the optimized statistic for the case of a white background,
this point becomes much stronger if we consider a correlated
background field as we do in Fig. 7. In particular, in Fig. 7 the
background has a fractal covariance structure. In the case of
Fig. 7(a), we see that is sensitive to the wrong hypotheses.
That is, there exist and for which

. Moreover, there is no clear, sharp transition between
the shaded and unshaded regions in Fig. 7(a). Therefore, in
the case of the fractal background, the coarse-scale likelihood
statistic is ineffective. Comparing Fig. 7(a) with Fig. 7(b) we
see that the optimized statistic is significantly better than
the coarse-scale likelihood statistic—it is sensitive to the
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(a) (b)

Fig. 7. �1j with a fractal background at SNR= 1. (a) For the coarse-scale likelihood statistic. (b) For the optimized statistic. Pixel(m;n) corresponds
to fa = b(4;m; n).

correct hypotheses and is highly discriminating between those
hypotheses that belong to and those that do not. Though
we shall not provide the corresponding figures for the three
other coarse-scale composite hypotheses , the
same conclusions apply.

B. Coarse-Scale Performance

In the previous section, we saw that the optimized statistics
do a significantly better job at discriminating coarse-scale
composite hypotheses as compared with the conventional log-
likelihood statistics. In this section we continue to illustrate
this point and also illustrate how much performance is lost by
using a suboptimal algorithm as compared with the optimal
(and computationally complex) GLRT. To make this latter
point, we must focus on a realization of the problem, which
is sufficiently small so that the optimal test can be conducted.
Therefore, as described in Table I, we continue to consider a
small field (16 16) and only the coarsest scale. In contrast to
the previous section, we now allow anomalies to be any size
between and , inclusive.5

In this section, we compare the performance of three al-
gorithms for coarse-scale anomaly detection and localization.
One algorithm is the GLRT. The other two are similar to the
coarsest scale of a MSHT. For these, statistics associated with
four coarse-scale regions (shown in Fig. 2) are computed. The
largest is compared to a threshold. If it is above the threshold,
its associated region is declared as containing the anomaly.
Otherwise, a “no anomaly” decision is returned.

In Fig. 8, we illustrate receiver operator characteristic
(ROC)6 curves at different ABR’s for the three methods:
GLRT (top curve in each plot); coarse-scale MSHT algorithm

5This means, of course, that, in contrast to the previous section, the
optimized statistics are now designed to be sensitive to all 3� 3 and all
4 � 4 anomalies.

6Note that an ROC curve for anM -ary hypothesis test, unlike that for
a binary hypothesis test, need not go through the point(Pr(detection);
Pr(false alarm)) = (1; 1) because more is required for a detection in the
M -ary hypothesis case. It is not enough that the null hypothesis is not chosen,
the correct alternative hypothesis must be selected.

with optimized statistics (middle curve in each plot); and
coarse-scale MSHT algorithm with coarse-scale likelihood
statistics (bottom curve in each plot). The anomaly considered
is where varies with the ABR. The
background is fractal and SNR . Table II indicates the
number of hypotheses formulated for each of the three methods
considered here.

Fig. 8 unquestionably illustrates the superiority of the opti-
mized statistic over the coarse-scale likelihood statistic. At
all ABR’s, the coarse-scale MSHT performance using the
optimized statistic outperforms that using the coarse-scale
likelihood statistic by a wide margin. Indeed, in all but
Fig. 8(a), the ROC’s for the coarse-scale MSHT using coarse-
scale likelihood statistics do not stray far from a probability
of detection of 0.2, the performance level thatblind guessing
achieves.7 In fact, even in Fig. 8(a), at an ABR of 9.1, the
coarse-scale likelihood statistics are not much better than
blind guessing. These experimental results support the analyt-
ical ones of the previous section—the coarse-scale likelihood
statistic has far lower discriminating power and sensitivity
compared to the optimized statistic.

Comparing the performance of the coarse-scale MSHT with
optimized statistics to the optimal GLRT provides us with a
quantification of the performance loss due to the use of a
computationally simpler decision rule. There are two pieces
of information to extract from such results. The first is that it
defines a range of ABR’s for which there is only minimal loss
of performance as compared to the optimal test. For example,
as Fig. 8(a) indicates, the performance loss in using the coarse-
scale MSHT with affine statistics at ABR’s of about 9 or larger
is quite small.

