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An Overlapping Tree Approach to Multiscale
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Abstract—Recently, a class of multiscale stochastic models scale-recursive generalizations of both the Kalman filter and
has been introduced in which random processes and fields are the Rauch—Tung-Striebel smoother [4]. This algorithm has
described by scale-recursive dynamic trees. A major advantage gemgnstrated utility in confronting data assimilation problems

of this framework is that it leads to an extremely efficient, f dauntinglv | di ion: licati h thi
statistically optimal algorithm for least-squares estimation. In OF dauntingly large dimension; two applications where this

certain applications, however, estimates based on the types of@pproach has had considerable success include calculation of
multiscale models previously proposed may not be adequate, asoptical flow [15] and smoothing of ocean altimetric data [6]. In
they have tended to exhibit a visually distracting blockiness. the |atter work, for example, the authors were able to estimate

In this paper, we eliminate this blockiness by discarding the ), qcean surface heighnd associated error statistics for a
standard assumption that distinct nodes on a given level of

the multiscale process correspond to disjoint portions of the 912 x 512 grid, all in one minute on a SPARC-10.

image domain; instead, we allow a correspondence to overlapping In spite of the success of the multiscale approach to esti-
portions of the image domain. We use these so-called overlapping-mation with regard to computational efficiency, mean-square
tree models for both modeling and estimation. In particular, we astimation error, and ability to supply error covariance in-

develop an efficient multiscale algorithm for generating sample . . S
paths of a random field whose second-order statistics match formation, the approach, as developed up to this point in

a prespecified covariance structure, to any desired degree of time, has a characteristic that would appear to limit its utility
fidelity. Furthermore, we demonstrate that under easily satisfied in certain applications. Specifically, estimates based on the
conditions, we can “lift" a random field estimation problem to types of multiscale models previously proposed may exhibit a
one defined on an overlapped tree, resulting in an estimation visually distracting blockiness [15]. The authors in [15] argue

algorithm that is computationally efficient, directly produces . . . )
estimation error covariances, and eliminates blockiness in the correctly that in many applications, the construction of fine-

reconstructed imagery without any sacrifice in the resolution of Scale estimates is not supported by the quality of available data,

fine-scale detail. and in such cases, only coarser scale estimates are statistically
Index Terms—Least squares estimation, multiscale, quadtrees, glgnlflcant. In.these cases, one should k_)e SUSp'C_'O'“mWf
stochastic modeling. fine-scale estimate, and any corresponding blockiness has a

complete lack of statistical significance. However, in other
applications, such as the problem of estimation of the ocean
surface height [6] or the investigation of surface reconstruction
ECENTLY, a class of multiscale stochastic models has [8], there is an essential need for smooth estimates, so that
been introduced in which stochastic processes and fieklgface gradients and normals can be calculated meaningfully.
are indexed by the nodes of a tree [2], [4]. These models pro-Although estimate blockiness can be eliminated by simple
vide a systematic way to describe random processes and figldstprocessing (e.g., the application of a lowpass filter, or the
that evolve inscale The primary reason that this framework isaveraging of multiple, shifted multiscale-based estimates as in
useful is that it leads to extremely efficient, statistically optimg¥] or in a manner similar in spirit to the “cycle spinning”
algorithms for signal and image processing. In particulatised in [5]), the resulting increase in smoothness comes at a
the statistical structure of these models leads directly {wice. In particular, the postprocessing can render less clear the
proper interpretation of error covariance information provided
Manuscript received April 22, 1996; revised December 2, 1996. This wol®y the estimation algorithm, and it also limits the resolution of
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Fig. 1. lllustration of the first three levels of a quadtree. {
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is unacceptable, there is a need for a new approach to both ) ) ) )
. . . . . Fig. 2. Two nodess; and s2, neighbors in physical space, but distantly
multiscale modeling and estimation. In this paper, we develQg, sted in tree space.

such an approach that

1) yields low-dimensional multiscale models that are quite v th ¢ node. The o d be o
faithful to prespecified random field covariance structyrd@Mely In€ root node. The pixels and s; may be close
to be realized, and thus admit an extremely eﬁicierﬁhys'ca”y’ but they are separated considerably in terms of the
optimal (or nez'arly optimal) estimation algorithm: istance along the tree to their nearest common ancestor node.

2) retains one of the most important advantages of tﬁggh local correlation between such spatially close neighbors,

multiscale estimation framework, namely the efficien?s one might expect if the field being modeled has some level
computation of estimation-error covariances; of regularity or smoothness, translates into the state at the root

3) results in random fields and estimates without blocl{k‘Pde having a high dimension, in essence to keep track of all
artifacts: f the correlations across quadrant boundaries.

4) achieves these objectives without loss of resolution orOne way to. reduce d|menS|onaI|ty.|s to identify and re_:tam
fine-scale detail only the principal sources of correlation across boundaries at

each level on the tree. A procedure for doing this, developed

In _contras_t o the. ori_ginal multiscale processing [7], [.15} [12], allows us to build multiscale models of any desired
which achieves objectives 1 and 2, and to standard multisc elity. However, while this procedure by itself can yield low-

processing with S'”?p'e pos_tprocess_lng_[ls], which achlev8 ensional models of sufficient fidelity for many applications,
abjective 1 and partially achieves objeciive 3, our approaChifScannot overcome the blockiness problem. In particular,

superior In that it accomplishes all four objectives. neglecting even a small amount of correlation at a coarse

To describe our approach, we begin with a more Calfsvel of the tree can cause noticeable irregularities across

ful look at the source of blockiness. Consider the stand ﬂ?undaries, and thus an additional element is required. In

?hqacitree multlscaledst:ucture s;_hmfvn n ailg. 1th Elach level is paper, we introduce this new element by discarding the
IS [fee corresponads 10 a particuiar scaie with 1argerm assumption that distinct nodes at a given level of a tree

corresponding to finer resolution; the statg) on scalem(s) cforrespond to disjoint portions of the image domain and

at any given nodes represents an aggregate description %Iowing the tree nodes to correspondaerlappingregions.

the subset of the finest-scale process that descends from A e

. . . X a consequence of this idea, which was first used in [6] and
given nodée: A critical property of multiscale models is that[g], an image pixel at the finest scale may now correspond to

they are Ma_rkov: Ifz(s) is the value of the state at r‘Odeseveral tree nodes at this finest scale. In this way we remove
s, then conditioned on the value ofs), the sets of values

the hard boundaries between image-domain pixels, as now

lated. This d lation leads both to eff _%[{ﬂltiple tree nodes contribute to each of these pixels, reducing
s aré uncorrelated. This decorrefation leads both 10 €MCIEfl, yee gistance between the nodes corresponding to these
estimation algorithms and to the source of the problem wi

; xels and spreading the correlation that must be captured
blockiness.

