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Abstract—Recently, a class of multiscale stochastic models
has been introduced in which random processes and fields are
described by scale-recursive dynamic trees. A major advantage
of this framework is that it leads to an extremely efficient,
statistically optimal algorithm for least-squares estimation. In
certain applications, however, estimates based on the types of
multiscale models previously proposed may not be adequate, as
they have tended to exhibit a visually distracting blockiness.
In this paper, we eliminate this blockiness by discarding the
standard assumption that distinct nodes on a given level of
the multiscale process correspond to disjoint portions of the
image domain; instead, we allow a correspondence to overlapping
portions of the image domain. We use these so-called overlapping-
tree models for both modeling and estimation. In particular, we
develop an efficient multiscale algorithm for generating sample
paths of a random field whose second-order statistics match
a prespecified covariance structure, to any desired degree of
fidelity. Furthermore, we demonstrate that under easily satisfied
conditions, we can “lift” a random field estimation problem to
one defined on an overlapped tree, resulting in an estimation
algorithm that is computationally efficient, directly produces
estimation error covariances, and eliminates blockiness in the
reconstructed imagery without any sacrifice in the resolution of
fine-scale detail.

Index Terms—Least squares estimation, multiscale, quadtrees,
stochastic modeling.

I. INTRODUCTION

RECENTLY, a class of multiscale stochastic models has
been introduced in which stochastic processes and fields

are indexed by the nodes of a tree [2], [4]. These models pro-
vide a systematic way to describe random processes and fields
that evolve inscale. The primary reason that this framework is
useful is that it leads to extremely efficient, statistically optimal
algorithms for signal and image processing. In particular,
the statistical structure of these models leads directly to
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scale-recursive generalizations of both the Kalman filter and
the Rauch–Tung–Striebel smoother [4]. This algorithm has
demonstrated utility in confronting data assimilation problems
of dauntingly large dimension; two applications where this
approach has had considerable success include calculation of
optical flow [15] and smoothing of ocean altimetric data [6]. In
the latter work, for example, the authors were able to estimate
both ocean surface heightand associated error statistics for a
512 512 grid, all in one minute on a SPARC-10.

In spite of the success of the multiscale approach to esti-
mation with regard to computational efficiency, mean-square
estimation error, and ability to supply error covariance in-
formation, the approach, as developed up to this point in
time, has a characteristic that would appear to limit its utility
in certain applications. Specifically, estimates based on the
types of multiscale models previously proposed may exhibit a
visually distracting blockiness [15]. The authors in [15] argue
correctly that in many applications, the construction of fine-
scale estimates is not supported by the quality of available data,
and in such cases, only coarser scale estimates are statistically
significant. In these cases, one should be suspicious ofany
fine-scale estimate, and any corresponding blockiness has a
complete lack of statistical significance. However, in other
applications, such as the problem of estimation of the ocean
surface height [6] or the investigation of surface reconstruction
in [8], there is an essential need for smooth estimates, so that
surface gradients and normals can be calculated meaningfully.

Although estimate blockiness can be eliminated by simple
postprocessing (e.g., the application of a lowpass filter, or the
averaging of multiple, shifted multiscale-based estimates as in
[7] or in a manner similar in spirit to the “cycle spinning”
used in [5]), the resulting increase in smoothness comes at a
price. In particular, the postprocessing can render less clear the
proper interpretation of error covariance information provided
by the estimation algorithm, and it also limits the resolution of
fine-scale detail in the postprocessed estimate, since the added
smoothness is achieved by spatial blurring. As an alternative,
the work in [12] and [17] has demonstrated that multiscale
models can be constructed that produce arbitrarily accurate
representations of broad classes of random fields, including
those with considerable smoothness. However, to achieve a
high level of smoothness, these methods require the use of
multiscale processes of high dimension, thereby leading to a
reduction in the significant computational advantages that the
multiscale modeling framework offers.

Thus, for applications in which the computational efficiency
of the multiscale framework is desired, but where blockiness
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Fig. 1. Illustration of the first three levels of a quadtree.

is unacceptable, there is a need for a new approach to both
multiscale modeling and estimation. In this paper, we develop
such an approach that

1) yields low-dimensional multiscale models that are quite
faithful to prespecified random field covariance structure
to be realized, and thus admit an extremely efficient,
optimal (or nearly optimal) estimation algorithm;

2) retains one of the most important advantages of the
multiscale estimation framework, namely the efficient
computation of estimation-error covariances;

3) results in random fields and estimates without blocky
artifacts;

4) achieves these objectives without loss of resolution or
fine-scale detail.

In contrast to the original multiscale processing [7], [15],
which achieves objectives 1 and 2, and to standard multiscale
processing with simple postprocessing [15], which achieves
objective 1 and partially achieves objective 3, our approach is
superior in that it accomplishes all four objectives.

To describe our approach, we begin with a more care-
ful look at the source of blockiness. Consider the standard
quadtree multiscale structure shown in Fig. 1. Each level of
this tree corresponds to a particular scale, with larger
corresponding to finer resolution; the state on scale
at any given node represents an aggregate description of
the subset of the finest-scale process that descends from the
given node.1 A critical property of multiscale models is that
they are Markov: If is the value of the state at node
, then conditioned on the value of , the sets of values

of the states in the subtrees of nodes extending away from
are uncorrelated. This decorrelation leads both to efficient

estimation algorithms and to the source of the problem with
blockiness.

