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Variational methods have been employed with considerable suc-
cess in computer vision, particularly for surface reconstruction pro-
blems. Formulations of this type require the solution of compu-
tationally complex Euler–Lagrange partial differential equations
(PDEs) to obtain the desired reconstructions. Further, the calcu-
lation of reconstruction error covariances for such approaches are
usually neglected.

In this paper we describe a computationally efficient multiscale
approach to surface reconstruction which differs fundamentally
from other multiresolution methods that are used to solve the Euler–
Lagrange PDEs. Instead, we interpret the variational problem as
a statistical estimation problem in order to define a nearby, but
slightly different, multiscale estimation problem that admits effi-
cient solutions for both surface reconstruction and the calculation
of error statistics. In particular, the membrane and thin-plate vari-
ational models for surfaces are interpreted as 1/ f 2 prior statistical
models for the surface and its gradients, respectively. Such 1/ f 2

behavior is then achieved using a recently introduced class of mul-
tiresolution models that admits algorithms with constant per-pixel
computational complexity. c© 1998 Academic Press

1. INTRODUCTION

The problem of surface reconstruction [1, 12, 15, 16, 36, 40]
has been a topic of considerable interest in the field of computer
vision for some time, involving the estimation of an unknown
surface based on a set of noisy measurements of some function
of the surface and its derivatives and based on a prior model
for the surface (generally necessary to regularize the problem).
Variational methods [5, 40] have enjoyed considerable success
in dealing with surface reconstruction problems, both as an an-
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alytical means of formulating the problem and as a means of
determining a solution. Formulations of this type lead directly
to Euler–Lagrange [5] partial differential equations (PDEs) to
be solved in order to obtain the desired reconstructions. Except
in those specific cases where the surface model and the measure-
ment statistics are homogeneous, permitting FFT techniques to
be applied, the solution of these equations can be a significant
computational task. Moreover, the calculation of reconstruction
error covariances [20, 31, 32, 37, 38] for such approaches are, for
all practical purposes, completely infeasible, as their computa-
tion corresponds in essence to the calculation of the full inverse
of the partial differential operator arising from the variational
problem.

The research described in this paper is motivated by a class
of problems for which FFT techniques are inapplicable and for
which the solution of the Euler–Lagrange equations via vari-
ational approaches is impractical: we are interested inlarge
estimation problems having spatially varying models, possibly
sparse measurements or measurements of varying quality and
resolution, and for which estimation error statistics are required.
In this paper we describe an alternative multiscale approach to
surface reconstruction that overcomes these computational dif-
ficulties. In our approach we take advantage of the dual interpre-
tation of variational problems as statistical estimation problems;
in particular, a variational problem with quadratic costs (i.e., a
least squares problem) may be interpreted as a Gaussian sta-
tistical estimation problem. This point separates the approach
of this paper from those of the multigrid [14, 27, 35, 39] and
preconditioning [2, 3, 7, 8, 33, 43] literatures:

• Preconditioner approaches solve the linear systemAx = b
by effecting a transformation (typically of the formx = Sy)
such that the condition number of (ST AS) in the transformed
linear system is much lower than that ofA, leading to a more
rapid convergence for iterative algorithms. Similarly the multi-
grid algorithm transforms the problem into a coupled hierarchy
of linear systems, which accelerates convergence. In both cases,
a solution toAx= b is ultimately obtained.
• Our multiscale approach, on the other hand, is fundamen-

tally different, because we end up solving adifferentproblem
Āx̄= b. The choice of the prior model̄A is made such that it is
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similar to A, but also such that̄A satisfies very particular pro-
perties that lead to an efficient, noniterative algorithm for both
estimatesandestimation error statistics.

The problem of finding an appropriatēA (i.e., of finding an ap-
propriate multiscale model) for thoseA typically used in vari-
ational surface reconstruction is the fundamental problem ad-
dressed by our paper. As has been noted by others [31, 32], the
membrane and thin-plate variational models commonly used in
surface reconstruction allow interpretations as 1/ f 2 prior sta-
tistical models, for which a recently introduced [4, 9, 23] class
of multiresolution models is available. The work in this paper
builds on these earlier multiscale efforts, in particular addressing
two fundamental limitations encountered in [9] and [23]: an in-
ability to estimate gradients and compute gradient error statistics
and an inability to obtain smooth estimates. This paper develops
a new multiresolution surface reconstruction model that is the
counterpart of standard variational models, but which admits al-
gorithms with constant per-pixel computational complexity for
both surface reconstructionand the calculation of error stat-
istics. Moreover, the flexibility of this multiresolution frame-
work allows us to define a richer class of surface reconstruction
models and algorithms corresponding to different prior models
which have either more complicated orno variational counter-
parts, but that admit the same efficient solutions.

This paper is organized as follows. Section 2 reviews varia-
tional model development for surface reconstruction; Section 3
reviews the multiscale framework into which the surface recon-
struction problem is to be cast. In Sections 4 and 5 we detail the
construction of multiscale models given the variational counter-
part. Finally in Section 6 several experimental results are pre-
sented.

2. BACKGROUND

2.1. Notation

The general surface reconstruction problem [36] involves es-
timating the shape of a surface given a discrete (and possibly
sparse) set of noisy observations of some function of the surface
and/or its gradients. The surface of interest is a two-dimensional
functionz(x, y) presumed twice differentiable everywhere; de-
note by

p(x, y) = zx(x, y) = ∂z(x, y)

∂x
q(x, y) = zy(x, y) = ∂z(x, y)

∂y
(1)

the gradients of the surface at each point. Normally we shall
refer simply toz, p,q with an implicit dependence onx andy.
We are interested in least-squares problems of the type

ẑ(D) = min
z
{(D − C(z))TR−1(D − C(z))+ Z(z)} (2)

D = C(z)+ V, (3)

whereD is a discrete vector of observations, corrupted by white
noiseV , and whereV has covarianceR. C is the measurement
function, andZ represents a prior model for the surfacez. The
specific nature of the measurement functionC will typically de-
pend on the specific surface reconstruction problem of interest;
for example we may directly observe a sparse subset of the sur-
face heights,

C(z) = [z(x1, y1) z(x2, y2) · · ·]T , (4)

or we may just observe a subset of the surface gradients,

C(z) = [ p(x1, y1) q(x1, y1) · · ·]T . (5)

2.2. Surface Prior Models

A least-squares solution for the surfacez given the measure-
ments alone is typically ill-posed [1]; i.e., there is not a sin-
gle optimum solution for the surface. In order to guarantee a
unique solution the problem is regularized by asserting a prior
modelZ for the unknown surface, typically reflecting our prior
knowledge about the surface to be reconstructed or, equivalently,
asserting certain desired smoothness properties for the recon-
structed surface.

A simple and common surface prior model is to assert a
smoothness constraint [16]:

Zp(z) = α
∫ ∫ {

p2
x + p2

y + q2
x + q2

y

}
dx dy. (6)

This constraint is also referred to as a “thin plate” term, in that
(6) represents the potential energy in an isotropic thin plate [5].
An alternative function, representing the potential energy con-
tained in a stretched membrane [5], punishes variations from
p= 0,q= 0:

Zm(z) = β
∫ ∫
{p2+ q2} dx dy. (7)

Combining (6), (7) yields a variational formulation familiar to
computer vision researchers [16]:

ẑ(D) = min
z

{
(D − C(z))TR−1(D − C(z))

+
∫ ∫

α
{

p2
x + p2

y + q2
x + q2

y

}+ β{p2+ q2} dx dy

}
.

(8)

There are two common interpretations of this formulation:

• The regularization term of (8) is a special case of the class
of two-dimensional generalized spline functionals [36, 38].
• The regularization term of (8) represents a deformable sheet

[40] or a stiff surface, being acted upon by forces (i.e., the ob-
servations), where the resulting deformation is a function of the
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specific stiffness properties of the sheet. In particular, a mem-
brane termZm minimizes the surface “area” (like a rubber sheet),
whereas the thin plate termZp minimizes the surface curvature
(like a steel plate).

