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Variational methods have been employed with considerable suc-
cess in computer vision, particularly for surface reconstruction pro-
blems. Formulations of this type require the solution of compu-
tationally complex Euler-Lagrange partial differential equations
(PDEs) to obtain the desired reconstructions. Further, the calcu-
lation of reconstruction error covariances for such approaches are
usually neglected.

In this paper we describe a computationally efficient multiscale
approach to surface reconstruction which differs fundamentally
from other multiresolution methods that are used to solve the Euler—
Lagrange PDEs. Instead, we interpret the variational problem as
a statistical estimation problem in order to define a nearby, but
slightly different, multiscale estimation problem that admits effi-
cient solutions for both surface reconstruction and the calculation
of error statistics. In particular, the membrane and thin-plate vari-
ational models for surfaces are interpreted as 1/f?2 prior statistical
models for the surface and its gradients, respectively. Such 1/f?2
behavior is then achieved using a recently introduced class of mul-
tiresolution models that admits algorithms with constant per-pixel
computational complexity. © 1998 Academic Press

1. INTRODUCTION

alytical means of formulating the problem and as a means
determining a solution. Formulations of this type lead direct
to Euler-Lagrange [5] partial differential equations (PDES) |
be solved in order to obtain the desired reconstructions. Exc
in those specific cases where the surface model and the meas
ment statistics are homogeneous, permitting FFT technique:
be applied, the solution of these equations can be a signific
computational task. Moreover, the calculation of reconstructit
error covariances [20, 31, 32, 37, 38] for such approaches are,
all practical purposes, completely infeasible, as their compu
tion corresponds in essence to the calculation of the full inver
of the partial differential operator arising from the variatione
problem.

The research described in this paper is motivated by a cl
of problems for which FFT techniques are inapplicable and f
which the solution of the Euler-Lagrange equations via va
ational approaches is impractical: we are interestethige
estimation problems having spatially varying models, possit
sparse measurements or measurements of varying quality
resolution, and for which estimation error statistics are require
In this paper we describe an alternative multiscale approact
surface reconstruction that overcomes these computational
ficulties. In our approach we take advantage of the dual interp

The problem of surface reconstruction [1, 12, 15, 16, 36, 48jtion of variational problems as statistical estimation problen

has been a topic of considerable interest in the field of comput@articular, a variational problem with quadratic costs (i.e.,
vision for some time, involving the estimation of an unknowleast squares problem) may be interpreted as a Gaussian
surface based on a set of noisy measurements of some functigtical estimation problem. This point separates the approz
of the surface and its derivatives and based on a prior mo@&lthis paper from those of the multigrid [14, 27, 35, 39] an
for the surface (generally necessary to regularize the problefgconditioning [2, 3, 7, 8, 33, 43] literatures:

Variational methods [5, 40] have enjoyed considerable succesg Preconditioner approaches solve the linear system:- b

in dealing with surface reconstruction problems, both as an agg, effecting a transformation (typically of the form= Sy)
such that the condition number o8'AS) in the transformed
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DAAL03-92-G-0115. P.W.F. was also supported by an NSERC-67 fellowshisf linear systems, which accelerates convergence. In both ca
of the Natural Sciences and Engineering Research Council of Canada. a solution toAx = b is ultimately obtained.
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similar to A, but also such thak satisfies very particular pro- whereD is a discrete vector of observations, corrupted by whit

perties that lead to an efficient, noniterative algorithm for bothoiseV, and whereV has covarianc®. C is the measurement

estimatesind estimation error statistics. function, andZ represents a prior model for the surfac&he
specific nature of the measurement functiomill typically de-

The problem of finding an appropriaie(i.e., of finding an ap- Pend on the specific surface reconstruction problem of intere

propriate multiscale model) for thogetypically used in vari- for example we may directly observe a sparse subset of the s

ational surface reconstruction is the fundamental problem dace heights,

dressed by our paper. As has been noted by others [31, 32], the

membrane and thin-plate variational models commonly used in C(2) = [z(x1, Y1)  z(x2, ¥2)

surface reconstruction allow interpretations &$%prior sta-

tistical models, for which a recently introduced [4, 9, 23] clas®/ we may just observe a subset of the surface gradients,

of multiresolution models is available. The work in this paper

builds on these earlier multiscale efforts, in particular addressing C@D =[p(x1.y1) qx1.y) --1". (5)

two fundamental limitations encountered in [9] and [23]: an in-

ability to estimate gradients and compute gradient error statist&@. Surface Prior Models

and an inab_ility to qbtain smooth estimates_. This paper de\_/elopﬁ least-squares solution for the surfacgiven the measure-

a new multiresolution surfa_ce_ reconstruction mod_el that is theants alone is typically ill-posed [1]; i.e., there is not a sin

cou.nterpar'F of standard varla_tlonal models., but which admlts e optimum solution for the surface. In order to guarantee

gorithms with constant per-pixel computational complexity fofnique solution the problem is regularized by asserting a pri

_bo.th surface reconstruct!@d the c.alculatllon of error stat- model 2 for the unknown surface, typically reflecting our prior

istics. Moreover, the flexibility of this multiresolution frame'knowledge about the surface to be reconstructed or, equivalen

work allows us to define a richer class of surface reconstructiggserting certain desired smoothness properties for the rec
models and algorithms corresponding to different prior model$ ,cted surface.

which have either more complicqte_dmmvarigtional counter- simple and common surface prior model is to assert
parts, but that admit the same efficient solutions. smoothness constraint [16]:

This paper is organized as follows. Section 2 reviews varia-
tional model development for surface reconstruction; Section 3 ) s o o
reviews the multiscale framework into which the surface recon- Zp(2) = “//{ P+ Py + o + oy fdxdy. (6)
struction problem is to be cast. In Sections 4 and 5 we detail the
construction of multiscale models given the variational counteFhis constraint is also referred to as a “thin plate” term, in thz
part. Finally in Section 6 several experimental results are pi@) represents the potential energy in an isotropic thin plate [
sented. An alternative function, representing the potential energy co
tained in a stretched membrane [5], punishes variations frc
p=0,q=0:

17, (4)

2. BACKGROUND

2.1. Notation Zm(2) :ﬁ//{p2+q2}dx dy. 7)

The general surface reconstruction problem [36] involves es-
timating the shape of a surface given a discrete (and possiBlgmbining (6), (7) yields a variational formulation familiar to
sparse) set of noisy observations of some function of the surfasgnputer vision researchers [16]:
and/or its gradients. The surface of interest is a two-dimensional
:]uorlgtlt()); z(x, y) presumed twice differentiable everywhere; de'i(D) _ mzin {(D —C(2)"RYD - C(2)

9Z(X, y)
X

pX,¥) = 24X, ¥) = a0 y) = (x,y) = 22 +f [atei+ p§+q3+qy2}+ﬁ{pz+q2}dxdy}-

dy
(1) (8)

the gradients of the surface at each point. Normally we shg¥ere are two common interpretations of this formulation:
refer simply toz, p, g with an implicit dependence anandy.

We are interested in least-squares problems of the type e The regularization term of (8) is a special case of the cla
of two-dimensional generalized spline functionals [36, 38].

2(D) = min{(D — C(2)"R"D - C(2) + 22} (2) * Theregularizationterm of (8) represents a deformable she

z [40] or a stiff surface, being acted upon by forces (i.e., the ol

D=C(2+V, (3) servations), where the resulting deformation is a function of tf
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specific stiffness properties of the sheet. In particular, a menf-computingz from the (p, q) fields. On the other hand, this
brane ternZ;,, minimizes the surface “area” (like a rubber sheetproblemandthe consistency problem may be avoided by explic
whereas the thin plate ter&, minimizes the surface curvatureitly reconstructingz as well as p, q) through a simple surface-
(like a steel plate). gradient consistency penalty

2.3. Explicit Estimation of Surface Gradients
P [ @—pira-ataay a2

One final addition to the variational formulation is appropri-
ate. In many surface reconstruction applications, the grad'erllﬁis leads to the following variational problem where, for gen
of the surface play a central role (the most notable example % ality, we allow both direct measuremens= Cs(2) + Vs, as
ing the shape-from-shading problem [16, 17]). Itis frequently Olell a,s gradient measuremers; s S»
interest to estimate the gradients explicitly, rather than to infer '
them implicitly as a function of the estimated surface.