For example, consider the upper-left and upper-right quad-
rants of the image domain depicted in Fig. 1. These two
quadrants are separated at the root node at the coarsest level of
the tree, and therefore all of the correlation between any two
finer scale pixels in the two quadrants, such asand in
Fig. 2, must be completely captured in their common ancestor,

1We will use dyadic trees and quadtrees to illustrate our methods. All of
these results generalize toqth order trees and to trees having nonhomogeneous
branching patterns.

Fig. 2. Two nodes,s1 and s2, neighbors in physical space, but distantly
separated in tree space.

namely the root node. The pixels and may be close
physically, but they are separated considerably in terms of the
distance along the tree to their nearest common ancestor node.
High local correlation between such spatially close neighbors,
as one might expect if the field being modeled has some level
of regularity or smoothness, translates into the state at the root
node having a high dimension, in essence to keep track of all
of the correlations across quadrant boundaries.

One way to reduce dimensionality is to identify and retain
only the principal sources of correlation across boundaries at
each level on the tree. A procedure for doing this, developed
in [12], allows us to build multiscale models of any desired
fidelity. However, while this procedure by itself can yield low-
dimensional models of sufficient fidelity for many applications,
it cannot overcome the blockiness problem. In particular,
neglecting even a small amount of correlation at a coarse
level of the tree can cause noticeable irregularities across
boundaries, and thus an additional element is required. In
this paper, we introduce this new element by discarding the
assumption that distinct nodes at a given level of a tree
correspond to disjoint portions of the image domain and
allowing the tree nodes to correspond tooverlappingregions.
As a consequence of this idea, which was first used in [6] and
[8], an image pixel at the finest scale may now correspond to
several tree nodes at this finest scale. In this way we remove
the hard boundaries between image-domain pixels, as now
multiple tree nodes contribute to each of these pixels, reducing
the tree distance between the nodes corresponding to these
pixels and spreading the correlation that must be captured
among a set of nodes. For obvious reasons, we refer to these
as overlapped-tree models.

We use these overlapped-tree models for both modeling and
estimation, as depicted in Fig. 3. In both of these contexts, we
start with assumed knowledge of the correlation structureof
some random field .2 Corresponding to this random field,
we devise alifted-domainversion , where this lifted-domain

2For simplicity of notation we stack the random field such thatx is a vector
andP a covariance matrix.
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Fig. 3. Abstract view of our overlapped approach to multiscale-based modeling and least-squares estimation. Fast multiscale estimation and sample-path
generation are accomplished in the overlapped domain.Gx projects the statistics ofx into the overlapped domain;Gy projects measurementsy into the
domain; andHx, which possesses certain smoothness properties, projects the estimatesx̂l back out of the overlapped domain.

field lives at the finest-scale of an overlapped-tree multiscale
representation of . The mapping from to is denoted by

, where is one-to-many: The lifted-domain field
has more pixels than the image-domain field. To map back

from to , we devise an operator so that the field
is guaranteed to have the desired level of smoothness. The
correlation structure of the overlapped field
is approximately realized using the method developed in [12]
and [13]. Finally, we devise an operator , analogous to

, that lifts the actual observationsto yield lifted-domain
observations of the random field . These observations are
then processed by the efficient multiscale tree algorithm to
produce an estimate , which is then projected using to
yield , the desired estimate of the random field.

In Section II, we review the basic multiscale framework of
[2] and [4]. In Section III, we introduce all of the components
of our approach to modeling and estimation, and we charac-
terize the optimality properties of the estimation procedure
depicted in Fig. 3. In Section IV, we describe an efficient
implicit scheme for describing the projection operators to
and from the overlapped domain, while in Section V, we
illustrate the effectiveness of our new approach to modeling
and estimation by means of four examples, demonstrating not
only that our method avoids blocky artifacts, but in fact does
this without spatial blurring or compromising the advantages
of multiscale models.

II. I NTRODUCTION TO THE MULTISCALE FRAMEWORK

A. Multiscale Models and Estimation

For a th order tree (i.e., one in which each node has
offspring), we define both a fine-to-coarse shift operatorsuch
that is the parent of node, and a set of coarse-to-fine shift
operators such that the offspring of node

are given by . Fig. 1 depicts the relative
locations of , and for a quadtree. The
scale-recursive dynamics of interest are given by

(1)

where is a vector-valued process on the tree and
represents white driving noise with identity covariance, inde-

pendent of the initial condition at the root node . We
model as a zero-mean random vector with covariance

. If we interpret each level in the tree as a representation
of one scale of the process, then we see that (1) describes the
evolution of a process from coarse to fine scales.