2.3. Explicit Estimation of Surface Gradients

One final addition to the variational formulation is appropri-
ate. In many surface reconstruction applications, the gradients
of the surface play a central role (the most notable example be-
ing the shape-from-shading problem [16, 17]). It is frequently of
interest to estimate the gradients explicitly, rather than to infer
them implicitly as a function of the estimated surface.

For example, consider a problem in which the measurements
are functions of the surface gradients only, not the surface heights
themselves. In such problems, we may be motivated to use the
common variational equation [16]

min
p,q

{
(Dg − Cg(p,q))TR−1

g (Dg − Cg(p,q))

+
∫ ∫

R2
α
(
p2

x + p2
y + q2

x + q2
y

)+ β(p2+ q2) dx dy

}
,

(9)

whereDg represents gradient-dependent observations and where
the measurement functionCg(p,q) explicitly depends upon gra-
dient terms only. In general, the estimates ofp,q resulting from
such a variational equation will not correspond to the gradients of
anysurfacez—this is the well-known integrability problem [12,
21]. Our multiscale surface reconstruction model (to be outlined
in Section 4) will similarly be estimating the surface gradients
explicitly, hence the relevance of the following discussion.

In order of p,q to be gradients of a surface, the consistency
constraint ∮

L
(p dx+ q dy) = 0 (10)

must hold over all closed pathsL in the plane [15]. In other
words, py=qx must hold at all points in the plane, leading to
the revised variational problem [15]

min
p,q

{
(Dg − Cg(p,q))TR−1

g (Dg − Cg(p,q))

+
∫ ∫

R2
α
(
p2

x + p2
y + q2

x + q2
y

)+ β(p2+ q2)

+ γ (py − qx)2 dx dy

}
. (11)

The inclusion of the additional penalty term in the above ex-
pression does not guarantee that (10) is exactly satisfied, al-
though using a large value forγ will in general result in nearly
consistent (p,q) fields. Even if this consistency relationship is
exactly satisfied, however, we still have the nontrivial problem

of computingz from the (p,q) fields. On the other hand, this
problemandthe consistency problem may be avoided by explic-
itly reconstructingz as well as (p,q) through a simple surface-
gradient consistency penalty∫ ∫

R2
(zx − p)2+ (zy − q)2 dx dy. (12)

This leads to the following variational problem where, for gen-
erality, we allow both direct measurementsDs= Cs(z)+ Vs, as
well as gradient measurementsDg:

min
z,p,q

{
(Ds − Cs(z))TR−1

s (Ds − Cs(z))

+ (Dg − Cg(p,q))TR−1
g (Dg − Cg(p,q))

+
∫ ∫

R2
α
(
p2

x + p2
y + q2

x + q2
y

)+ β (p2+ q2)

+ γ ((zx − p)2+ (zy − q)2) dx dy

}
. (13)

This variational problem, similar to the one introduced in [15],
forms the point of departure for our analysis and for the devel-
opment of efficient multiscale counterparts to problems of this
type. We will restrict our attention tolinear measurements of
the surface and its gradients, as in [35, 36].

2.4. Euler–Lagrange Equations

After a specific variational expression has been selected, the
solution for the optimal estimated surfaceẑ(D) can be charac-
terized in a straightforward manner. For example, the Euler–
Lagrange equation [5, 36] corresponding to (8) is

∂

∂z
(D − C(z))R−1(D − C(z))T

−α
{
∂2z

∂x2
+ ∂2z

∂y2

}
+ β

{
∂4z

∂x4
+ 2

∂4z

∂x2y2
+ ∂4z

∂y4

}
= 0. (14)

This is an elliptic PDE which, after specifying appropriate bound-
ary conditions, may be solved numerically by discretizing the
PDE and applying numerical solution techniques. In special
cases extremely efficient FFT techniques may be applied. Typ-
ically, however, FFT techniques arenot applicable, leading re-
searchers to propose a variety of other techniques [16, 33, 35,
40]. These techniques successfully estimate the surface by solv-
ing the PDE in a comparatively efficient manner; however, they
are unable to produce estimation error statistics for reasons that
are outlined next.

2.5. Variational Problems as Estimation Problems

In this section we briefly describe the dual interpretation of
variational problems as estimation problems, a topic that has



              
160 FIEGUTH, KARL, AND WILLSKY

been discussed in more detail in previous works [9, 23, 31].
Specifically, consider the variation of (13),

min
z,p,q

{
(D − C(z, p,q))TR−1(D − C(z, p,q))

+
∫ ∫

R2
[L1(z, p,q)TL1(z, p,q)

+L2(z, p,q)TL2(z, p,q)] dx dy

}
, (15)

whereL1,L2 are column vectors of linear functionals ofz, p,q,
and whereD may contain both height and gradient measure-
ments (e.g., theDs, Dg of (13)) from the linear measurement
functional C. Although such variational expressions are ele-
gantly represented in continuous space, the goal of implementing
a practical estimator on a computer motivates the shift to dis-
crete space. For reasons of consistency, similar notation is used
for both continuous and discrete space expressions.

Let ZT = [. . . , z(xi , yj ), . . .]T represent a vector of samples
of z(x, y) on a 2-D grid; similarly defineP, Q. Then (15) may
be discretized as

min
Z,P,Q


D − C

 Z
P
Q

T

R−1

D − C

 Z
P
Q



+
L1

 Z
P
Q


T L1

 Z
P
Q


+
L2

 Z
P
Q


T L2

 Z
P
Q


 , (16)

whereL1, L2 are matrices representing discrete approximations
of the linear functionalsL1,L2 over the discrete grid and where
C is a matrix which describes the measurements ofZ, P, Q.

Each discrete optimization problem of the form of (16) pos-
sesses an estimation counterpart. Specifically, the optimization
of (16) corresponds exactly to the problem of estimatingZ, P, Q
given the measurement model

D = C
 Z

P
Q

+ v v ∼ N (0, R) (17)

and a prior model

[
L1

L2

] Z
P
Q

 = w w ∼ N (0, I ), (18)

whereN (µ, R) represents a Gaussian random vector with mean
µ and varianceR. Alternatively, we may interpret portions of

the “prior” model as “measurements” (we shall find this to be
convenient later); for example, the above estimation problem is
the same as the following problem having measurement model

[
D
0

]
=
[
C
L1

] Z
P
Q

+ v̄ v̄ ∼ N
(

0,

[
R 0
0 I

])
(19)

and a corresponding prior model

L2

 Z
P
Q

 = w̄ w̄ ∼ N (0, I ). (20)

The solution to both of these estimation problems is given by
the Euler–Lagrange equations

([
L1

L2

]T [L1

L2

]
+ CTR−1C

) Ẑ
P̂
Q̂

 = CTR−1D (21)

and for which the estimation error covariance is

P̃ =
([
L1

L2

]T [L1

L2

]
+ CTR−1C

)−1

. (22)

The computation of (21) corresponds to the solution of a PDE,
a computationally difficult task. However it is (22) that is orders
of magnitude more complex, as it corresponds to thecomplete
inversionof a higher-order PDE operator. What we propose to do
is to replace the prior (20) by something similar, such that com-
puting (21) and any element of (22), in particular the diagonal
elements (the estimation error variances), is easy.

3. MULTISCALE MODELING

The multiscale models of interest in this paper and originally
introduced in [4, 23, 24] are scale recursive models defined on
index sets that are organized as multilevel trees. A simple exam-
ple of such a tree (a quadtree) for a 2-D random field is illustrated
in Fig. 1. Here each level of the tree corresponds to a different
scale of resolution in the representation of the random field,
with coarser scales toward the top of the tree. This modeling
framework is more flexible than the figure might suggest, how-
ever, because it is applicable to higher dimensional, asymmetric,
and unusually shaped trees; for the purposes of this paper the
quadtree structure of Fig. 1 will suffice.