. . ong a set of nodes. For obvious reasons, we refer to these
For example, consider the upper-left and upper-right qua@? g

ts of the i d in deoicted in Fia. 1. Th ) overlapped-tree models.
rants of the image domain depicted in F1g. L. es€ WOve use these overlapped-tree models for both modeling and
quadrants are separated at the root node at the coarsest Ievggﬁ

. ation, as depicted in Fig. 3. In both of these contexts, we
the tree, and therefore all of the correlation between any DOt with assumed knowledge of the correlation structti
finer scale pixels in the two quadrants, suchsasand s, in

Fig. 2 th letel tured in thei tsome random field:.?> Corresponding to this random fielg
9. 2, must be completely captured in their common ancesigly, o ise difted-domainversionz;, where this lifted-domain

Iwe will use dyadic trees and quadtrees to illustrate our methods. All of
these results generalize4th order trees and to trees having nonhomogeneous2For simplicity of notation we stack the random field such thig a vector
branching patterns. and P a covariance matrix.
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Fig. 3. Abstract view of our overlapped approach to multiscale-based modeling and least-squares estimation. Fast multiscale estimation-gatti sample
generation are accomplished in the overlapped dondGin.projects the statistics of into the overlapped domair;, projects measuremenisinto the
domain; andH .., which possesses certain smoothness properties, projects the estimatesk out of the overlapped domain.

field lives at the finest-scale of an overlapped-tree multiscgdendent of the initial condition:(0) at the root node. We
representation of. The mapping frome to z; is denoted by model 2(0) as a zero-mean random vector with covariance
x; = Gz, whereG,, is one-to-many: The lifted-domain field P(0). If we interpret each level in the tree as a representation
x; has more pixels than the image-domain field'o map back of one scale of the process, then we see that (1) describes the
from x; to z, we devise an operatd{,. so that the fieldd,x; evolution of a process from coarse to fine scales.
is guaranteed to have the desired level of smoothness. Thén this paper, we make use of the estimation algorithm [4],
correlation structure’, = G, PGL of the overlapped field;; [15], which computes the linear least-squares estifrate(s)
is approximately realized using the method developed in [1Bhsed on noisy observations
and [13]. Finally, we devise an operat6#,, analogous to
G, that lifts the actual observationsto yield lifted-domain y(s) = C(s)z(s) +v(s) 2
observationgy; of the random fieldc;. These observations are
then processed by the efficient multiscale tree algorithm ¥ghere C(s) is a matrix specifying the nature of the process
produce an estimate;, which is then projected usin§f,. to observations, as a function of spatial location and scale, and
yield &, the desired estimate of the random field. v(s) represents additive white measurement noise. The algo-
In Section I, we review the basic multiscale framework ofithm also computes the associated error covaridr(@g. This
[2] and [4]. In Section IIl, we introduce all of the componentsigorithm takes explicit advantage of the Markovian structure
of our approach to modeling and estimation, and we charasf-z(s) on the tree and incorporates the measurements into the
terize the optimality properties of the estimation proceduksstimates via two recursive sweeps, with each sweep following
depicted in Fig. 3. In Section IV, we describe an efficierthe structure of the tree. Although the framework we describe
implicit scheme for describing the projection operators tapplies to the general case, we focus here exclusively on the
and from the overlapped domain, while in Section V, wease of estimating a scalar random field (e.g., an image), given
illustrate the effectiveness of our new approach to modelingisy (and possibly sparse) point measurements of the field.
and estimation by means of four examples, demonstrating 8pecifically, we assume all attention focuses on the finest
only that our method avoids blocky artifacts, but in fact doescale, so that observations are only available at that scale
this without spatial blurring or compromising the advantagesd only the fine-scale estimates are of interest. Furthermore,

of multiscale models. we assume that at this finest scale, both the state and the
measurements are scalar valued.
[I. INTRODUCTION TO THE MULTISCALE FRAMEWORK To obtain insight into the efficiencies offered by multi-
scale models and the challenges we must meet, consider the
A. Multiscale Models and Estimation complexity of the simulation and estimation of a multiscale

processz(s). There are three multiscale model parameters of
interest in this discussion: 1) the numh&r of pixels in the
image domain, 2) the numbéy of finest-scale nodes in the
multiscale model, and 3) the maximal dimensioof any state
vectorz(s) in the multiscale model. In previous applications,
N has been identical t&; in the approach to be developed
here, the overlapping nature of our trees leads to larger values
of N, so thatK' = N, where0 < r < 1 is a measure of