In this paper, we make use of the estimation algorithm [4],
[15], which computes the linear least-squares estimate3 of
based on noisy observations

(2)

where is a matrix specifying the nature of the process
observations, as a function of spatial location and scale, and

represents additive white measurement noise. The algo-
rithm also computes the associated error covariance. This
algorithm takes explicit advantage of the Markovian structure
of on the tree and incorporates the measurements into the
estimates via two recursive sweeps, with each sweep following
the structure of the tree. Although the framework we describe
applies to the general case, we focus here exclusively on the
case of estimating a scalar random field (e.g., an image), given
noisy (and possibly sparse) point measurements of the field.
Specifically, we assume all attention focuses on the finest
scale, so that observations are only available at that scale
and only the fine-scale estimates are of interest. Furthermore,
we assume that at this finest scale, both the state and the
measurements are scalar valued.

To obtain insight into the efficiencies offered by multi-
scale models and the challenges we must meet, consider the
complexity of the simulation and estimation of a multiscale
process . There are three multiscale model parameters of
interest in this discussion: 1) the number of pixels in the
image domain, 2) the number of finest-scale nodes in the
multiscale model, and 3) the maximal dimensionof any state
vector in the multiscale model. In previous applications,

has been identical to ; in the approach to be developed
here, the overlapping nature of our trees leads to larger values
of , so that , where is a measure of

3If all of the random variables are jointly Gaussian, thenx̂(s) is the
conditional mean ofx(s) given fy(�); � 2 Mg whereM is the set of
all tree nodes.
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the degree of overlap, with smallercorresponding to more
overlap and greater smoothness.

The two-sweep structure of our estimation algorithm implies
that each node of the tree is visited exactly twice, where the
computations at each node involve a number of floating point
operations proportional to the cube of the state dimension.
Thus, application of the estimation algorithm requires a total of

floating point operations. Similarly, the simulation of
the coarse-to-fine recursion in (1) requires a total of
floating point operations.4 These complexity figures imply that
a serial implementation requires a total computational time
per image pixel of for estimation and for
simulation. The point here is that we can achieve dramatic
computational benefit as long as the maximal dimensionof
the state model and the amount of overlap (as measured by

) are not too large. As we will illustrate, the procedure we
describe here allows us to meet these criteria.

B. Realization of Multiscale Models

Our approach to building overlapped models makes use of
a technique described in [12] and [13] for taking a specified
covariance structure for a random field and constructing a mul-
tiscale model so that the set of values at the finest-scale nodes
have statistics that approximately match the specified covari-
ance structure. The problem of constructing such a model
is the multiscale generalization of the problem of stochastic
realization for time series, and the technique developed in [13],
is based on the statistical concept of canonical correlations
used in building time-series models [1]. As discussed in [1]
and [13], the key to constructing a recursive model for a time
series is the specification of the state at each time.
If denotes the past of the process at timeand
the future then the components of represent a set of
linear functionals of the past, so that conditioned on

and are uncorrelated. Of course, the dimension of
the needed state is closely tied to the correlation structure of
the process, and for many applications, one can expect that an
exact realization of the specified will require an unduly
high state dimension. Thus, in addition to a method for finding
and characterizing the state in an exact realization, there is also
a need for a way in which to measure the relative importance
of the components of the state, so that a decision can be
made about which components to discard in a reduced-order
realization.

For time series, canonical correlations applied to the covari-
ance of deals simultaneously with
both of these issues. Specifically, through both a normalization
and an orthogonal transformation, is transformed to the
form

where is the identity matrix and
is the diagonal matrix of canonical correlations. In this form,
which can be determined more directly from a singular value

4The fact that estimation isO(n3) while simulation is onlyO(n2) arises
because the former involves matrix products, while the latter involves only
matrix-vector products.

decomposition (SVD) of a normalized version of the cross-
correlation between and [13], we can identify
the most highly correlated components of the past and future
(corresponding to the largest). By retaining all the linear
combinations of the past corresponding to nonzero, or only
the largest of the , we can construct the exact state or
an approximate state of any desired dimension.

Our multiscale context requires a significant generalization
of these ideas. For example, the state at the nodein the
figure must decorrelate not just two sets of random variables,
but five sets of the process values, one for each of the sets
of nodes connected to through its children and one set
corresponding to the nodes connected tothrough its parent.
This generalization is developed in [13], in which it is also
shown how, once has been defined at each node, the
parameters of the model in (1), i.e., , and can
be computed.

III. M ODELING AND ESTIMATION WITH OVERLAPPING TREES

In this section, we identify the operators required in our
approach to multiscale modeling and estimation with over-
lapping trees, and in particular describe their properties and
interrelationships. We will also prove thatany suboptimality
in our approach to estimation can be traced completely to our
use of an approximate model to realize the correlation structure
of the overlapped field . That is, if an exact realization is
used in the overlapped domain, the overall procedure depicted
in the bottom half of Fig. 3 yields the optimal estimates.

A. Modeling of Random Fields with
Overlapped Tree Processes

Consider the problem of simulating a zero-mean random
field with covariance . From a computational point of
view, this simulation problem poses nontrivial challenges and
has been the focus of considerable research. One notable case
in which efficient techniques do exist is for the simulation
of stationary random fields defined on regularly sampled
toroidal lattices, since in this case, the two-dimensional
(2-D) fast Fourier transform (FFT) can be used. However, for
most other types of fields, simulation can be quite complex.
For example, an approach based on computing ,
where is the square root of the covariance andis a
random vector having identity covariance requires computing
the matrix square root , which has complexity
for a random field of points. In contrast, as discussed
in Section IIA, the simulation of a random field having a
multiscale model is extremely fast.

