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This paper covers the design of multiscale stochastic models
that can be used to fuse measurements of a random field or
random process provided at multiple resolutions. Such sensor
fusion problems arise in a variety of contexts, including many
problems in remote sensing and geophysics. An example, which
is used in this paper as a vehicle to illustrate our methodology, is
the estimation of variations in hydraulic conductivity as required
for the characterization of groundwater flow. Such a problem is
typical in that the phenomenon to be estimated cannot be measured
at fine scales throughout the region of interest, but instead must
be inferred from a combination of measurements of very different
types, including point measurements of hydraulic conductivity at
irregular collections of points and indirect measurements that pro-
vide only coarse and nonlocal information about the conductivity
field. Fusion of such disparate and irregular measurement sets is
a challenging problem, especially when one includes the objective
of producing, in addition to estimates, statistics characterizing the
errors in those estimates. In this paper, we show how modeling a
random field at multiple resolutions allows for the natural fusion
(or assimilation) of measurements that provide information of
different types and at different resolutions. The key to our approach
is to take advantage of the fast multiscale estimation algorithms
that efficiently produce both estimates and error variances even
for very large problems. The major innovation required in our
case, however, is to extend the modeling of random fields within
this framework to accommodate multiresolution measurements. In
particular, to take advantage of the fast algorithms that the models
in [4] admit, we must be able to model each nonlocal measurement
as the measurement of a single variable of the multiresolution
model at some appropriate resolution and scale. We describe how
this can be done and illustrate its effectiveness for an ill-posed
inverse problem in groundwater hydrology.

I. INTRODUCTION

In this paper we describe a methodology for the efficient,
statistically optimal fusion of measurements of a random
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process or random field for problems in which the measure-
ment data may be of very different types and, in particular,
may convey information about the random phenomenon
at very different scales. Problems of this type arise in
a variety of contexts, perhaps most notably in remote
sensing and geophysical applications, in which spatially
distributed random fields are to be estimated for a variety
of purposes ranging from the simple production of maps
of quantities like rainfall distributions to the estimation of
spatial quantities to be used in the analysis of complex
geophysical processes like ocean currents and subsurface
fluid flow.

Geophysical phenomena such as these are typically not
accessible to dense, uniform measurement, and one gen-
erally must rely on a variety of measurement sources
of very different types in order to obtain enough spatial
coverage to produce reliable estimates. Furthermore, while
some of these measurements may be taken at individual
points in the field—e.g., rain gauges, ocean measurements
from ships, measurements of subsurface properties in bore-
holes—these measurements are typically sparse, irregularly
sampled, and inadequate by themselves. Consequently, they
must be fused with measurements that are indirect and
provide nonlocal measurements of the phenomenon of
interest over areas that are not adequately covered by
the localized point measurements. These indirect obser-
vations are usually of varying resolution. An example
sensor fusion problem with multiresolution measurements
is the estimation of precipitation, which is used for nu-
merical weather prediction (NWP). Precipitation can be
measured with rain gauges, radar sensors, and microwave
and infrared satellites. The rain gauges provide point sam-
ples of precipitation at select locations, while the infrared
satellites provide broad but coarse resolution coverage.
Climatologists have long recognized that no single mea-
surement source is sufficient for reliable precipitation es-
timates, and instead all measurements must be incorpo-
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rated [13], [26]. Another geophysical system requiring
the assimilation of heterogeneous measurements is ocean
currents. Ocean currents are measured with a variety of
sensors, including floating buoys, acoustic travel times,
satellite altimetry, and direct and indirect observations of
temperature and salinity. While the floating buoys can
observe fine-scale fluctuations in the ocean currents, their
coverage is limited. More comprehensive coverage, albeit
at a coarser resolution and limited to the ocean surface,
is given by the satellite data. How to fuse the many
different measurements in order to produce the most reliable
descriptions of ocean currents is a very active research topic
[11].

The application used in this paper to illustrate the mul-
tiscale methodology is the estimation of hydraulic con-
ductivity for characterizing groundwater flow. Accurately
describing the flow of fluids in the earth’s subsurface
is important due to the prevalence of contaminated soils
in or near groundwater supplies. An accurate description
of groundwater flow requires an accurate description of
hydraulic conductivity, which is a property of the sub-
surface geology known to be an important determinant
of groundwater flow. Geologic properties like hydraulic
conductivity can be measured directly only at select well
locations. Indirect observations are supplied by tracer travel
times, pump tests, acoustic wave propagation (seismics),
and measurements of fluid properties like hydraulic head.
These observations differ in spatial resolution and support,
and each is related to hydraulic conductivity by a physical
equation, i.e., a PDE. As illustrated in Section IV, point
samples of hydraulic head are essentially observations of
a coarse-scale derivative of hydraulic conductivity and are
nonlocal in the sense that each head sample is sensitive
to the entire conductivity field to be estimated. Again, no
single measurement source can provide a reliable estimate
of hydraulic conductivity, and all available measurements
should be used.