Let s denotes any node on the tree andsγ̄ its parent; then the
state vector at each node is governed by the following coarse-
to-fine recursion

x(s) = A(s)x(sγ̄ )+ B(s)w(s), (23)
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FIG. 1. A basic quadtree multiscale structure.

wherew(s) is a white Gaussian noise process with identity
covariance. Moreover, the general measurement model associ-
ated with this framework allows measurement data at all scales,

d(s) = C(s)x(s)+ v(s), (24)

wherev(s) is white, with covarianceR(s). The prior covariance
Px(s) at each nodes is determined by the recursive relationship
in (23) and by the prior covariance at the root node,

Px(0)= E[(x(0)− E[x(0)])(x(0)− E[x(0)])T ]. (25)

Superficially, this estimation problem would appear more dif-
ficult than the surface estimation problem of (17), (18), since
we are now estimating quantities of interest onall resolutions.
However for those multiscale estimation problems which can be
written in the form of (23), (24) an extremely efficient realization
of the optimal estimator is available [4, 23].

There are really two algorithms involved in proceeding from
a variational description of an estimation problem, such as in
(17), (18), to a set of multiscale estimates and error statistics:

1. The algorithm which takes us from the variational problem
to a multiscale model of the form (23), (24). It is this algorithm
which is novel to this paper and which will be the focus of the
remaining sections.

2. The algorithm which takes us from a multiscale model plus
data and computes estimates and error statistics.

The latter algorithm has been described in detail in [4, 23, 24];
however, we summarize the key points here.

Observe thatanylinear reconstruction, interpolation, or regu-
larization problem has statistical interpretation in terms of spec-
ifying a prior statistical model and noisy measurements, which

can be reduced in principle to a set of linear equationsAx= b
(e.g., as in (21)), where the solution yields the estimates and
where the diagonal elements ofA−1 are the error variances in
the estimates of each component. Thus there are two related,
but usually separate, issues: how do we solveAx= b, and how
do we get the diagonal elements ofA−1? The methods that have
been used to compute error statistics, namely using Monte Carlo
methods [31], computingA−1 iteratively row by row [31], or
computingA−1 directly, require a great deal of computational
effort beyondthe effort needed to computex. In particular, the
computational load to exactly computeall of the diagonal ele-
ments ofA−1 dwarfsthe load required to solveAx = b.

Our multiscale approach is fundamentally different. In partic-
ular, by choosing a prior statistical model with particular struc-
ture (i.e., by choosing a particular structureĀ∼ A, consistent
with (23), (24)), not only is the solution of the resultinḡAx̄= b
equation made much simpler and noniterative, but also in the
process of solving this equation we directly compute the diag-
onal elements of̄A−1. As a comparison, consider the Kalman
filter which computes time-recursive estimates of a dynamic
process given a sequence of measurements. A key property of
the Kalman filter is that the estimation error statistics are not
computed separately from the estimates, rather the error statis-
tics appear as a by-product of computing the estimates; in a
manner of speaking, the error statistics are available “for free.”
Our multiscale approach is similar to that of the Kalman filter:
we do not have a separate algorithm that computes estimation
error statistics, rather these statistics are available “for free” as
a by-product of our hierarchical Kalman filter-like algorithm.
Just as a time-recursive stochastic model gives rise to the time-
recursive Kalman filter, a scale-recursive model (23) on a tree
gives rise to an efficient scale-recursive algorithm.

The challenge, then, isnot one of calculating error statis-
tics, rather one of finding a multiscale model which solves the
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problem of interest. This challenge is addressed in the following
sections.

4. ELEMENTARY MULTISCALE MODEL
DEVELOPMENT

In this section we describe the basic elements required to
map a variational problem such as (13), or equivalently its cor-
responding estimation problem (17), (18), into a closely related
multiscale estimation problem of the form of (23), (24).

Recall that the estimation problem of (17), (18) consists of
two components:

1. A measurement equation.
2. A prior model, parts of which may be interpreted as mea-

surements (see Section 2.5).

The following two subsections discuss each of these two com-
ponents in turn, followed by the development of a multiscale
model appropriate for surface estimation.

4.1. Measurement Model

In the context of our multiscale tree, it is at the finest scale
where we have measurements and wish to perform surface recon-
struction. Thus the measurements (24) in our multiscale model
are defined only at the finest scale. For example, in Section 6 we
focus primarily on direct surface measurements. In such cases,
if z(s) is the first component ofx(s), then our measurement will
take the form of (24) withC(s)= [C1(s), 0, . . .] whereC1(s)= 1
at those finest scale nodes at which we have measurements.

4.2. Quadratic Penalties on State Derivatives, e.g., z2
x

In one dimension the following variational cost∫
z2

x dx (26)

is equivalent to a Brownian motion prior model [23], i.e., a
process with a 1/ f 2 spectrum (intuitive arguments why (26) may
be considered a “fractal” prior are discussed in [4, 23, 32]). Such
a process has the property that the variance of its increments (or
more generally, its wavelet coefficients [41]) varies linearly with
interval length (or, on a tree, varies geometrically with scale).
As shown in [4, 23], we can capture such a geometric variation
using a multiscale model such as

z(s) = 1 · z(sγ̄ )+ Bo2−m(s)/2w(s), (27)

wherem(s) denotes the scale of nodes. The 1/ f 2-like nature of
such a process is derived in [41] and illustrated empirically in
[9]. As discussed in [23], a 2-D interpretation of the above also
holds for variational penalties on derivatives ofz(x, y), so (6),
(7) can be represented by quadtree models of (27).

4.3. Quadratic Penalties on Linear Combinations
of State Variables

Other components of the prior involve quadratic costs of linear
functions of variables, e.g.,∫ ∫

((zx − p)2+ (zy − q)2) dx dy (28)

from (12), which asserts the relationship between the surface and
its gradients. As discussed in Section 2.5, we can (and do) choose
to interpret such terms as part of the measurement model. For
example, the penalty

∫ ∫
(zx−p)2 has the statistical interpretation

as a measurement of the form

0= zx(x, y)− p(x, y)+ v(x, y), (29)

wherev(x, y) is a spatially white “measurement noise” with
a variance inversely proportional to the weight placed on the
(zx − p) penalty in the variational problem.

“Measurements” of the form (29) are not in the most conve-
nient form for multiscale implementation. However observe that
the integrand in (28) can be expressed as

(zx − p)2+ (zy − q)2

= 1

2
(zx + zy − p− q)2+ 1

2
(zx − zy − p+ q)2 (30)

which leads to the following types of measurements:

0 = zx(x, y)+ zy(x, y)− p(x, y)− q(x, y)+ v1(x, y) (31)

0 = zx(x, y)− zy(x, y)− p(x, y)+ q(x, y)+ v2(x, y). (32)

As we describe next, these measurements are readily captured
in our quadtree structure.

