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ABSTRACT

A multiresolution optimal interpolation scheme is described and used to map the sea level anomaly of the
Mediterranean Sea based on TOPEX/Poseidon and ERS-1 data. The principal advantages of the multiresolution
scheme are its high computational efficiency, the requirement for explicit statistical models for the oceanographic
signal and the measurement errors, and the production of error variances for all estimates at multiple scales. A
set of MATLAB-callable routines that implement the multiresolution scheme have been made available via
anonymous FTP.

The oceanographic signal is here modeled as a stationary 1/km process, where k is the horizontal wavenumber.
Measurement noise is modeled as the sum of two separate random processes: a Gaussian white noise process
and a correlated process of a low wavenumber representing the uncertainties in the orbital position of the satellite
and in the atmospheric load corrections. The efficiency of the multiresolution scheme allowed the testing of
more than 16 000 sets of hypothesized statistical prior model parameters to determine the most likely parameters.
Mapping results with and without low wavenumber error corrections are presented and compared.

1. Introduction

The use of satellite altimeter data to study the cir-
culation of the Mediterranean Sea is complicated by a
poor signal-to-noise ratio (Larnicol et al. 1995): the sea
level anomaly signal is at most 10 cm rms in the en-
ergetic regions of the Mediterranean, while the residual
altimeter noise, including orbit and atmospheric load
errors, is of the order of 5 cm rms or more. By con-
struction, the sea level anomaly signal, which is here
obtained by removing a 4-yr temporal mean at every
point, does not contain any geoid errors, except for those
due to lateral orbit errors over steep topography. The
major sources of low wavenumber uncertainty are the
orbit errors (Marshall et al. 1995) and, in the Mediter-
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ranean, the atmospheric loading not removed by the
inverse barometer correction (Candela and Lozano
1994; Le Traon and Gauzelin 1997). Orbit and atmo-
spheric loading errors are removed in practice, along
with some of the oceanic signal, by fitting and subtract-
ing low-order polynomials or cubic splines from each
altimeter track so as to minimize track-to-track cross-
over differences (Le Traon et al. 1995b; Larnicol et al.
1995; Bonnefond et al. 1995; Vasquez-Cuervo et al.
1996). The problem with these methods is that they do
not make use of an explicit statistical model for the low
wavenumber errors: the crossover difference minimi-
zation algorithms are ad hoc, and the estimation of sea
surface topography and of orbit/atmospheric load cor-
rections are treated as two separate steps, that is, the
uncertainties in the orbit correction step are not taken
into account when estimating the sea surface topogra-
phy.

In this paper, we use a multiresolution optimal inter-
polation scheme to map the sea level anomaly of the
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Mediterranean Sea based on TOPEX/Poseidon and ERS-
1 data. The departure of our work from previous efforts
is that we jointly estimate the sea level anomaly and the
orbit/atmospheric load errors, so that the uncertainties
in the errors are naturally reflected in the estimates and
vice versa. This approach requires explicit statistical
models for the sea level anomaly and for the orbit and
atmospheric load errors, and in turn provides estimation
error variances for all estimates at multiple scales. The
major advantage of the multiresolution scheme is that
its numerical implementation is extremely efficient, and
therefore the estimation can be repeated a large number
of times to test different statistical models and to obtain
consistent results.

The multiresolution optimal interpolation scheme has
previously been described and used for mapping altim-
eter data in the North Pacific Ocean by Fieguth et al.
(1995), but here it is substantially modified to allow for
the joint estimation of orbit and atmospheric loading
errors. The scheme is based on a scale-recursive statis-
tical description of the processes under study. This par-
ticular statistical description permits the use of recursive
estimation algorithms that provide a significant speed
advantage over more conventional estimation algo-
rithms. One difficulty associated with the implementa-
tion of such multiresolution optimal interpolation
schemes is in the construction and specification of the
multiscale statistical models. For this reason we are
making our algorithm available on the Internet in the
form of a MATLAB-callable routine (see the appendix).
In a related paper, Menemenlis et al. (1997a) describe
a multiscale statistical model that can be applied to a
more general class of estimation problems (again, with
an algorithm available on the Internet).