Thus a fundamental objective of our work has been to de-
velop methods for the fusion of such disparate measurement
sources, a difficult problem given the nonlocal nature of at
least some of the measurement data. Moreover, there are
several other features of such geophysical problems that add
to the challenge. First, and most importantly, the problems
of interest in applications such as these are extremely large,
and thus developing computationally efficient algorithms is
absolutely crucial. Second, there is generally a strong need
for the computation not only of estimates of phenomena
but also of error variances for these estimates so that their
significance can be assessed. Third, there are often very
strong reasons to think about describing phenomena at
multiple scales, both because the underlying phenomena in
applications such as these generally exhibit variability over
wide ranges of scales and also because the available data
may support statistically meaningful estimation at different
resolutions in different regions, depending on the coverage
and nature of the available measurements.

A variety of methods for fusing measurements in such
contexts have been used over the years [22], but it is

fair to say that computational complexity, especially if
error variances are desired, remains a significant and lim-
iting challenge. Several other researchers have attempted
to make use of the multiscale nature of the problem
by using wavelet decompositions in order to overcome
computational limitations, for example [1], [3], [16], and
[24]. However these efforts do not address all of the
issues of interest here as they either focus only on using
wavelets to obtain estimates but not error statistics [1],
[3], [16], require regular measurements so that wavelet
transforms can be applied [24], or admit only very special
nonlocal measurements, namely those that correspond to
the explicit direct measurements of wavelet coefficients
at particular scales [1]. In contrast, the approach that
we develop here computes estimates and error statistics,
is directly applicable to arbitrary measurement sets, and
allows us to use a wide variety of prior statistical models
to describe the statistical variability of the phenomenon.

The basic idea behind our approach is to develop multi-
scale models for random processes and fields within the
class introduced in [4]. These models describe random
phenomena using tree structures for which each level of
the tree represents a different resolution of the phenomenon
of interest. Analogous to one-dimensional (1-D) autore-
gressive models which evolve recursively in time, these
multiscale models evolve recursively in scale. The utility
of this class of models is twofold. First, the class has
been shown to provide useful models for a wide variety of
random processes and fields, such as 1-D Markov processes
and two-dimensional (2-D) Markov random fields (MRF’s)
[19] and self-similar and fractal processes that can be
used to model natural phenomena arising in geophysics
[8], [9]. Second, and most importantly, just as the Markov
property associated with 1-D autoregressive models leads
to a highly efficient estimation algorithm, (the Kalman
filter), the multiscale models satisfy a Markov property
in scale and space which leads to an efficient estimation
algorithm. Also, the multiscale estimator automatically, i.e.,
with no additional computations, produces estimation error
covariances. Moreover, the efficiency of this algorithm does
not require regular data and in particular can accommodate
arbitrarily spaced measurements.

In recent work this model class has met with considerable
success, both in demonstrating that very rich classes of
stochastic phenomena can be represented within this frame-
work an in applying the associated estimation algorithm
to several applications, including computer vision [17]
and the optimal interpolation of sea level variations in
the North Pacific Ocean from satellite measurements [8].
However, in all of this work, attention has been focused
almost exclusively on the finest level of the multiscale
representation. That is, in modeling a random phenomenon
in this framework the objective has been to ensure that the
finest scale of the model has a desired statistical structure.
Also, in estimation applications, the measurements that
have been considered have all been at the finest level
of representation, i.e., they have corresponded to point
measurements of the phenomenon. In this context, the vari-
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ables captured at higher (coarser) levels in the multiscale
representation are simply abstract variables that are carried
along simply to ensure the statistical structure that allows
us to apply the very fast algorithms that these models admit.
Nevertheless, these algorithms actually allow measurements
and produce estimates at these coarser scales. This suggests
that if care were taken to define multiscale models so that
these coarser scale variables also represented quantities
of interest—specifically nonlocal weighted averages of the
phenomenon that correspond to variables that are either
measured through indirect measurements or that we wish to
estimate—then we would be able to use this same efficient
estimation methodology for the fusion of measurements
at different resolutions. Achieving this objective, however,
is not an obvious or trivial task, and one of the major
contributions of this paper is to demonstrate how this can be
accomplished. The second contribution is then to use this
methodology as the basis for designing extremely efficient
and flexible data fusion algorithms that can accommodate
measurements at different resolutions and with arbitrary
spatial distribution. This capability is demonstrated by
estimating hydraulic conductivity from point measurements
of conductivity and measurements of head, which provide
nonlocal measurements of conductivity through the partial
differential equations of groundwater hydrology.