In order to incorporate a discretized version of (31) or (32)
into our multiscale framework we must define appropriate ap-
proximations to the derivativeszx(x, y) andzy(x, y). Since the
concept of the gradient of a 1/ f 2-like surface is ill defined at
best, we have some flexibility in how we choose to do this, and
we have taken advantage of this flexibility to specify an approx-
imation that leads to a very simple model. Consider Fig. 2, in
which we have portrayed a parent pixelsγ̄ and its four descen-
dantss1, s2, s3, s4. We consider each node on the tree to represent
a particular point on the surface, chosen to be the point in the
center of the region aggregated by each node: the points are
marked as a filled circle• for each of the descendent nodes and
as a cross× for nodesγ̄ . Measured in units of finest scale pix-
els, the point• in each of the child nodes is separated from×
by a distance

√
2 · 2M−m(s1)−2, whereM equals the number of

scales on the tree. The quantities (zx + zy) and (zx − zy) repre-
sent directional derivatives of the fieldz along the two diagonal
directions, i.e., along the directions from× to each•. This sug-
gests a natural approximation to eitherzx+ zy or zx− zy in each
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quadrant, depending on the direction of the line from× to each
corresponding•. For example, for nodess3 ands4 we have

zx(s3) + zy(s3) ' 22+m(s3)−M (−z(sγ̄ )+ z(s3)) (33)

zx(s4) − zy(s4) ' 22+m(s4)−M (−z(sγ̄ )+ z(s4)) (34)

with analogous definitions at nodess1, s2.
Consequently, if we wish to view (31) as a “measurement”

we are led to discrete measurements of the form

0 = 22+m(s3)−M (−z(sγ̄ )+ z(s3))− p(s3)−q(s3)+ v(s3) (35)

0 = 22+m(s2)−M (+z(sγ̄ )− z(s2))− p(s2)−q(s2)+ v(s2). (36)

In a similar fashion we can define measurements corresponding
to (32):

0 = 22+m(s1)−M (+z(sγ̄ )− z(s1))− p(s1)+q(s1)+ v(s1) (37)

0 = 22+m(s4)−M (−z(sγ̄ )+ z(s4))− p(s4)+q(s4)+ v(s4). (38)

For these “measurements” to be in the form of (24) all of the
variables in (35)–(38) (other than the noise termsv(si )) must
be in the respective state vectorsx(si ). Thus each statex(si )
must include the parent valuez(sγ̄ ); this is accomplished easily
through state augmentation as described in the next subsection.

4.4. Elementary Multiscale Model Synthesis

Combining the preceding subsections leads to an elementary
multiscale model corresponding to (13). First, the multiscale
state dynamics:

z
p
q
zp

 (s) =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0




z
p
q
zp

 (sγ̄ )

+


Bs2−m(s)/2 0 0

0 Bg2−m(s)/2 0
0 0 Bg2−m(s)/2

0 0 0

w(s).

(39)

Here the first component of the dynamics captures the thin mem-
brane term (7) and the next two the thin plate penalty (6). The
last component accomplishes the state augmentation required
for the penalty (12) as discussed in the preceding section:zp(s)
is simplyz(sγ̄ ). The measurement equation accompanying this
model includes both the actual measurements (at the finest scale)
as well as measurements such as (35)–(38) which assert the
surface-gradient consistency. For example, if we have only di-
rect surface height measurements, the measurement equation at
each of the four nodessi , 1≤ i ≤ 4 in Fig. 2 would take the form

FIG. 2. A set of five node labels for gradient discussion purposes.s1, s2, s3, s4

are each children of coarser notesγ̄ . The× indicates the point represented by
nodesγ̄ ; the solid circlesd specify the points represented by nodess1, . . . , s4.

[
d(si )

0

]
=
[

C1(si ) 0 0 0

−ai 22+m(si )−M −1 bi ai 22+m(si )−M

]

×


z
p
q
zp

 (si )+ v(si ), (40)

whereC1(si ) (from Section 4.1) equals one at those nodes at
which we have measurements (zero otherwise), andai , bi are
given by

a1 = 1 a2 = 1 a3 = −1 a4 = −1,

b1 = 1 b2 = −1 b3 = −1 b4 = 1
(41)

where theai andbi , which follow from (35)–(38), correspond
to the measurement of eitherzx + zy (for s2 ands3) or zx − zy

(for s1 ands4).
There are several final points that we should make about this

multiscale model. First, there is the issue of specifying the un-
known parameters, e.g., theBs, Bg of (39). This is the same type
of problem as the the selection of appropriate weightsα, β, γ

in the original variational formulation (13). However, now that
we have a statistical interpretation of these terms, we can use
that to our advantage in determining these quantities. In partic-
ular Bs, Bg have an explicit physical meaning, measured in real
physical units, that represent the prior statistical knowledge of
the surface; e.g., if the surface varies over a range of±15 cm,
thenBs = 10 cm would make a reasonable choice. In addition,
based on the multiscale likelihood and parameter identification
methods that our models admit [11, 25], one can estimate the
optimal values of these parameters from the data and perform
model validation.

5. ADVANCED MULTISCALE MODEL
DEVELOPMENT

The straightforward application of the elementary multiscale
model (39), (40) derived in Section 4 would be to implement it
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FIG. 3. Four sparse measurements used in testing the elementary multiscale
model.

directly on a quad-tree. Based on the four sparse measurements
from Fig. 3, Fig. 4 demonstrates the result of such an approach.
The computation of the estimatesandestimation error variances
(not shown) required about 3 s of SPARC-10 computer time. The
most striking feature of these estimates is their blockiness, or
lack of smoothness, characteristic of many quadtree algorithms;
this section will address this blockiness issue.

From Fig. 1 we see that the upper-left and upper-right quad-
rants of the surface are correlated only via the state elements at
the root node of the tree, despite the fact that these two quadrants
share a relatively long common boundary. As a consequence,
pixels such ass1 ands2 of Fig. 5 may be only weakly corre-
lated because of their significant separation on the tree, despite
their adjacency in physical space. As argued in [23], in some
situations this blockiness is not a serious issue. In particular, in
some problems the quality and quantity of information available
for reconstruction may be sufficiently low thatno statistically
significant fine scale estimates can be computed. Nevertheless,

FIG. 4. The surface estimates resulting from a straightforward implementation
of the elementary multiscale model.

FIG. 5. Two nodes,s1 ands2, neighbors in physical space, but distantly sep-
arated in tree space.

in many applications there are compelling reasons for produc-
ing smooth reconstructions, something that iterative variational
solutions generally do well.

In this paper, we make use of a recently developed class
of models to produce smooth estimates, based on the concept
of “overlapping” trees. We refer the reader to two references
[10, 19] which motivate and develop this method in greater de-
tail, and limit ourselves here to a terse (but complete) descrip-
tion. As Fig. 1 suggests, in straightforward quadtree models the
notes at a given level on the tree correspond to disjoint regions
of the image plane, leading to the loss of correlation between
pixels such ass1 ands2 in Fig. 5. The idea behind overlapping
trees is to interpret nodes at a given level of the tree as corre-
sponding to overlapping regions, as illustrated for a 1-D signal
in Fig. 6, in which the bracket|—| at each node represents the
region of physical space to which the state vector at that node
corresponds. Although our overlapping regions are similar in
spirit to the overlapping basis functions of multilevel precondi-
tioners [33, 42, 43], this is where the similarity ends. It is the

FIG. 6. Overlapping multiscale trees: adjacent nodes on the tree may represent
overlapping regions of physical space.
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desire to represent the process on an overlapped multiscale tree,
but still consistent with (23), (24), that places very particular
constraints on the overlapping framework, and the functions we
end up using are unusual and bear no resemblance to the hierar-
chical functions of Szeliski [33] or Yaou and Chang [42].

Observe that the physical pointφ, indicated in Fig. 6, is
present in two of the intervals on the bottom level of the fig-
ure: clearly we have a redundant representation at the finest
scale of the tree; i.e., several finest scale nodes may correspond
to the same point in physical space, which raises the question of
how tree states are mapped onto the image plane and how mea-
surements in the image plane are mapped onto the tree. To see
how this is done, letxdensedenote the fine scale field of interest
(stacked into a column vector), with associated measurements

ddense= Cxdense+ vdense (42)

and let Rdensebe the diagonal covariance of the measurement
errorvdense. Next letxoverlap, doverlap, Roverlap represent the asso-
ciated quantities on the finest scale of the tree. There are two
requirements that we place on the mapping betweenxdenseand
xoverlap:

• Each physical pixel in the image plane is mapped to one or
more finest scale tree nodes.
• Each finest scale tree node corresponds to only one pixel

in the image domain.

