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Abstract. Support functions and samples of convex bodies in R ~ are studied with regard to conditions for their 
validity or consistency. Necessary and sufficient conditions for a function to be a support function are reviewed 
in a general setting. An apparently little known classical such result for the planar case due to Rademacher 
and based on a determinantal inequality is presented and a generalization to, arbitrary dimensions is developed. 
These conditions are global in the sense that they involve values of the support function at widely separated 
points. The corresponding discrete problem of determining the validity of a set of samples of a support function 
is treated. Conditions similar to the continuous inequality results are given for the consistency of a set of 
discrete support observations. These conditions are in terms of a series of local inequality tests involving only 
neighboring support samples. Our results serve to generalize existing planar conditions to arbitrary dimensions 
by providing a generalization of the notion of nearest neighbor for plane vectors which utilizes a simple positive 
cone condition on the respective support sample normals. 
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1. Introduction H(v)  = supxTv (1) 
xE© 

This paper addresses the problem of identifying the 

validity or consistency of a support function or its 

samples. Support samples result from measurements 

of the extent of an object or set in a particular direc- 

tion and provide samples of the support function of 

the object in the given direction, as shown in Fig. 1. 

The support  function H(v)  [2], [7] of an object 

(9 C R n is given by: 
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where v E R n. The reduced support function h(v) 
is given by 

h(v) z H(v/llvll) (2) 

and precisely represents the distance from the origin 
of the corresponding supporting hyperplane to (.9 in 
direction v. Thus, it is usually the reduced support 
function h(v) or its samples that is actually obtained 
from physical measurements. 

Due to the presence of noise, a group of discrete 
such observations will not, in general, be consistent, 
i.e. there might be no object that could have all the 
observations as support measurements. Such a situa- 
tion is shown in Fig. 2, where support measurements 
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t Line 

Fig. 1. Illustration of a support measurement. 

hi,  h2, and ha are mutually consistent (e.g. for the 
object shown) but h4 is not. No object could have 
all these lines as support measurements. The possi- 
bility of such inconsistent observations leads to the 
examination of what constraints are required on a set 
of support observations for consistency. This work is 
an extension and generalization of the approach taken 
in [191, [18], [17], where the planar case was treated. 

Support measurements, such as we consider in this 
work, arise in many ways in object reconstruction 
problems. A silhouette may be viewed as a set of 
support observations ]10], [29], [28], where the di- 
rections of observation v are confined to a particular 
subspace, as illustrated in Fig. 3a. One-dimensional 
shadows or projections correspond precisely to a pair 
of support observations in opposite directions. In the 
realm of robotics, these support type measurements 
can arise from repeated grasps or probes by a gripper, 
as shown in Fig. 3b [5], [22]. Finally, in low dose 
tomography the line integral observations may yield 
little more than shadow information [191, [18], [26], 
thus fitting into the silhouette framework above. Even 
when this is not the case, a preliminary step of projec- 
tion support extraction coupled with object boundary 
estimation may be useful or desirable [21], [19]. This 
approach has proven particularly helpful in reflection 
tomography arising in laser range data [14]. 

These problems all share the common goal of set 
reconstruction from support measurements [16], [23], 
[12], [6]. Besides being of general interest to com- 
putational geometers, set reconstruction from sup- 
port data is also fundamental to geometric probing 
[25], [24], [4], robot vision [8] and chemical com- 
ponent analysis [6], [11], [9], [15]. The explicit 
statement of support consistency constraints which 
we provide allows their use in estimation and op- 
timization algorithms. For example, we may find 
the set of consistent support values that is, in some 

Fig. 2. Illuslxation of inconsistent, noisy support measurements. 

Fig. 3. Applications of support measurements. 

sense, closest to the given observations, thus project- 
ing our noisy observations onto the set of consis- 
tent support observations. In addition, such results 
may be of use in detecting the presence non-binding 
constraints in linear programming problems [27], [3]. 
Note that some of these problems (e.g. robotic sens- 
ing, chemical component analysis, etc) exist in di- 
mensions higher than 2, and thus require constraints 
phrased in a general dimensional setting. 

Outline Conditions for a function to be a support 
function are reviewed in a general setting, with a 
summary of classical results in Section 2. An ap- 
parently little known result due to Rademacher [20] 
for the planar case is given. This result, based on a 
determinantal inequality, is interpreted geometrically 
as a set of global tests for consistency. An appar- 
ently new extension of this planar result to the gen- 
eral dimensional case is presented. These classically 
based results and our interpretation of them are used 
in Section 3 to guide our examination, interpretation, 
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and treatment of the conditions for discrete support 
sample consistency. Such sampling appears because 
of the inherently discrete nature of support measure- 
ments in applications. Local tests for the consistency 
of such a set of support samples in arbitrary dimen- 
sions are provided. These tests are simple linear in- 
equality tests and are thus simple to perform. In this 
framework, the local nature of the test is reflected in 
a banded structure of a corresponding matrix-vector 
inequality, yielding an efficient test. In what follows, 
when we refer to a test as being "local" or "global" 
we will be refering to the nature of the directions in- 
volved in the test (i.e. whether they are near to one 
another or not, respectively). 

2. Support Functions: The Continuous Case 

2.1. Characterization of Support Functions 

The support function H(v) of a set, as defined in (1), 
is a scalar function of the vector v and hence a map 
from R ~ to R. A natural question is which functions 
H(v) could be support functions. Indeed, the prob- 
lem is classical and the answer is provided by the 
following result, again classical: 

THEOREM 1 (SUPPORT FUNCTION CONDITIONS) 
A function H(v) is the support function of a convex 
object if and only if it is defined for all vectors v and 
has the following properties: 
1. H(O) = O. 
2. H(c~v) = c~H(v) for a > O. 
3. g ( v  + w) < H(v) + H(w), Vv, w < .R n. 

A proof was given by Minkowski for the 3- 
dimensional case with other refinements and gener- 
alizations provided by Rademacher and others (see 
e.g. [2]). Thus, only positively homogeneous, con- 
vex functions are support functions and vice versa. It 
is condition 3 of subadditivity that is the interesting 
one, as will be seen later. Note that these condi- 
tions are global, in the sense that they must hold for 
all vectors v and w and thus combine values of the 
support function over its entire range and not simply 
values near each other in some sense. 

Note that the support function H(v) is easily ob- 
tained from the reduced support function h(v) due to 
the positive homogeneity of H(v) (H(),v) = ),H(v) 
for A > 0). In fact, the support function H(v) is com- 

pletely determined by its values on the unit sphere 
I]vll = 1, and thus by the function h(v). In particu- 
lar, for v ¢ O, H(v) = [Ivll h(v/l]vl]), so that if u is 
a unit vector H(u) = h(u). As a result, conditions 
on the support function are actually often phrased in 
terms of the more physically based reduced support 
function, an approach we will take in what follows. 
If a valid reduced support function can be found then 
it may easily be extended to yield a corresponding 
(full) support function. 