For example, consider a problem in which the measurements in {(Ds _ CS(Z))TRS—l(DS —s(2)
are functions of the surface gradients only, not the surface heights zpr.a

themselves. In such problems, we may be motivated to use the Tl
common variational equation [16] +(Dg — Cg(p. 4)) Ry (Dg — Co(p. @)

2 2 2 2 2 2
“S,L”{(Dg ~ Co(p. @) Ry (Dg — Co(p. @) *//Rz“(px TR GEG) A (P a)

2 2
+// (P + pj + 0 +7) + B(p* +q°) dx dy}, Fria-prre —a) )dXdy}' 43
RZ

9  This variational problem, similar to the one introduced in [15]

forms the point of departure for our analysis and for the deve

whereDg represents gradient-dependent observations and whgénent of efficient multiscale counterparts to problems of thi
the measurement functidiy(p, q) explicitly depends upon gra- (e \We will restrict our attention tbnear measurements of
dient terms only. In general, the estimategof resulting from  {ha surface and its gradients, as in [35, 36].

such avariational equation will not correspond to the gradients of

anysurfacez—this is the well-known integrability problem [12, 5 4 - Eyler—Lagrange Equations

21]. Our multiscale surface reconstruction model (to be outlined - o .

in Section 4) will similarly be estimating the surface gradients After a specific variational expression has been selected, t
explicitly, hence the relevance of the following discussion. ~ solution for the optimal estimated surfazi®) can be charac-

In order of p, q to be gradients of a surface, the consistendfrized in a straightforward manner. For example, the Eulei
constraint Lagrange equation [5, 36] corresponding to (8) is

fpaxsam =0 10) (D~ COR™(D - C@)'
L

. 9%z 9%z 9%z %z 9%z
must hold over all closed paths in the plane [15]. In other —« St tBl a2 st =0 (14)
words, p, = gx must hold at all points in the plane, leading to ax=  dy x axcys  dy

the revised variational problem [15] Thisis an elliptic PDE which, after specifying appropriate bounc

ary conditions, may be solved numerically by discretizing th
min {(Dg — Cy(p, q))TRg‘l(Dg —Cy(p, Q) PDE and applying numerical solution techniques. In speci
pa cases extremely efficient FFT techniques may be applied. Ty
ically, however, FFT techniques anet applicable, leading re-
searchers to propose a variety of other techniques [16, 33, :
40]. These techniques successfully estimate the surface by sc
+y(py — gx)?dx dy}. (11) ingthe PDE in a comparatively efficient manner; however, the

are unable to produce estimation error statistics for reasons
are outlined next.

+// (P + P+ 0 + &) + B(P° + )
RZ

The inclusion of the additional penalty term in the above e
pression (_Jloes not guarantee tha_t (10) is exactly .SatISﬂed’fg. Variational Problems as Estimation Problems
though using a large value forwill in general result in nearly
consistent , q) fields. Even if this consistency relationship is In this section we briefly describe the dual interpretation ¢
exactly satisfied, however, we still have the nontrivial problewariational problems as estimation problems, a topic that h:
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been discussed in more detail in previous works [9, 23, 31he “prior” model as “measurements” (we shall find this to b
Specifically, consider the variation of (13), convenient later); for example, the above estimation problem
the same as the following problem having measurement moc

gnp”g] {(D - C(Zv p7 q))TR_l(D - C(Z7 pv Q))

z
[8}:[5} Pl+v E~N(0,[§ ?]) (19)
+ [ [ 1@ paT a6z pe) 1] o
+La(z, p, )" La(z, p, q)] dx dy}, (15) and a corresponding prior model
. . z
whereL;, L, are column vectors of linear functionalsofp, q, -
and whereD may contain both height and gradient measure- L2 g =w w~NQOI). (20)

ments (e.g., thds, Dy of (13)) from the linear measurement
functional C. Although such variational expressions are ele- ) o o
gantly represented in continuous space, the goal ofimplementind N solution to both of these estimation problems is given
a practical estimator on a computer motivates the shift to di§e Euler-Lagrange equations
crete space. For reasons of consistency, similar notation is used
for both continuous and discrete space expressions. .17z z

LetZT =[...,z(x,Yj),...]" represent a vector of samples ([ﬁl] [ﬁl] + CTRlc) [Is } =C'"R'D (21)
of z(x, y) on a 2-D grid; similarly definé®, Q. Then (15) may 2 2 o)
be discretized as

and for which the estimation error covariance is

Tz 7\ " z
min (D—C P ) R-l(D—c P ) T -1
FQ | Q Q ﬁ:([cl} [‘Cl}LcTRlc) . 22)

Lo Lo
zN7 z
+4qLa| P L:| P The computation of (21) corresponds to the solution of a PDI
Q Q a computationally difficult task. However itis (22) that is order:

- of magnitude more complex, as it corresponds tocibvaplete

Z Z inversionof a higher-order PDE operator. What we propose to d
+qL2| P Lz | P J (16) isto replace the prior (20) by something similar, such that cor

Q Q puting (21) and any element of (22), in particular the diagon:
elements (the estimation error variances), is easy.
whereL 1, L, are matrices representing discrete approximations
of the linear functional® ;, £, over the discrete grid and where
C is a matrix which describes the measurementg d?, Q.

Each discrete optimization problem of the form of (16) pos- The multiscale models of interest in this paper and originall
sesses an estimation counterpart. Specmcally,.the optimizatigftoduced in [4, 23, 24] are scale recursive models defined
of (16) corresponds exactly to the problem of estimaIn®, Q  jndex sets that are organized as multilevel trees. A simple exa
given the measurement model ple of such atree (a quadtree) for a 2-D random field is illustrate

7 in Fig. 1. Here each level of the tree corresponds to a differe

_ - scale of resolution in the representation of the random fiel
D=¢ |:(FQ)} v v~ NOR) (47 with coarser scales toward the top of the tree. This modelir
framework is more flexible than the figure might suggest, hov

3. MULTISCALE MODELING

and a prior model ever, because itis applicable to higher dimensional, asymmett
and unusually shaped trees; for the purposes of this paper
r 4 guadtree structure of Fig. 1 will suffice.
[ 1] Pl=w w~AN(@O,1I), (18) Let s denotes any node on the tree andits parent; then the
Lo : .
Q state vector at each node is governed by the following coars

) ) to-fine recursion
whereN (1, R) represents a Gaussian random vector with mean

u and varianceR. Alternatively, we may interpret portions of x(s) = A(s)x(sy) + B(s)w(s), (23)
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FIG. 1. A basic quadtree multiscale structure.

where w(s) is a white Gaussian noise process with identitgan be reduced in principle to a set of linear equatidrs=b
covariance. Moreover, the general measurement model asseig., as in (21)), where the solution yields the estimates al
ated with this framework allows measurement data at all scaledere the diagonal elements Af* are the error variances in
the estimates of each component. Thus there are two relat

d(s) = C(s)x(s) + v(s), (24) butusually separate, issues: how do we sdiwe=b, and how
do we get the diagonal elementsAf'? The methods that have
been used to compute error statistics, namely using Monte Ca
Fgnethods [31], computingA~? iteratively row by row [31], or
computing A~ directly, require a great deal of computational
effort beyondthe effort needed to compuse In particular, the
computational load to exactly compuaé# of the diagonal ele-
ments of A~! dwarfsthe load required to solvAx = b.

o ] o _ Our multiscale approach is fundamentally different. In partic
Superficially, this estimation problem would appear more difyjar, py choosing a prior statistical model with particular struc

ficult than the surface estimation problem of (17), (18), singgre (i.e., by choosing a particular structuke- A, consistent
we are now estimating quantities of interestadhresolutions. \yith (23), (24)), not only is the solution of the resultiAg = b
However for those multiscale estimation problems which can Qﬁuation made much simpler and noniterative, but also in t

written in the form of (23), (24) an extremely efficient realizatiorbroceSS of solving this equation we directly compute the diag

of the optimal estimator is available [4, 23]. , onal elements oA . As a comparison, consider the Kalman

There are really two algorithms involved in proceeding frofe \which computes time-recursive estimates of a dynam
a variational description of an estimation problem, such as f)'?ocess given a sequence of measurements. A key property
(17), (18), to a set of multiscale estimates and error statistiCS,o kaiman filter is that the estimation error statistics are n

1. The algorithm which takes us from the variational problefPMPuted separately from the estimates, rather the error f5t,a'
to a multiscale model of the form (23), (24). Itis this algorithnfiCS appear as a by-product of computing the estimates; in
which is novel to this paper and which will be the focus of thEanner of speaking, the error statistics are available “for free

whereu(s) is white, with covariancdR(s). The prior covariance
Py (s) at each nods is determined by the recursive relationshi
in (23) and by the prior covariance at the root node,