In the next section we provide a brief review the class
of multiscale models of [4] and include a description of
multiscale models for Markov processes, which will be
used throughout this paper to illustrate our results. In
Section III, we present a modeling algorithm that begins
with a multiresolution model that accurately captures the
finest-scale statistics of the phenomenon of interest and
augments this model in order to incorporate variables at
coarser scales representing nonlocal quantities. We apply
this methodology in Sections IV and V and conclude in
Section VI.

II. M ULTISCALE MODELS

A. Multiscale Models and the Multiscale Estimator

The class of multiscale random processes introduced in
[4] is indexed by the nodes of trees organized into scales.
The coarsest scale is indexed by the root node, while the
finest scale is indexed by the set of leaf nodes. For example,
the multiscale process defined on the binary tree illustrated
in Fig. 1(a) consists of a set of random vectors for each
node on the tree. Thescaleof node , which we denote by

, is the distance between nodeand the root node of
the tree. Define to be the upward (in scale) shift operator,
so that denotes the parent of any node, as illustrated
in (1b). The class of multiscale processes considered in this
paper satisfies the following autoregressionin scale

(1a)

(1b)

where is the process value at nodeand is
the process value at node . The notation

(a)

(b)

Fig. 1. (a) A binary tree used to index a random process at
multiple resolutions and (b) the local labeling of theq + 1 nodes
connected to nodes.

denotes that is a random vector with mean and
covariance .1 Equation (1) defines an autoregression from
coarse to fine scale, with as the process noise of the
autoregression. The autoregression is initialized at the root
node by

(2)

Since and are zero-mean, every process value
will be a zero-mean2 random vector.

The process noise is assumed to be a white-noise
process uncorrelated across scale and space and also uncor-
related with the root node state, i.e., .
The whiteness of the process noise implies that a multiscale
tree model is characterized completely by—the root
node covariance—and the autoregression parameters

1This paper will focus upon second-order descriptions of random
processes and on best linear estimators. Of course, if all variables are
Gaussian, this second-order description is also a complete specification
and best linear estimators are in fact optimal over the larger class including
nonlinear estimators.

2The zero-mean assumption is made for simplicity and is easily relaxed
by adding a deterministic term to (1a) or (2).
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and for all nodes . ( and are not defined
for .) More importantly, the whiteness of the process
noise leads to a Markov property similar to the Markov
property for 1-D autoregressive processes driven by white
noise. Specifically, note that any node, with defined to
be the number of children of node, partitions the tree into

subsets of nodes [see Fig. 1(b)]: ,
and , where3

set of nodes descendent from and including node

complement of

child of node

We will also find it useful to write . The
Markov property of multiscale tree processes is that, con-
ditioned on the state , the sets of states partitioned
by node are conditionally uncorrelated. More formally

for all , , , and
. Because of this Markov property, the process

value is commonly referred to as thestateat node .
The Markov property of the multiscale processes leads

to an efficient algorithm for the estimation of at every
node on the tree based upon measurements, each of which
is a noise-corrupted observation of at an individual
node of the tree, i.e.,

(3)

where is white and uncorrelated with at all nodes
on the tree. Measurements at coarse-scale nodes will gen-
erally be equivalent to measurements of coarse-resolution
or nonlocal functions of the finest-scale process. The mul-
tiscale estimation algorithm provided in [4] is a gener-
alization of the Kalman filter and Rauch–Tung–Striebel
smoother [27] for dynamic systems in time, i.e., processes
given by (1) for a tree with . The first sweep of the
estimator is a recursion from fine to coarse scale, which is
then followed by a recursion from coarse to fine scale. The
result is that the linear least-squared error (LLSE) estimate

of the state at every node in the tree is computed
in computations for a tree which has nodes4

and constant state dimension. Thus the efficiency of the
estimator depends primarily upon whether a tree model
can be realized with manageable state dimension. As a
by-product, the multiresolution estimator also produces the
estimation error covariance
at every node.

B. Internal Realizations of Multiscale Models

As defined in [15], aninternal realization of a multiscale
model is one for which each variable of the process is a

3The only exceptions are the finest resolution leaf nodes which have no
children and the coarsest resolution root node which has no parent.