For example, in the planar case, a differential con- 
dition in terms of h(v) is often used in place of Theo- 
rem 3. Since in the planar case h(v) is only a function 
of the direction of v we may parameterize h(v) by 
the polar angle 0 of v. A twice differentiable func- 
tion h(O) of 0 is then a (reduced) support function 
if and only if hoo(O) + h(O) > 0, where hoo(O) is 
the second derivative of h(O) with respect to 0. Note 
that this differential condition is a local constraint, 
in the sense each test only involves properties of the 
function at the point 0. In particular, hoo(O) + h(O) is 
equal to the reciprocal of the curvature of the object 
and for a fixed 0 this is a locally defined quantity. In 
Theorem 4 we will provide a similar such local result 
for the discrete case in arbitrary dimensions. Finally, 
note that Theorem 1 is more fundamental than the 
commonly used planar differential inequality in that 
it does not require differentiability of h(O). 

Determinantal Condition for the Planar Case 
Rademacher has shown that it is possible in the planar 
case to replace the subadditivity condition 3 of The- 
orem 1 by a determinantal condition on h(u) over 
unit vectors u. In particular, he showed that under 
conditions 1 and 2 of Theorem 1, condition 3 holds 
if and only if 

h(u2) u T 1 u T >0  (3) 

for all unit vectors ul,  u2, and u3, where [ ,  ] de- 
notes the determinate of the argument [2], [20]. Note 
that there is no requirement on the differentiability of 
h(u). Thus we now have a condition directly in terms 
of the physically measured quantity h(u). This con- 
dition is of interest for its geometric interpretation. 
Assume that ul ,  u2, and u3 are distinct and that Ua 
is in the positive or negative cone of {Ul, uz} (which 
may always be done for three vectors in the plane 
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Fig. 4. Illustration of 2-dimensional determinantal condition. 

through relabeling). Using a determinantal equality 
(see Appendix A.1) (3) may then be rewritten as 

1E ) h(u2) ] - h(ua) > 0 (4) 

where fl(Ul, u2, ua) is a scalar that depends on the u~. 
In particular, if u3 is in the positive cone of {ul, u2} 
then /3(ul,u2,ua) > 0 and if u3 is in the negative 
cone of {ul,u2} then /3(ul,u2,u3) < 0 The term 
in parentheses in (4), which we call p, is the signed 
distance along the direction u3 from the support line 
with normal u3 to the intersection point of the sup- 
port lines with normals ul  and u2, as shown in Fig. 4 
for the positive cone case. 

In the plane then, the determinantal condition (3), 
and thus condition 3 of Theorem 1, requires that sup- 
port functions satisfy an intuitive notion of consis- 
tency (as illustrated in Fig. 2 or 4) for all triples of 
values of the function. This intuition provides a fun- 
damentally geometric condition for a function to be 
a support function in the plane, but it is still a global 
condition, in the sense that all possible combinations 
of samples must be checked, not just ones near each 
other. 

Higher Dimensions We now turn our attention to 
finding an equivalent of the geometrically inter- 
pretable determinantal inequality condition (3) for the 
higher dimensional case. Unfortunately, in three and 
higher dimensions the exactly analogous condition 
(i.e. validity of such a determinant inequality for all 
vectors u0  has been shown by Rademacher to be sat- 
isfied only by the support functions of balls [20]. We 
identify the difficulty in directly extending this result 

x w 
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u 
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Fig. 5. Difference between 2- and 3-dimensional situation. 
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F/g. 6. Illustration of 3-dimensional determinantal condition. 

and present a natural generalization of condition (3) 
that is valid for all dimensions. The result appears to 
be new. 

The difference between the two and higher dimen- 
sional cases is that in the plane, given three vectors, 
one of the vectors is always in the positive or nega- 
tive cone of the remaining two, as shown in Fig. 5a 
where w is in the positive cone of u and v. In higher 
dimensions this is not necessarily true, as illustrated 
by the combination of normals in Fig. 5b. If we con- 
sider the geometric interpretation of the test, it seems 
reasonable to suppose that by restricting our attention 
to groups of vectors for which this cone condition is 
satisfied, we might obtain the desired result. This is 
precisely what we do, yielding the following resuk 
which is proved in Appendix A.2: 

THEOREM 2 (GENERAL INEQUALITY CONDI- 

TION) A function H(v)  is a support function if and 
only if it is defined for all v and has the following 
properties: 
r .  H(O) = O. 
2'. H(av)  = a l l ( v )  for a > O. 
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3q The following determinantal inequality is satisfied 
for all (n + 1)-tuples of unit vectors ui with one 
in the full positive cone of the others: 

: 

7" 
21,n.+- 1 

1 
1 u T 

i 1 un+ 1 

_> o (5) 

Recall that for unit vectors u, H(u)  = h(u). In a 
finite dimensional space a cone is said to be full if 
it cannot be contained in a proper subspace (the im- 
plication being that the set {ui} is independent). As 
before, there is no requirement on the differentiability 
of h(u). Note that the condition requires testing of 
only positive cone n-tuples. This is a refinement of 
Rademacher's result for the planar case• It is easy to 
also include tests of negative cone n-tuples in Theo- 
rem 2, since this simply adds additional tests which 
are not really needed. 

Now let us interpret this test. Assume un+l is in 
the positive cone of the remaining {u~}. By using 
Lemma 2 of Appendix A. 1, we may rewrite (5) as 

T 
U n + l  

- 1  
uT 

¥ 
U n 

h( l) 
h(u ) 

- h(un+l) >_ 0 (6) 

Similar to the planar case, the left hand side may be 
naturally interpreted as the signed distance p, positive 
in the direction of un+l, from the support hyperplane 
with normal un+l to the point determined by the in- 
tersection of the hyperplanes with normals given by 
u~, i = 1 , . . . , n ,  as shown for the n = 3 case in 
Fig. 6. 

Condition 3' of our Theorem 2 thus generalizes the 
intuition of the planar case to arbitrary dimensions. 
As in the planar case, this condition is still a global 
one, in the sense that all (n + 1)-tuples of vectors 
satisfying a positive cone condition must be checked, 
not just nearby ones. In the following sections we use 
the intuitions obtained in the continuous case to de- 
velop conditions that characterize the consistency of 
a given set of support samples. An equivalent local 
result is given in Theorem 4, where only (n + 1)- 
tuples that are neighbors (defined in an appropriate 
way) need be checked for consistency. 

3. Consistency of Support Samples 

In the previous section, we dealt with continuous sup- 
port functions defined for all directions. The main 
condition for validity of a support function is a con- 
sistency check (the analytic condition 3' of Theo- 
rem 2) on all positive cone (n + 1)-tuples. In this 
section the discrete case arising from the sampling 
of a support function is treated. Due to the presence 
of noise, a group of such discrete observations will 
not, in general, be consistent, i.e. there might be no 
object that could have all the observations as support 
measurements. An example of such a situation was 
given in Fig• 2. To be precise, we term a set of sup- 
port samples consistent if there exists a valid support 
function whose values at the sample points match the 
given values. Thus we have the problem of determin- 
ing when there exists a valid support function h(u) 
(equivalently H(u))  such that H(ui)  = h(ui) = hi 
for a given a set of m samples {hi} in (unit) direc- 
tions {ui}. 