For a gth order tree (i.e., one in which each node has
offspring), we define both a fine-to-coarse shift opergtsuch
thats¥ is the parent of node, and a set of coarse-to-fine shift
operatorsy;, i = 1,2, ..., ¢ such that they offspring of node
s are given bysag, sao - -, sag. Fig. 1 depicts the relative
locations ofs, s7, andsagq, sag, sas, say for a quadtree. The
scale-recursive dynamics of interest are given by

w(s) = A(s)x(s7) + B(s)w(s) 1)
. 3If all of the random variables are jointly Gaussian, thefs) is the
where z(s) is a vec_tqr-valugd process on the tree aﬁ@) conditional mean ofi(s) given {y(¢);0 € M} where M is the set of
represents white driving noise with identity covariance, inde# tree nodes.
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the degree of overlap, with smallercorresponding to more decomposition (SVD) of a normalized version of the cross-
overlap and greater smoothness. correlation betweer,(t) and z;(¢) [13], we can identify
The two-sweep structure of our estimation algorithm impligke most highly correlated components of the past and future
that each node of the tree is visited exactly twice, where theorresponding to the largegt). By retaining all the linear
computations at each node involve a number of floating poicdmbinations of the past corresponding to nonzgrar only
operations proportional to the cube of the state dimensiahe largest of they;, we can construct the exact stat&) or
Thus, application of the estimation algorithm requires a total ah approximate state of any desired dimension.
O(n®N) floating point operations. Similarly, the simulation of Our multiscale context requires a significant generalization
the coarse-to-fine recursion in (1) requires a totabgh>N) of these ideas. For example, the state at the node the
floating point operation$ These complexity figures imply thatfigure must decorrelate not just two sets of random variables,
a serial implementation requires a total computational tintmit five sets of the process values, one for each of the sets
per image pixel ofo(n?/r) for estimation andO(n?/r)) for of nodes connected te through its children and one set
simulation. The point here is that we can achieve dramatiorresponding to the nodes connected titirough its parent.
computational benefit as long as the maximal dimensiai This generalization is developed in [13], in which it is also
the state model and the amount of overlap (as measuredstpwn how, oncez(s) has been defined at each node, the
1/r) are not too large. As we will illustrate, the procedure wparameters of the model in (1), i.el(s), B(s), andP(0) can
describe here allows us to meet these criteria. be computed.

B. Realization of Multiscale Models I1l. M ODELING AND ESTIMATION WITH OVERLAPPING TREES

Our approach to building overlapped models makes use ofI
a technique described in [12] and [13] for taking a specifi proach to multiscale modeling and estimation with over-
covariance structure for a random field and constructing a myl- ing trees, and in particular describe their properties and
tiscale model so that the set of values at the finest-scale no $§ i

- . i rrelationships. We will also prove thahy suboptimality
have statistics that approximately match the specified cov H-our approach to estimation can be traced completely to our
ance structure. The problem of constructing such a mo

. . o e of an approximate model to realize the correlation structure
is the multiscale generalization of the problem of stochas%fL

n this section, we identify the operators required in our

o . : ! . the overlapped field;. That is, if an exact realization is
_reallzanon for time series, and the technique de_veloped N [.l ed in the overlapped domain, the overall procedure depicted
IS bas_ed on t he _staUschI concept of canom.cal correllat|o °the bottom half of Fig. 3 yields the optimal estimates.
used in building time-series models [1]. As discussed in [1]
and [13], the key to constructing a recursive model for a time . . ,
seriesz(¢) is the specification of the staid?) at each time. - Modeling of Random Fields with
If z,(t) denotes the past of the process at timand z;(t) OVerlapped Tree Processes
the future then the components oft) represent a set of Consider the problem of simulating a zero-mean random
linear functionals of the past, so that conditioned (i), field x with covarianceP. From a computational point of
zp(t) andz;(t) are uncorrelated. Of course, the dimension ofiew, this simulation problem poses nontrivial challenges and
the needed state is closely tied to the correlation structuret@s been the focus of considerable research. One notable case
the process, and for many applications, one can expect thairarwhich efficient techniques do exist is for the simulation
exact realization of the specifigg..(!) will require an unduly of stationary random fields defined on regularly sampled
high state dimension. Thus, in addition to a method for findirtgroidal lattices, since in this case, the two-dimensional
and characterizing the state in an exact realization, there is a[8eD) fast Fourier transform (FFT) can be used. However, for
a need for a way in which to measure the relative importanogst other types of fields, simulation can be quite complex.
of the components of the state, so that a decision can ber example, an approach based on compuiing P!/2w,
made about which components to discard in a reduced-oraédrere P'/2 is the square root of the covariance amds a
realization. random vector having identity covariance requires computing

For time series, canonical correlations applied to the covatite matrix square rooP!/2, which has complexityO(K?)
anceP, of z = (z,(t)T z;(t)T)T deals simultaneously with for a random field of X' points. In contrast, as discussed
both of these issues. Specifically, through both a normalization Section IIA, the simulation of a random field having a
and an orthogonal transformatiof, is transformed to the multiscale model is extremely fast.

form Our construction of a simulation procedure involves two
I D distinct steps. In the first step, we specify the maf¥ix which
<D I ) serves to lift the random field into another random field;
via

where ! is the identity matrix andD = diag(p1, p2, -, on)
is the diagonal matrix of canonical correlations. In this form, T = Gy 3)

which can be determined more directly from a singular value
; which acts as a redundant representations ohaving more
4The fact that estimation i€(»*) while simulation is onlyO(n?) arises P o Y

because the former involves matrix products, while the latter involves 0n|R}X6|S than the O”g'nal field. The matr(.)zw has a cons@erable
matrix-vector products. amount of sparse structure, as we discuss in Sectiorly;
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Fig. 4. lllustration of an overlapping-tree representation of a process of length three, showing both the dyadic tree (left) on which the i@presentat
is based, and depicting (right) the representation of each tree node. Thedbassociated with each tree node represents the subset of the points
{1,2,3} associated with that node.

also has a left inversé#l, satisfying certain smoothness prop€orresponding to 2. That is, in the lifted domain on the tree,
erties to be discussed shortly. In the second step, we use slgmal point 2 is lifted to two finest-scale tree nodes. Thus, if
method in [13] to build a low-dimensional multiscale modelve order the four fine-scale nodes from left to right, and we
whose finest-scale statistics are an accurate approximatiorview our lifting process as simply copying the value of signal
the statistics of;. From (3), we see that the covariancerpfs point 2 to both of the tree nodes to which it corresponds, we
are led to define