2. Statistical modeling

An abstract statistical description of the TOPEX/Po-
seidon or ERS-1 altimeter data may be written as fol-
lows:

measurement equation

h(t) 5 z(x, y, t) 1 y(t), (1)

sea surface prior covariance

P(x, x , y, y , t, t ) 5 ^z(x, y, t)z(x , y , t)&, (2)

and

measurement error covariance

R(t, t) 5 ^y(t)y(t)&, (3)

where z(x, y, t) represents the oceanographic sea level
anomaly signal taken at time t and location (x, y), and
h(t) represents the altimetric measurement of z(x, y, t)
subject to noise y(t), which includes residual tidal, at-
mospheric, and orbit errors. The sea surface height z
and the measurement noise y are modeled to be zero
mean (i.e., systematic signal components are assumed

to have been removed), so that ^y(t)& 5 0, ^z(x, y, t)&
5 0. Here R(t, t) and P(x, x, y, y, t, t) represent the
second-order prior statistics of y(t) and z(x, y, t), re-
spectively. Solving for the time-varying process z(x, y,
t) based on the prior statistics and measurements in (1)–
(3) is extremely difficult, predominantly due to the com-
plicated ocean surface dynamics captured by P(x, x, y,
y, t, t). Instead, for the purposes of this paper, we con-
sider the ocean surface to be static (a reasonable as-
sumption for the large-scale, baroclinic modes of vari-
ability over periods up to 10 days in length) and sta-
tistically stationary;

^z(x, y, t)z(x, y, t)& 5 P(x 2 x, y 2 y). (4)

Motivated by spectral analyses of the altimetric data and
earlier work (Wunsch and Stammer 1995; Fieguth et al.
1995; Gaspar and Wunsch 1989), we propose to model
the surface z(x, y, t) as a 1/km process, where k is the
horizontal wavenumber.

Studies (Fu et al. 1994; Le Traon et al. 1994; Le Traon
et al. 1995b; Le Traon et al. 1997) of the measurement
noise suggest that the TOPEX/Poseidon or ERS-1 noise
process y(t) can be modeled as the sum of two separate
random processes:

y(t) 5 yWGN(t) 1 yCORR(t). (5)

On the one hand, the random measurement error of each
altimeter has a very short correlation period and is here
modeled by a Gaussian white noise process yWGN(t). On
the other hand, the uncertainties in the orbital position
of the satellite and in the atmospheric load correction
are a correlated process of low wavenumber, represented
here by yCORR(t). Earlier altimetric optimal interpolation
efforts have either ignored yCORR (Fieguth et al. 1995)
or tried to remove it via a preprocessing step (Larnicol
et al. 1995)—an approach that requires ad hoc assump-
tions and that fails to take into account the posterior
error statistics of the preprocessing step when estimating
z(x, y, t). Instead, we propose to use an estimation frame-
work that is flexible enough to allow us to specify the
noise model (5) explicitly. For relatively small geo-
graphic areas such as the Mediterranean, the low-wave-
number error may be modeled as a low-order polyno-
mial, leading to the following noise model:

J

jy(i, t) 5 y (t) 1 a (i)t , (6)OWGN j
j50

where J represents the order of the polynomial correc-
tion and a j (i ) represents the unknown jth order
polynomial coefficient for satellite track i. We model
the aj(i) as being uncorrelated with each other and with
yWGN; that is, each track is modeled as having indepen-
dent errors. Although the estimator is capable of poly-
nomial corrections to an arbitrary degree, we have cho-
sen to apply first order, J 5 1 (i.e., to estimate bias and
tilt) corrections only, which is consistent with the low-
order corrections applied by previous authors [Larnicol
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et al. (1995) used J 5 0, Vasquez-Cuervo et al. (1996)
used J 5 1] so as to minimize the attenuation of the
low-wavenumber oceanographic signal. The next step
is to specify prior statistics for (6) in the form of
^yWGN(t)2& and ^aj(i)2&, and this completes the statistical
description of the estimation problem.