This comparison also identifies a range of ABR’s over
which the constraint of using a single affine statistic for each
composite hypothesis, , is too severe, resulting in too great
a loss of performance relative to the optimal test. For example,
the performance in Fig. 8(c) and even in Fig. 8(b) suggest that

7Recall that there are five choices: “no anomaly” and the choice that an
anomaly exists in region~Rn for n = 1; 2; 3; 4.
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(a)

(b)

(c)

Fig. 8. Comparison of three algorithms at different ABR’s. In each plot,
ROC’s for the GLRT (top curve), coarse-scale MSHT with optimized statistics
(middle curve), and coarse-scale MSHT with coarse-scale likelihood statistics
(bottom curve) are shown. Five-hundred Monte Carlo runs were conducted
per data point and error bars are drawn plus and minus one standard deviation.
The background is fractal and SNR= 1. (a) ABR = 9:1. (b) ABR = 5:1.
(c) ABR = 3:5.

at this range of ABR’s we need to consider more complex
decision rules to achieve near-optimal performance. The GLRT
and the optimization procedure we have described suggest
a method for doing this. Specifically, the GLRT involves
the calculation ofmany affine statistics for each —one

TABLE II
NUMBER OF HYPOTHESESFORMULATED BY THE

ALGORITHMS CONSIDERED IN SECTION V-B

statistic matched to each individual hypothesis. In contrast,
the coarse-scale MSHT algorithm using optimized statistics
as we have described it, uses a single affine statistic. An
obvious generalization is to useseveral—say, four—optimized
statistics for each , where each statistic is sensitive to a
different subset of . The resulting decision rule would then
compute all 16 statistics and choose the corresponding to
the largest one. Fig. 9 depicts the result of applying such a rule
for the same cases shown in Fig. 8(b) and (c). We see from
Fig. 9 that this rule, which has four times the complexity of
the rule using a single statistic per , has significantly better
(and in the cases shown nearly perfect) performance.

C. Full Algorithm Performance

In this section, we illustrate an example for a full MSHT
algorithm. In contrast to the problems considered in the
previous section, the one considered here is larger.8 The field
is 32 32 and the anomaly considered is
where varies with the ABR. One optimized statistic is used
for each composite hypothesis in the tests at the first two
scales of the algorithm. After the second scale, the anomaly
has been localized to a 11 11 region, which is small enough
that the optimal test can be performed over the hypotheses
corresponding to anomalies with support in that region. Further
details are provided in Table I. The background is fractal with
SNR .

Fig. 10 illustrates ROC’s at two ABR’s. The top curve
corresponds to ABR and the bottom to ABR . At
these ABR’s, we see that performance is quite good, indicating
that the MSHT is indeed an effective way to navigate a large
hypothesis space to find the true hypothesis. At lower ABR’s,
however, where performance is significantly below the level
we see here, additional statistics per composite hypothesis can
be used to increase performance levels, as discussed in the
previous section.

VI. DISCUSSION AND CONCLUSION

We have presented the multiscale hypothesis test with
optimized statistics as a new approach to the anomaly detection
and localization problems from noisy tomographic projections.
We have shown that, in certain data-quality regimes, this
hierarchical, hypothesis zooming method can achieve good
performance with great efficiency. The key to achieving high
performance with low computational complexity is the design
of highly selective statistics. We developed and solved an
optimization problem for such statistics and, in several ways,
quantified their superiority over conventional statistics.

8This larger size prohibits the computation of Monte Carlo results based
on the optimal test.
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(a) (b)

Fig. 9. ROC’s for the coarse-scale MSHT. For the top curves in each plot, four affine statistics were computed per~Hn. For the bottom curves, one affine
statistic was computed. Five-hundred Monte Carlo runs were conducted per data point and error bars are drawn plus and minus one standard deviation.
The background is fractal, SNR= 1. (a) ABR = 5:1. (b) ABR = 3:5.

While we have developed the MSHT framework in the con-
text of anomaly detection and localization from tomographic
data, we have touched on the fundamental issues relevant to
a broad class of problems—those involving large hypothesis
spaces. The key obstacles in dealing with large hypothesis
spaces include how to organize the space for hypothesis
zooming and how to process the data for efficient decision
making. The MSHT framework as applied to the anomaly
detection and localization problems addresses these challenges
and provides a guiding philosophy for solutions to similar
large-hypothesis-space problems.

In our development of the MSHT framework we have
imposed certain conditions, the relaxation of which suggest
ways to achieve additional performance gain using the method-
ology we have described. For example, as we described in
Section V-B, it is possible to generalize our approach by
designing several statistics per composite hypothesis. With this
extension, our approach provides a set of MSHT algorithms
ranging from the simplest (using one statistic per composite
hypothesis), to the fully optimal GLRT (using as many statis-
tics as there are individual hypotheses). This then provides a
systematic framework for identifying the minimally complex
MSHT as a function of data quality and performance level.