Px(0) = E[(x(0) — E[X(O))(x(0) — E[x(O)D].  (25)

remaining sections. Our multiscale approach is similar to that of the Kalman filter
2. The algorithm which takes us from a multiscale model pl)¥€ do not have a separate algorithm that computes estimat
data and computes estimates and error statistics. error statistics, rather these statistics are available “for free”

a by-product of our hierarchical Kalman filter-like algorithm.
The latter algorithm has been described in detail in [4, 23, 24Just as a time-recursive stochastic model gives rise to the tin
however, we summarize the key points here. recursive Kalman filter, a scale-recursive model (23) on a tre
Observe thaanylinear reconstruction, interpolation, or regu-gives rise to an efficient scale-recursive algorithm.
larization problem has statistical interpretation in terms of spec-The challenge, then, isot one of calculating error statis-
ifying a prior statistical model and noisy measurements, whities, rather one of finding a multiscale model which solves th
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problem of interest. This challenge is addressed in the followidg3. Quadratic Penalties on Linear Combinations

sections. of State Variables
Other components of the prior involve quadratic costs of line:
4, ELEMENTARY MULTISCALE MODEL functions of variables, e.g.,
DEVELOPMENT
2 2
In this section we describe the basic elements required to / (@ = )"+ (z —q)) dxdy (28)

map a variational problem such as (13), or equivalently its cor-
responding estimation problem (17), (18), into a closely relaté@m (12), which asserts the relationship between the surface e

multiscale estimation problem of the form of (23), (24). its gradients. As discussed in Section 2.5, we can (and do) cho
Recall that the estimation problem of (17), (18) consists @ interpret such terms as part of the measurement model. |
two components: example, the penalt/ [ (z,— p)? has the statistical interpretation

1. A measurement equation as a measurement of the form

2. A prior model, parts of which may be interpreted as mea-
surements (see Section 2.5). 0=12z(x,y) — p(X, y) + v(X, y), (29)

The following two subsections discuss each of these two com;:

: : herev(x, y) is a spatially white “measurement noise” with
ponents in turp, followed by the Fievglopment of a mult|sca?;(\al variance inversely proportional to the weight placed on tt
model appropriate for surface estimation.

(z« — p) penalty in the variational problem.
“Measurements” of the form (29) are not in the most conve

nient form for multiscale implementation. However observe th:
In the context of our multiscale tree, it is at the finest scatbe integrand in (28) can be expressed as

where we have measurements and wish to perform surface recon-

struction. Thus the measurements (24) in our multiscale model (z — p)* + (zy — Q)?

are defined only at the finest scale. For example, in Section 6 we 1

focus primarily on direct surface measurements. In such cases, = E(ZX +zy—p— a)?+ E(ZX —zy—p+ q)? (30)

if z(s) is the first component of(s), then our measurement will

take the form of (24) witlC(s) = [C4(s), O, . . JwhereCi(s) =1  \hich leads to the following types of measurements:
at those finest scale nodes at which we have measurements.

4.1. Measurement Model

0=2z(x,y) + (X, y) — p(X, ¥) —a(x, y) + va(X, y) (31)

4.2. Quadratic Penalties on State Derivatives, e.§., z
0=2z(x, y) = z/(x, ¥) = p(X, ¥) + A%, y) + va2(X, y). (32)

In one dimension the following variational cost

As we describe next, these measurements are readily captL
/zﬁdx (26) in our quadtrge structure. . . .
In order to incorporate a discretized version of (31) or (32
into our multiscale framework we must define appropriate aj
is equivalent to a Brownian motion prior model [23], i.e., droximations to the derivativeg(x, y) andz,(x, y). Since the
process with a Af 2 spectrum (intuitive arguments why (26) mayoncept of the gradient of a/12-like surface is ill defined at
be considered a “fractal” prior are discussed in [4, 23, 32]). Suglast, we have some flexibility in how we choose to do this, ar
a process has the property that the variance of its increments{@rhave taken advantage of this flexibility to specify an appro:
more generally, its wavelet coefficients [41]) varies linearly witlmation that leads to a very simple model. Consider Fig. 2, |
interval length (or, on a tree, varies geometrically with scalejhich we have portrayed a parent pisgl and its four descen-
As shown in [4, 23], we can capture such a geometric variatigiantss, , s, 3, S4. We consider each node onthe tree to represe
using a multiscale model such as a particular point on the surface, chosen to be the point in tl
center of the region aggregated by each node: the points
marked as a filled circle for each of the descendent nodes an
as a crosx for nodesy. Measured in units of finest scale pix-
els, the pointe in each of the child nodes is separated fream
wherem(s) denotes the scale of nodeThe 1/ f %-like nature of by a distance/2 - 2M~™Ms)-2 whereM equals the number of
such a process is derived in [41] and illustrated empirically gtales on the tree. The quantitieg ¢ z,) and ¢, — z,) repre-
[9]. As discussed in [23], a 2-D interpretation of the above alsent directional derivatives of the fietchlong the two diagonal
holds for variational penalties on derivativeszfX, y), so (6), directions, i.e., along the directions fromto eache. This sug-
(7) can be represented by quadtree models of (27). gests a natural approximation to eitfzgr- z, or z, — z, in each

Z(s) = 1- z(sy) + Bo2 M/ 2y(s), (27)
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quadrant, depending on the direction of the line frarto each
corresponding. For example, for nodes ands; we have s
.3
2d(s3) + 2y(8) = 22 MM (—z(sy) + 2(s3))  (33)
Z(sa) — 2y(su) = 2P M(—z(sp) + 2(s))  (34) N
N\
e
with analogous definitions at nodss s;. s4
Consequently, if we wish to view (31) as a “measurement”
we are led to discrete measurements of the form

0 = 22M&)-M(_z(sp) + z(s3)) — — + 35
( (17) (SB)) p(SS) q(ss) U(SB) ( ) FIG.2. Asetoffive node labels for gradient discussion purpases;, S3, &4

0 = 22M&-M(47(sy) — 2(s)) — p(S2) — A(S2) + v(Sp). (36)  are each children of coarser nate. The x indicates the point represented by
nodesy ; the solid circles® specify the points represented by nodgs . . , 4.

In a similar fashion we can define measurements corresponding

to (32):
[d(s)}:[ Ca(s) Y 0 ]
0 = 224M)M(47(sy) — 2(s1)) — P(s0) + (1) + v(s1) (37) 0 —a 2O 1 by g2
0 = 22 M(—z(sy) + 2(sa)) — P(Su) + Gl(Su) + v(sa). (38) z
: x| P ls)+ o), (40)
For these “measurements” to be in the form of (24) all of the q
variables in (35)—(38) (other than the noise ten(s)) must zp

be in the respective state vectot&s). Thus each statg(s) . ‘
must include the parent valuésy); this is accomplished easinWh?rﬁcl(sh) (from Section 4.t1) equalstﬁne at those nodes :
through state augmentation as described in the next subsectfjch we have measurements (zero otherwise), @nd are

given by
4.4. Elementary Multiscale Model Synthesis aa=1 aa=1 a=-1 au=-1, 1)
Combining the preceding subsections leads to an elementary by=1 bp=-1 b3=-1 by=1
multiscale m_odel corresponding to (13). First, the multiscalghere thea; andb;, which follow from (35)—(38), correspond
state dynamics: to the measurement of either + z, (for s, andss) or z, — z
(for s, andsy).
z 1000||z There are several final points that we should make about tt
P (s) = 0100||p (s7) multiscale model. First, there is the issue of specifying the ur
q 0010||q known parameters, e.g., tBs, By of (39). This is the same type
zp 100 0]|zp of problem as the the selection of appropriate weights, y
B.o-M(S)/2 0 0 in the original variational formulation (13). However, now that
s 0 B 2-M()/2 0 we have a statistical interpretation of these terms, we can u
+ 0 9 0 B 2-M(s)/2 w(s). that to our advantage in determining these quantities. In parti
0 0 9 0 ular Bs, By have an explicit physical meaning, measured in re:

physical units, that represent the prior statistical knowledge |
the surface; e.qg., if the surface varies over a rangeXd cm,

thenBs = 10 cm would make a reasonable choice. In additior
Here the first component of the dynamics captures the thin mefased on the multiscale likelihood and parameter identificatic
brane term (7) and the next two the thin plate penalty (6). Thfethods that our models admit [11, 25], one can estimate t

last component accomplishes the state augmentation requigg@imal values of these parameters from the data and perfo
for the penalty (12) as discussed in the preceding seci(8) model validation.

is simply z(sy). The measurement equation accompanying this

modelincludes both the actual measurements (at the finest scale) 5. ADVANCED MULTISCALE MODEL

as well as measurements such as (35)—(38) which assert the DEVELOPMENT

surface-gradient consistency. For example, if we have only di-

rect surface height measurements, the measurement equation @he straightforward application of the elementary multiscal
each ofthe fournodess, 1 < i < 4inFig. 2would take the form model (39), (40) derived in Section 4 would be to implement i

(39)
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FIG. 3. Four sparse measurements used in testing the elementary multiscale
model.