One obvious approach we could take to identifying 
inconsistency is to attempt to explicitly find offending 
hyperplanes, such as h4 in Fig. 2. Essentially what 
we are doing when we say that h4 is the "incon- 
sistent" sample is implicitly intersecting the directed 
halfspaces provided by the (hi, ui) pairs to obtain a 
convex polyhedral region and then attempting to iden- 
tify those hyperplanes that do not contribute to this 
region, i.e. that are active constraints. This problem is 
equivalent to finding the non-binding constraints in a 
linear programming (LP) problem. This task is com- 
putationally expensive, essentially necessitating the 
solution of a dual LP problem itself (details may be 
found in [1], [27]). Further, it is not really desirable. 
Such an approach assumes that all the error resides 
in the inconsistent support measurements, such as h4 
of the figure, while the rest are perfect• From an esti- 
mation theoretic perspective, the corresponding noise 
model does not seem reasonable. It is more realistic 
to assume that all the measurements are corrupted. 
Hence we instead develop tests or constraints which 
simply tell of the existence of inconsistency• These 
constraints essentially serve to define the set of all 
consistent support samples for a given fixed set of 
measurement directions ui. This set will in fact be 
seen to define a polygonal cone in the space of sup- 
port samples• We are then free to use the conditions 
as a constraint in the reconstruction of a consistent 
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set as we see fit. For example, one could use these 
conditions to project onto the consistent support set. 

Our first result shows that a set of samples is con- 
sistent if and only if a certain geometric condition (es- 
sentially each sample hyperplane being an active con- 
straint in the set definition) is satisfied for all (n + 1)- 
tuples of sample normals. We then show that under a 
certain set of assumptions (non-emptiness of intersec- 
tion) we need only check the (n+  1)-tuples satisfying 
a positive cone condition. For such (n + 1)-tuples the 
geometric condition is identical to the analytic deter- 
minantal condition (3 t of Theorem 2) of the continu- 
ous case. Finally, under our assumption of nonempty 
intersection, we do not even require consistency of 
all these positive cone (n + 1)-tuples, but rather a 
particular subset corresponding to a natural notion of 
the (n + 1)-tuples being local to or neighbors of each 
other. 

3.1. Identifying Consistency 

First we present a general test for consistency of a 
set of support samples. This result states that a set 
of support samples is (globally) consistent (i.e., there 
is a valid support function which agrees with all the 
samples) if and only if every (n + 1)-tuple of the set 
is consistent. 

THEOREM 3 (DISCRETE CONSISTENCY) A set of 

support samples hi with associated (unit) direction 
vectors ui is consistent if and only if every (n + 1)- 
tuple of samples satisfies the following geometric con- 
dition: 

For every Sample in the (n + 1)-tuple the 
hyperplane corresponding to the sample has 
nonempty intersection with the resulting in- (7) 
tersection of all the corresponding (n + 1) 
halfspaces. 

Theorem 3 is proved using Helly's theorem in Ap- 
pendix A.3. Now consider the condition (7). For 
any (n + 1)-tuple with associated unit direction vec- 
tors u~, one of the following situations must hold: 
1) one ui is in the positive cone of the others, 2) 
one ui is in the negative cone of the others, or 3) 
none of the u~ is in the positive or negative cone of 
the others. We will term (n + 1)-tuples in class 1) 
positive cone (n + 1)-tuples and those in class 2) neg- 

ative cone (n + 1)-tuples. The (n + 1)-tuples in class 
3) (neither positive or negative cone) always satisfy 
condition (7), and therefore are really unimportant in 
determining consistency. In addition, if we assume 
that the intersection of all the support sample halfs- 
paces corresponding to the (hi, ui) pairs is nonempty 
(a gross type of consistency, since it is clearly a nec- 
essary condition for the consistency of samples of 
nontrivial support functions), then the (n + 1)-tuples 
in class 2) comprising the negative cone tests also 
satisfy condition (7). Thus, under a nonempty inter- 
section assumption, it is actually sufficient to check 
the condition (7) for just the (n + 1)-tuples satisfying 
1 )  - -  i.e., the positive cone tests. 

Now, if in such a positive cone (n + 1)-tuple the 
cone is full (i.e. nondegenerate), then the geometrical 
condition (7) is equivalent to our determinantal one 
(5). This can be seen by considering the geometrical 
interpretation of the condition (5) provided through 
Lemma 2 and comparing it to (7). Thus these condi- 
tions are interchangeable for full positive-cone tests 
(actually this equivalence is true for full negative- 
cone tests also, though we will not use this fact in 
what follows since we will assume nonempty inter- 
section instead). We use these insights to obtain the 
following corollary to Theorem 3 involving the de- 
terminantal condition (5). 

COROLLARY i (POSITIVE CONE CONSISTENCY) 
Given a set of support samples hi with associated 
(unit) direction vectors u~ in R n, assume that the 
intersection of all the support sample halfspaces is 
nonempty and assume that for every positive cone 
(n + 1)-tuple of sample directions the cone is full. 
The set of samples is then consistent if and only if 
condition 3 ~ of Theorem 2 is satisfied by the samples 
of the set, i.e. if and only if(5) or (7) is satisfied for 
every positive cone (n ÷ 1)-tuple of the set. 

We actually believe that both the assumptions of 
the corollary are not truly essential. In particular, 
we believe the first assumption of nonemptiness may 
actually be replaced by some type of sampling rate 
constraint, i.e. that if we sample the support func- 
tion densely enough the satisfaction of the positive 
cone tests will imply satisfaction of the negative cone 
tests. Indeed, precisely such a requirement was used 
in obtaining a similar result for the planar case in 
[18], [19]. As it stands, the negative cone tests ev- 
idently just assure nonemptiness, and under dense 



Local Tests for Consistency 255 

3 u 1 
U 

Fig. 7. Illustration of meaning of Lemma 1. 

enough sampling we believe that satisfaction of the 
positive cone tests will also assure this. The second 
assumption of fullness of the positive cones of (n+l) -  
tuples is a degeneracy condition, assuring indepen- 
dence of the ui, i = 1 , . . .  ,n, which is necessary for 
(5) to be well defined. We could, alternatively define 
our tests from this point forward solely in terms of 
the condition (7), which is insensitive to this degen- 
eracy. We prefer to work with condition (5) however, 
because of its connection to the continuous condition 
(5) and its straightforward implementability. 