In principle, the optimal interpolation (minimum vari-
ance) solution for the above estimation problem could
be obtained by matrix inversion. However, the fields
computed in section 3 are 100 3 225 pixels in size, and
directly estimating such fields would require the inver-
sion of a 22 500 3 22 500 matrix. In practice, such an
approach is computationally infeasible, so we propose
to use a recently developed multiscale estimation frame-
work (Chou et al. 1994; Luettgen et al. 1994; Fieguth
et al. 1995), which is capable of solving very large
estimation problems with a modest amount of compu-
tational effort. Specifically, this framework will be ca-
pable of jointly computing the sea surface and the orbit/
atmospheric load errors, while still computing estima-
tion error statistics. This computational advantage does
not come for free: It can be a significant challenge to
develop multiscale models that capture the desired sta-
tistics and the remainder of this section will address this
challenge. In particular, the correlated noise term in (5)
and (6), which was ignored in the model of Fieguth et
al. (1995), required a nontrivial effort to model.

The ocean surface of interest is modeled as the finest
scale of a multiscale stochastic process z(s) defined on
a quad-tree, that is, a tree on which each node has four
descendents (except those nodes on the finest scale).
The process z(s) and its associated measurement process
h(s) are modeled as

z(s) 5 A(s)z(sg) 1 B(s)w(s),
T^z(0)& 5 0, P(0) 5 ^z(0)z (0)&,

h(s) 5 C(s)z(s) 1 v(s),
T^v(s)& 5 0, R(s) 5 ^v(s)v (s)&, (7)

where s indexes the nodes of the multiscale tree with s
5 0 indicating the root node of the tree, sg represents
the parent of node s, and w(s) is a white noise process;
for our altimetric problem, measurements exist only at
the finest scale of the tree. The multiscale state z(s) is
made up of bias and tilt parameters for each track, along
with a multiresolution process z(s), which represents the
ocean surface z(x, y, t);

z(s) 5 [z(s), a0(1), a1(1), . . . , a0(M), a1(M)]T, (8)

where M counts the number of satellite tracks present
in the measurements and where we have assumed that
J 5 1, that is, a first-order polynomial correction for
the low-wavenumber errors. As in Fieguth et al. (1995),
z(s) is a multiresolution description of the sea surface
height: On finescales of the tree, z(s) captures the local
sea surface height and on coarse scales z(s) captures
broad averages. [For reasons of efficiency our software

uses a reduced order z(s). In particular, only those a j(i)
corresponding to tracks that are measured by the chil-
dren of s need to be kept in z(s). However, for clarity
we shall retain the state definition of (8) throughout this
paper.]

Given this definition of the state, (8), three quantities
must be specified to complete the multiscale model: 1)
a prior covariance P(0) at the root node of the tree
consistent with ^aj(i)2&; 2) a multiscale state model, A(s)
and B(s), consistent with (8) and the 1/km prior on z(s);
and 3) a multiscale measurement model, C(s) and R(s),
consistent with (1), (6), and ^yWGN(t)2&.

The prior model P(0) can be written

P(0) 5 diag(^z(0)2&^a0(1)2&^a1(1)2& · · · ^a1(M)2&),
(9)

where ^z(0)2& describes the prior sea level anomaly vari-
ance at the coarsest scale of the multiresolution tree.

The model for z(s) due to the a j(i) is simple: the
coefficients aj(i) are just copied unchanged from parent
to child. For the sea surface z(s) we use the 1/km mul-
tiscale model of Fieguth et al. (1995): the scale-to-scale
variations in z(s) are random with exponentially de-
creasing variance. The resulting multiscale model is

A(s) 5 I (10)
(12m)m(s)/2B(s) 5 diag(B 2 0 0 · · · 0), (11)o

where m(s) denotes the scale of node s on the multiscale
tree. A discussion regarding the particular choice of Bo,
m, and ^z(0)2& may be found in Fieguth et al. (1995).