P =G,.PGY. (4)
. . . . 1 00
The covariance:; of &, the random field living at the finest 0 1 0
scale of the multiscale model that we construct, is approxi- G, = 01 0 (7)
mately equal ta?;, the degree of approximation controlled by 0 0 1

the procedure in [13]. Finally, to generate a sample function of

a random fielct having approximately the same statisticsras This example illustrates the constraints that we place on
and with the desired smoothness built idiQ, we generatég; any lifting matrix G,.: it consists entirely of zeros and ones,
using the efficient simulation procedure for processes on trezsch column has at least one nonzero entry, and each row

and then apply the operatdf,, as follows: has exactly one nonzero entry. These conditions ensure that
every pixel in the original domain corresponds to at least one

¢ =Haly. ) finest-scale node in the overlapped domain, and that every

The problem then is to specif§t, and H,, so that finest-scale node in the overlapped domain corresponds to

exactly one pixel in the original domain. This lifting process
gan be associated naturally with the overlapping structure
as illustrated in Fig. 4. Depending on how one chooses an
weoverlapping structure, a different lifting operator will generally
result. In Section IV, we present an implicit method for the

4) the statistical approximation is sufficiently accurate sgPecification ofGz, given a desired overlapping structure.
as to lead to sample functions with the desired charalc—The fact thattl, G, = I and our imposed constraints 64,

teristics. ead to an important constraint on the structurédgf namely

. . . . that the value at any given point in the original-domain is equal

To illustrate these ideas, consider a very simple ong- Y !
. . f a convex combination of the values of the finest-scale nodes

dimensional (1-D) example of a random process of Iengﬂ

T T corresponding to that point. For example, with. as in (7),
three. Lets™ = [zy, 22, 23]", with the possible choices faf, are of the form
1 05 0

E[zz¥]=P= 105 1 05]. (6) 1000
0 05 1 H.,=10 a b 0 (8)
000 1

1) they are sparse and local,

2) H, achieves the desired smoothness without spat
blurring;

3) the resulting multiscale model is of sufficiently lo
dimension that simulation can be done efficiently;

Suppose that we wish to develop an overlapped modet for

indexed on a dyadic tree having four finest-scale nodes. @herea+b = 1. Here,a andb are weights placed on the values
the right of Fig. 4, we depict such a tree with an indication adt the two nodes corresponding to signal point 2 in order to
the subsets of real, physical points (i.e., subsetslp?,3}) to  specifyx,. For example, equal weighting= b = 1/2 would
which each node corresponds. Thus, the top node correspoindisitively lead to the most smoothness in the correlation
to all three points (i.e.{1,2,3}) and the two nodes at thestructure fromz; throughzs. It is important to emphasize
second level correspond tpl,2} and {2,3}, respectively. that the averaging implied by (8) is not at all the same as
At the bottom level there is a single node corresponding gpatial averaging, since we average only those tree points
signal point 1 and another for 3, but there dweo nodes corresponding to theamepoint in real space. In Section 1V,
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we will also describe howH, can be constructed directlyuncorrelated observations of individual fine-scale tree nodes.

from a specified overlap structure. That is, each row of’; must have only one nonzero entry and
the covarianceR; of v; must be diagonal.

B. Estimation of Random Fields with Since (7, associates each pixel with a set of fine-scale

Overlapped Tree Processes nodes, a natural choice far; is specified by requiring that

g real measurement is made at a particular pixel, then lifted

easurements should be specified at each of the fine-scale
tree nodes corresponding to that pixel. For example, for the

y=Cx+v (9) three-point process illustrated in Fig. 4, suppose that we have
measurements of; and z,, namely

Suppose that we wish to estimate a zero-mean random figl
x with covarianceP based on m

where the components of the measurement noise vecioe
uncorrelated so that its covariangg is diagonal, and each y= [91} C= [1 0 0} R= [3 0}_ (14)
component ofy represents a measurement of an individual Y2 020 0 4

pixel so that each row o’ has exactly one nonzero entry.Then, in our lifted domain we should hathree measure-

Without loss of generality, we also assume that any pixel hagents, one corresponding to the single node associated with
at most one measurement associated witiT His is equivalent x1, andtwo corresponding to the nodes associated wish

to assuming that each column 6f has at most one nonzeroThat is’
entry, so thatC is a so-called (weighted) selection matrix and

1 0 0 O
has full row rank. 02 0 0
From basic results in estimation theory we know that if C = 00 2 0 (15)
is zero-mean with covarianck, then 00 0 0
-, T T -1 _
I =PC(CPC" +R)™ =Ly (10) An obvious question at this point is how to create three

measurement values on the tree when only two real measure-
ments are available. The answer here is that we siroppy
P=P— pPCct(cpPCt + R)7'cP=P-LCP. (11) the actual measurement value at any pixel to all fine-scale

. nodes associated with that pixel. In our example
For a K -pixel field, the explicit calculation of eithek or P is 10
Y1

generallyO(K?) and the calculation of is O(K M) where 0 1
M is the number of measurements. Virtually the only case in Gy 0 1 y=Gyy= 2
which this computational load can be reduced to a practical Y2
level is when the fieldc is stationary, and we have dense, 00 0
regularly sampled measurements of identical quality (implyindt first glance, this procedure appears to create a problem: For
thatC and R are both multiples of the identity); in this speciathe multiscale estimation algorithm to work, the measurements
case, FFT methods reduce the loadx@K log K'). However, at distinct nodes must have uncorrelated errors. Wjtland
in other cases, th&(K?) computational load for the explicit C; defined as in (16) and (15), this certainly does not hold,
calculation ofL cannot be reduced, and the usual approachgsice two of the “measurements” are identical. Nevertheless,
to turn to iterative methods for the computationfWhile we simply modelthese two measurements as being distinct,
iterative methods can significantly reduce the computatioredch of the state at the corresponding node, with uncorrelated
load of calculatingz, the calculation of error covariancemeasurement errors. However, this appears to create another
information is computationally prohibitive. In contrast, thalifficulty. Specifically, by modelingy; in this way we appear
multiscale estimation algorithm described in Section IIA hae be saying that we have more information than we actually
a computational load o®(K) to compute bothi and the do; in our example we now have two measurements of the
diagonal elements of.? nodes corresponding te,. To compensate for this, we need to