While the inequality tests resulting from Corol- 
lary 1 are conveniently computable, in that they are 
simple linear functions of the support measurements 
hi, the procedure is problematic in that all positive 
cone combinations must be checked for consistency. 
The number of such tests grows combinatorially with 
the number of observations. For example, in the pla- 
nar case with support values equally spaced in angle, 
if m is the number of observations then the num- 
ber of tests grows as m2/8. This growth becomes 
worse in higher dimensions because of the increased 
number of degrees of freedom. As a result we seek 
a local test, utilizing only local or nearby support 
information in its application. This local approach 
may be viewed as a discrete version of the curvature 
constraint hoo(O) + h(O) > 0 discussed in Section 2 
(though our result will not require differentiability of 
the underlying support function). 

3.2. Local Tests 

We now develop a general local test for consistency 
of a set of support samples. Such a test (but without 
this interpretation) was given for the planar, equal an- 

gle case in [19], [181, [17], and our results serve to 
generalize this work. Since we already have a global 
consistency result in Theorem 3 or Corollary 1 (in 
the sense that positive cone (n + 1)-tuples involv- 
ing the entire range of directions must be checked), 
our work reduces to showing that local consistency 
implies global consistency. 

To this end, a result is first given that allows satis- 
faction of the determinant test (5) over given sub- 
domains of sample orientations to be extended to 
satisfaction over a larger domain. We term this re- 
sult a consistency merging result. Before presenting 
the result we provide a geometrical description of 
it. Consider the situation shown in Fig. 8 for the 
3-dimensional case. The normals to support planes 
are mapped to points representing their tips on the 
unit (Gaussian) sphere, as shown. A spherical trian- 
gle connects these points on the sphere. We represent 
this spherical triangle by a corresponding planar tri- 
angle. Any point in the positive cone of the vertex 
direction normals is a point in the triangle and vice 
versa. For example, in Fig. 8 u4 is in the positive 
cone of Ul, u2, and u3. 

With this graphical scheme, our merging result is 
illustrated for the three-dimensional case in Fig. 7. 
Here u4 is in the positive cone of {ul, u2, us} and 
conversely us is in the positive cone of {u2, u3, u4}. 
The result states that, given the above inclusions, 
if {Ul, U2, U4, U5} form a consistent (n + 1)-tuple 
and {u2, u3, u4, us} form a consistent (n + 1)-tuple 
then the enlarged set {Ul,UZ,U3,U4} also forms a 
consistent (n + 1)-tuple (and by symmetry so does 
{Ul, u2, u3, us}). Thus, consistency over the smaller 
triangles (positive cone (n+ 1)-tuples) implies consis- 
tency over the larger triangle (positive cone (n + 1)- 
tuple). In the higher-dimensional case the triangle of 
Fig. 7 becomes an (n - 1)-dimensional simplex and 
the interior triangles sub-simplices. The full result is 
as follows: 

LEMMa 1 (CoNsISTENCY MERGINC) Given 
a set of (n + 2) support samples hi with as- 
sociated unit sample directions ui in R n, sup- 
pose that u~+l E cone+{u t , . . . , u~- l ,Un+2} ,  
Un+2 C cone+{u2,..., us, u~+l}, {u,+l, u,+2} c 
cone+{u l , . . . ,u ,~_ l ,u ,~}  and that these three 
cones are full. I f  both the sets of sup- 
port samples { h l , . . . , h n - l , h ~ + l , h n + 2 }  and 
{ h 2 , . . . , h m  h~+l, h~+2} are consistent then so 
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Fig. 8. Graphical representation scheme for normal relationships. 
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Fig. 9. Illustration of a local family 

are the enlarged sets { h l , . . . , h n ,  h~+l} and 
{hi, • • •, h~, h~+2}. 

In the above, cone  + denotes the positive cone of a 
set and by consistency of a set we mean satisfaction 
of the determinantal inequality (5) or, equivalently, 
the condition (7) by the set. The proof of this result 
is in Appendix A.4. 

A suitable notion of "local" now needs to be 
defined for the general case, or, in the context of 
Lemma 1, we need to know the minimal domain over 
which consistency must be satisfied. For the planar 
case, as studied in [19], [18], [17], this notion of lo- 
cality is straightforward, depending on normal order- 
ing and adjacency. In higher dimensions, however, 
the situation is not so clear. Adjacent faces do not 
necessarily correspond to nearest normals anymore. 
A natural notion of locality is suggested both by con- 
dition 3 ~ of Theorem 2 and by Lemma 1 with their 
emphasis on a positive cone condition on the unit 
sample normals. Given a sample normal, we define 
what we mean to be "local" to that sample normal in 
the following: 

DEFINITION 1 (LOCAL FAMILY) Given a set ,.~ of 
m distinct unit vectors in R r~ and a member from this 

set Uk, we define the local family corresponding to uk 
to be the set of all distinct (n + 1)-tuples of vectors 
from S such that uk is one element of the (n + 1)- 
tuple and the remaining n vectors of the ( n + 1)-tuple 
contain only themselves and uk from S in their full 
positive cone. 

Thus, the local family corresponding to the ele- 
ment uk is a set of (n+ 1)-tuples, each containing uk 
and with the property that the only nontrivial element 
of the parent set contained in the positive cone of the 
remaining n-tuple is the generating element uk. In 
terms of the paradigm of Fig. 8, a local family is de- 
fined by the set of all (spherical) triangles (simplices 
in higher dimensions) containing the given normal ue 
but no others, as shown in Fig. 9 for the n = 3 case. 
In contrast to the planar case, where there is just a 
single local neighbor, this notion of locality implies 
a family of tests associated to each normal, one for 
each (n + 1)-tuple in the corresponding local family. 

Local Constraint With these ideas of locality de- 
fined we are prepared to present our main result show- 
ing that local consistency and global consistency are 
equivalent. 

THEOREM 4 (LOCAL CONSISTENCY 4==~ 
GLOBAL CONSISTENCY) Given a set of support 
samples hi with associated (unit) direction vectors 
ui in R n, assume that the intersection of all the 
support sample halfspaces is nonempty and assume 
that for every positive cone (n + 1)-tuple of sample 
directions the cone is full. Then the overall set of 
samples is consistent if and only if for each sample 
normal uk, all elements of the corresponding local 
family are consistent. 

In other words, the overall set is consistent if and 
only if all elements of all local families are consistent. 
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Fig. 10. Example of computational savings of a local verses global 
test as the number of uniformly chosen sample directions is in- 
creased in R a. 

Again, consistency of a (n + 1)-tuple means satisfac- 
tion of (5) or (equivalently) (7). Thus, we have that 
a set is globally consistent if and only if it is locally 
consistent, where locality is defined in the sense of 
the local family of a sample normal. The proof of 
the result is in Appendix A.5. 

Note that each of the tests (5) required in Theo- 
rem 4 is linear in the support samples hi. As a result, 
given a set of m samples and t such tests (where t 
is the total number tests to be performed), we may 
write the corresponding set of tests as 

Oh > 0 (8) 

where h = [hi, h2. . . ,  hm] T is the vector of support 
samples (termed the support vector), Q is a t x m 
sparse matrix guaranteed to have only n + 1 non-zero 
entries in each row, and 0 is a t vector of zeros. Since 
the definition of the local families depends only on 
the sample normals ui and not on the support samples 
themselves, the matrix Q also depends only on the 
normals ui. Consequently, once these directions are 
fixed the matrix Q may be precomputed and then ap- 
plied to many different sets of measurements. Note, 
since the inequality constraints are linear and finite, 
the set of all consistent support samples is defined 
by a polygonal cone in the m-dimensional space of 
support samples with fixed direction. 