These requirements then lead to corresponding constraints on
the “lifting” operation

xoverlap= Gxxdense (43)

namely that the elements ofGx are all zero or one and that each
row has exactly one nonzero entry. A similar operatorGd “lifts”
measurementsddensein 2-D space to measurements on the finest
level of the overlapped tree:

doverlap= Gdddense. (44)

Gd just contains those columns ofGx that correspond to the
measurement points in 2-D space. Finally the diagonal mea-
surement error covarianceRoverlap is set to reflect the fact that
measurements may be copied to more than one finest scale tree
node,

GT
d R−1

overlapGd = R−1
dense; (45)

i.e., the variance of each overlapped measurement is multiplied
by the number of its redundant partners. It is also necessary to
define a projection operatorH :

xdense= Hxoverlap. (46)

We first require that projection be the inverse of lifting, namely
that HGx = 1. BecauseGx is one-to-many this constraint still
allows considerable flexibility in choosingH , and we can use

that flexibility to achieve our smoothness objectives. We also
require thatH be a local operator, i.e., that each element of
xdensein (46) be a function only of the elements inxoverlap that
correspond to the same physical location as the element ofxdense.
In other words, ifgk denotes thekth column ofGx, andhT

j the
j th row of H , then

hT
j gk = δ jk(= 1 if j = k and 0 otherwise). (47)

Even with this constraint we still have additional freedom in
selectingH , in that the only constraint on the nonzero elements
of hk is that they sum to 1. These nonzero values represent the
“participation” of each of the redundant components ofxoverlap

in each 2-D pixel. By tapering these weights, sketched in Fig. 7a,
so that they vary smoothly across overlapping regions we can
achieve our smoothness objective. The procedure for specifying
these weights, which is fully described in Appendix A, is recur-
sive in scale. A simple illustration of the idea for a 1-D signal of
length 10 is given in Fig. 7b. The weights shown represent the
level of participation of each of the two tree nodes in each of
the 10 signal points. For example, the signal point marked with
a star,w, has a participation factor of 0.4 from the left node and
0.6 from the right node. Each of these total participation factors
(0.4, 0.6) is then further subdivided at finer levels by recursively
applying the same tapering operation on all overlapped regions.

By adjusting the amount of overlap and the tapering of the
weights we can adjust the amount of smoothness and remove
artificial boundaries that lead to blockiness. However it is im-
portant to emphasize that the weighted averaging implied by

FIG. 7. Two overlapping nodes: the set of relative contributions to each finest
scale pixel must sum to one. The contributions are tapered linearly over the
region of overlap. (a) Tapering pictorially; (b) a specific example for two nodes
which overlap by three pixels.
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(46) doesnot introduce smoothing where it is not wanted; in
particular, it doesnot correspond to lowpass filtering in space.
Specifically, the fine scale nodes being averaged in (46) cor-
respond to the same physical point. Thus, if the random field
being modeled is known to have a statistical discontinuity at
some location, that property will be reflected inall of the fine
scale nodes to which that point corresponds.

Once we have chosenH andGx and constructed a multiscale
tree model forxoverlap, our estimation procedure proceeds by
lifting the measurements from 2-D space to the tree according
to (44), (45), performing multiscale estimation on the tree, and
projecting back into the 2-D domain to produce the optimal
estimates and estimation error covariances:

x̂dense= Hx̂overlap (48)

P̃dense= HP̃overlapH
T . (49)

As discussed in Section 3, the estimation algorithm directly pro-
duced the error variances for the estimates at individual tree
nodes—the diagonal elements ofP̃overlap. Each off-diagonal el-
ement ofP̃overlap corresponds to the cross-covariance between
estimation errors at pairs of tree nodes. From [24], each of these
elements can be calculated with a number of 4×4 matrix opera-
tions proportional to the number of levels on the tree. Moreover,
since H T H is quite sparse, only a comparatively small per-
centage of the off-diagonal elements ofP̃overlap are required to
compute the diagonal elements ofP̃densein (49). While the total
load of these computations does not increase the total compu-
tation prohibitively, we have taken a far simpler approach by
approximating the diagonal elements ofP̃denseas

diag(P̃dense) =
{
H diag(P̃overlap)

1
2
}2
. (50)

This approximation corresponds to the worst-case assumption
that the errors in the estimates at tree nodes corresponding to
the same pixel are perfectly correlated. Thus the error variances
in (50) not only represent an upper bound on the actual error
variances, but also provide us with an accurate picture of the
relativesizes of estimation error variances over the entire image
domain.

Since the overlapping procedure we have just described in-
volves a change in the multiscale tree structure from that used in
the preceding section, it is also necessary to make a correspond-
ing change in the model parameters on the tree. Because of the
interpretation of thin-plate and membrane models as fractal pri-
ors, we can readily develop such a model motivated by results
on hierarchical fractal surface synthesis in [28]. A key quantity
in this construction is the scale to scale ratio of the dimensions
of the multiscale regions. Specifically, each node of the tree rep-
resents a square region of image pixels; letwm be the length of
each such square region, measured in units of pixels, represented
by nodes on scalem of the tree; then the key quantity is

r = wm + 1

wm
(51)

which is related to thelacunarity [26, 28], or texture, of the
synthesized surface. Then in constructing a 1/ f 2 model on such
a pyramidal structure the variance of the detail added in going
from themth to the (m+ 1)st scale is proportional to (1− r )r m.
For overlapped trees,r > 1

2, thus the noise gains 2−m(s)/2 in (39)
are replaced by 2(1− r )r m(s)/2. Furthermore, in going from a
nonoverlapped to an overlapped tree, the number of scales must
be increased by a factor of 1/ log2(1/r ). The computational com-
plexity increases as the number of tree levels is increased, so we
have a tradeoff between the amount of overlap and computa-
tional load.

6. RECONSTRUCTION EXAMPLES

A meaningful comparison between our multiscale approach
and established iterative methods is a challenging undertaking.
The challenge stems from the fact that our multiscale approach
is really addressing different primary objectives and is solving a
different problem from that of iterative methods. Most iterative
surface reconstruction methods, including those of Szeliski [33]
and Yaou and Chang [42], are trying to solve thesameestimation
problem as efficiently as possible. That is, each method tries to
solve Ax = b for the same choice ofA (either based on mem-
brane or thin-plate types of models),without inverting A. Each
of these methods produces a sequence of estimatesx0, x1, . . . ,

and each of these sequences converges to thesame limit
x∞—the desired surface. With such a concrete, common goal,
the comparison of competing methods is obvious: investigate
the rapidity of convergence of‖xi − x∞‖ for each method.

Our multiscale approach does not fit into the picture of the
previous paragraph, because we are solving adifferentproblem
Āx̄ = b. Consequently,

• the solution to our problem̄Ax̄ = b will neverbe the same
as that ofAx = b, regardless of the number of iterations used
to solve the latter problem;
• we obtain error statistics (essentially the diagonal elements

of Ā−1) for our estimation problem. These statistics are not com-
puted forAx = b since they require the computation ofA−1,
a problem much more difficult than the estimation ofx. Thus
not only are we solving a different estimation problem, but the
nature of our results is fundamentally different.

The primary objective of our work is to present a method for
surface reconstruction based on a modified prior model which
permits the efficient computation of estimates and estimation
error statistics. With this objective of our paper clearly stated,
there are certain fundamental questions which are fair to ask in
order to assess whether the objective has been accomplished:

1. Is the computational effort of our method on the same order
as that of other surface reconstruction methods?

2. Is the modified prior a reasonable one?
3. Does the modified prior lead to issues of shift-invariance

or estimation artifacts?
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4. Is the modified prior model flexible enough to accom-
modate a range of surface reconstruction problems (e.g., discon-
tinuities, nonstationarities)?

In terms of the computational effort, if the number of scales
added to the tree to allow overlap is limited to two (we have
never done otherwise), then our multiscale approach has a con-
stant computational complexity per image pixel. As a point of
comparison we used a multigrid implementation [14, 27, 35,
36, 39] based on W cycle (i.e.,γ = 2) on a tree with a coars-
est scale of 4× 4 pixels and used ten Gauss–Seidel sweeps at
each scale. If the number of iterations required to converge to
an acceptable solution is independent of image size, then the
computational complexity of this multigrid method, or that of
preconditioned surface reconstruction methods such as that of
Yaou and Chang [42] or Szeliski [33], similarly have constant
computational complexity per pixel.