In addition to specifying7, and H,. and a multiscale model ensure that the total information in these two measurements is
for &, the approach illustrated in the bottom half of Fig. 3he same as in the single real measurement. We accomplish this

and the resulting error variance is given by

(16)

requires a lifting operatofr, for the measurements simply by doubling the corresponding measurement noise vari-
ances in our model for each of the replicated measurements;
Yo =Gyy (12)  gpecifically, givenr in (14), we define
and a lifted measurement model 1.3 0 0 0
0 24 0 O
Y = C[.’L’l =+ vr. (13) Rl = 0 0 2.4 0 (17)
0 0 0 =

Moreover, for the multiscale estimation algorithm to be ap-

plicable to estimatingz; based ony;, (13) must represent 7we shall find that having a measurementeaery finest-scale node will
5 . . make the precise description of operaiGy, much simpler notationally.
If there are repeated measurements of a single pixel we can replace tf@@hsequenﬂ% the measurement maifix is padded with zero-rows (i.e.,
by a single aggregate measurement obtained by taking a weighted averagg,pimy measurements) to make it diagonal. It must be stressed that this is
the data. _ purely a notational matter and has no consequences on the theory or practical
60ther elements oP may be computed using the results of [16]. implementation of overlapping tree algorithms.
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(wherex corresponds to the dummy measurement of (15); the

value of x is irrelevant). |<— Wm-1 —»’

The general case proceeds exactly as in this example.} |  Scale (m-1)
For each real pixel measurement, we have an analogous Parent , ‘
measurement foeachof the tree nodes corresponding to that | ¢ chilg Right Ch”‘i Scale m
real pixel. Thus if thejth component of; is y; = «;x; +noise ! 1
(wherez; is a component af) theny; will have measurements W
of the form (), = a;(;), + noise for eachn such S P m

that finest-scale nodér;),, corresponds to the real pixe}.

Furthermore, for convenience, for any real pixelsthat are Fig. 5. Basic overlapping-tree notation;, represents the degree of overlap

not measured, we include dummy measurements for each nbel@een the regions represented by sibling multiscale nodes oniacatg,

(1), corresponding tar;, but with a; = 0. Since C is a represents the width of the region represented by each node onscale
n (3] ;= .

weighted selection matrix, so {S;. To provide a formula for _ _ _ .

G,, note that there are apparently two distinct ways in whickhere I is defined in (4). Moreover, ifP denotes the

z affectsy;: 1) throughz; = Hyz andy; = C,z; + v, and  €stimation error covariance in estimatingbased ony, and

2) throughy = Cx + v andy; = G,y. A logical requirement, P, the estimation error covariance in estimatingbased on

then, is that both effects af on y; should be the same, i.e.,yi, then

that C;G, = G,C. SinceC has full row rank, it follows that P=H,PH". (21)

G, =G, cT(cct)t. (18)  The proof is given in Appendix A. This proposition states
that if we perform optimal estimation in the lifted domain us-
While this expression fol7, is correct, its simple structure ing the correct covarianck; for z;, then the overall procedure
is obscured. However, noting tha@'C*)~" is diagonal and depicted in the lower half of Fig. 3 yields the optimal estimate
that the weights inC; are the same as those @ it follows  for ; hased ony. Thus, any suboptimality in our actual

that G, is a lifting matrix, and in fact consists of the subsejnplementation is completely traceable to approximations in

of the columns ofG, corresponding to pixels at which wepyijiding a low-order model for;.

have measurements. This is consistent with our example: We

assign values to the lifted measurements simply by replicating |/, SpeciFICATION OF THE OVERLAPPING FRAMEWORK

the appropriate original-domain measurement values. e - .
To specify Ry, let g(;) denote number of ones in thih The key quar?tltles in building an overlf_zlpplng_ framework

column ofG,; i.e., the number of times that thygh original- are G, and H.; once these are determined; is fixed,

domain measurement is replicated in the overlapped domajfi. that a realization may be constructed, @i G,, and

We then defingk; to be a diagonal matrix whogéh diagonal fu can b? computeq as we _hr_;lve descri'b('ed. In this section
entry is given by we describe a flexible, implicit and efficient method for

specifying G, and H,. For simplicity in exposition and
Ri(4,%) = g()R(j, J) notation, we focus on a basic case that conveys the main
ideas, namely the representation of 1-D random processes with
wherej is the unique index for whiclé7, (¢, 7) = 1, (i.e., fine dyadic overlapping tree models having a spatially uniform
scale nodé corresponds to pixel). This choice forRR;, which overlap structure. That is, for any two nodgsand s on the
is exactly what was done in our simple example, providemame scale of the tree, the manner in which their descendants
the observation covariance amplification required in the lifteaverlap must be the same. For a model having this structure
domain to offset the apparent increase in information causeddoyd also havingl/ + 1 scales,7,, and H, can be specified
the replication of measurement. This is stated more preciselympletelyin terms of onlyAd parameters.

in the following identity: Recall that each node on the multiscale tree is associated
S . with a connected interval of points in the original domain. We
G, R "Gy =R"". (19)  denote the width of this interval, for a node at scalgby w,,.

This is illustrated in Fig. 5, which also depicts the geometry of
the overlap of the intervals associated with the two children of
any given node. We denote the amount of this overlap between
sibling nodes at scale by o,,, > 0, and we require that sibling
nodes do not completely overlap, as follows:

Proposition 1: Let » be a random field with covariance
P and lety = Cx+wv be a set of measurements wih
a weighted selection matrix and&, the covariance ofy,
diagonal. Suppose we then chodsg, H,.,G,,C; and R; as
just described. Then the optimal estimatef = based ory can
either be computed directly or by lifting, performing optimal 0 < 0 < Wi, m=12---,M. (22)
estimation in the lifted domain, and then projecting. That i%rom Fig. 5 we see thaty

it # = Ly, and#;, = Ly, then ~ and o, are related by the
—_— 1 I — 1Yl

following recursion:
PCT(CPCT + R)_l =L= HQULIGZJ Wm—1 = 2wrn — Om- (23)

—1
= H.RCH(GPCT + Ri) G, The M overlap parameter®) = {0,092, --,0x} provide
(20) a complete characterization of the overlap structure of the