Finally, we need to define multiscale measurements
at the finest scale of the tree, consistent with (1) and
(6);

 z(x, y, t ) 1 a (i ) 1 a (i )(l(s) 2 378)1 0 1 1 1 
C(s)z(s) 5 A , 

 
z(x, y, t ) 1 a (i ) 1 a (i )(l(s) 2 378)N 0 N 1 N 

(12)

where N is the total number of tracks, i1, . . . , iN, which
pass through the finest-scale pixel corresponding to node
s. The N measurements are taken at times t1, . . . , tN,
and l(s) represents the latitude in degrees at which these
measurements were taken. [The latitude l(s) relative to
378N is used as a convenient surrogate for time t in (6);
this replacement is possible because along each track
the measurement latitude is a nearly linear function of
the measurement time.] Furthermore,

R(s) 5 diag(^yWGN(t1)2& · · · ^yWGN(tN)2&), (13)

where the value assumed by each ^yWGN(t)2& along the
diagonal of R(s) depends upon the satellite that took the
measurement. At this point the description of the mul-
tiscale model structure is complete, and it is this model
that will be used to compute the experimental results in
the next section.
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FIG. 1. Optimal standard deviation for the measurement noise of
the TOPEX, Poseidon, and ERS-1 altimeters.

3. Experimental results

To illustrate the application of the multiresolution es-
timator described above, we have mapped sea level
anomaly TOPEX/Poseidon and ERS-1 data in the Med-
iterranean. TOPEX/Poseidon data were processed and
interpolated onto a fixed 6-km equidistant along-track
grid by King et al. (1994), which includes the standard
environmental, inverse barometer, and orbit error cor-
rections. Tidal corrections are from the CSR3.0 (Shum
et al. 1997) model. The ERS-1 data are from the files
distributed by AVISO (Le Traon et al. 1995a). In ad-
dition to the standard environmental corrections, the
AVISO data include corrections of the ERS-1 orbit er-
rors based on a global minimization of TOPEX/Posei-
don–ERS-1 crossover differences (Le Traon et al.
1995b). [This ad hoc orbit correction is not necessary
since the multiresolution estimation framework can ac-
commodate different bias and tilt priors, ^aj(i)2&, for
each altimeter track. Nevertheless, sufficient orbit/at-
mospheric load errors remain to demonstrate the power
of the multiresolution estimator.] A 4-yr (1 yr for the
ERS-1 altimeter) mean sea level is computed and sub-
tracted from the data to obtain sea level anomaly.

The following sections compare and contrast sea level
anomaly maps of the Mediterranean Sea produced using
several different methods: 1) simple interpolation, 2)
multiscale estimation without polynomial corrections as
in (Fieguth et al. 1995), 3) multiscale estimation with
first-order polynomial corrections as discussed in sec-
tion 2, and 4) a suboptimal space–time optimal inter-
polation algorithm. Each map is computed from the
measurements of one 10-day TOPEX/Poseidon repeat
cycle; in particular, we used TOPEX data from repeat
cycle 24 (9–19 May 1993), which exhibited significant
correlated measurement errors and visually demon-
strates the removal of residual orbit/atmospheric load
errors. Finally, we show results from a joint TOPEX/
ERS-1 estimation.

In each case, the anomaly map is a grid of 100 3
225 estimates. The multiscale estimates are computed
on a tree having nine scales, which corresponds to a
finest scale of 256 3 256 pixels in size; each pixel is
square, 0.16 degrees on a side. Our algorithm requires
that the measurements be defined on the finest scale of
the multiscale tree and therefore the data need to be
repositioned by up to 61/2 pixel width. For this reason
the pixel size must be chosen sufficiently fine for this
repositioning to be trivial. The associated map is then
just a particular 100 3 225 pixel subset of the finest
scale. Prior statistics were obtained empirically from
TOPEX/Poseidon repeat cycles 3 to 161 (October 1992–
February 1997) and from ERS-1 repeat cycles 6 to 18
(October 1992–January 1994).