This form of constraint is particularly convenient 
for constrained support reconstruction. For exam- 
ple, suppose that we are given a set of noisy support 
observations in the vector y taken in corresponding 
known directions ui and that we wish to reconstruct 

the least square error estimate of h from these obser- 
vations subject to consistency. The resulting problem 
combines (8) with a least squares criteria to yield the 
following linear inequality constrained least squares 
problem, which is straightforward to solve: 

la =arg rain [Ih - YI[2 (9) 
Oh_>O 

This model of known u~ but noisy h~ is reasonable 
for many problems, particularly medical and non- 
destructive evaluation tomography problems, where 
the user may exercise great control over the geome- 
try of the data acquisition. The situation is obviously 
more complicated if we consider the, perhaps more 
realistic, situation of noisy measurements h~ coupled 
with imperfectly known geometry ui. Such situa- 
tions arise in geophysical problems and target track- 
ing [14], [13]. 

In general, obtaining a complete, general complex- 
ity analysis of the advantage of using our local test 
over the standard exhaustive one appears to be a dif- 
ficult (but interesting) combinatorial problem. Some 
things are apparent however. For example, let us 
consider the case where we choose M directions ran- 
domly and uniformly in R k. First consider the be- 
havior around a fixed set of directions. It is straight- 
forward to show that the number of (global) positive 
cone tests involving each fixed sample of this set is 
Q ( M  k) on average 1. Since we may choose the num- 
ber of elements in this set as a fixed fraction cM of 
the total number of directions, the overall number of 
positive cone tests should be Q(Mk+l ) .  

On the other hand, if we choose a fixed local posi- 
tive cone test (k + 1)-tuple and now start selecting M 
randomly and uniformly drawn directions, the prob- 
ability that this fixed local (k + 1)-tuple remains a 
local test goes to zero exponentially fast 2 as a func- 
tion of M. Note, that at the same time this fixed 
(k + 1)-tuple will always be a (global) positive cone 
test regardless of how many new directions are added. 
The above arguments suggest that the number of lo- 
cal tests will be much smaller than the total number 
of positive cone tests, particularly for high dimen- 
sions k and large numbers of samples M. Note that 
since we would expect each of the M directions to 
be involved in at least one local test, we expect the 
number of local tests to be at least @(M),  and so 
the ratio of total to local tests to be at most (~)(Mk). 
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Fig. 11. Two-dimensional case. 

As another way of understanding the computa- 
tional advantages of our local test over a global one, 
in Fig. 10 we show the results of Monte-Carlo ex- 
periments for the three-dimensional case (k = 3). 
The figure shows the ratio of the total number of 
tests, as required in Theorem 3 or Corollary 1, to 
the corresponding number of local tests, as defined in 
Theorem 4, as a function of the total number of sam- 
ple directions chosen. The sample directions were 
chosen randomly from a uniform distribution in R a, 
each data point is the average of 10 trails, and the 
95% confidence intervals are essentially at the points 
themselves and so are omitted for clarity. As can 
be seen from the plot, the computational advantage 
of using a local test is potentially several orders of 
magnitude for reasonable numbers of sample direc- 
tions. These results are consistent with the discussion 
above. And, as we argued, we expect these advan- 
tages to become even greater in higher dimensions. 

Identifying the local families in practice is labo- 
rious but straightforward. For each sample normal 
uk one may exhaustively test all possible remain- 
ing n-tuples to see if uk is in the resulting positive 
cone. We may test if uk is in the positive cone of 
a given n-tuple by checking the coefficients of the 
vector [UllUZ[... lu~l-luk,  for positivity, where the 

Q = 

columns of the matrix Julius[ . . .  lun] are composed 
of the sample vectors of the n-tuple. As discussed 
above, this need only be done once for a given set of 
sample directions. 

3.3. The Two-Dimensional Case 

Since working with the three-dimensional case is 
notationally cumbersome, let us consider the two- 
dimensional case (n = 2) shown in Fig. 11 for il- 
lustration. In the plane we may parameterize the 
unit direction vectors ui by their angle Oi so that 
ui = [cos(0i), sin(0i)] r .  Suppose the m sample 
angles 0~ are arranged in increasing order so that 
0i+1 _> 0i and are chosen so that Oi+2-Oi < 7r/2 (this 
is the sampling rate constraint alluded to in the discus- 
sion following Corollary 1). This sampling condition 
will ensure that no local family is empty. Applying 
Theorem 4 to this planar case, we obtain the follow- 
ing consistency condition for a planar set of support 
samples which must hold for all 1 < i < m: 

[ sin(AO/+l) -- sin(A0i q- mOiq_l) sin(A0i) ] x 

1] 0 

where AOi = Oi - Oi-1 is the angular difference be- 
tween normal i and normal / -1 ,  0o -- Om 0rn+l ~ 01, 
and similarly for hi. Note that under the conditions 
above, the normal associated with 0i is always in the 
positive cone of the adjacent two normals. 

In terms of the support vector h = 
[hi, h 2 . . . ,  kin] T we may write this condition as 
the vector-matrix inequality Qh _> 0, as we did in 
(8), where the matrix Q is now given by: 

- sin(A01 + A02) sin(A01) 0 sin(A02) 
sin(A03) - sin(A02 + A03) sin(A02) . . .  0 

0 sin(A04) - sin(A03 + A04) : 

: 0 sin(A05) . . .  0 

0 : sin(A0m-1) 
sin(A0m+a) 0 0 . . . .  sin(A0m + A0m+l) 

Note in this planar case that Q is square. Such 

a test was given in [19], [18], [17] for this planar 

case, but restricted to the equal-angle situation where 

AOi = A0 and its significance as a local test (all posi- 
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five cone 4-tuples are not tested) was not brought out. 
The planar test (10) for non-uniformly spaced angles 
may also be found in [14]. 

Note that these types of tests do not identify which 
constraints are inconsistent. To see this, consider the 
situation shown in Fig. 13, where the intersections 
of the adjacent support lines used in the local tests 
are shown as the points Pi and the object is assumed 
contained in the darker, shaded region at the bottom. 
The support measurements with normals u2, u3, u4, 
would fail the local test at point P2, since the line as- 
sociated with u3 is behind P2 (in the direction given 
by ua). While this failure does confirm the existence 
of inconsistency, note that the set of samples associ- 
ated with ul,  u2, and u3, would pass their local test 
at PI• The distance from the u2 support line to Pl is 
positive in the direction given by u~ so the local test 
is satisfied. Thus, while the sample with normal u2 
is also inconsistent, it is not identified by the local 
tests. 