1524 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 11, NOVEMBER 1997

tree. However the values dff and O are not unconstrained. Right Child
Clearly, the lengthK of the 1-D sequence being represented Left Child ~ F——————— -
imposes the constraint that '

where [z] is the smallest integer greater than or equakto

Contribution
o —_
\
\,
/J\
|
I
|
|
|
|

For any fixed M satisfying (24), the overlap parametafs -—
are implicitly constrained by two boundary conditions on the Region of Overlap
recursion (23). First, each node on the finest level of the tree ()
must correspond to a single pixel N

wy =L (25) %%;31-111111

) . Left Child ———

Second, the root node of the multiscale tree must be associated F———+——+zt+i Right Child
with the entire random field Tt 11537

wo = K. (26) One finest scale pixe! \tr

(b)
The constraints (22)_(26) still leave some degrees of freed@i&. 6. Two overlapping nodes: the set of relative contributions to each

in specifying©. In our examples in Section V, we eliminatefinest-scale pixel must sum to one. The contributions are tapered linearly
these by additionally constraining the so-called fractiongyer the region of overlap: (a) shows this tapering pictorially; (b) provides a
" . specific example for two nodes which overlap by three pixels.
overlap, o,,/w,, t0 be approximately constant as a functionl
of scale?
With regard to selecting a value faf, note that as the value Finally, from our earlier discussion of overlap geometry, a

M is increased, for a fixed value &f, the amount of overlap direct calculation shows that

at each scale must also increase, in order to fulfill the boundary M
conditions (25) and (26). Since a greater amount of overlap Iy = Z(jm — D(wp, — o). (29)
leads to greater smoothness, increasiigeads to smoother m=1

realizations of a given field. However, @ increases, the Applying the same procedure to each row of the ma¢ix
complexity of carrying out simulation and estimation alsgjelds the entire matrix.
increases. Thus, there is tradeoff involved in choosing a valueThe construction ofH,, while constrained by the choice
for M that is typically best resolved by a combination ofor A7, ® and the fact thatd,G, = I, still has degrees of
engineering judgment and numerical experimentation. freedom to be specified. To enforce our restriction that
The matrix G, follows uniquely once values fod/ and perform no spatial averaging, we require that nodes at the
O have been chosen. Specifically, thanks to the constraififfest scale of the tree be mapped only to the pixels to which
on G, we know that itskth row will have a single nonzero they correspond. Thus, if.(i,5) = 0, then we require that
entry having a value of one. If we le}, denote theith node Ha;(J, L) = 0. One way to meet this constraint is to |&f,
at the finest scale of our overlapping tree, then this no@@ the Moore—Penrose pseudoinverseGaof However, it is
will correspond to some indek, in the 1-D process being possible to devise a matri,, that actually does a better job

represented, and so of smoothing.
1 1= To describe thdé{,, that we use, consider the two child nodes
Gk ) = {07 ot_he’;Wise shown in Fig. 6(b) and a pixel that lies within the overlapping

regions of these two nodes (e.g., the pixel markeih the

The index; can be determined directly from/ and ©. figure). We need to specify the contributions of the two child
Clearly, there is a unique path from the root ndiléo the nodes (and their descendants) in determining the value of pixel
node s;, where this path can be described as a sequence*'ofor example, as indicated in the figure, the left child is given

M downward-shift operations, as follows: a weight of% and the right child a weight @ Thus, the right
’ child (and its descendants) will have a contribution three times

sk = 0oy vy o0y, Jm € {1,2}. (27) that of the left child to the value at In order to maintain a
total contribution of unity at each pixel, we will normalize the

Here, oy and oao represent the left and right children,contributions at each pixel to sum to one; these normalized
respectively, of noder, and values will be referred to a®lative contributions. We achieve
smoothness i, by tapering the relative contributions of a
node toward zero as one approaches an overlapped end of
the interval associated with the node; one such tapering is
sketched in Fig. 6(a).

8The fractional overlap cannot generally be made exactly constant, sinceSUppOSe that the procedure outlined in the precedlng para-
the parameters,,, ando,,, must take on integer values. graph has been applied to all nodes on all scales. To illustrate

M

k=3 (jm = 1)2M7m, (28)

m=1
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1Roc1>t Nc1)de1 CoEFFICIENTS{ /%1 } OF THE MA;(AO?/LREAILDOM FiELD “WooD” M opEL [14]
5 3 k = -2 -1 0 1 2
/\ 2 -0.0085 | 0.0139 | -0.0058
;21 12, 11 -0.0008 | -0.1164 | 0.2498 | -0.1405 | 0.0091
s 3 s 3 Process 1=0[-0.0517 | 0.5508 0.5508 | -0.0517
a’@e e -1 [ 0.0091 | -0.1405 | 0.2498 | -0.1164 | -0.0008
f ) 1/_\1 Relative -2 -0.0058 | 0.0139 | -0.0085
|1.§‘ .5.1. .1.5. IE 1l<_Contributions
'a'@' 'b'C1 Ib‘CI IC'd‘
/\ /\ /\ /\ structure requires more than a single, common ovedap
1 1 1 1 1 1 1 1 at each scale, and as a result the specificatio&,0bnd H,,,
= '6* o e e while possible, is more complex. We have not found this added
complexity warranted in any application.
y 1 4 1 1 1 o Finally, there is the extension to the representation of
1 i i i i 1 Weights in H . . . . .
3 3 2-D random fields. By considering each of the dimensions
separately, the procedure we have described can be directly
1 L : extended. Specifically, instead of using a dyadic tree, we use
H, = 35 0% a guadtree, with a splitting of regions occurring in each of
3 P two dimensions. In this case, it is certainly possible to use a

separate set ofif overlap parameter®! and ©2 for each
Fig. 7. Example of the construction off,. A four-level tree is used dimension. However, in all applications we have considered

to represent a process having four poifits b, ¢, d). The process points we have found the use of a single set of overlap parameters for

associated with a multiscale node are indicated below the node. The relatiy : - - -
contributions of each node to its associated process points are indicated a&é&h dimensions to be adequate. In this case a straightforward

each node. Products of these relative contributions determine the elemé&@xéension [9] to the bookkeeping described for the 1-D case
of H,. allows us to specifyG, and H, implicitly, and it is this
implicit specification that is used exclusively for the results

how H, is determined from these contributions, consider Rfésented next.

nodes;, on the finest scale and defikeandi; as in (28), (29).