a. Prior statistics

As mentioned earlier, the efficiency of the multires-
olution estimator permits the testing of a large number

of hypothesized statistical prior models. We conducted
a series of tests to determine the most likely prior model
parameters (Luettgen and Willsky 1995; Fieguth and
Willsky 1996). In all, more than 16 000 tests, one test
per hypothesized parameter setting, of the Mediterra-
nean sea level anomaly were created to obtain the results
summarized below; each test required about one-tenth
the computational effort of the estimates that follow.
Figure 1 displays the optimal value for the white mea-
surement error variance, ^yWGN(t)2&, for individual re-
peat cycles of each of the three altimeters. These values
are determined by computing the statistical likelihood
of the satellite data and the multiscale prior model for
a variety of choices of ^yWGN(t)2&; the optimal choice is
the one corresponding to the greatest likelihood. The
results are unambiguous; they suggest measurement
noise standard deviation values of 3, 6, and 6.5 cm for
the TOPEX, Poseidon, and ERS-1 altimeters, respec-
tively.

Figure 2 displays the results of jointly optimizing the
model parameters Bo and m in (11), based on the mea-
surement noise values established for TOPEX in the
previous paragraph. [The data are distributed along the
exponential Bo2(12m)3 5 constant, shown as a dashed
line in Fig. 2. The distribution of points away from the
dashed line reflects finescale statistical variability, while
the distribution along the line reflects coarse-scale vari-
ability. Essentially, the multiscale decomposition allows
finescale statistics to be determined in great detail,
whereas coarse-scale statistics are subject to larger un-
certainty.] Despite this spread, Fig. 2 suggests that Bo

5 3.5 cm and m 5 1.4 constitute a reasonable choice
as prior model parameters. Table 1 shows the results of
a sensitivity test for this multiscale model. The estimates
and error statistics are not particularly sensitive to the
choice of model, varying by 3.5% and 4.4%, respec-
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FIG. 2. Optimal oceanographic model parameters of the measured
sea level anomaly signal for TOPEX data in repeat cycles 18 through
161. The horizontal axis plots Bo, the standard deviation of z(s) at
the coarsest scale, and the vertical axis plots the spectral exponent,
m in (11). The dashed line plots a contour of Bo2(12m)3; the distribution
of points along and across the curve reflect coarse-scale and finescale
variability, respectively.

TABLE 1. Sensitivity of the multiscale estimates and error statis-
tics to the multiscale model parameters for TOPEX repeat cycle 24.
These figures imply an estimate sensitivity of 3.5% and a standard
error sensitivity of 4.4% per unit of Bo.

Map

rms of
estimate

(cm)

rms of
std error

(cm)

Map 1: Bo 5 2.5, m 5 1.24
Map 2: Bo 5 3.5, m 5 1.40
Map 3: Bo 5 4.5, m 5 1.53

(Map 3–Map 1)

4.771
4.932
5.014
0.344

3.024
3.142
3.183
0.277

FIG. 3. Optimal standard deviation of the bias and tilt coefficients,
(a0(i)) and (a1(i)) in (6), for each TOPEX repeat cycle. The dashed
lines show 4-month averages.

tively, per 1-cm change in Bo and corresponding change
in m (about 0.15) along the dashed line plotted in Fig. 2.

Figure 3 displays the optimal bias and tilt coefficient
standard deviations, with the prior model and measure-
ment noise parameters set as determined in the above
two paragraphs. The most striking feature is the seasonal
modulation of the optimized values. During the summer
months, the bias is on the order of 2.5 cm, but it in-
creases to 4–8 cm during the winter. This seasonal mod-
ulation is consistent with the hypothesis that the low-
wavenumber error budget in the Mediterranean is dom-
inated by relatively small orbit errors during the summer
months and by larger atmospheric load and other en-
vironmental correction errors during the winter months
when more and stronger storm systems move through
the region. The tilt standard deviations demonstrate a
similar, although less pronounced, variation, going from
about 0.3 (centimeter per degree of latitude) in the sum-
mer months to about 0.7 (centimeter per degree of lat-
itude) in the winter months. The actual bias and tilt
statistics chosen will clearly depend on the repeat cycle
being studied.