The second question concerns the reasonableness of our pro-
posed multiscale prior model. We believe that the reasonableness
is most effectively investigated through simple examples which,
although visually less impressive, are easier to interpret and con-
vey the advantages and disadvantages of a method more effec-
tively than more complicated tests. In estimation problems, as
the number of measurements increases and as the measurements
noise variance decreases the prior model exerts less influence on
the resulting estimates. Consequently in order to scrutinize the
properties and qualities of our changed prior we could look at
problems involving very few measurements or with very large
measurement noise variances; problems having very sparse mea-
surements are simpler to interpret, so we have chosen these as
the vehicle by which to assess our changed prior in the first two
subsections (6.1, 6.2).

The two remaining fundamental questions are examined in the
experimental tests of the two following subsections (6.3, 6.4).
In addition to these fundamental questions there are a number
of derivativequestions which might be asked, but which are of
secondary interest for our paper; for example

1. What happens if we are not interested in estimation error
statistics? What is the fastest method available to solve for the
estimates alone?

2. Can the multiscale estimates̄x be used as effective ini-
tial conditions for iterative solutions to the original problem
Ax = b?

3. Can we use the estimation residuals and error statistics to
estimate the locations of discontinuities in the surface?

Although these questions are touched upon in our experiments,
they arenot the primary questions of our paper and we make no
claims to have answered them conclusively.

6.1. Densely Sampled Measurements

Figure 8 summarizes our experimental results for surface re-
construction of a densely sampled surface. A smooth surface of
size 64× 64 pixels is shown in Fig. 8a and the corresponding

dense measurements with added Gaussian noise (variance 25)
are shown in Fig. 8b. The particular surface used does not cor-
respond exactly to either the variational or multiscale prior and
thus comparison between variational and multiscale reconstruc-
tion is not biased in favor of either formulation.

Figure 8c shows the reconstructed surface using an iterative
multigrid algorithm [35] to solve the variational problem based
on a thin-plate prior model (i.e.,α= 1, β = 0 in (13)). In this
(and all future) comparison involving our multiscale approach
and an iterative method (such as multigrid), the number of it-
erations for the iterative methods is selected such that the to-
tal computational effort of each method is the same. Figure 8d
shows the reconstructed surface using our proposed multiscale
algorithm computed using an overlapping tree with eight scales
(anonoverlapped tree for this surface would require seven scales)
and a thin-plate-like prior model (i.e., the prior model is dom-
inated by gradient constraints by choosingBsÀ 16Bg). As in-
dicated in the figure caption,O= (12, 6, 4, 3, 0, 0, 0), so the
regions associated with nodes on the first level below the root
node overlap by 12 pixels; at the next level the overlap is six
pixels, etc.

The multigrid and multiscale reconstructions of Fig. 8 are
arguably equally good—both give reasonable estimates of the
original surface, and our multiscale approach shows no signs of
blockiness. A more precise comparison is provided by Fig. 9.
Here we consider a set of reconstruction problems in each of
which only a randomly sampled subset of the noisy surface mea-
surements is used. What Fig. 9 depicts is the Monte Carlo RMS
reconstruction error for both the multiscale and multigrid meth-
ods as a function of thefractionof noisy surface measurements
used. Observe that for the same computational effort, the multi-
scale algorithm performs comparablyor better(particularly on
sparse data sets) than the multigrid approach in an RMS sense.
Thus the multiscale model which we have developed shouldnot
simply be viewed as an approximation to a variational equa-
tion, rather we are motivated by a certain variational form to
develop a surface prior model—indeed, a conspicuously effec-
tive one—that leads to competitive reconstructions. Moreover it
must be emphasized that the multiscale algorithm is computing
surface estimatesandestimation error variances in the time that
multigrid computes surface estimates only.

6.2. Sparsely Sampled Measurements

The preceding example demonstrated that our algorithm pro-
vides competitive solutions for problems in which we have either
dense or (randomly sampled) sparse data; in this section we use
the sparse data of Fig. 10 to illustrate several additional issues.

The first issue concerns the easily controlled tradeoff (using
our overlap method) between smoothness of reconstruction and
computational complexity. Such a tradeoff is of interest because
the difference between a rough reconstruction (as in Fig. 4)
and a much smoother one may not be statistically significant
(something which our method can determine). Thus, for pur-
poses such as so-called line-of-sight or visibility calculations



        

168 FIEGUTH, KARL, AND WILLSKY

FIG. 8. Dense measurement reconstruction example: a surface is reconstructed based on dense measurements with 5 cm Gaussian noise. The multiscale and
multigrid approaches involve the same number of computations.Bs = 80, Bg = 0.4,O = (12, 6, 4, 3, 0, 0, 0). (a) Original surface to be estimated; (b) original
surface plus noise; (c) multigrid construction; (d) multiscale reconstruction.

for topographic maps, the use of a less smooth reconstruction
can produce results that are just as accurate statistically, with
much less computational effort, as those produced if a smoother
reconstruction were used.

FIG. 9. RMS error in surface estimation using multiscale and multigrid meth-
ods as a function of the proportion of noisy measurements retained.

Figures 11a–11d show the surfaces reconstructed from the
measurements of Fig. 10 and a thin-plate prior by means of four
different approaches: Gauss–Seidel [6], conjugate–gradient [6],
multigrid [35], and multiscale. The Gauss–Seidel and conjugate–
gradient approaches are generally not practical algorithms for
the surface reconstruction problems of interest; however they
are well understood and many researchers have a sense for the

FIG. 10. Four surface samples which form the basis of the sparse-data recon-
struction examples.
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FIG. 11. Sparse measurement reconstruction examples: each reconstruction is based on the measurements of Fig. 10. Each of the methods uses the same number
of total computations, except that the multiscale approach providesboth surface estimates and error statistics. The contours of the error variance surface are
shown in (d); the minimum of the error surface is marked with an “o.”Bs = 80, Bg = 0.05,O = (38, 29, 24, 0, 0, 0, 0, 0). (a) Gauss–Seidel reconstruction;
(b) conjugate–gradient reconstruction; (c) multigrid reconstruction; (d) multiscale reconstruction.

performance of these algorithms. Meaningful comparisons are
achieved between these different algorithms by examining the
surface estimated after a common amount of computational ef-
fort (about 35 s on a Sun SPARC-10). From Fig. 11 we can
immediately see the problems associated with the Gauss–Seidel
and conjugate–gradient methods, as neither is near to conver-
gence. In contrast, both the multigrid and multiscale algorithms
yield smooth estimates of arguably equal quality. In addition,
the multiscale algorithm computes estimation error variances,
shown in Fig. 11d, which provide useful information regarding
the accuracy that can be expected from the reconstruction. In
comparison, Fig. 12 shows a set of four surface reconstructions

paralleling the approaches of Fig. 11, but with one-fourth the
computational effort. The multiscale-reconstructed surface of
Fig. 12d is based on a tree having less overlap than its coun-
terpart in Fig. 11d and possesses discontinuities in its estimated
gradients, however, as discussed earlier, such artifacts will not
be of concern in certain applications. Furthermore, Fig. 12d cap-
tures certain aspects of the true surface better than its multigrid
competitor of Fig. 12c (compare in particular the upper-left por-
tion of the two estimated surface).

A second, less fundamental, issue concerns the possibility
of using our multiscale approach to accelerate iterative sur-
face reconstruction solvers, in particular to using the multiscale
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FIG. 12. Sparse measurement reconstructions using the same four methods of Fig. 11, but using one fourth of the computational effort in each case. Each
minimum of the error surface in (d) is marked by an “o.”Bs = 80, Bg = 0.05,O = (16, 10, 7, 0, 0, 0, 0). (a) Gauss–Seidel reconstruction; (b) conjugate–gradient
reconstruction; (c) multigrid; (d) multiscale.

estimates as the initial guess for an iterative solver. For example,
the reconstructions in Fig. 13 are computed by the application
of one multigrid iteration to each of the two surfaces in Figs. 12c
and 12d.