The participation of node;, on the finest scale is determined V. EXPERIMENTAL RESULTS

as the product of all relative contributions associated with all In this section, we demonstrate four applications of our
ancestors of;. This construction is illustrated in Fig. 7 foroverlapping tree framework. The basis for all of these ex-
an overlapping tree representation of a 1-D process haviagples is a particular Markov random field (MRF) model
four points (a,b,c,d). Consider finest scale node = (& chosen because its strong anisotropy presents a most severe
(second from the left end of the tree). The participation @hallenge in overcoming blockiness. The statistics of the MRF

s in determining the value at poirdtis given by the product z(¢,j) of interest are implicitly governed by the following

of the numerical values above ea@in Fig. 7. Thus, the autoregressive model:

participation ofs is equal tol - 5 - 2 - 1 = £; so the weight in o ) . o
H, associated witts is 5. The weights inH, corresponding 2(1,7) = Z hiaz(@ =k, j = 1) + (0, ). (30)

to each of the finest-scale nodes are shown in Fig. 7. kD

For all but the smallest estimation problems, a dense repie-this equationy(i, 7) is a Gaussian noise process having the
sentation of th&7,, and H,, matrices is impractical. In fact, for following correlation structure:

large multidimensional problems, even a sparse representation, o2 E—1=0

using the fact that each row éf,, and column ofH, contain Elo(z, )z + by + D] = d —02hiy, (kD) eD (31
only one nonzero entry, may be too large. However, Alie 0 (k1) & D
parameters in the parameterizatipf/, O} form an implicit ; ’
representation ofG, and H,. We have found the on-line E[u(z,y)2(z + ky+1)] = {0' ) k:hl:.O, (32)
construction of7,, and H,, from O to be so rapid that we have 0 otherwise

exclusively used this latter representation in our software. where the fieldz is normalized to have unity variance, and
There are two possible extensions of this overlap specifiGghere D denotes the set of offsets of the neighbors of any
tion that allow greater flexibility in representing 1-D processegiven field point (i,5). The specific choice of coefficients
First, rather than using dyadic trees, we can also ¢ia€dic {h,; ;} to be used in our examples are those of the “wood”
trees. As described in [9], the implicit procedure for specifyingxture [14], shown in Table I.
G, and H, from M and O can be directly extended to In Fig. 8(a), we display a 64 64 pixel sample function
this case. In addition, it is possible to consider nonuniforimased on the “wood” texture coefficients and assuming that
overlap structures, i.e., structures in which some regions hatie MRF lies on a toroidal lattice so that FFT techniques can
more overlap than others. In this case, the specification of the employed. The image possesses an obvious grain—that is,
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FFT Order 64 Order 16
Nou-Overlapped Overlapped
@ (b) (©)

Fig. 8. Three simulated “wood” textures, 64 64 samples, based on an exact FFT approach in (a), and based on regular, multiscale trees in (b) and (c).

FFT Order 40 Order 16
Non-Overlapped Overlapped

@ (b) (c)

Fig. 9. Three estimated textures, each based on noisy measurements of Fig. 8(a). Estimate (a) is based on optimal FFT techniques, (b) is based on a
nonoverlapping tree of order 40, and (c) is based on an overlapping tree of order 16. The computational effort of the latter two estimates is tivesame; ho
note the artifacts visible across the quadrant boundaries in (b) that are completely removed in (c).

a much stronger correlation in the vertical direction than in thmmputational efforts required to simulate the two fields in

horizontal. The long vertical correlation length is of particulaFig. 8(b) and (c) are the same. The first of these hAs- 7

interest: it is such correlations which nonoverlapped multiscaded & = 64; the resulting blockiness in Fig. 8(b) is clear.

trees find difficult to preserve, even using relatively high-orddthe second realization, in Fig. 8(c), is based /dh= 8 and

models [17]. k = 16; this model is overlapping, and we can see that there
The overlapping-tree construction outlined in the previowse no blocky artifacts.

sections requires three quantities to be specified. First, we

must specify the orde, of the tree (here we use a quadtreeg Estimation: Densely Sampled Field, Homogeneous Model

g = 4). Second, we must specify the number of scalés Consider th in which h q lar]
in the tree. For a 64x 64 pixel field, nonoverlapped trees onsiderthe case in which we have dense, reguiarly sam-
led, equal quality measurements on a toroidal lattice so that

have M = 7 scales. In our examples with overlapped treeg, t optimal estimat b lculated using EET's. Th
we will setM = 8 scales and use an overlap parameterizati(g © exact optima’ estimate can be caiculated using s. 'he

O = {10,5,3,2,1,0,0}, which is consistent with (25) and original texture shown in Fig. 8(a) was corrupted to 0 dB SNR

(26), and renders approximately constant the fractional overIB}.{)Wh'te Gaussian noise, and estimated in three different ways:

0m/wm. Finally, we must specify the ordérof the multiscale 1) Using an optimal FFT technique [Fig. 9(a)];

model to be constructed using the method of [13]. 2) using a nonoverlapped multiscale tfge = 7) with a
multiscale model of ordek = 40 [Fig. 9(b)]; and

3) using an overlapped treeV{ = 8) and a multiscale
A. Modeling Example model of orderk = 16 [Fig. 9(c)].