Table 2 summarizes the prior statistics that we used
in the multiscale processing of data from repeat cycle
24; the various results are described and contrasted in
the following sections.

b. Basic interpolation

Figure 4 displays the coverage of the TOPEX altim-
eter and a surface height anomaly map obtained using
a simple interpolation scheme [an iterative FFT method
(Beer 1983, section 12.3) has been applied to fill the
gaps between the TOPEX altimeter data locations]. This

approach does not attempt to remove correlated mea-
surement errors, nor does it produce any sort of esti-
mation error statistics.

c. Multiscale—No correlated error model

Figure 5 shows the surface height estimates and as-
sociated uncertainties based on a multiscale model as
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TABLE 2. Prior model parameters for multiresolution estimates of TOPEX repeat cycle 24.

TOPEX measurement noise variance, ^yWGN(t)2&
ERS-1 measurement noise variance, ^yWGN(t)2&
Bias variance, ^a0(i)2&
Tilt variance, ^a1(i)2&

(3 cm)2

(6.5 cm)2

(4 cm)2

(0.4 centimeters per degree of latitude)2

Spectral slope, m, in 1/km model
Coarse-scale standard deviation, Bo

Mean sea level anomaly variance, ^z(0)2&

1.4
3.5 cm
(5 cm)2

FIG. 4. Top: Mediterranean coverage of the TOPEX altimeter for 9–19 May 1993 (repeat cycle
24), with each data point gridded to the finest scale of the multiscale tree. Bottom: sea level
anomaly map for this period created using a simple interpolation scheme. Contour intervals are
3 cm.

in Fieguth et al. (1995). The multiscale model is iden-
tical to that described in section 2 but does not take into
account correlated measurement errors; that is, y(i, t) 5
yWGM(t) in (6). The results are computed in 50 s on a
Sun SPARC-10.

On scales in excess of 500 km, the multiscale esti-
mates and those of the interpolated map in Fig. 4 are
similar; however, noticeable differences appear on
shorter scales. In particular, the interpolated map suffers

from a very large variability at finescales; this variability
is considerably ameliorated in the multiscale results of
Fig. 5 because the prior model constrains the ocean
surface estimates. However, both maps suffer from ob-
vious flaws in the vicinity of altimeter tracks due to
low-wavenumber orbit and atmospheric load errors. In
addition to the improved quality in the estimates, the
point that distinguishes this multiscale model from the
simple interpolation scheme is the ability to compute
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FIG. 5. Multiscale estimates (top) and standard deviation of uncertainty (bottom) of sea level
anomaly. The maps are based on the same 10-day TOPEX data as in Fig. 4, and they do not take
correlated errors into account. Contour intervals of the estimates are 3 cm. Contour intervals of
the error estimates are 0.5 cm with the 2-cm contour marked in bold.

estimation error statistics. Qualitatively, the estimated
uncertainty map in the bottom half of Fig. 4 is not
surprising since the uncertainty is lowest near the sat-
ellite measurements and increases as one moves away.

d. Multiscale—Correlated error model

Figure 6 shows the surface height estimates and as-
sociated uncertainties based on the multiscale model of
section 2, which models the correlated component of
the satellite measurement error as a first-order poly-
nomial. The increase in the multiscale state dimension,
that is, the dimension of z(s) in (8), increases the com-
putational requirements—4 min on a Sun SPARC-10.