FIG.5. Two nodess; ands,, neighbors in physical space, but distantly sep-:
arated in tree space.

directly on a quad-tree. Based on the four sparse measurements

from Fig. 3, F|g. 4 demons;rates the r_esult_ of such an Z_ipproaﬁpmany applications there are compelling reasons for produ
The computation of the estimatasdestimation error variances

) . ng smooth reconstructions, something that iterative variation
(notshown) required about 3 s of SPARC-10 computer time. Tbgg - g
o ) . . . lutions generally do well.
most striking feature of these estimates is their blockiness, or,

_ ; n this paper, we make use of a recently developed cla
lack of smoothness, characteristic of many quadtree algorlthr8§;models to produce smooth estimates, based on the conc
this section will address this blockiness issue. '

F Fig. 1 that th left and iaht of “overlapping” trees. We refer the reader to two reference
rom Fg. 1 we see that the upper-ieit and upper-ngnt quaqy 191 which motivate and develop this method in greater d
rants of the surface are correlated only via the state element

) aﬂf and limit ourselves here to a terse (but complete) descri
the root node.of the tree, despite the fact that these two quadram)tﬁ_ As Fig. 1 suggests, in straightforward quadtree models t
sharle a rerl]atlvely Izng c]?rlgmo5n boungary. lAS a clznsequenﬁgtes at a given level on the tree correspond to disjoint regio
PIXEIS Such a%, ands; of Fig. > may be only Weakly Corre- ¢ 4o image plane, leading to the loss of correlation betwe

lated because of their significant separation on the tree, des Keis such as, ands, in Fig. 5. The idea behind overlapping
their adjacency in physical space. As argued in [23], in so es is to interpret nodes at a given level of the tree as corl

situations this blockmes_s is not a serious issue. In.partlcu_lar, onding to overlapping regions, as illustrated for a 1-D sign
some problems the quality and quantity of information availab Fig. 6, in which the bracket— at each node represents the
for reconstruction may be sufficiently low thab statistically region of physical space to which the state vector at that no

significant fine scale estimates can be computed. Neverthel%% responds. Although our overlapping regions are similar

spirit to the overlapping basis functions of multilevel precondi

tioners [33, 42, 43], this is where the similarity ends. It is th
80~
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FIG.4. The surface estimates resulting from a straightforward implementatiéiG. 6. Overlapping multiscale trees: adjacent nodes on the tree may repres
of the elementary multiscale model. overlapping regions of physical space.
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desire to represent the process on an overlapped multiscale tiieat, flexibility to achieve our smoothness objectives. We als

but still consistent with (23), (24), that places very particulaequire thatH be a local operator, i.e., that each element ¢

constraints on the overlapping framework, and the functions Wgsnsein (46) be a function only of the elements g erap that

end up using are unusual and bear no resemblance to the hiararrespond to the same physical location as the elemegt .t

chical functions of Szeliski [33] or Yaou and Chang [42]. In other words, ifgx denotes th&th column ofGy, andhjT the
Observe that the physical poirt, indicated in Fig. 6, is jth row of H, then

present in two of the intervals on the bottom level of the fig-

ure: clearly we have a redundant representation at the finest hi gk = 8jk(= 1if j = kand 0 otherwise)  (47)

scale of the tree; i.e., several finest scale nodes may correspond

to the same point in physical space, which raises the questiorﬁdﬁ” with this constraint we still have additional freedom ir

hOW tree states are mapped onto the image p|ane and hOW n'ﬁ%cungH y in that the Only Constraint on the nonzero element

surements in the image plane are mapped onto the tree. To @ is that they sum to 1. These nonzero values represent t

how this is done, lexgensedenote the fine scale field of interestParticipation” of each of the redundant componentséiap

(stacked into a column vector), with associated measuremeritseach 2-D pixel. By tapering these weights, sketched in Fig. 7
so that they vary smoothly across overlapping regions we c:

Jgense= C Xdenset Vdense (42) achieve our smoothness objective. The procedure for specifyi

) ) these weights, which is fully described in Appendix A, is recur

and letReensebe the diagonal covariance of the measuremege in scale. A simple illustration of the idea for a 1-D signal o
€ITOr Vgense NEXt [€tXoverlap Goverlap Roverlap répresent the asso-jength 10 is given in Fig. 7b. The weights shown represent tt
ciated quantities on the finest scale of the tree. There are 4yQe| of participation of each of the two tree nodes in each ¢
requirements that we place on the mapping betwegReand  {he 10 signal points. For example, the signal point marked wi

Xoverlap a starx, has a participation factor of 0.4 from the left node anc

e Each physical pixel in the image plane is mapped to one Q.6 from the right node. Each of these total participation factol
more finest scale tree nodes. (0.4, 0.6) is then further subdivided at finer levels by recursivel

e Each finest scale tree node corresponds to only one piZ@Pying the same tapering operation on all overlapped regior

: : : By adjusting the amount of overlap and the tapering of th
in the image domain. X |

weights we can adjust the amount of smoothness and remc

These requirements then lead to corresponding constraintsagtificial boundaries that lead to blockiness. However it is im

the “lifting” operation portant to emphasize that the weighted averaging implied f
Xoverlap = GxXdense (43)

namely that the elements G are all zero or one and that each . Right Child

row has exactly one nonzero entry. A similar oper&grlifts” LeftChid == ===~ -

measurementlyensein 2-D space to measurements on the finest
level of the overlapped tree:

s s =
doverlap= Gdddense (44) E )
£ \
Gy just contains those columns & that correspond to the 80 £_>
measurement points in 2-D space. Finally the diagonal mea- Region of Overlap
surement error covariand&yeriap iS set to reflect the fact that a
measurements may be copied to more than one finest scale tree
node, *
Tp—-1 -1 .
Ga Roverlar®d = Raense (45) 1234911411
Left Child i
i.e., the variance of each overlapped measurement is multiplied F—————zi5+4  Right Child
by the number of its redundant partners. It is also necessary to 1111117373
define a projection operatéi: One finest scale pisel \'j‘
Xdense= H Xoverlap (46) b

We first require that proiection be the inverse of liftin namelFIG. 7. Two overlapping nodes: the set of relative contributions to each fine:
q proj 9 Ycale pixel must sum to one. The contributions are tapered linearly over t

that HGy = 1 BecaUS@g |3 Or_‘e'to'ma_ny this constraint still region of overlap. (a) Tapering pictorially:; (b) a specific example for two node
allows considerable flexibility in choosing, and we can use which overlap by three pixels.
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(46) doesnot introduce smoothing where it is not wanted; irwhich is related to théacunarity [26, 28], or texture, of the
particular, it doesiot correspond to lowpass filtering in spacesynthesized surface. Then in constructing &2model on such
Specifically, the fine scale nodes being averaged in (46) carpyramidal structure the variance of the detail added in goir
respond to the same physical point. Thus, if the random figi@m themth to the n + 1)st scale is proportional to ¢ r)r™.
being modeled is known to have a statistical discontinuity &or overlapped trees,> 3, thus the noise gains 2/2 in (39)
some location, that property will be reflectedah of the fine are replaced by 2(% r)r™®/2, Furthermore, in going from a
scale nodes to which that point corresponds. nonoverlapped to an overlapped tree, the number of scales m
Once we have choséth andGy and constructed a multiscalebe increased by a factor of fog,(1/r). The computational com-
tree model forxeveriap OUr estimation procedure proceeds byplexity increases as the number of tree levels is increased, so
lifting the measurements from 2-D space to the tree accordihgve a tradeoff between the amount of overlap and compu
to (44), (45), performing multiscale estimation on the tree, arnignal load.
projecting back into the 2-D domain to produce the optimal
estimates and estimation error covariances: 6. RECONSTRUCTION EXAMPLES

& — H% A meaningful comparison between our multiscale approac
Xdense= H Xoverlap (48 . ) . . . .

and established iterative methods is a challenging undertakir
(49)  The challenge stems from the fact that our multiscale approa