Our construction of a simulation procedure involves two
distinct steps. In the first step, we specify the matrix, which
serves to lift the random field into another random field
via

(3)

which acts as a redundant representation of, having more
pixels than the original field. The matrix has a considerable
amount of sparse structure, as we discuss in Section IV;
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Fig. 4. Illustration of an overlapping-tree representation of a process of length three, showing both the dyadic tree (left) on which the representation
is based, and depicting (right) the representation of each tree node. The barà associated with each tree node represents the subset of the points
f1; 2; 3g associated with that node.

also has a left inverse satisfying certain smoothness prop-
erties to be discussed shortly. In the second step, we use the
method in [13] to build a low-dimensional multiscale model
whose finest-scale statistics are an accurate approximation to
the statistics of . From (3), we see that the covariance ofis

(4)

The covariance of , the random field living at the finest
scale of the multiscale model that we construct, is approxi-
mately equal to , the degree of approximation controlled by
the procedure in [13]. Finally, to generate a sample function of
a random field having approximately the same statistics as
and with the desired smoothness built into, we generate
using the efficient simulation procedure for processes on trees
and then apply the operator , as follows:

(5)

The problem then is to specify and , so that

1) they are sparse and local;
2) achieves the desired smoothness without spatial

blurring;
3) the resulting multiscale model is of sufficiently low

dimension that simulation can be done efficiently;
4) the statistical approximation is sufficiently accurate so

as to lead to sample functions with the desired charac-
teristics.

To illustrate these ideas, consider a very simple one-
dimensional (1-D) example of a random process of length
three. Let , with

(6)

Suppose that we wish to develop an overlapped model for,
indexed on a dyadic tree having four finest-scale nodes. On
the right of Fig. 4, we depict such a tree with an indication of
the subsets of real, physical points (i.e., subsets of ) to
which each node corresponds. Thus, the top node corresponds
to all three points (i.e., ) and the two nodes at the
second level correspond to and , respectively.
At the bottom level there is a single node corresponding to
signal point 1 and another for 3, but there aretwo nodes

corresponding to 2. That is, in the lifted domain on the tree,
signal point 2 is lifted to two finest-scale tree nodes. Thus, if
we order the four fine-scale nodes from left to right, and we
view our lifting process as simply copying the value of signal
point 2 to both of the tree nodes to which it corresponds, we
are led to define

(7)

This example illustrates the constraints that we place on
any lifting matrix : it consists entirely of zeros and ones,
each column has at least one nonzero entry, and each row
has exactly one nonzero entry. These conditions ensure that
every pixel in the original domain corresponds to at least one
finest-scale node in the overlapped domain, and that every
finest-scale node in the overlapped domain corresponds to
exactly one pixel in the original domain. This lifting process
can be associated naturally with the overlapping structure
as illustrated in Fig. 4. Depending on how one chooses an
overlapping structure, a different lifting operator will generally
result. In Section IV, we present an implicit method for the
specification of given a desired overlapping structure.

The fact that and our imposed constraints on ,
lead to an important constraint on the structure of, namely
that the value at any given point in the original-domain is equal
to a convex combination of the values of the finest-scale nodes
corresponding to that point. For example, with as in (7),
the possible choices for are of the form

(8)

where . Here, and are weights placed on the values
at the two nodes corresponding to signal point 2 in order to
specify . For example, equal weighting would
intuitively lead to the most smoothness in the correlation
structure from through . It is important to emphasize
that the averaging implied by (8) is not at all the same as
spatial averaging, since we average only those tree points
corresponding to thesamepoint in real space. In Section IV,
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we will also describe how can be constructed directly
from a specified overlap structure.

B. Estimation of Random Fields with
Overlapped Tree Processes

Suppose that we wish to estimate a zero-mean random field
with covariance based on

(9)

where the components of the measurement noise vectorare
uncorrelated so that its covariance is diagonal, and each
component of represents a measurement of an individual
pixel so that each row of has exactly one nonzero entry.
Without loss of generality, we also assume that any pixel has
at most one measurement associated with it.5 This is equivalent
to assuming that each column of has at most one nonzero
entry, so that is a so-called (weighted) selection matrix and
has full row rank.

From basic results in estimation theory we know that if
is zero-mean with covariance, then

(10)

and the resulting error variance is given by

(11)

For a -pixel field, the explicit calculation of either or is
generally and the calculation of is where

is the number of measurements. Virtually the only case in
which this computational load can be reduced to a practical
level is when the field is stationary, and we have dense,
regularly sampled measurements of identical quality (implying
that and are both multiples of the identity); in this special
case, FFT methods reduce the load to . However,
in other cases, the computational load for the explicit
calculation of cannot be reduced, and the usual approach is
to turn to iterative methods for the computation of. While
iterative methods can significantly reduce the computational
load of calculating , the calculation of error covariance
information is computationally prohibitive. In contrast, the
multiscale estimation algorithm described in Section IIA has
a computational load of to compute both and the
diagonal elements of .6

In addition to specifying and and a multiscale model
for , the approach illustrated in the bottom half of Fig. 3
requires a lifting operator for the measurements

(12)

and a lifted measurement model

(13)

Moreover, for the multiscale estimation algorithm to be ap-
plicable to estimating based on , (13) must represent

5If there are repeated measurements of a single pixel we can replace them
by a single aggregate measurement obtained by taking a weighted average of
the data.