Figure 14 presents a more quantitative assessment: let
rmsMG(i ) represent the RMS difference between the exact thin-
plate solution and the reconstruction achieved afteri multigrid
iterations; let rmsMS(i ) represent the RMS error of the surface
using multigrid, given as the initial guess the multiscale esti-
mates from a seven-level tree, such that the total computational
effort is the same as that ofi multigrid cycles. Then Fig. 14 plots

(
1− rmsMS(i )

rmsMG(i )

)
· 100%; (52)

that is, the percentage RMS improvement brought about pre-
ceding the iterative solution with our multiscale approach. Note
that this percentage is significant, averaging more than 20%.

6.3. Shift-Variability of Multiscale Estimates

The previous experiments examined the estimates result-
ing from a fixed set of measurements; we now examine the
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FIG. 13. Surface reconstructions computed by applying one multigrid iteration to the two surfaces Figs. 12c and 12d.Bs= 80, Bg= 0.05,O= (16, 10, 7, 0,
0, 0, 0). (a) Multigrid; (b) multiscale+multigrid.

variability of the estimates as the measurements are shifted in
space.

Our method is not shift-invariant, due to the nonstationary
structure of the multiscale tree; however, it is important to keep
in mind thatanysampled algorithm will fail to be shift-invariant.
For example, standard discretization methods using regular grids
donotproduce strictly shift-invariant solutions either (e.g., if the
measurements do not happen to fall on the regular grid points).
Similarly, the iterative algorithms of Szeliski [33] and Yaou and
Chang [42], which project the problem onto a new basis, will
not produce shift-invariant reconstructions unless the algorithm
is allowed to totally converge. To be sure, the issue of shift-
invariant behavior is well understood for standard surface re-
construction algorithms, and it is fair to say that it is not nearly

FIG. 14. Percent reduction in RMS error from just usingi iterations of multi-
grid to computing estimates using the multiscale approach and using these es-
timates as the initial values for additional by multigrid iterations such that the
total computation is equal to that ofi multigrid iterations. The horizontal axis
measuresi .

as clear how shift-variations manifest themselves in our mul-
tiresolution framework.

Figure 15 illustrates the relationship between the proportional
RMS surface variability (calculated as the ratio of the RMS
variability of the estimates to the RMS value of the true sur-
face) and the number of surface measurements; the values were
determined empirically using a Monte Carlo approach. As ex-
pected, additional levels of overlap significantly attenuate the
shift-variability of the estimator, such that with two extra levels
of overlap the RMS variability is around one to two percent of
the RMS surface value.

6.4. Surfaces with Discontinuities

As an example of estimating nonstationary fields, in this ex-
ample we consider the estimation of surfaces possessing

FIG. 15. Shift-variability of the multiscale estimates over random choices of
the tree origin, as a function of the fraction of surface measurements. The vertical
axis measures the RMS variability of the surface, normalized by the RMS value
of the “truth” surface.
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FIG. 16. Example of a discontinuous surface.

discontinuities. The overlapping multiscale tree model possesses
a number of attributes which make it appropriate for such tasks:

• Unlike FFT-accelerated PDE methods, which require
space-invariant surface models, the performance of the multi-
scale approach is unaffected by space-varying models (e.g., a
piecewise thin-plate model broken by discontinuities).
• The smooth projection operatorHx of the overlapping tree

doesnot blur the surface estimates spatially. As a result, the
overlapping model is quite capable of capturing abrupt changes
such as discontinuities.
• Because the multiscale estimator takes as input a statistical

model for the unknown surface, not only the position of the
discontinuities, but also thestatisticsof the discontinuity height
may be specified.

FIG. 17. This figure demonstrates the behavior of the functionη(s, t), which measures the increase in the variance of the surface due to discontinuity crossings.
The positions of the circlesd, s represent the coordinates (cx(s), cy(s)) associated with the labeled multiscale nodes. The thick lines represent the locations of
discontinuities, consistent with Fig. 16.

The example surface which we use in this section is shown in
Fig. 16. The 64× 64 surface has four step discontinuities of
height 10. The step edges are oriented diagonally so as to avoid
a convenient alignment with the multiscale tree boundaries. The
surface was measured by randomly sampling 30% of the surface
elements and adding unit-variance Gaussian noise.

Suppose the locations of the discontinuities are known. We
do not model each discontinuity line as a step of constant height,
rather we assume that we have much less prior information and
simply model each point along the discontinuity with indepen-
dent zero-mean random variables: every time a branch of the
multiscale tree crosses a discontinuity we will addη= 100 to
the process noise variance forz(s) of that branch; Fig. 17 illus-
trates this procedure for the example of Fig. 16:

• Let (cx(s), cy(s)) be the coordinate of the center of the re-
gion represented by multiscale nodes; Fig. 17 shows these co-
ordinates for the coarsest three tree scales.
• Let l (s, sγ̄ ) be the line segment from (cx(s), cy(s)) to

(cx(sγ̄ ), cy(sγ̄ )).
• Let η(s, sγ̄ ) be the sum of the variances of the disconti-

nuities crossed byl (s, sγ̄ ). That isη(s, sγ̄ ) represents that part
of the variance of (z(s) − z(sγ̄ )) that can be attributed to the
presence of the modeled discontinuities.

Note that it is certainly possible for a given point of discontinuity
to be crossed more than once in traversing the multiscale tree,
i.e., in following a path from coarse to finer nodes. While one
can certainly imagine adding differing amounts of uncertainty at
each of these stages, we have used the simple procedure here of
adding a variance of 100 at each such crossing; for example in
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Fig. 17 we haveη(0α3α3, 0α3)= 100 andη(0α3α3α1, 0α3α3)=
100.

We require a modified model at each nodes for which
η(s, sγ̄ ) > 0; that is, for those nodess where a discontinuity
lies betweens and its parentsγ̄ . Whenη(s, sγ̄ ) > 0, (39), (40)
must be modified to reflect the increased variance of the surface
and the loss (or, more precisely, the irrelevance) of gradient in-
formation across the discontinuity

z
p
q
zp

(s) =


1 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0




z
p
q
zp

 (sγ̄ )

+


(
B2

s 2−m(s) + η(s, sγ̄ )
) 1

2 0 0
0 (Pog)

1
2 0

0 0 (Pog)
1
2

0 0 0

w(s)

(53)

d(s) = [C1(si ) 0 0 0][z p q zp]T (s)+ v(s), (54)

wherePog represents the gradient prior variance at the root node.
Figure 18 shows the estimated surface and estimation error vari-
ances, based on this model, applied to an overlapping tree hav-
ing nine scales. The surface estimates show the clear and well-
preserved presence of the discontinuities. Similarly the error

FIG. 18. Reconstruction of the surface of Fig. 16 and associated estima-
tion error variances based on a knowledge of discontinuity locations and a
sampling, at random, of one-third of the surface pixels having unit variance
Gaussian noise added. The lower half of the figure plots the estimation er-
ror variances; darker regions represent greater uncertainty.Bs= 20, Bg= 0.2,
O= (26, 19, 14, 9, 0, 0, 0, 0).

FIG. 19. Distribution of those measurement residuals, in excess of 3σ , from
the estimates based onno knowledge of the discontinuity locations, with the
same measurements as in Fig. 18.Bs= 20, Bg= 0.2,O= (26, 19, 14, 9, 0,
0, 0, 0).

variances are increased in the vicinity of the discontinuities,
reflecting the fact that fewer measurements contribute to the
surface estimates at those points.