4Note that a tree withNf nodes nodes at the finest scale has only
O(Nf ) nodes, and thus also requires onlyO(Nfd

3) computations to be
estimated.

linear function of the finest-scale process, where the finest-
scale process is the states at the leaf nodes of the
tree. If is a vector containing the finest-scale process of
the tree, then each state of an internal realization can be
expressed as

(4)

Each linear function will be referred to as aninternal
variable and each matrix as an internal matrix. For
the example sensor fusion problem given in Section V,
the vector will contain a discretization of the hydraulic
conductivity function.

Note that the parameters , , and of an internal
multiscale model can be expressed completely in terms of
the internal matrices and the covariance of the finest-
scale process, . Specifically, substituting (4) evaluated at

into yields

(5)

The parameters and can then be computed by noting
that (1a) is just the optimal prediction of based upon

, plus the associated prediction error, i.e.,

(6)

Using standard equations from LLSE estimation, the model
parameters follow as

(7a)

(7b)

where denotes the covariance of the random vector,
denotes the cross-covariance betweenand , and
denotes the covariance of after conditioning on .

Finally, the covariances in (7) follow from (4) as

(8a)

(8b)

Although the algorithm used in Section III assumes that
an internal multiscale model is given, it is appropriate
to make several comments about these models. The con-
struction of an internal multiscale model for a finest-scale
process with covariance consists of three steps: 1)
mapping the components of to leaf nodes of the tree,
which also determines for each of the finest-scale nodes,
2) specifying the internal matrices at the coarser-scale
nodes, and 3) computing the model parameters using (5)
and (7). Step 1) is generally straightforward, although the
mapping can be affected by the nonlocal functions ofto
be incorporated at coarser-scale nodes. Also, as we have
seen, step 3) is straightforward. Consequently, the core of
constructing internal realizations is determining the internal
matrices and the resulting covariances in (8).

As discussed in [15], internal multiscale realizations
can, in principle, be constructed for a finest-scale random
process with any desired covariance . However, for an
arbitrary the ranks of the resulting internal matrices,
which equal the dimensions of the corresponding state
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vectors , may be quite large and thus negate the
computational advantage of the tree model. Fortunately,
as developed in [9], [15], [19], there are large classes of
processes for which either exact or adequately approximate
multiscale realizations can be constructed that have suffi-
ciently low dimension to make the multiscale formalism
quite attractive. In the next section, such models for wide-
sense Markov processes and MRF’s [19] are described and
will later be used to illustrate our methodology.

C. Example: Multiscale Models for Markov Processes

A discrete-time process is a bilateral Markov
process [7] if, conditioned on the values of at the
boundaries of any interval , , the
process inside the interval is uncorrelated with outside
the interval. The width of these boundaries depends upon
the order, , of the process. More precisely, define

to contain at the boundaries of for an th order
process. Also define , which is the
process containing the uncertainty in after conditioning
on the boundary values. Then is said to be th order
bilateral Markov if

for all and

Similar to the boundary values, define to contain the
present values of , i.e.,

. An th order unilateral Markov process is one
for which

for all

where , i.e., conditioned on the
“present” values of , the past and future are un-

correlated. While not every bilateral Markov process is
a unilateral Markov process, every unilateral process is
a bilateral [7], so that any method for the multiscale
modeling of bilateral Markov processes applies equally well
to unilateral Markov processes.

The multiscale models described in [19] are based upon
the midpoint deflection algorithm for synthesizing Brown-
ian motion [6]. The basic idea behind the midpoint deflec-
tion algorithm is that, given the values of a Markov process
at the boundaries of any interval, the midpoint value of this
interval can be synthesized independently of any values
outside the interval. As an example, consider a first-order
Markov process on the interval . Given and ,
then the midpoint value , where the “midpoint”
can in fact be anywhere in the interval , can be
written as

(9a)

(9b)

where . The second equality in (9)
follows from standard LLSE formulas. The covariance
matrices in (9b), as well as the covariance of , are

(a)

(b)

Fig. 2. Steps one (a) and two (b) of the midpoint deflection
algorithms for synthesizing Brownian motion. The dashed line
provides the interpolation (LLSE estimate) of the process from
the present boundary values, the solid line is the deflection of the
midpoint(s), and the dotted line is the new interpolation.

given by the statistics of the Markov process. Equation (9)
can be interpreted as an interpolation from the boundary
values plus a deflection , as illustrated in Fig. 2(a) for
a sample path of Brownian Motion on the interval [0,32].