_ ) ) o _ ) is really addressing different primary objectives and is solving
As discussed in Section 3, the estimation algorithm directly prgifferent problem from that of iterative methods. Most iterative

duced the error variances for the estimates at individual trggface reconstruction methods, including those of Szeliski [3
nodes—the diagonal elementsRaferap Each off-diagonal el- 3nd yaou and Chang[42], are trying to solvesaeneestimation
ement 0fPoyeriap COrTesponds to the cross-covariance betwegpoplem as efficiently as possible. That is, each method tries
estimation errors at pairs of tree nodes. From [24], each of thegfiye Ax — b for the same choice oi (either based on mem-
e_Iements can be calculated with a number gf#imatrix opera- prane or thin-plate types of models)ithoutinverting A. Each
tions proportional to the number of levels on the tree. Moreoveys these methods produces a sequence of estimates, . . .
since HTH is quite sparse, only a comparatively small pefang each of these sequences converges tostmee limit
centage of the_ off-diagonal eIerpents_FQtenap are _requwed 0 x_—the desired surface. With such a concrete, common go
compute the diagonal elementsRatnsein (49). While the total the comparison of competing methods is obvious: investiga
load of these computations does not increase the total comgys rapidity of convergence dii — . || for each method.
tation prohibitively, we have taken a far simpler approach by oyr multiscale approach does not fit into the picture of th
approximating the diagonal elementsRgénseas previous paragraph, because we are solvidifarentproblem

. ~ i ~ 1 A—= . I
diag€aensd = {H diagBoverian? }*- (50) AX=Db. Consequently,

This approximation corresponds to the worst-case assumptior? the solution to our problerx = b will neverbe the same
that the errors in the estimates at tree nodes corresponding¢dhat ofAx = b, regardless of the number of iterations use
the same pixel are perfectly correlated. Thus the error variané@$olve the latter problem;
in (50) not only represent an upper bound on the actual error® We obtain error statistics (essentially the diagonal elemer
variances, but also provide us with an accurate picture of thiafl) for our estimation problem. These statistics are not cor
relativesizes of estimation error variances over the entire imageted for Ax = b since they require the computation Af*,
domain. a problem much more difficult than the estimationxofThus
Since the overlapping procedure we have just described iret only are we solving a different estimation problem, but th
volves a change in the multiscale tree structure from that usedhiature of our results is fundamentally different.
the preceding section, it is also necessary to make a correspond-
ing change in the model parameters on the tree. Because of the Primary objective of our work is to present a method fo
interpretation of thin-plate and membrane models as fractal ppHrface reconstruction based on a modified prior model whi
ors, we can readily develop such a model motivated by resup@rmits the efficient computation of estimates and estimatic
on hierarchical fractal surface synthesis in [28]. A key quantifTor statistics. With this objective of our paper clearly state:
in this construction is the scale to scale ratio of the dimensiolre are certain fundamental questions which are fair to ask
of the multiscale regions. Specifically, each node of the tree réffder to assess whether the objective has been accomplishe
resents a square region of image pixelsulgtbe the length of i
each such square region, measured in units of pixels, represented 'S the computational effortof our method on the same ord

. i 2
by nodes on scale of the tree: then the key quantity is as that of other §l_1rface_ reconstruction methods?
2. Is the modified prior a reasonable one?

p = ¥m +1 (51) 3. Does the modified prior lead to issues of shift-invarianc
Wm or estimation artifacts?

) 5 T
Pdense= HPoverIapH .
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4. Is the modified prior model flexible enough to accondense measurements with added Gaussian noise (variance
modate a range of surface reconstruction problems (e.g., discare shown in Fig. 8b. The particular surface used does not c
tinuities, nonstationarities)? respond exactly to either the variational or multiscale prior an

] ] thus comparison between variational and multiscale reconstrt
In terms of the computational effort, if the number of scalegyn, is not biased in favor of either formulation.
added to the tree to allow overlap is limited to two (we have rjgyre 8¢ shows the reconstructed surface using an iterat
never done otherwise), then our multiscale approach has a cQRjitigrid algorithm [35] to solve the variational problem base
stant cqmputatlonal complex_|ty_pe_r image p|xgl. As a point ¢, 5 thin-plate prior model (i.eq =1, =0 in (13)). In this
comparison we used a multigrid implementation [14, 27, 3pang all future) comparison involving our multiscale approac
36, 39] based on W cycle (i.e, = 2) on a tree with a coars- 4nq an jterative method (such as multigrid), the number of i
est scale of 4« 4 pixels and used ten Gauss-Seidel sweeps@hions for the iterative methods is selected such that the
each scale. If the number of iterations required to convergedq «omputational effort of each method is the same. Figure ¢
an acceptable solution is independent of image size, then g, s the reconstructed surface using our proposed multisc

computational complexity of this multigrid method, or that of1grithm computed using an overlapping tree with eight scal
preconditioned surface reconstruction methods such as tha{éﬁomverlappedtreeforthissurfacewould require seven scale

Yaou and Chang [42] or Szeliski [33], similarly have constant,q 4 thin-plate-like prior model (i.e., the prior model is dom
computational complexity per pixel. inated by gradient constraints by choosBgs> 16Bg). As in-

The second question concerns the reasonableness of our §[@sied in the figure caption® = (12, 6,4, 3,0, 0, 0), so the
posed multiscale prior model. We believe thatthe reasonablenpggﬁons associated with nodes on tr;e’fir,st ’Ie\7/el, bélow the ro

is most effectively investigated through simple examples whichyqe overlap by 12 pixels; at the next level the overlap is si
although visually less impressive, are easier to interpret and CT?B@S etc.

vey the advantages and disadvantages of a method more effegye myitigrid and multiscale reconstructions of Fig. 8 ar
tively than more complicated _tests. In estimation problems, 8Ryuably equally good—both give reasonable estimates of t
the number of measurements increases and as the measurenggifs | surface, and our multiscale approach shows no signs
noise variance decreases the prior model exerts less influencg@Rkiness. A more precise comparison is provided by Fig. ¢
the resulting estimates. Consequently in order to scrutinize igre e consider a set of reconstruction problems in each
properties and qualities of our changed prior we could 100k @ich only a randomly sampled subset of the noisy surface me
problems involving very few measurements or with very 1arg& rements is used. What Fig. 9 depicts is the Monte Carlo RNV
measurementnoise variances; problems having very sparse mg@snstruction error for both the multiscale and multigrid meth
surements are simpler to interpret, so we have chosen thesg@ss a function of thieaction of noisy surface measurements

the vehicle by which to assess our changed prior in the first tW@eq. Observe that for the same computational effort, the mul

subsections (6.1, 6.2). _ ~ scale algorithm performs comparalalybetter(particularly on
The two remaining fundamental questions are examined in @ﬁarse data sets) than the multigrid approach in an RMS sen

experimental tests of the two foIIowing_subsections (6.3, 6.41us the multiscale model which we have developed shoold
In addition to these fundamental questions there are a nUMBRRLly be viewed as an approximation to a variational equ:
of derivativequestions which might be asked, but which are Qfgp rather we are motivated by a certain variational form t

secondary interest for our paper; for example develop a surface prior model—indeed, a conspicuously effe

1. What happens if we are not interested in estimation errré) e one—that leads to competitive reconstructions. Moreover
statistics? What is the fastest method available to solve for tWéJSt be emphasued th_at the muIt|scaIe_ algorlt_hm IS c_omputn
estimates alone? surface estimateendestimation error variances in the time that

2. Can the multiscale estimat&sbe used as effective ini- multigrid computes surface estimates only.

tial conditions for iterative solutions to the original problenz5 2. Sparsely Sampled Measurements

Ax = b?
3. Can we use the estimation residuals and error statistics tarhe preceding example demonstrated that our algorithm pr
estimate the locations of discontinuities in the surface? vides competitive solutions for problems in which we have eithe

, , . dense or (randomly sampled) sparse data; in this section we
Although these questions are touched upon in our experimeniy, qharse data of Fig. 10 to illustrate several additional issue

they arenotthe primary questions of our paper and we make N0 ¢ first issue concerns the easily controlled tradeoff (usir
claims to have answered them conclusively. our overlap method) between smoothness of reconstruction
computational complexity. Such a tradeoff is of interest becau:
the difference between a rough reconstruction (as in Fig. -

Figure 8 summarizes our experimental results for surface snd a much smoother one may not be statistically significa
construction of a densely sampled surface. A smooth surfacgedmething which our method can determine). Thus, for pu
size 64x 64 pixels is shown in Fig. 8a and the correspondingoses such as so-called line-of-sight or visibility calculation

6.1. Densely Sampled Measurements
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FIG. 8. Dense measurement reconstruction example: a surface is reconstructed based on dense measurements with 5cm Gaussian noise. The mt
multigrid approaches involve the same number of computatiBgs= 80, By = 0.4, O = (12,6, 4, 3,0, 0, 0). (a) Original surface to be estimated; (b) original
surface plus noise; (c) multigrid construction; (d) multiscale reconstruction.