While we expect that the principal use of our multiscale The model orders of the two multiscale techniques were
models will be in estimation and statistical analysis, we begahosen so that the computational burden for estimation is the
with an example of simulating random fields, illustrating theame for both. One measure of estimator performance is the
improvement using overlapped models. We have constructegree to which the mean square error (MSE) is reduced from
approximate multiscale models for the wood texture MRthe original noisy image, relative to the reduction provided
using two different choices for the paif/, k), such that the by the optimal least-squares estimator. The nonoverlapped
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Original Field Noisy Measurements Multiscale Estimates

@ (b) ©

Fig. 10. (a) Sample path of an inhomogeneous MRF, where each pixel belongs to a horizontally or vertically correlated texture. (b) Random field
corrupted by 0 dB white Gaussian noise. (c) Texture estimated using an inhomogeneous overlapped multiscale model, based on the measurements of (b)
and given the correct prior texture model at each pixel.

estimator and the overlapped estimator, respectively, redusdy nonrectangular subsets of the pixels. Fig. 11(a) shows a
the MSE by 98.6% and 98.0% of the optimal MSE reductiosubset of the pixels of the “wood” texture from Fig. 8(a); this
On the other hand, a visual comparison between Fig. 9@l)iptical set of pixels represents those pixels to be used as
and (c) shows clearly the presence of blocky artifacts for tmeeasurements, implying a trivial change in the measurement
nonoverlapped case but no such artifacts for the overlappgawjection operatorG, and in the multiscale measurement
model. Thus, the overlapped model is decidedly superiorrifatrices on the finest scale of the tree. It is significant to
the elimination of such artifacts is an important concern. note, however, that while the multiscale framework is readily

Although the FFT technique is both efficient and optimadapted to irregular measurements, a change from dense to
in terms of MSE, it suffers from a limited applicability toirregular sampling makes FFT-based approaches inapplicable.
special circumstances. In particular, the examples that ard-ig. 11(b) shows the multiscale reconstruction based on the
presented in the following two sections—irregularly sampleskt of measurements given in Fig. 11(a). The estimates capture
measurements and a spatially varying prior model—preclutlee coarse features of the original texture of Fig. 8(a) outside
the use of the FFT but may be solved using our multiscaté the measured region, including certain aspects of the vertical
method. bands to the left and right of the measured region. Also, once
again, the estimated texture evolves smoothly, without blocky
artifacts.

Fig. 12 provides one additional illustration of irregular
A sample function of a nonstationary prior model is showsampling: Observations distributed according to a 2-D Pois-
in Fig. 10(a). The 64x 64 pixels were divided into groups  son process. Fig. 12(b) and (c) display estimates based on
andg, : g1 contains the pixels in the upper left and lower righ nonoverlapping model of order 40 and an overlapping
of the image, ang, contains the pixels in the diagonal bandnodel of order 16, both having the same computational load.
running through the center of the image. The prior model fqmhe estimates computed by the overlapping model are more

g1 is the “wood” model of Table I; the prior model fgs uses visually pleasing and also have a lower MSE.
the same coefficients in Table I, but with the table rotated by

90 degrees. The cross correlation between grgu@dg, is
zero. The choice of such a nonstationary prior, as opposed to
the simple prior in the previous example, just implies a changeWe have presented a new approach to modeling and es-
in the prior statistics on the finest scale of the multiscale treéation using a recently introduced class of multiscale sto-
the multiscale model development and estimation procedf@astic processes. Our work has been motivated by the ob-
proceed unaffected. servation that estimates based on the types of multiscale
Fig. 10(b) shows a noisy version of the original image cofodels previously proposed can exhibit a visually distract-
rupted by white Gaussian noise to 0 dB; Fig. 10(c) shows tm blockiness. To eliminate this blockiness, we have dis-
corresponding multiscale reconstruction based on an overlggrded the standard assumption that distinct nodes on a given
ping model withA = 8 andk = 32. As we have stressed, thelevel of the multiscale process must correspond to disjoint
operator H,, removes blockiness without performing spatiaportions of the image domain. Instead, we allow distinct

blurring; thus, the edge between the two regignsand ¢, is  tree nodes to correspond to overlapping portions of the im-
well preserved. age domain. This is done in a way that eliminates blocky

artifacts without spatial averaging, so that if a field does
. have sharp discontinuities, these can be captured without

D. Locally Sampled Field, Homogeneous Model blurring. By coupling this overlapping framework with a
We consider two final estimation problems involving anultiscale stochastic realization technique based on canonical
stationary prior model, but with measurements available edrrelations, we have developed a powerful estimation and

C. Densely Sampled Field, Heterogeneous Model

VI. CONCLUSION
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Observed Values Estimated Texture

(@) (b)

Fig. 11. Texture (b) was estimated using an overlapped multiscale model, based on the measurements (a) of a small subset of the wood textuze. Despite th
use of a multiscale estimator, the estimates evolve smoothly from the region in which measurements are present to the surrounding area withmeritsmeasur

» B
Lttt e
GAEs e,

- n

Measurements Estimates: Order 40 Estimates: Order 16
Non-overlapped Overlapped

() (b) (c)

Fig. 12. Estimates produced by (b) a nonoverlapping and (c) an overlapping tree, given measurements of a random subset of the pixels of Fig. 8(a):
One measurement is made at each black pixel in (a).

modeling tool which allows one to manage the tradeoff amongWe now verify (20). Using the above derivation with (4)
estimate smoothness, statistical fidelity, and computatiorsald (10) leads to the following identities:
effort.
The flexibility of the multiscale framework allows us toL = PCT(CPCT + R)™! = PCTGL(CRCE + Rl)_le
confront problems for which FFT techniques are not applica- T T e -1
ble; in particular, in problems involving nonstationary statistics ~— PG G (CIPICI + Rl) 1Gy
or irregularly sampled data. In fact, the flexibility of our :H,,BCIT(CIBCITJrRl)_ Gy, =H, LG,
framework is greater than that implied by examples considered
here; in particular, the modeling and estimation of processgs verify (21), we use (11), (20), and (4) in the following

in higher dimensions is also possible. sequence of identities:
D _ _ T
APPENDIX P=P-LCP=H,PH; - H,1,G,CP
PROOF OF PROPOSITION 1 = H,PHY — H,LiC,G. P
Using (19) and (4) we can derive =H.(P, - LIC,P)H} = H,PHL.
-1

(CPCT + R)[G (CACT + Ri) Gy] REFERENCES
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