6Other elements of~P may be computed using the results of [16].

uncorrelated observations of individual fine-scale tree nodes.
That is, each row of must have only one nonzero entry and
the covariance of must be diagonal.

Since associates each pixel with a set of fine-scale
nodes, a natural choice for is specified by requiring that
if a real measurement is made at a particular pixel, then lifted
measurements should be specified at each of the fine-scale
tree nodes corresponding to that pixel. For example, for the
three-point process illustrated in Fig. 4, suppose that we have
measurements of and , namely

(14)

Then, in our lifted domain we should havethree measure-
ments, one corresponding to the single node associated with

, and two corresponding to the nodes associated with.
That is,7

(15)

An obvious question at this point is how to create three
measurement values on the tree when only two real measure-
ments are available. The answer here is that we simplycopy
the actual measurement value at any pixel to all fine-scale
nodes associated with that pixel. In our example

(16)

At first glance, this procedure appears to create a problem: For
the multiscale estimation algorithm to work, the measurements
at distinct nodes must have uncorrelated errors. Withand

defined as in (16) and (15), this certainly does not hold,
since two of the “measurements” are identical. Nevertheless,
we simply model these two measurements as being distinct,
each of the state at the corresponding node, with uncorrelated
measurement errors. However, this appears to create another
difficulty. Specifically, by modeling in this way we appear
to be saying that we have more information than we actually
do; in our example we now have two measurements of the
nodes corresponding to . To compensate for this, we need to
ensure that the total information in these two measurements is
the same as in the single real measurement. We accomplish this
simply by doubling the corresponding measurement noise vari-
ances in our model for each of the replicated measurements;
specifically, given in (14), we define

(17)

7We shall find that having a measurement ateveryfinest-scale node will
make the precise description of operatorGy much simpler notationally.
Consequently, the measurement matrixCl is padded with zero-rows (i.e.,
dummy measurements) to make it diagonal. It must be stressed that this is
purely a notational matter and has no consequences on the theory or practical
implementation of overlapping tree algorithms.
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(where corresponds to the dummy measurement of (15); the
value of is irrelevant).

The general case proceeds exactly as in this example.
For each real pixel measurement, we have an analogous
measurement foreachof the tree nodes corresponding to that
real pixel. Thus if the th component of is
(where is a component of ) then will have measurements
of the form for each such
that finest-scale node corresponds to the real pixel .
Furthermore, for convenience, for any real pixelsthat are
not measured, we include dummy measurements for each node

corresponding to , but with . Since is a
weighted selection matrix, so is . To provide a formula for

, note that there are apparently two distinct ways in which
affects : 1) through and , and

2) through and . A logical requirement,
then, is that both effects of on should be the same, i.e.,
that . Since has full row rank, it follows that

(18)

While this expression for is correct, its simple structure
is obscured. However, noting that is diagonal and
that the weights in are the same as those in, it follows
that is a lifting matrix, and in fact consists of the subset
of the columns of corresponding to pixels at which we
have measurements. This is consistent with our example: We
assign values to the lifted measurements simply by replicating
the appropriate original-domain measurement values.

To specify , let denote number of ones in theth
column of ; i.e., the number of times that theth original-
domain measurement is replicated in the overlapped domain.
We then define to be a diagonal matrix whoseth diagonal
entry is given by

where is the unique index for which , (i.e., fine
scale node corresponds to pixel). This choice for , which
is exactly what was done in our simple example, provides
the observation covariance amplification required in the lifted
domain to offset the apparent increase in information caused by
the replication of measurement. This is stated more precisely
in the following identity:

(19)

Proposition 1: Let be a random field with covariance
and let be a set of measurements with

a weighted selection matrix and , the covariance of ,
diagonal. Suppose we then choose and as
just described. Then the optimal estimateof based on can
either be computed directly or by lifting, performing optimal
estimation in the lifted domain, and then projecting. That is,
if , and , then

(20)

Fig. 5. Basic overlapping-tree notation:om represents the degree of overlap
between the regions represented by sibling multiscale nodes on scalem; wm
represents the width of the region represented by each node on scalem.

where is defined in (4). Moreover, if denotes the
estimation error covariance in estimatingbased on , and

the estimation error covariance in estimatingbased on
, then

(21)

The proof is given in Appendix A. This proposition states
that if we perform optimal estimation in the lifted domain us-
ing the correct covariance for , then the overall procedure
depicted in the lower half of Fig. 3 yields the optimal estimate
for based on . Thus, any suboptimality in our actual
implementation is completely traceable to approximations in
building a low-order model for .