for topographic maps, the use of a less smooth reconstructiorrigures 11a—11d show the surfaces reconstructed from |
can produce results that are just as accurate statistically, witleasurements of Fig. 10 and a thin-plate prior by means of fo
much less computational effort, as those produced if a smoothdferent approaches: Gauss—Seidel [6], conjugate—gradient |

reconstruction were used. multigrid [35], and multiscale. The Gauss—Seidel and conjugat
gradient approaches are generally not practical algorithms 1
15 - . ; . the surface reconstruction problems of interest; however th
AN M are well understood and many researchers have a sense for
\ ultiscale
AN - - Multigrid
\
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FIG.9. RMS error in surface estimation using multiscale and multigrid meth=1G. 10. Four surface samples which form the basis of the sparse-data rect
ods as a function of the proportion of noisy measurements retained. struction examples.
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FIG.11. Sparse measurement reconstruction examples: each reconstruction is based on the measurements of Fig. 10. Each of the methods uses the s
of total computations, except that the multiscale approach prowd#ssurface estimates and error statistics. The contours of the error variance surface
shown in (d); the minimum of the error surface is marked with an B."= 80, By = 0.05, O = (38,29, 24,0,0, 0,0, 0). (a) Gauss—Seidel reconstruction,
(b) conjugate—gradient reconstruction; (c) multigrid reconstruction; (d) multiscale reconstruction.

performance of these algorithms. Meaningful comparisons greralleling the approaches of Fig. 11, but with one-fourth th
achieved between these different algorithms by examining tbemputational effort. The multiscale-reconstructed surface
surface estimated after a common amount of computational Efg. 12d is based on a tree having less overlap than its cou
fort (about 35 s on a Sun SPARC-10). From Fig. 11 we cdarpartin Fig. 11d and possesses discontinuities in its estimat
immediately see the problems associated with the Gauss—Segtallients, however, as discussed earlier, such artifacts will r
and conjugate—gradient methods, as neither is near to conveEr-of concern in certain applications. Furthermore, Fig. 12d ca
gence. In contrast, both the multigrid and multiscale algorithnigres certain aspects of the true surface better than its multig
yield smooth estimates of arguably equal quality. In additiompmpetitor of Fig. 12¢c (compare in particular the upper-left por
the multiscale algorithm computes estimation error variancéin of the two estimated surface).

shown in Fig. 11d, which provide useful information regarding A second, less fundamental, issue concerns the possibil
the accuracy that can be expected from the reconstruction.oinusing our multiscale approach to accelerate iterative su
comparison, Fig. 12 shows a set of four surface reconstructidase reconstruction solvers, in particular to using the multisca
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FIG. 12. Sparse measurement reconstructions using the same four methods of Fig. 11, but using one fourth of the computational effort in each ce

minimum of the error surface in (d) is marked by an “B¢'= 80, By = 0.05, O = (16,10, 7, 0, 0, 0, 0). (a) Gauss—Seidel reconstruction; (b) conjugate—gradie

reconstruction; (c) multigrid; (d) multiscale.

estimates as the initial guess for an iterative solver. For example, rmsys(i) or

the reconstructions in Fig. 13 are computed by the application 1= rmsuc(i)) 100%; (52)
of one multigrid iteration to each of the two surfaces in Figs. 12¢

and 12d. trez%t is, the percentage RMS improvement brought about pt

rmFlgu(:? rel4re2reenstet2:asRT\l/l Sm é)i;feerggggtggttxser??rfzsesxr:ue:tnttr:]ic?ding the iterative solution with our multiscale approach. Not
MG P ) : : Xact tifot this percentage is significant, averaging more than 20%.
plate solution and the reconstruction achieved aftaultigrid

iterations; let rmgs(i) represent the RMS error of the surfaceé 3. Shift-Variability of Multiscale Estimates

using multigrid, given as the initial guess the multiscale esti-
mates from a seven-level tree, such that the total computationalhe previous experiments examined the estimates rest

effortis the same as that bmultigrid cycles. Then Fig. 14 plots ing from a fixed set of measurements; we now examine tl
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FIG. 13. Surface reconstructions computed by applying one multigrid iteration to the two surfaces Figs. 12c aBg=180, By =0.05, O = (16, 10, 7, 0,
0, 0, 0). (a) Multigrid; (b) multiscaler multigrid.

variability of the estimates as the measurements are shiftecam clear how shift-variations manifest themselves in our mu
space. tiresolution framework.

Our method is not shift-invariant, due to the nonstationary Figure 15 illustrates the relationship between the proportion
structure of the multiscale tree; however, it is important to kedpMS surface variability (calculated as the ratio of the RMS
in mind thatanysampled algorithm will fail to be shift-invariant. variability of the estimates to the RMS value of the true sut
For example, standard discretization methods using regular gridse) and the number of surface measurements; the values w
donotproduce strictly shift-invariant solutions either (e.g., if theéetermined empirically using a Monte Carlo approach. As e
measurements do not happen to fall on the regular grid pointsg&cted, additional levels of overlap significantly attenuate tf
Similarly, the iterative algorithms of Szeliski [33] and Yaou anghift-variability of the estimator, such that with two extra levels
Chang [42], which project the problem onto a new basis, witif overlap the RMS variability is around one to two percent o
not produce shift-invariant reconstructions unless the algorititie RMS surface value.
is allowed to totally converge. To be sure, the issue of shift- ) ) o
invariant behavior is well understood for standard surface &4 Surfaces with Discontinuities

construction algorithms, and it is fair to say that it is not nearly As an example of estimating nonstationary fields, in this e
ample we consider the estimation of surfaces possessi
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FIG. 14. Percentreduction in RMS error from just usingerations of multi-

grid to computing estimates using the multiscale approach and using theseFd&. 15.  Shift-variability of the multiscale estimates over random choices o
timates as the initial values for additional by multigrid iterations such that ttibe tree origin, as a function of the fraction of surface measurements. The verti
total computation is equal to that bimultigrid iterations. The horizontal axis axis measures the RMS variability of the surface, normalized by the RMS valr
measures. of the “truth” surface.
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The example surface which we use in this section is shown
Fig. 16. The 64x 64 surface has four step discontinuities o
height 10. The step edges are oriented diagonally so as to av
a convenient alignment with the multiscale tree boundaries. T|
surface was measured by randomly sampling 30% of the surfe
elements and adding unit-variance Gaussian noise.

Suppose the locations of the discontinuities are known. V
do not model each discontinuity line as a step of constant heig
rather we assume that we have much less prior information a
simply model each point along the discontinuity with indeper
dent zero-mean random variables: every time a branch of t
multiscale tree crosses a discontinuity we will aget 100 to
the process noise variance fis) of that branch; Fig. 17 illus-
trates this procedure for the example of Fig. 16:

FIG. 16. Example of a discontinuous surface. .
o Let (cx(8), cy(s)) be the coordinate of the center of the re:

discontinuities. The overlapping multiscale tree model posses€i represented by multiscale nosleFig. 17 shows these co-

a number of attributes which make it appropriate for such tasidinates for the coarsest three tree scales.
e Let I(s, sy) be the line segment fromc((s), cy(S)) to

e Unlike FFT-accelerated PDE methods, which requir@x(sy), cy(sy)).
space-invariant surface models, the performance of the multie Let 5(s, sy) be the sum of the variances of the disconti
scale approach is unaffected by space-varying models (e.gnuities crossed bl(s, sy). That isn(s, sy) represents that part
piecewise thin-plate model broken by discontinuities). of the variance of4(s) — z(sy)) that can be attributed to the
e The smooth projection operatbk, of the overlapping tree presence of the modeled discontinuities.
doesnot blur the surface estimates spatially. As a result, the
overlapping model is quite capable of capturing abrupt chang¥ste thatitis certainly possible for a given point of discontinuity
such as discontinuities. to be crossed more than once in traversing the multiscale tri
¢ Because the multiscale estimator takes as input a statistical, in following a path from coarse to finer nodes. While on
model for the unknown surface, not only the position of thean certainly imagine adding differing amounts of uncertainty «
discontinuities, but also thetatisticsof the discontinuity height each of these stages, we have used the simple procedure hel
may be specified. adding a variance of 100 at each such crossing; for example

® Root Node (Scale 0)