As an aside, if the discontinuity locations areunknownthe
problem is much more complicated; however, we believe that
our method represents a promising first step because of its key
ability to compute posterior error statistics. For example, let us
continue to use the same measurements, but now supply them to
a multiscale model possessing no discontinuity information (as
in (39)). We can examine the statistical significance of the mea-
surement residual (= measurements− estimates), comparing
them with their predicted variances, to identify those regions
in which the multiscale thin-plate model is inconsistent with
the measurements; these regions are plotted in Fig. 19. Initial
progress in using this approach to automatically detect discon-
tinuities is reported in [29].

6.5. Nonvariational Priors

While the multiscale surface reconstruction models used to
this point are motivated by a certain variational thin-plate/
membrane model (13), the results in the preceding sections
demonstrate that our multiscale prior stands on its own as an
equally valid prior model to those used in variational formu-
lations. There are many surface statistically models which do
not correspond to a thin-plate/membrane prior model and for
which a variational optimization expression may be difficult to
write and much more difficult to solve. Due to the flexibility of
our framework, some of these surface models may readily be
realized in a multiscale setting.

One such example is the class of 1/ f µ prior models whereµ
is no longer constrained to equal 2. Although such prior models
can be written in a variational form, solving the associated PDE
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FIG. 20. A plot of the estimated ocean height, viewed from the north-east.
Bs= 35cm, Bg= 0.5,O= (16, 10, 5, 3, 1, 1, 0, 0).

is very difficult and the inversion of the PDE operator, required
to determine estimation error statistics, is much harder still.

Consider the following problem in ocean remote sensing [9].
A satellite orbiting the earth produces accurate but irregularly
sampled measurements of the height of the ocean surface. It is
desired to producesmoothmaps of the ocean surface, its gradi-
ents, and corresponding error statistics on a regular, dense grid
having upward of 100,000 points.

In [9], since multiscale models incorporating integrability
constraints and estimating gradients had not yet been developed,
we had to make do with amuchsimpler model

x(s) = x(sγ̄ )+ 35 cm· 2m(s)(1−µ)/2 (55)

than the one considered in our current paper. Similarly, since the

FIG. 21. The circulation field implied by the surface-gradient estimates of
Fig. 20.

overlapping framework had not been developed, an ad hoc shift-
ing approach was used (which improved smoothness somewhat,
but in no way as well as the overlapped approach). Indeed, the
techniques developed in this paper successfully address both the
gradient and smoothness inadequacies of [9]. By settingBs=
35 cm and by selecting a reasonable scale-to-scale variance for
the gradient, e.g.,Bg= 0.5, and by modifying the noise variances
in (39) to 2m(s)(1−µ)/2 we can jointly estimated the surface height
and gradients from altimetric data. Figure 20 shows the resulting
ocean height estimates for the north-east Pacific; the estimated
oceanic circulation pattern, inferred from the estimated gradient
field, is shown in Figure 21. The results confirm our physical
expectations for the north Pacific ocean.

7. CONCLUSIONS

In this paper we have described and illustrated a multiresolu-
tion methodology for surface reconstruction. By using the dual
interpretation of variational formulations as estimation problems
and the relationship between standard variational penalties such
as thin-plate and membrane models and fractal priors, we were
able to define multiresolution estimation problems that possess
similar interpretations and yield reconstructions of comparable
quality. Furthermore, with the same computational effort, our
multiscale method also produces estimation error variances, a
task extremely difficult to accomplish within a variational set-
ting. In addition, we have also shown that our multiscale estima-
tor provides effective initial estimates for iterative solutions to
variational formulations of the surface reconstruction problem.

Furthermore, while algorithms based on pyramidal quadtree
representations often lead to reconstructions with blocky arti-
facts, a new overlapping scheme for multiresolution modeling
greatly attenuates such artifacts. The appearance of artifacts may
be of greater or lesser concern in different applications; by se-
lecting the amount of overlap one has control over the computa-
tional complexity/artifact tradeoff. Furthermore, the variational
formulation which motivated the multiscale model developed in
Section 4 does not represent “truth,” rather it is a convenient form
of mathematical expression. Similarly the multiscale formula-
tion offers not only a computationally attractive alternative, but
also a flexible setting in which to construct surface prior models
directly, including meaningful ones that have no simple varia-
tional counterparts.

APPENDIX A

The appendix will summarize the recursive procedure for
definingGx andH . We first consider the case of dyadic trees for
1-D signals, from which the extension to quadtrees is straight-
forward.

Let om represent the width of the overlap, measured in sig-
nal points, between the regions aggregated by sibling multi-
scale nodes on scalem;O = (o1, o2, . . . ,oM−1) represents a
parameterization of the overlapping tree structure (for exam-
ple, in Fig. 7, the two nodes overlap by three points). Letwm
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represent the width, measured in signal points, of the entire re-
gion associated with each multiscale node on scalem. The finest
scale tree nodes must correspond to individual signal points, thus
wM−1 = 1, oM−1 = 0, whereM represents the number of scales
on the tree. Furthermore,

wm−1 = 2wm − om. (56)

Consider any nodes on the finest scale;s may be written as

s= 0αi1αi2 · · ·αi M−1 im ∈ {0, 1}, (57)

where 0 is the root node, andα0, α1 correspond to downward
left and right shifts, respectively. Let

n̄(s) =
M−1∑
m=1

im2M−m−1 (58)

n(s) =
M−1∑
m=1

im(wm − om) (59)

then the projection matrixGx is given by

Gx(a, b) =
{

1 if ∃s 3 n̄(s) = a, n(s) = b

0 otherwise.
(60)

Furthermore, let

of sM−1 = 0 of sm−1 = im(wm − om)+ of sm (61)

hm(s) =


1 im = 0;of sm < wm − om
w−of sm

om+1 im = 0;of sm ≥ wm − om

1 im = 1;of sm ≥ om
of sm+1
om+1 im = 1;of sm < om

(62)

then the smoothing matrixH is given by

H (b,a) =
{∏M−1

m=1 hm(s) if ∃s 3 n̄(s) = a, n(s) = b

0 otherwise.
(63)

The extension of these results to the quadtree case is straight-
forward if the quadtree is viewed as a product of two dyadic
trees. Each nodes on the finest scale may be represented as

s= 0αi1 j1αi2 j2 · · ·αi M−1 jM−1 im, jm ∈ {0, 1}, (64)

whereαi j represents thei th descendant in thex direction and
the j th descendant alongy. Consider the dyadic tree nodes

si = 0αi1αi2 · · ·αi M−1 (65)

sj = 0α j1α j2 · · ·α jM−1 (66)

then the operatorsGx, H , now viewed as projections between
two-dimensional processes, are defined as

Gx(a, b) =
{

1 if ∃s 3 {n̄(si ), n̄(sj )} = a, {n(si ), n(sj )} = b

0 otherwise.
(67)

H (b,a) =

∏M−1

i=1 hm(si )hm(sj ) if ∃s 3 {n̄(si ), n̄(sj )}=a,
{n̄(si ), n̄(sj )} = b

0 otherwise.
(68)

APPENDIX B

The implementation of the multiscale estimation algorithm
[4, 23] is a rather complicated undertaking. In the interest of
promoting the use of this algorithm and enabling interested re-
searchers to apply it to problems of their own, we are making
this code publicly available.

The code is written in MATLAB scripts and in C; the front-
end visible to the user is written in MATLAB, and the multiscale
computational engine is written in C. No programming experi-
ence is needed to try the software, although an understanding of
MATLAB scripts would be required to customize our program
for a different application.

Anyone interested in compiling and running our code will re-
quire MATLAB software and an ANSI-compatible C compiler
(precompiled versions of the code, not requiring any compila-
tion, are available for Sun-SPARC platforms). The programs are
available via anonymous FTP from ocho.uwaterloo.ca (IP Ad-
dress 129.97.172.37) in pub/Software/Multiscale Surface. The
file README describes the purpose of each program and how
to get started.
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