IV. SPECIFICATION OF THEOVERLAPPING FRAMEWORK

The key quantities in building an overlapping framework
are and ; once these are determined, is fixed,
so that a realization may be constructed, and , and

can be computed as we have described. In this section
we describe a flexible, implicit and efficient method for
specifying and . For simplicity in exposition and
notation, we focus on a basic case that conveys the main
ideas, namely the representation of 1-D random processes with
dyadic overlapping tree models having a spatially uniform
overlap structure. That is, for any two nodesand on the
same scale of the tree, the manner in which their descendants
overlap must be the same. For a model having this structure
and also having scales, and can be specified
completelyin terms of only parameters.

Recall that each node on the multiscale tree is associated
with a connected interval of points in the original domain. We
denote the width of this interval, for a node at scale, by .
This is illustrated in Fig. 5, which also depicts the geometry of
the overlap of the intervals associated with the two children of
any given node. We denote the amount of this overlap between
sibling nodes at scale by , and we require that sibling
nodes do not completely overlap, as follows:

(22)

From Fig. 5 we see that and are related by the
following recursion:

(23)

The overlap parameters provide
a complete characterization of the overlap structure of the
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tree. However the values of and are not unconstrained.
Clearly, the length of the 1-D sequence being represented
imposes the constraint that

(24)

where is the smallest integer greater than or equal to.
For any fixed satisfying (24), the overlap parameters
are implicitly constrained by two boundary conditions on the
recursion (23). First, each node on the finest level of the tree
must correspond to a single pixel

(25)

Second, the root node of the multiscale tree must be associated
with the entire random field

(26)

The constraints (22)–(26) still leave some degrees of freedom
in specifying . In our examples in Section V, we eliminate
these by additionally constraining the so-called fractional
overlap, to be approximately constant as a function
of scale.8

With regard to selecting a value for , note that as the value
is increased, for a fixed value of , the amount of overlap

at each scale must also increase, in order to fulfill the boundary
conditions (25) and (26). Since a greater amount of overlap
leads to greater smoothness, increasingleads to smoother
realizations of a given field. However, as increases, the
complexity of carrying out simulation and estimation also
increases. Thus, there is tradeoff involved in choosing a value
for that is typically best resolved by a combination of
engineering judgment and numerical experimentation.

The matrix follows uniquely once values for and
have been chosen. Specifically, thanks to the constraints

on , we know that its th row will have a single nonzero
entry having a value of one. If we let denote the th node
at the finest scale of our overlapping tree, then this node
will correspond to some index in the 1-D process being
represented, and so

otherwise.

The index can be determined directly from and .
Clearly, there is a unique path from the root nodeto the
node , where this path can be described as a sequence of

downward-shift operations, as follows:

(27)

Here, and represent the left and right children,
respectively, of node , and

(28)

8The fractional overlap cannot generally be made exactly constant, since
the parameterswm andom must take on integer values.

(a)

(b)

Fig. 6. Two overlapping nodes: the set of relative contributions to each
finest-scale pixel must sum to one. The contributions are tapered linearly
over the region of overlap: (a) shows this tapering pictorially; (b) provides a
specific example for two nodes which overlap by three pixels.

Finally, from our earlier discussion of overlap geometry, a
direct calculation shows that

(29)

Applying the same procedure to each row of the matrix
yields the entire matrix.

The construction of , while constrained by the choice
for and the fact that , still has degrees of
freedom to be specified. To enforce our restriction that
perform no spatial averaging, we require that nodes at the
finest scale of the tree be mapped only to the pixels to which
they correspond. Thus, if , then we require that

. One way to meet this constraint is to let
be the Moore–Penrose pseudoinverse of. However, it is
possible to devise a matrix that actually does a better job
of smoothing.

To describe the that we use, consider the two child nodes
shown in Fig. 6(b) and a pixel that lies within the overlapping
regions of these two nodes (e.g., the pixel markedin the
figure). We need to specify the contributions of the two child
nodes (and their descendants) in determining the value of pixel

; for example, as indicated in the figure, the left child is given
a weight of and the right child a weight of . Thus, the right
child (and its descendants) will have a contribution three times
that of the left child to the value at. In order to maintain a
total contribution of unity at each pixel, we will normalize the
contributions at each pixel to sum to one; these normalized
values will be referred to asrelativecontributions. We achieve
smoothness in by tapering the relative contributions of a
node toward zero as one approaches an overlapped end of
the interval associated with the node; one such tapering is
sketched in Fig. 6(a).

Suppose that the procedure outlined in the preceding para-
graph has been applied to all nodes on all scales. To illustrate
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Fig. 7. Example of the construction ofHx. A four-level tree is used
to represent a process having four points(a; b; c; d). The process points
associated with a multiscale node are indicated below the node. The relative
contributions of each node to its associated process points are indicated above
each node. Products of these relative contributions determine the elements
of Hx.

how is determined from these contributions, consider a
node on the finest scale and defineand as in (28), (29).
The participation of node on the finest scale is determined
as the product of all relative contributions associated with all
ancestors of . This construction is illustrated in Fig. 7 for
an overlapping tree representation of a 1-D process having
four points . Consider finest scale node
(second from the left end of the tree). The participation of

in determining the value at point is given by the product
of the numerical values above each in Fig. 7. Thus, the
participation of is equal to ; so the weight in

associated with is . The weights in corresponding
to each of the finest-scale nodes are shown in Fig. 7.