4. Conclusions 

In this work we have presented a unified and general 
treatment of the consistency requirements for both a 
support function and a set of support samples corre- 
sponding to a fixed set of directions• We extended a 
classical determinantal condition for the existence and 
uniqueness of a support function and then used the 
resulting insights to develop a general dimensional 
inequality test for consistency of a set of support 
samples• We subsequently developed a local test for 
sample consistency, in the sense that each inequal- 
ity only involved local support information. Such 
a result may be viewed as the general dimensional, 
discrete equivalent of the well known planar support 
curvature constraint. 

Appendix 

A.1. Derivation of Geometric Lemma 

In this appendix we prove a result we repeatedly use, 
and which we state as the lemma: 

LEMMA 2 Suppose the unit vectors {ui},  i = 
1 , . . : , n  are independent and that the unit vector 
un+i is in the (full) positive or negative cone of  the 

set {ui}, i = 1 , . . . ,  n. Then the following equality 

holds for  some 13(ul , . . .  ,un+l), with/3 > 0 / f  un+l 
is in the positive cone and/3  < 0 i f  un+l is in the 
negative cone, and fl = 0 i f  and only i f  Un+ l = u~ 
for  some i = 1 , . . . ,  n: 

 (Ul) 

: 

H(Un+l) T %tn+l  

- 1  

uT 

Un-}-i 

H( I) 
H(u2) 

(A1) 

- H ( u ~ + l ) )  

Note that if the ui are not independent the determi- 
nantal condition is trivially zero and our expression 
is not well defined since the matrix of the ui is not 
invertible. Also, note that if one of the u~ is in a 
cone formed by the others and it happens not to be 
un+l, we need only interchange rows and relabel. 
Such operations do not change the sign of the result 
because the row exchanges will take place in both the 
determinant terms on the left hand side of (A1). 

Proof" First note that since un+i is in the cone 
formed by the set {u~}, i = 1 , . . . ,  n, we may write 
it as the following linear combination: 

U n - k l  : [Ull... lUn] 
O~ 1 

OZ n 

(A2) 

with cti _> 0 for the positive cone case and c~i _< 0 
for the negative cone case• 

Now apply the following determinantal identity to 
each term of the left hand side of (A1): 

A B  
C D -- I A I I D -  CA-1BI 

Doing this to the first term yields: 

H(u.+~) T Un+l 

= (-i? 

uT 

U n 

H(ul) 

H(u ) 
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= ( - -1 )  n + l  X U l(IU  
L "~n 

-1 [ H(ul)  
H( 2) 

H(un) 

- H(Un+l)) 

Similarly applying the determinantal identity to the 
second term yields for it: 

u2 T 

i 
'//'n + 1 

( - -1 )  n + l  U T U T 1 
• unT+I . . - 1 

j i 
Now combining the two expressions and equating 
terms with the expression on the right hand side of 
the lemma shows that the scalar/3 is given by: [Ul ]l[1] / 

u T U~+l u~ 1 
/3 

~Z n U n 

= (-1) n+J u~ 1. u~• 

:r 1 T Us "U'n+ 1 

(A3) 

Substituting the expression (A2) for ui+l  into the sec- 
ond term shows that it is equal to ( ~ = 1  a i  - 1) thus: 

fl(ttl~•..~Un-F1 ) = 
u T n 1 

• O ~ i - -  

¥ 

(A4) 

To show/3 is of the appropriate sign, let us separately 
consider the two cases of  U~+l contained in the pos- 
itive or negative cone of the remaining ui. Note that 
the first term of/3 in (A4) is clearly positive for either 
case, since the ui, i = 1 , . . . ,  n are independent (they 
form a full cone) by assumption. 

Case  1: Pos i t ive  
c~i > 0, for each 
uTuj _< 1 for all 

1 ----IlUn+lll 2 = 

Cone For this case we have that 
i. Since u~+l  is a unit vector and 
i, j we have: 

n 

i=1 j=l  

i=1 j = l  

Since o~i _> 0 this implies that ~ c~ > 1 so that the 
second term in (A4) is nonnegative. This shows that 

/3_>0. 
n Now from (A4)/3 = 0 if and only if Y~i=l c~i = 1. 

From (A5) this implies that/3 = 0 if and only if: 

n 

i=l j=l  i=1 j=l 
(A6) 

Each term on the left hand side of  (A6) is less than 
or equal to the corresponding term on the right hand 
side. In particular, equality for a term is achieved 
if and only if either uTuj = 1 or c~iaj = 0. Since 
u~uj < 1 if i ¢ j ,  we can have equality in (A6) 
(equivalently,/3 = 0) if and only if 

a i a j  = 0, Vi, j ,  i ¢ j (A7) 

Since ~-~n = ~=1 c~i = 1 this can only be if c~i 1 for 
some i and c~j = 0 for all j such that j 7~ i, so that 
Un+l = ui for s o m e i  = 1 , . . . , n .  Thus /3 = 0 i f  
and only if un+l  = ui for some i = 1 , . . .  ,n ,  and 
the positive cone case is shown• 

For a more geometrical understanding of the case 
when fl = 0, note that the condition that ~i=in c~i = 1 
coupled with (A2) implies that/3 = 0 if and only if 
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un+l is in the hyperplane defined by { u l , . . . ,  un} 
(we can also arrive at this conclusion by consider- 
ing that/3 = 0 implies that the last term in (A3) is 
identically zero, which can only be if all the vectors 
{ u l , . . . , u = + l }  lie in a hyperplane). Since the ui 
are unit vectors, this hyperplane intersects the unit 
spheroid in an (n - 1)-dimensional hypersphere con- 
taining the vectors {Ul , . . . , un} ,  as shown by the 
circle through ul, u2, and ua for the 3-dimensional 
case in Fig. A.1. Now since u~+l itself is a unit 
vector, it must lie somewhere in this intersection hy- 
persphere. The only points on this intersection hy- 
persphere that are also in the positive cone of the 
{u l , - . .  ,un} (denoted by the triangle in Fig. A.1) 
are the ui themselves. 

Case 2: Negative Cone For this case we have that 
a,; < 0, for each i. From (A4) clearly /3 < 0. 

A.2. Proof of Theorem 2 

Proof. To prove the result we need only show that 
condition 3' of Theorem 2 implies and is implied by 
condition 3 of Theorem 3. First, we show that condi- 
tion 3 implies 3 ~. Consider an arbitrary (n + 1)-tuple 
of unit dh'ection vectors ui with Un+t in the positive 
cone of the remaining vectors. If Un_bl = U i for any 
i = 1 , . . . , n  then 3' of Theorem 2 is trivially satis- 
fied. Suppose such is not the case. Using Lemma 2 
of Appendix A. 1 together with the fact that we may 
write u,~+l as in (A2) we obtain: 

H(Ul) 
H( 2) 

H(Un+l) 

u T 1 u T 

u T 1 U T 

u T 1 T 
n+l Un+l 

= /3 a~H(ui  - H o~,ui (A8) 

H(a iu i )  - H a~u~ 
[.i=1 

with ~ ( U l , . . . , u ~ + J  > 0. Now by the subaddi- 
tivity condition 3 of Theorem 3, H(o~z i  + O~jUj) < 

H ( c q u  0 + H ( a j u j )  for any a~, a j ,  u~, uj, It follows 
that: 

H(a ui) - H a ui >_ 0 
i=1 

(A9) 

Thus (A8) must be nonnegative. Since the vectors u~ 
of the positive cone (n + 1)-tuple were arbitrary this 
shows that condition 3 implies condition 3 ~. 