Further extensions of our approach are also possible. For
example, in defining the MSHT, we have held the hierarchical
hypothesis space decomposition fixed. For the problems of
interest in this paper, the choice we have made (namely,
defining to correspond to anomalies in region ) is
natural. But, in more general problems, hypothesis space
decomposition needs to be considered jointly with the de-
sign of decision statistics. In general, this is a prohibitively
complex combinatorial problem. However, we expect that
our framework can lead to feasible iterative algorithms for
joint statistic design and hypothesis space decomposition.
An iterative procedure might start with an initial composite
hypothesis (call it ) and its associated optimized statistic.
Then, using the type of information presented in Figs. 6 and
7, it can be determined which hypotheses are not placed in the

Fig. 10. ROC’s for the MSHT at two ABR’s. Top: ABR= 5:1. Bottom:
ABR = 3:5. SNR= 1; fa = cb(4; 3; 3) wherec varies with the ABR. The
background is fractal, the number of Monte Carlo runs is 250 and error bars
are drawn plus and minus one standard deviation.

correct composite hypothesis and ought to be redistributed. For
example, the next suggested composite hypothesis would not
include hypotheses which are in but have a relatively low
average statistic value and would include hypotheses which are
not in but have a relatively large statistic value. Iterating
this process—i.e., redesigning the statistic to discriminate
this new group of hypotheses from all others, identifying
those that seem misplaced and redistributing them—provides
a systematic procedure for using our methodology to build
composite hypotheses that are maximally distinguished by an
algorithm using optimized statistics.

Finally, there are a number of ways to broaden the range
of problems for which our approach is applicable. One way
is to relax the assumption that there is only one anomaly and
consider multiple anomalies. One can apply our methodology
to multiple anomaly problems in two ways. The simplest
and crudest way is to use the statistics designed for single
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anomalies but to retain multiple regions at each scale. Exactly
how to decide how many regions to retain is an open problem.
Another, and more difficult approach, is to consider designing
optimized statistics that are sensitive to different numbers
of anomalies in different areas of the image. Without the
assumption of some additional structure this latter approach
seems infeasible due to the combinatorics of the problem.

While we have focussed on a particular 2-D linear/Gaussian
problem from tomography, we feel that the methodology
presented in this paper is applicable to a wider range of prob-
lems—both linear/Gaussian and also nonlinear/non-Gaussian.
For example, one could consider applying our optimiza-
tion procedure for statistics to nonlinear and/or non-Gaussian
problems by considering only second order statistical charac-
terizations. Three- and higher-dimensional problems could also
be considered by appropriately changing the scale-recursive
division of the hypothesis space. For example, in three di-
mensions, one might define eight overlapping cubes rather
than four squares as shown in Fig. 2. The approach to finding
optimized statistics would not change in higher-dimensional
problems.

Although our approach may be applied to other problems,
we have only explored those discussed in this paper. One
feature of the problems explored here which we believe
is relatively important is that tomographic data arehighly
nonlocal. It is this fact, we believe, that gives rise to the
confusion of composite hypotheses and necessitates the search
for better statistics. In other types of problems the conventional
statistics may be adequate (see, for example, [10]). However,
since our optimization procedure considers, as one possibility,
the conventional statistics (and all other affine statistics), one
can only do better by using optimized statistics.

APPENDIX

QUADRATIC PROGRAMMING

FORMULATION FOR OPTIMIZED STATISTICS

In this appendix, we show how to formulate the optimization
problem for statistics posed in Section III-B as a quadratic
programming problem. To do so we shall employ Lagrange
duality theory which is a standard technique for recasting
constrained optimization problems [2], [4]. The optimization
problem we consider in Section III-B is

(26)

It is sufficient to consider vectors for which .
Making a few additional notational changes, we rewrite the
problem as

(27)

subject to (28)

where

(29)

and and are as defined in Section III-B. This is the
primal problem. Notice that in the primal problem we want to

maximize and therefore implicitly maximize . Hence,
the constraint is equivalent to .

Let us call the optimal cost to the primal problem.
For simplicity, we assume that exists and that .
Introducing Lagrange multipliers and , we define the
Lagrangian cost function as

(30)

Our aim is to find values for the Lagrange multipliers such
that maximizing is the same as solving the primal problem.
Toward this end we define .
The function is the maximum of the Lagrangian cost as
a function of the Lagrange multipliers. It is straightforward
to show that in searching for the and we must consider
only nonnegative values. It is also clear that the weak duality
relationship, , holds for all values of and . The
dual problem attempts to find the smallest upper bound. In our
case it is not hard to show strong duality, i.e., that the smallest
upper bound is, in fact, tight .

The dual problem, therefore, is

(31)

subject to (32)

All that remains is to put the dual problem into a more useful
form. To begin doing so, recall that is the maximum of
over all and . A necessary condition at the maximum of
is that the gradient of is zero. Setting the partial derivative of

with respect to and the gradient of with respect to to
zero yields the conditions and . Plugging

these conditions back into yields .
Having found a workable expression for, the dual problem

is to minimize it. Using the fact that cannot be zero (or else
is unbounded) a necessary condition forat the minimum is

. Having found the optimal we plug this

into to get . Putting all this together,
the dual problem is

(33)

subject to (34)

Recalling the fact that and , we may
rewrite the dual problem and the optimal primal solution as
shown in Section III-B.
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