The difference between the correlated error model and
its primitive cousin, presented in the previous section,

becomes clear when comparing the estimates of Figs. 5
and 6. The obvious inconsistencies present in the esti-
mates of Fig. 5 along the altimeter tracks have largely
disappeared in Fig. 6. Indeed, whereas the dominant
features in the estimates of Fig. 5 (and also of Fig. 4)
are light and dark lines, each due to the correlated error
of a single track, the estimates of Fig. 6 most promi-
nently reveal broad regions of higher or lower sea sur-
face elevation, with the satellite tracks appearing only
as secondary features resulting from the higher accuracy
(smaller uncertainty) of the estimates in the vicinity of
the measurements.

In addition to the error statistics of the surface, shown
in Fig. 6, it should be pointed out that the error statistics
of the correlated measurement error are also computed,
that is, the error statistics of the coefficients aj(i) in (6).
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FIG. 6. Multiscale estimates (top) and standard deviation of uncertainty (bottom) of sea level
anomaly. The maps are based on the same 10-day TOPEX data as in Figs. 4 and 5, but this time
a first-order polynomial model has been used to remove the correlated component of measurement
error along each satellite track. Contour intervals are as in Fig. 5.

e. Suboptimal space–time interpolation

The map and uncertainty estimates of Fig. 6 can also
be compared and contrasted to those of Fig. 7, which
were produced using suboptimal space–time interpola-
tion (N. Ayoub and P. De Mey 1996, personal com-
munication) and which are an example of maps that have
been used to study Mediterranean circulation (Ayoub et
al. 1998). The qualitative difference between the mul-
tiscale and the space–time interpolation maps results
primarily from the use of different statistical priors. For
the multiscale maps, the ocean is modeled as the 1/km

process described earlier, which makes allowance for
correlations at multiple scales. The space–time inter-
polation maps were obtained assuming a spatial decor-
relation scale of 150 km and temporal decorrelation of
15 days. We have compared a series of maps for TO-
PEX/Poseidon repeat cycles 2–75 created using the mul-

tiscale interpolation scheme with maps created using the
space–time interpolation scheme. The conclusion is that
both sets of maps are, in general, consistent to within
the uncertainty of the multiscale estimates. The major
difference between the two interpolation schemes lies
in the estimates of uncertainty that are a very sensitive
function of prior statistical assumptions. On the one
hand, the decorrelation scales for the space–time inter-
polation scheme were chosen subjectively to produce
reasonable results. On the other hand, the computational
efficiency of the multiscale estimates permitted a sys-
tematic search for a set of statistical parameters that are
consistent with all of the available data. Realistic esti-
mates of uncertainty are of primary importance for
quantitative studies of the circulation and for blending
the altimeter data with other observations or with model
output.
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FIG. 7. Maps of sea level anomaly (top) and normalized mapping error variance as a percentage
of the total signal variance (bottom) for a suboptimal space–time optimal interpolation scheme.
The maps are based on the same 10-day TOPEX data as in Figs. 4, 5, and 6. Contour intervals
are 3 cm for the estimates and 20% for the uncertainty. (Courtesy of N. Ayoub and P. De Mey.)

FIG. 8. Additional coverage provided by the ERS-1 altimeter for
9–19 May 1993, concurrent with that of Figs. 4, 5, 6, and 7. The
small dots indicate tracks of the TOPEX altimeter, while the larger
dots indicate ERS-1 tracks; the dots are shown gridded to the finest
scale of the multiscale tree.

f. Multiscale—Joint TOPEX/Poseidon–ERS-1
estimation

One final application will demonstrate the ability of
our model to fuse TOPEX/Poseidon and ERS-1 data.
Since the ERS-1 repeat cycle spans 35 days, only the
subset of ERS-1 measurements falling within the 10-
day period of TOPEX/Poseidon repeat 24 was used. The
additional coverage provided by the ERS-1 altimeter
during that period is illustrated in Fig. 8. Figure 9 shows
the resulting estimates and error statistics, computed
using the correlated measurement-error model of section
2. The inclusion of the ERS-1 data introduces additional
tracks, hence additional aj(i) coefficients, hence a high-
er multiscale state dimension. Therefore, estimates and
error statistics are computed in about 5 min on a Sun
SPARC-10, as compared to 4 min without the ERS-1
measurements. The addition of the ERS-1 data does not
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FIG. 9. Multiscale estimates (top) and standard deviation of uncertainty (bottom) of sea level
anomaly. The maps are computed from TOPEX and ERS-1 data using the same multiscale model
as that used to create Fig. 6. Contour intervals are as in Figs. 5 and 6.

substantially modify the estimate of sea level anomaly.
However, the reduction in the uncertainty is significant
over most of the domain.