Now we show that condition 3 ~ implies condition 
3. Given arbitrary vectors v and w, we will show 
that if 3' is satisfied then H ( v  + w )  < H ( v )  + H ( w ) .  

If v is a scalar multiple of w this is trivially true 
from condition 2 or 2q Assume such is not the case. 
In condition 3' let Ul = v/[]v[[, u2 = w/[[wI[ and 
choose the remaining ui, i = 3 , . . . ,  n arbitrarily to 
span the subspace perpendicular to v and w. Let 
u ,+l  = ( v + w ) / l l v + w l l ,  so that un+~ is a unit vec- 
tor in the full positive cone of the ui. In particular, 
we have that: 

0 . 

Now by assumption condition 3 ~ is satisfied and, us- 
ing Lemma 2, it follows that: 

T 
~n+l 

- 1  

- >_ 0 

for any n + 1 unit vectors ui, with u~+l in the posi- 
tive cone of the remaining ones but not equal to any 
of them. Substituting the expressions above for ul,  
u2, and Un+l we obtain 

Ilvll Ilwll 
11~+~oll 

;r ? 
~n ~n 

0 . . .  O ] x  
- -1 

H<, H (It@t) 

- H  I1 + 
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_ .  ) 
Equivalently, using condition 2, 

1 
IIv + wll (H(v)  + H(w)  - H(v  + w)) > O. 

Thus 

H(v  + w) < H(v)  + H(w)  

and the converse is shown. Together these implica- 
tions prove the result. • 

A.3. Proof of Theorem 3 

Proof" To prove Theorem 3 we will make use of 
the following well known theorem: 

T H E O R E M  5 ( H E L L Y ' S  T H E O R E M )  A collection of 
convex sets in R ~ has nonempty intersection if and 
only if every collection of n + 1 sets at a time has 
nonempty intersection• 

Given a set of m support samples one can always 
form a polyhedron (which may possibly be empty) 
by intersecting the m half-spaces corresponding to the 
support samples• Call this polyhedron P. That global 
consistency of a support sample set implies satisfac- 
tion of the condition (7) for every (n + 1)-tuple (i.e. 
local consistency) is obvious. To show the other di- 
rection, we need to show that if every (n + 1)-tuple of 
samples satisfies the condition (7), then there exists a 
valid support function agreeing with the samples or, 
equivalently, that the intersection of the hyperplane 
corresponding to each sample with the polygon P is 
nonempty. 

To this end, suppose that every (n + 1)-tuple of 
samples satisfies the condition (7) (i.e. is locally con- 
sistent) and consider the i-th sample• We need to 
show that the hyperplane corresponding to this sam- 
ple has nonempty intersection with P. The hyper- 
plane corresponding to the i-th sample consists of 
the intersection of two halfspaces. The intersection of 
this hyperplane with P thus consists of the intersec- 
tion of m + 1 halfspaces - -  2 for the hyperplane of the 
i-th sample and m - 1 for the halfspaces of the other 
m - 1 samples. Since by assumption every (n + 1)- 
tuple of samples satisfies (7), it follows that the inter- 
section of every (n + 1)-tuple of these halfspaces is 
nonempty. Hence, by Helly's theorem it follows that 

the intersection of all m + 1 halfspaces is nonempty, 
so that the i-th hyperplane has nonempty intersection 
with P. Since this is true for each i -- 1 , . . . ,  m, the 
m samples are (globally) consistent, with the support 
function of P giving one valid support function. 

A.4. Proof of Lemma 1 

Proof" We show that under the hypotheses of the 
lemma the enlarged set { h l , . . . ,  h~, h~+l} is con- 
sistent. Consistency of the set {ha , . . . ,  h~,h~+2} 
then follows by symmetry. We know that 
%n+l C (30r' le+{ul , . . .~Un-l ,Un+2} and Un+2 E 
cone+{u2,..., U n , U n + l } ,  thus we may write Un+l 
and u~+2 as the following linear combinations: 

U n + l  = 

U . . .  U n ]  

~2  

+ an+2Un+2 (A10) 

Un+ 2 = 

721 • . .  U n ] 

0 
62 

63 + 6 n + l U n + l  

6n 

(All)  

where 0 _< ~x~ and 0 < 6i. Note that an and 61 are 0. 
We may eliminate un+2 from the above two expres- 
sions to obtain the following equivalent expression 
for Un+l : 

1 
Un] × 

Ztn+ 1 ---- j. - -  6n+ lO~n+ 2 
U •. • U2 Un--1 

O11 

0~2 + 6201n+2 

Otn--1 + 6 n - - l O / n + 2  

6nO/.n+2 

(A12) 

This expression provides the representation of Un+l 
with respect to the cone defined by {Ul, . . . ,Un}.  
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Since Un+l is in the full positive cone of these di- 
rection vectors by assumption and this representation 
is unique, the coefficients of the ui, i = 1 , . . . , n  
in the expansion (A12) must be nonnegative and fi- 
nite. In particular, since c~i and ~i, i = 1 , . . . ,  n + 2 
are nonnegative and not all zero, we must have that 
(1 - c~+1c~+2) > 0. 

Now consistency of the set {hi , .  • •, h~_ 1, hn+ 1, h~+2 } 
implies through (5) and Lemma 2 that the following 
inequality is satisfied: 

hi 
h2 

%T n+l  [U l  U2 . .  Un--1 Un-k2 ] - T  

h~-z 
hn+2 

- hn+l >_ 0 

Substitution of (A10) for U~+l into this inequality 
and rearrangement yields 

[ch c~2 . . .  a ~ - i  0 - 1  a n + 2 ] h > 0  (A13) 

where ,3 is a nonnegative scalar depending on the 
Ul,.. .  , Un+ 1. We may equivalently write this as 

p = /~ (Ul : . . .  : %r~+ 1) 
X 

1 - ~ n + l ~ n + 2  
/ -  

a l  0 
~ 2  ~2 

~ 3  
h T a _ + a~+2 i 

11 ~ n  

~ n + l  
\ . ~ n + 2 .  - 1  

which will be recognized as a linear combination of 
the left hand sides of (A13) and (A14). Now the 
terms/3/(1 - ~nA_lOZn_F2) and a,~+2 are nonnegative 
so (A16) is equal to a nonnegative linear combina- 
tion of (A13) and (A14), which are also nonnegative. 
Consequently, (A16) and thus (A15) must also be 
nonnegative and we have demonstrated consistency 
of the set { h i , . . . ,  hn, hn+l}. The lemma is thus 
shown. • 

where h = [hi,h2,. . . ,  hn+2] T is termed the sup- 
port vector. Similarly, consistency of the set 
{h2, . . . ,  h~, hn+l, hn+2} together with (All)  yields 
the following inequality, through use of (5) and 
Lemma 2: 