For all but the smallest estimation problems, a dense repre-
sentation of the and matrices is impractical. In fact, for
large multidimensional problems, even a sparse representation,
using the fact that each row of and column of contain
only one nonzero entry, may be too large. However, the
parameters in the parameterization form an implicit
representation of and . We have found the on-line
construction of and from to be so rapid that we have
exclusively used this latter representation in our software.

There are two possible extensions of this overlap specifica-
tion that allow greater flexibility in representing 1-D processes.
First, rather than using dyadic trees, we can also use-adic
trees. As described in [9], the implicit procedure for specifying

and from and can be directly extended to
this case. In addition, it is possible to consider nonuniform
overlap structures, i.e., structures in which some regions have
more overlap than others. In this case, the specification of the

TABLE I
COEFFICIENTSfhk;lg OF THE MARKOV RANDOM FIELD “W OOD” M ODEL [14]

structure requires more than a single, common overlap
at each scale, and as a result the specification ofand ,
while possible, is more complex. We have not found this added
complexity warranted in any application.

Finally, there is the extension to the representation of
2-D random fields. By considering each of the dimensions
separately, the procedure we have described can be directly
extended. Specifically, instead of using a dyadic tree, we use
a quadtree, with a splitting of regions occurring in each of
two dimensions. In this case, it is certainly possible to use a
separate set of overlap parameters and for each
dimension. However, in all applications we have considered
we have found the use of a single set of overlap parameters for
both dimensions to be adequate. In this case a straightforward
extension [9] to the bookkeeping described for the 1-D case
allows us to specify and implicitly, and it is this
implicit specification that is used exclusively for the results
presented next.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate four applications of our
overlapping tree framework. The basis for all of these ex-
amples is a particular Markov random field (MRF) model
chosen because its strong anisotropy presents a most severe
challenge in overcoming blockiness. The statistics of the MRF

of interest are implicitly governed by the following
autoregressive model:

(30)

In this equation, is a Gaussian noise process having the
following correlation structure:

(31)

otherwise
(32)

where the field is normalized to have unity variance, and
where denotes the set of offsets of the neighbors of any
given field point . The specific choice of coefficients

to be used in our examples are those of the “wood”
texture [14], shown in Table I.

In Fig. 8(a), we display a 64 64 pixel sample function
based on the “wood” texture coefficients and assuming that
the MRF lies on a toroidal lattice so that FFT techniques can
be employed. The image possesses an obvious grain—that is,
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(a) (b) (c)

Fig. 8. Three simulated “wood” textures, 64� 64 samples, based on an exact FFT approach in (a), and based on regular, multiscale trees in (b) and (c).

(a) (b) (c)

Fig. 9. Three estimated textures, each based on noisy measurements of Fig. 8(a). Estimate (a) is based on optimal FFT techniques, (b) is based on a
nonoverlapping tree of order 40, and (c) is based on an overlapping tree of order 16. The computational effort of the latter two estimates is the same; however,
note the artifacts visible across the quadrant boundaries in (b) that are completely removed in (c).

a much stronger correlation in the vertical direction than in the
horizontal. The long vertical correlation length is of particular
interest: it is such correlations which nonoverlapped multiscale
trees find difficult to preserve, even using relatively high-order
models [17].

The overlapping-tree construction outlined in the previous
sections requires three quantities to be specified. First, we
must specify the order,, of the tree (here we use a quadtree,

). Second, we must specify the number of scales
in the tree. For a 64 64 pixel field, non-overlapped trees
have scales. In our examples with overlapped trees,
we will set scales and use an overlap parameterization

, which is consistent with (25) and
(26), and renders approximately constant the fractional overlap

. Finally, we must specify the orderof the multiscale
model to be constructed using the method of [13].

A. Modeling Example

While we expect that the principal use of our multiscale
models will be in estimation and statistical analysis, we begin
with an example of simulating random fields, illustrating the
improvement using overlapped models. We have constructed
approximate multiscale models for the wood texture MRF
using two different choices for the pair , such that the

computational efforts required to simulate the two fields in
Fig. 8(b) and (c) are the same. The first of these has
and ; the resulting blockiness in Fig. 8(b) is clear.
The second realization, in Fig. 8(c), is based on and

; this model is overlapping, and we can see that there
are no blocky artifacts.

B. Estimation: Densely Sampled Field, Homogeneous Model

Consider the case in which we have dense, regularly sam-
pled, equal quality measurements on a toroidal lattice so that
the exact optimal estimate can be calculated using FFT’s. The
original texture shown in Fig. 8(a) was corrupted to 0 dB SNR
by white Gaussian noise, and estimated in three different ways:

1) using an optimal FFT technique [Fig. 9(a)];
2) using a nonoverlapped multiscale tree with a

multiscale model of order [Fig. 9(b)]; and
3) using an overlapped tree ( ) and a multiscale

model of order [Fig. 9(c)].