O Nodes on Scale 1
o Nodes on Scale 2
e« Nodes on Scale 3

77(0011 0) =0
n(0cq,0) = 100
71(0043, O) =0
7](0(14,0) =100

7](0012&2, 0052) = 100
n(0cs04,004) = 100

1 1 |
60 40 20 0

FIG. 17. This figure demonstrates the behavior of the functi() t), which measures the increase in the variance of the surface due to discontinuity crossi
The positions of the circle®, O represent the coordinates(s), cy(s)) associated with the labeled multiscale nodes. The thick lines represent the location
discontinuities, consistent with Fig. 16.
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Flg 17 we have;(Oagozg, 00[3) =100 and7(0a3a3a1, 00[30[3) = 0 T T T og
100. &%oeo o
We require a modified model at each nosldor which 1o} Wpoao OQ?X( .
n(s, sy) > 0; that is, for those nodeswhere a discontinuity * o % %)P OX@ °§‘ o, 0%
lies betweers and its parensy. Whenn(s, sy) > 0, (39), (40) ol = % %, 8 . 3&8‘ ]
must be modified to reflect the increased variance of the surfa > o0 K )eg
and the loss (or, more precisely, the irrelevance) of gradient irso_ X % 8 ° |
formation across the discontinuity 88 x
&ooo * ° o & ?3&??88( o .
40F X &P X% © 8 Qe § 1
z 1 00O z »goewo 0 &R
P lg_]0 00 0P| e o 9%
q 0 00 0|]aq 50 y o°§ ol
zp 1 0 0 0|]zp 2%, o ©
) sof N e ———
(B2 4n(ssy))? O 0 8™ | Cetmate > Observation
+ 8 (P%g)z (P(f;)% w(s) "% 10 20 30 40 50 60 70
0 0 0 FIG. 19. Distribution of those measurement residuals, in excess ofrdm

(53) the estimates based @ knowledge of the discontinuity locations, with the
T same measurements as in Fig. H.=20, By=0.2, 0 =(26,19, 14,9, 0,
d(s)=[Cy(s) O 0 Oz p q zp () +v(s), (54) 0.00).

wherePyq4 represents the gradient prior variance at the root node. . . d in the vicinity of the di tinuities
Figure 18 shows the estimated surface and estimation error vifil'aNCes are increased in the vicinity of the discontinuitie:

ances, based on this model, applied to an overlapping tree pigflecting the fact that fewer measurements contribute to tt
’ ' \irface estimates at those points.

ing nine scales. The surface estimates show the clear and S ) o .
preserved presence of the discontinuities. Similarly the errorAs an g5|de, if the d|scont||_'1uny locations amknowpthe
problem is much more complicated; however, we believe th
our method represents a promising first step because of its k
ability to compute posterior error statistics. For example, let
) continue to use the same measurements, but now supply then
B Nl ' : a multiscale model possessing no discontinuity information (z
' ' ' in (39)). We can examine the statistical significance of the me
surement residua measurements estimates), comparing
them with their predicted variances, to identify those region
in which the multiscale thin-plate model is inconsistent witf
the measurements; these regions are plotted in Fig. 19. Init
progress in using this approach to automatically detect disco
tinuities is reported in [29].

AOW

6.5. Nonvariational Priors

While the multiscale surface reconstruction models used
this point are motivated by a certain variational thin-plate
membrane model (13), the results in the preceding sectio
demonstrate that our multiscale prior stands on its own as
equally valid prior model to those used in variational formu:
lations. There are many surface statistically models which ¢
not correspond to a thin-plate/membrane prior model and fi
which a variational optimization expression may be difficult tc
write and much more difficult to solve. Due to the flexibility of
FIG. 18. Reconstruction of the surface of Fig. 16 and associated estimgur framework, some of these surface models may readily |
tion error variances based on a knowledge of discontinuity locations an¢@glized in a multiscale setting.

sampling, at random, of one-third of the surface pixels having unit variance . -
Gaussian noise added. The lower half of the figure plots the estimation _er—One such example Is the class ¢ﬂf prior models wherg:

ror variances; darker regions represent greater uncertd@gty.20, By =02, 1SN0 |0n9?r CO!"Strain?d_to equal 2. AlthPUgh such pri_or mode
0=(26,19,14,9,0,0,0,0). can be written in a variational form, solving the associated PD
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overlapping framework had not been developed, an ad hoc sh
ing approach was used (which improved smoothness somewtf
but in no way as well as the overlapped approach). Indeed, t
techniques developed in this paper successfully address both
gradient and smoothness inadequacies of [9]. By seBing
35 cm and by selecting a reasonable scale-to-scale variance
the gradient, e.gBy = 0.5, and by modifying the noise variances
in (39) to 2"®1-1)/2 we can jointly estimated the surface heigh
and gradients from altimetric data. Figure 20 shows the resulti
ocean height estimates for the north-east Pacific; the estima
oceanic circulation pattern, inferred from the estimated gradie
field, is shown in Figure 21. The results confirm our physice
50 expectations for the north Pacific ocean.

Latitude (North) Longitude (East) 7. CONCLUSIONS

FIG. 20. A plot of the estimated ocean height, viewed from the north-east.

Bs = 35cm By = 0.5, 0 = (16, 10,5, 3, 1, 1, 0, 0). In this paper we have described and illustrated a multiresol

tion methodology for surface reconstruction. By using the du
is very difficult and the inversion of the PDE operator, requirgfft€rpretation of variational formulations as estimation problen
to determine estimation error statistics, is much harder still. and the refationship between standard variational penalties st

Consider the following problem in ocean remote sensing [¢}S thin-plate and membrane models and fractal priors, we we
A satellite orbiting the earth produces accurate but irregulafp!€ 1 define multiresolution estimation problems that posse
sampled measurements of the height of the ocean surface. fifgilar interpretations and yield reconstructions of comparab

desired to producemoothmaps of the ocean surface, its gradiguality. Furthermore, with the same computational effort, ot
jytiscale method also produces estimation error variances

ents, and corresponding error statistics on a regular, dense gﬂ o ) atl TV
having upward of 100,000 points. ask extremely difficult to accomplish within a variational set

In [9], since multiscale models incorporating integrabilit)}ing- Ina}ddition,wg ha'V('a'aIso ShOWH that our m.ultiscale.estim‘
constraints and estimating gradients had not yet been develoﬁ@fi Prpwdes eﬁectlye initial estimates for iterative _solutlons t
we had to make do with muchsimpler model variational formulations of the surface reconstruction problen

Furthermore, while algorithms based on pyramidal quadtre
representations often lead to reconstructions with blocky ar
facts, a new overlapping scheme for multiresolution modelir
than the one considered in our current paper. Similarly, since g{gatly attenuates such artifacts._Thg appearance of_artifacts '

e of greater or lesser concern in different applications; by s

lecting the amount of overlap one has control over the compult

X(s) = x(sy) + 35 cm. 2"E1-w/2 (55)

80— N S e g tional complexity/artifact tradeoff. Furthermore, the variationz
e e = e e e e e ] formulation which motivated the multiscale model developed i
] I e o = - - . _ _ 1 sSection4doesnotrepresent“truth,”ratheritis a convenientfor

of mathematical expression. Similarly the multiscale formule
tion offers not only a computationally attractive alternative, bt
. L. also a flexible setting in which to construct surface prior mode
- - - . e e oL - directly, including meaningful ones that have no simple varic
. — . - Ll e e e, tional counterparts.
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Latitude (North)

w
o
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'

. The appendix will summarize the recursive procedure fc
- definingGy andH. We first consider the case of dyadic trees fo

0 R 1-D signals, from which the extension to quadtrees is straigt

w
o
T

!