4. Concluding remarks

Most of our past efforts (Chou et al. 1994; Luettgen
et al. 1994; Fieguth et al. 1995) with respect to the
multiscale framework have concentrated on developing
models and on understanding the statistical properties
of the framework. We now believe that our understand-
ing has improved to the point where our framework can
make real scientific contributions and be used by other
researchers as a tool for solving related estimation prob-
lems (Menemenlis et al. 1997a; Menemenlis et al.
1997b).

The particular mapping example discussed in this pa-
per assumes a model on a square grid that is stationary,

1/k-like, and static in time. The assumption of a sta-
tionary model on a square grid admittedly restricts this
software to regional investigations since at ocean basin
scales the curvature of the earth is inconsistent with
such a model. The use of a 1/ f -like prior model leads
to a simple model in our multiscale framework; other
prior models are possible (Menemenlis et al. 1997a) but
require more complicated multiscale implementations.
Finally, the assumption that the ocean is static limits the
time window of measurements to be used in producing
a single map. However, the following three aspects of
the multiscale method lend themselves to processing
dynamic data.

1) The computational efficiency of the framework
makes it practical to compute large numbers of maps,
successive in time, which could then be interpolated.

2) The present framework’s tolerance for nonstation-
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arities allows the definition of a time-varying mea-
surement noise variance. For example, (13) can be
modified such that the diagonal elements of R(s) take
the form

^yWGN(ti)2& 1 f(|ti 2 to|), (14)

where f(|ti 2 to|) is a positive, monotonically in-
creasing function and to is a given time origin. Such
a definition of R(s) would have the effect of down-
weighting measurements that lie away from the time
origin to (Fieguth 1995).

3) In principle an oct-tree could be constructed—mul-
tiscale in two space dimensions and one in time. This
would be a very elegant solution to the nonstation-
arity issue; however, the development of efficient
models on such trees presents formidable challenges
and is the subject of ongoing research.

It must be pointed out, however, that the regional and
time-stationary limitations are inherent in our particular
chosen model, not in the multiscale framework itself.
The development of nonstationary (Fieguth et al. 1995;
Fieguth 1995) or temporally dynamic multiscale models
is also the subject of ongoing research.
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APPENDIX

MATLAB—Callable Optimal Interpolation Code

The implementation of the multiscale estimation al-
gorithm in its full generality is a rather complicated
undertaking. In the interest of promoting the use of this
algorithm and enabling interested researchers to apply
it to problems of their own, we are making this code
publicly available. The front-end visible to the user is
written in MATLAB, and the multiscale computational
engine is written in C. No programming experience is
needed to try the software, although a significant un-
derstanding of MATLAB scripts would be required to
customize our program for a different application.

Anyone interested in compiling and running our code
will require MATLAB (4.x or higher) software and an
ANSI-compatible C compiler (precompiled versions of
the code, not requiring any compilation, are available
for Sun SPARC and SGI platforms). Most workstations
should have ample computational power; all of our re-
sults were computed on a Sun SPARC-10. However,
large multiscale trees require a large amount of memory,

particularly for high state dimensions (i.e., for poly-
nomial corrections of order J . 1, or for problems with
a very large number of satellite tracks). At least 50
Mbytes are required to run the programs for small test
cases; 128 Mbytes or more are recommended for serious
research applications.

The programs may be obtained via anonymous FTP
to ocho.uwaterloo.ca (IP Address 129.97.172.37) from
directory pub/Software/Mediterranean. The file READ-
ME describes the purpose of each program and how to
get started.
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