[ 0 0 L  20L 3 " '"  ~n ~ n + l  - 1  ] h _> 0 (A14) 

Thus, (A13) and (A14) are true by assumption. 
To show consistency of the samples 

{h l , . . . , hmh~+l}  we have to show that the fol- 
lowing expression is nonnegative 

hi ul T 1 u T 
h2 u T 1 u T 

(A15) P =  : : : : 

hn+l T 1 U T U n + l  n + l  

Applying Lemma 2 again and substituting for u,~+l 
from (A12) shows that the expression (A15) is equiv- 
alent to: 

D = /~ ( l t l ' " " " '  ~n-t-1) [OZl ' (0~2 -F (5~20~n-k2), 
1 -- OZn+lOLn+ 2 

(O!3 -4- (~30~n+2), ' ' "  , (OLn--1 -F (SZn--lOZn+2), 

~,~ct~+2, (~+lC~n+2 - 1), 0] h (A16) 

A.5. Proof of Theorem 4 

Proof." That global consistency implies local consis- 
tency follows easily, for if a set is globally consistent 
then by definition the inequality (5) is satisfied for all 
unit vectors in the full positive cone of an n-tuple of 
other sample normals. 

Thus, we need to show that local sample consis- 
tency implies global sample consistency. First note 
that under the assumptions of the result, global con- 
sistency is assured if (5) or (7) are satisfied for every 
positive cone (n + 1)-tuple due to Corollary 1. Now 
let us assume that the (n + 1)-tuples corresponding 
to the local families are consistent and show how 
this implies that any positive cone (n + 1)-tuple will 
then be consistent. To this end, consider an arbitrary 
support sample hj and its associated unit direction 
normal u j, in the positive cone of some (possibility 
non-local) n-tuple of other sample normals, i.e. an ar- 
bitrary positive cone (n + 1)-tuple. On the surface of 
the n-dimensional unit (Gaussian) spheroid the unit 
direction vector uj (in the positive cone of the n other 
unit vectors) is a point inside an (n - 1)-dimensional 
spherical simplex (generalization of a spherical trian- 
gle), as described in association with Fig. 8 for the 
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3-dimensional case. Points in this simplex are points 
in the positive cone of the vectors at the vertices of 
the simplex, as is u4 in Fig. 8 

/ 3 "~'>>.1>,x Pl I/]lllll/llllll~~ 

Fig. 13. Illustration of non-specificity of local tests. 

Fig, A,1. Illustration of 2-dimensional intersection. 

U 
1 . ~ U q ~  J 

U l ~  . u j  / u  3 ~ u  ° 

~ U l k uj  ~ 1 ~  u2 '  Uk 

i u 

2 

Fig. 12. Illustration of geometry 

If the point associated with uj is isolated in the 

simplex it is consistent by hypothesis, since it is the 
only vector in the positive cone of the normal direc- 
tions at the vertex, and hence part of a local family. 

Suppose instead that there is another point in the sim- 
plex with it, say uk as shown in the leftmost illustra- 
tion of Fig. 12 for the 3-dimensional case. Each of 
these two interior points (corresponding to direction 
vectors uj and uk) in combination with the n origi- 
nal bounding points (corresponding to an n-tuple of 
direction vectors) tessellates the original simplex into 

on unit (Gaussian) sphere. 

n disjoint subsimplicies whose union is the original 
simplex• The two interior points corresponding to 
uj and uk are thus each contained in a subsimplex 
formed from the other interior point and n - 1 of the 
original boundary points. This geometry is shown in 
the leftmost frame of Fig. 12 as two dotted triangles. 

Now by the merging result, Lemma 1, if we can 
show that the samples u3 and uk are consistent on 
these smaller subregions then we have shown that 
they are consistent on the entire region, as desired. 
Thus we have reduced the problem from showing 
consistency over the original region to showing con- 
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sistency over two smaller subregions. This process is 
shown in the middle illustration of the figure, where 
we h a v e  spl i t  the  o r ig ina l  tes t  in to  two subtests .  We  

m a y  n o w  repea t  the  a b o v e  a rgumen t s  on  each  of  the  

subregions, attempting to show the consistency of 
each. We thus have the following finitely terminating 
recursive construction: 

Show an arbitrary positive c o n e  ( n  + 1 ) - t u p l e  is 
consistent: 
1. If it is isolated in its cone, consistency is shown 

by hypothesis. 
2. If it is not isolated: 

(a) Pick another point in the cone. 

(b) Form two smaller subregions. 

(c) A~empt to show consistency of each subre- 
gion. 

We keep proceeding in this way until a subregion is 
found where the interior point is isolated (correspond- 
ing to the normal being the only vector in the positive 
cone of its bounding set) and consistency is satisfied 
by hypothesis. In Fig. 12 we show the next step of 
th is  p r o c e d u r e  on  the  r ight ,  whe re  we  h a v e  a s s u m e d  

that the subregion containing uj is isolated (so that 
we have reached a leaf of the tree) but the one con- 
taining u~ contains another point, Uq and hence must 
itself be broken into two subregions. 

Since at each stage of this procedure another point 
(sample normal) is removed from the original finite 
set and since the subregions are nonincreasing at each 
stage, we must eventually reach the situation where 
a sample normal is isolated in its simplex and there- 
fore  cons is ten t .  U s i n g  L e m m a  1 we m ay  then  t ravel  

b a c k  up the  t ree  we  h a v e  impl ic i t ly  c rea ted  to show 

c o n s i s t e n c y  o f  the  o r ig ina l  s a m p l e  wi th  respec t  to the  

or ig ina l  b o u n d a r y  points .  S ince  the  or ig ina l  pos i t ive-  

cone  ( n  + 1) - tup le  we  chose  was arbitrary,  we have  

s h o w n  the  result .  

Notes 

1. To see this pick k fixed area patches forming a simplex con- 
taining the chosen direction. Every combination of points from 
these patches forms a positive cone test involving the fixed di- 
rection. The expected fraction of the M total points in each 
patch is proportional to the area fraction "7 of each patch, which 
is a constant. Since there are k patches, the expected number 
of tests involving the fixed direction will go as 7 k M k, which 
is ©(Mk). 

2. To see this, note that the test will remain local only if no other 
sample directions appear in the chosen, fixed simplex. Now 
the probability p of a sample direction being in the simplex is 
just the area fraction of the simplex, which is fixed. Thus the 
probability of the test being local after M directions are chosen 
is just (1 - p ) M ,  which goes to zero exponentially fast. 
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