The model orders of the two multiscale techniques were
chosen so that the computational burden for estimation is the
same for both. One measure of estimator performance is the
degree to which the mean square error (MSE) is reduced from
the original noisy image, relative to the reduction provided
by the optimal least-squares estimator. The nonoverlapped
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(a) (b) (c)

Fig. 10. (a) Sample path of an inhomogeneous MRF, where each pixel belongs to a horizontally or vertically correlated texture. (b) Random field
corrupted by 0 dB white Gaussian noise. (c) Texture estimated using an inhomogeneous overlapped multiscale model, based on the measurements of (b)
and given the correct prior texture model at each pixel.

estimator and the overlapped estimator, respectively, reduce
the MSE by 98.6% and 98.0% of the optimal MSE reduction.
On the other hand, a visual comparison between Fig. 9(b)
and (c) shows clearly the presence of blocky artifacts for the
nonoverlapped case but no such artifacts for the overlapped
model. Thus, the overlapped model is decidedly superior if
the elimination of such artifacts is an important concern.

Although the FFT technique is both efficient and optimal
in terms of MSE, it suffers from a limited applicability to
special circumstances. In particular, the examples that are
presented in the following two sections—irregularly sampled
measurements and a spatially varying prior model—preclude
the use of the FFT but may be solved using our multiscale
method.

C. Densely Sampled Field, Heterogeneous Model

A sample function of a nonstationary prior model is shown
in Fig. 10(a). The 64 64 pixels were divided into groups
and : contains the pixels in the upper left and lower right
of the image, and contains the pixels in the diagonal band
running through the center of the image. The prior model for

is the “wood” model of Table I; the prior model for uses
the same coefficients in Table I, but with the table rotated by
90 degrees. The cross correlation between groupsand is
zero. The choice of such a nonstationary prior, as opposed to
the simple prior in the previous example, just implies a change
in the prior statistics on the finest scale of the multiscale tree;
the multiscale model development and estimation procedure
proceed unaffected.

Fig. 10(b) shows a noisy version of the original image cor-
rupted by white Gaussian noise to 0 dB; Fig. 10(c) shows the
corresponding multiscale reconstruction based on an overlap-
ping model with and . As we have stressed, the
operator removes blockiness without performing spatial
blurring; thus, the edge between the two regionsand is
well preserved.

D. Locally Sampled Field, Homogeneous Model

We consider two final estimation problems involving a
stationary prior model, but with measurements available at

only nonrectangular subsets of the pixels. Fig. 11(a) shows a
subset of the pixels of the “wood” texture from Fig. 8(a); this
elliptical set of pixels represents those pixels to be used as
measurements, implying a trivial change in the measurement
projection operator and in the multiscale measurement
matrices on the finest scale of the tree. It is significant to
note, however, that while the multiscale framework is readily
adapted to irregular measurements, a change from dense to
irregular sampling makes FFT-based approaches inapplicable.

Fig. 11(b) shows the multiscale reconstruction based on the
set of measurements given in Fig. 11(a). The estimates capture
the coarse features of the original texture of Fig. 8(a) outside
of the measured region, including certain aspects of the vertical
bands to the left and right of the measured region. Also, once
again, the estimated texture evolves smoothly, without blocky
artifacts.

Fig. 12 provides one additional illustration of irregular
sampling: Observations distributed according to a 2-D Pois-
son process. Fig. 12(b) and (c) display estimates based on
a nonoverlapping model of order 40 and an overlapping
model of order 16, both having the same computational load.
The estimates computed by the overlapping model are more
visually pleasing and also have a lower MSE.

VI. CONCLUSION

We have presented a new approach to modeling and es-
timation using a recently introduced class of multiscale sto-
chastic processes. Our work has been motivated by the ob-
servation that estimates based on the types of multiscale
models previously proposed can exhibit a visually distract-
ing blockiness. To eliminate this blockiness, we have dis-
carded the standard assumption that distinct nodes on a given
level of the multiscale process must correspond to disjoint
portions of the image domain. Instead, we allow distinct
tree nodes to correspond to overlapping portions of the im-
age domain. This is done in a way that eliminates blocky
artifacts without spatial averaging, so that if a field does
have sharp discontinuities, these can be captured without
blurring. By coupling this overlapping framework with a
multiscale stochastic realization technique based on canonical
correlations, we have developed a powerful estimation and
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(a) (b)

Fig. 11. Texture (b) was estimated using an overlapped multiscale model, based on the measurements (a) of a small subset of the wood texture. Despite the
use of a multiscale estimator, the estimates evolve smoothly from the region in which measurements are present to the surrounding area without measurements.

(a) (b) (c)

Fig. 12. Estimates produced by (b) a nonoverlapping and (c) an overlapping tree, given measurements of a random subset of the pixels of Fig. 8(a):
One measurement is made at each black pixel in (a).

modeling tool which allows one to manage the tradeoff among
estimate smoothness, statistical fidelity, and computational
effort.

The flexibility of the multiscale framework allows us to
confront problems for which FFT techniques are not applica-
ble; in particular, in problems involving nonstationary statistics
or irregularly sampled data. In fact, the flexibility of our
framework is greater than that implied by examples considered
here; in particular, the modeling and estimation of processes
in higher dimensions is also possible.

APPENDIX

PROOF OF PROPOSITION 1

Using (19) and (4) we can derive

We now verify (20). Using the above derivation with (4)
and (10) leads to the following identities:

To verify (21), we use (11), (20), and (4) in the following
sequence of identities:
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