= . e e forward.
I R N Let o represent the Width. of the overlap, measgrgd in si
180 185 190 195Longitggg(East')2os 210 215 220 pal points, between the regions aggregated by sibling mul
scale nodes on scate; O = (01, 02, ...,0M_1) represents a

FIG. 21. The circulation field implied by the surface-gradient estimates gdarameterization of the overlapping tree structure (for exar
Fig. 20. ple, in Fig. 7, the two nodes overlap by three points). bgt
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represent the width, measured in signal points, of the entire then the operator&y, H, now viewed as projections between
gion associated with each multiscale node on stalehe finest two-dimensional processes, are defined as
scale tree nodes must correspond to individual signal points, thus

wm-1 = 1, om_1 = 0, whereM represents the number of scaleg b 1 if3s> {n(s).n(sj)} = a, {n(s),n(sj)} =b
on the tree. Furthermore, GCx@.0) =1, herwise
(67)
Wm—1 = ZU)m - Om. (56)
[T hm($)hm(s)) if 355 {A(s). As))} =2,
Consider any nods on the finest scales may be written as H(b,a) = {n(s).n(sj)} =b
0 otherwise
S= Oailotiz R0/ TV im € {0, 1}, (57) (68)
where 0 is the root node, ang, «; correspond to downward APPENDIX B

left and right shifts, respectively. Let
The implementation of the multiscale estimation algorithn

M—1 [4, 23] is a rather complicated undertaking. In the interest c
n(s) = Z im2M-m-1 (58) promoting the use of this algorithm and enabling interested r
m=1 searchers to apply it to problems of their own, we are makin

M—1 this code publicly available.
n(s) = Z im(wm — Om) (59) The code is written in MATLAB scripts and in C; the front-
m=1 end visible to the user is written in MATLAB, and the multiscale
computational engine is written in C. No programming experi

then the projection matriy is given by ence is needed to try the software, although an understanding
MATLAB scripts would be required to customize our prograr

1 ifdssn(s)=a,n)=b for a different application.
Gx(a,b) = 0 otherwise (60) Anyone interested in compiling and running our code will re

quire MATLAB software and an ANSI-compatible C compiler
(precompiled versions of the code, not requiring any compile
tion, are available for Sun-SPARC platforms). The programs a
) available via anonymous FTP from ocho.uwaterloo.ca (IP Ac
0fsu-1=0 0f§n_1 = im(wm — Om) + Of sy (61)  dress 129.97.172.37) in pub/Software/Multiscale Surface. Tt

Furthermore, let

1 im=0:0fS, < wm — Om file README describes the purpose of each program and hc
w-ofs  _ _ to get started.
= | S o gy 6
oresg M 01 Sn = Om ACKNOWLEDGMENTS
] im=1;0fs, < On
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M 1hn(s) if 3s5n(s)=a,n(s) =b REFERENCES

63
otherwise (63)

H(b, a) = on

1. M. Bertero, T. Poggio, and V. Torre, lll-posed problems in early vision
Proc. IEEE76(8), 1988, 869-889.

The extension of these results to the quadtree case is straight-j gramble, J. Pasciak, and A. Schatz, The construction of precondition
forward if the quadtree is viewed as a product of two dyadic for elliptic problems by substructuring llMath. Comp.51(184), 1988,
trees. Each nodeon the finest scale may be represented as 415-430.

3. J. Bramble, R. Ewing, R. Paraskkevov, and J. Pasciak, Domain decomy
S— Oailhaizjz iy Tme Jm € (0, 1}, (64) 22?‘:;36;\2(01?'sll‘ggg’r%tg;eﬂslyth partial refinemeBrAM J. Scie. Statist.
4. K. Chou, A. Willsky, and A. Benveniste, Multiscale recursive estimation

wherea;; represents theth descendant in the direction and data fusion, and regularizatiofEEE Trans. Automat. Contr@9(3), 1994,
the jth descendant along Consider the dyadic tree nodes 464-478.
5. R. Courant and D. HilbertMethods of Mathematical Physicspl. 1,
. — O v ) InterscienceNew York, 1953.
S = 00[,10[|2 © iy, (65)

6. B. Dahlquist,Numerical MethodsPrentice-Hall, Englewood Cliffs, NJ,
Sj = OO{hOljz Ce Wy (66) 1974.



176

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

W. Dahmen and A. Kunoth, Multilevel preconditioningumer. Math. 24.

63(3), 1992, 315-344.

. D. Evans (Ed.),Preconditioning Methods: Analysis and Application 25.

Gordon & Breach, New York, 1983.

. P. Fieguth, W. Karl, A. Willsky, and C. Wunsch, Multiresolution optimal

interpolation and statistical analysis of Topex/Poseidon satellite altimet6.
IEEE J. Geosci. Remote Sensit@p5, 280-292.

P. FieguthApplication of Multiscale Estimation to Large Scale Multidimen-27.
sional Imaging and Remote Sensing ProblghtisD. Thesis, Massachusetts
Institute of Technology, 1995. 28.

P. W. Fieguth and A. S. Willsky, Fractal estimation using models on multi-
scale treedEEE Trans. Signal Procesd4(5), 1996, 1297-1300. 29.

R. Franktot and R. Chellappa, A method for enforcing integrability in shape
from shading algorithmdEEE Trans. Pattern Anal. Mach. Intel0(4), 30.
1989, 439-451.

S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, &id
the Bayesian restoration of imag#sSEE Trans. Pattern Anal. Mach. Intell
6(6), 1984, 721-741.

W. HackbuschMulti-Grid Methods and ApplicationsSpringer-Verlag,
Berlin, 1985. 33.
J. Harris;The Coupled Depth/Slope Approach to Surface Reconstryction
MIT S.M. Thesis, 1986. 34.

B. Horn,Robot VisionMIT Press, Cambridge, MA, 1986.

B. Horn, Height and gradient from shadirigt. J. Comput. Visiors(1),
1990, 37-46.

Ikeuchi and B. Horn, Parallelizable shape from shadértficial Intell.
17(1-3), 1981, 141-186.

W. Irving, P. Fieguth, and A. Willsky, An overlapping tree approach 37
multiscale stochastic modeling and estimati&EE Trans. Image Process.
6(11), 1997, 1517-1529.

D. Keren and M. Werman, Probabilistic analysis of regularizatieRE
Trans. Pattern anal. Mach. Intell5(10), 1993, 982-995. 39.
K. Lee and C. Kuo, Shape from shading with a linear triangular elemeff-
surface modellEEE Trans. Pattern Anal. Mach. Intell5(8), 1993, 815—
822. 41.

D. Lee and J. Shiau, Thin plate splines with discontinuities and fast algo-
rithms for their computationSIAM J. Scie. Compufl5(6), 1994, 1311— 42.
1330.

M. Luettgen, W. Karl, and A. Willsky, Efficient multiscale regularization
with applications to the computation of optical flolEE Trans. Image 43.
Process3(1), 1994, 41-64.

32.

35.

36.

38.

FIEGUTH, KARL, AND WILLSKY

M. Luettgen and A. Willsky, Multiscale smoothing error modes;-E
Trans. Automat. Contret0(1), 1995.

M. Luettgen and A. S. Willsky, Likelihood calculation for a class of mul-
tiscale stochastic models, with application to texture discriminatlBE
Trans. Image Procesé(2), 1995, 194-207.

B. MandelbrotThe Fractal Geometry of Natur&reeman, San Francisco,
1983.

S. McCormickMultilevel Adaptive Methods for Partial Differential Equa-
tions SIAM, Philadelphia, 1989.

D. Saupe, Algorithms for random fractalsTine Science of Fractal Images
(Peitgen and Saupe, Eds.), Springer-Verlag, Berlin/New York, 1988.

M. Schneider, P. Fieguth, W. Karl, and A. Willsky, Multiscale methods fo
the segmentation of imagd&§EE ICASSP’961996.

S. Sinha and B. Schunck, A two stage algorithm for discontinuity detectio
IEEE Trans. Pattern Anal. Mach. Intell4(1), 1992, 36-55.

R. SzeliskiBayesian Modeling of Uncertainty in Low-level Visjétiluwer
Academic, Dordrecht/Norwell, MA, 1989.

R. Szeliski and D. Terzopoulos, From splines to frac@dsnput. Graphics
23(3), 1989, 51-60.

R. Szeliski, fast surface interpolation using hierarchical basis functior
IEEE Trans. Pattern Anal. Mach. Intell2(6), 1990, 513-528.

R. Szeliski and D. Tannesen, Surface modeling with oriented particle sy
tems,Comput. Graphic26(2), 1992, 185-194.

D. Terzopoulos, Multilevel computer processes for visual surface reco
struction,Comput. Vision Graphics Image Proce2d, 1983, 52-96.

D. Terzopoulos, Regularization of inverse visual problems involving dis
continuities |JEEE Trans. Pattern Anal. Mach. InteB(4), 1986, 413-424.
G. Wahba, Bayesian “confidence intervals” for the cross-validated smoo
ing spline,J. Roy. Statist. Soc. 86, 1983, 133-150.

G. WahbaSpline Models for Observational Dat&eries in Applied Math-
ematics, Vol. 59, SIAM, Philadelphia, 1990.

P. Wesselingin Introduction to Multigrid MethodsWiley, London, 1991.
G. Whitten, Scale space tracking and deformable sheet models for com
tational vision |EEE Trans. Pattern Anal. Mach. Intefl5(7), 1993.

G. Wornell, Wavelet-Based Representation for the BEamily of Fractal
ProcessesRroc. IEEE Sept. 1993.

M. Yaou and W. Chang, Fast surface interpolation using multiresolutic
wavelet transform|EEE Trans. Pattern Anal. Mach. Intell§(7), 1994,
673-688.

H. Yserentant, Two preconditioners based on the multilevel splitting ¢
finite element spacedlumer. Math58(2), 1990, 163-184.