Once is determined, we then have the boundary
values of the two intervals and .
The values of the process at the midpoints of these two
intervals can again be generated by an interpolation and a
deflection, i.e.,

(10a)

(10b)

for any “midpoints” and .
More importantly, the two deflections and are
uncorrelated due to Markovianity, and thus can be gener-
ated independently. An example of the interpolation and
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(a)

(b)

Fig. 3. Multiscale models for first-order Markov processes,
where each ellipse represents the samples of the Markov process
which comprise the statez(s) at a single nodes. For each model,
the statez(s) is confined to sample values of the Markov process
within the intervalIs. (a) A binary tree with a state dimension of
three, and (b) a binary tree with state dimension four.

deflection associated with these two samples is illustrated
in Fig. 2(b).

After the first two steps of the midpoint deflection syn-
thesis, has been computed at the endpoints of four
intervals. The synthesis process continues recursively by
generating the midpoint values of the four intervals, each of
which can be generated independently. In what follows, we
describe how this recursive process can be represented by
a multiscale autoregression. To simplify notation, assume
that . Choosing as the first midpoint,
the state at the root node is given by

Modeling the process on a binary tree, the process values
at the two descendents of the root node can also be chosen
to contain three samples of . Namely, choose

and

The process noise generated when transitioning from scale
to scale one, and , will contain
and , respectively. From Markovianity,

these two vectors are uncorrelated with each other, and
from the orthogonality of the LLSE they are uncorrelated
with . This process can be continued recursively until
the variables at a given level of the tree represent the entire
interval of interest, as illustrated in Fig. 3(a) for .

The multiscale models for 1-D Markov processes are
internal multiscale models, since each state simply

contains samples of . Therefore, the parameters for the
scale recursive autoregression follow from (7). However,
note that the covariance matrices in (8) can be computed
without explicitly computing , the covariance of the
entire Markov process which is to be represented at the
finest scale of the tree. The ability to compute the model
parameters without explicitly forming is especially
important for modeling 2-D random fields.

There is considerable flexibility in modeling 1-D Markov
processes with the multiscale autoregression. The trees do
not have to be binary, and the state dimension can vary
from node to node [19]. However, the general procedure
for developing an internal multiscale model of a Markov
process remains the same, i.e., forming states as samples
of subintervals of the Markov process and then deducing
the model parameters from (5) and (7). This flexibility also
holds in 2-D, where the midpoint deflection algorithm can
be generalized to develop internal multiscale models for
Markov random fields [19]. A MRF is the 2-D generaliza-
tion of a 1-D bilateral process. Namely, a wide-sense MRF
is a 2-D random process for which the values of
in any connected set are uncorrelated with the values of

outside this set when conditioned on the values ofon
the boundary of . Analogous to the multiscale models for
1-D Markov processes, the states of the multiscale models
for MRF’s contain the values of on the boundaries of
subregions of the entire domain on which is defined.
In other words, if is the finest-scale
MRF descendent from node, then contains the values
of on the boundaries of subregions which cover.
The width of the boundaries again depends upon the order
of the MRF. Once these boundaries have been determined,
the model parameters can again follow from (5) and (7).

The major difference between the multiscale models for
1-D Markov processes and those for MRF’s is that the state
dimensions for MRF’s grow with the size of the domain
of the finest-scale process. The dimension of a state in a
multiscale model of 1-D Markov processes depends only
upon the order of the process and the number of children,

, descending from node. For 2-D MRF’s, the dimension
of the state at a node corresponding to some 2-
D region is proportional to the linear dimension of the
boundary of that region. However, in many applications
the MRF is only a model of the phenomenon of interest,
and thus exactly matching its statistics is unnecessary.
Indeed, in [19] low-dimensional multiscale models with
approximately the same statistics as MRF’s have been used
with success.

III. A UGMENTING THE VARIABLES OF

INTERNAL MULTISCALE PROCESSES

For internal models, (3) can be rewritten as

(11)

Therefore, given an internal multiscale model, the mul-
tiresolution estimator described in [4] can incorporate only
measurements of particular linear functions of, i.e., only
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functions for which each row of is in the row space
of some internal matrix . For instance, given one of the
multiscale models for 1-D Markov processes described in
Section II-C, the multiscale estimator cannot incorporate
a measurement of the average value of the finest-scale
process, since no single state contains the average value
of .

To expand the set of functions represented by the tree
model, which will allow the multiscale estimator to fuse
multiple-resolution observations of the random process,
one can imagine augmenting the internal variables
with additional linear functions and then recomputing the
model parameters. However, doing this requires consider-
able care. In particular, the states must be augmented such
that both the Markovianity of the tree process is preserved
and the resulting model is internal. For example, suppose
we naively augment the state of our model at a single node
in order to include the linear function . That is, suppose

for and

(12)

In general, this augmentation will destroy the Marko-
vianity of the tree. For example, the states ,

generally arecorrelated with each
other after conditioning on . The consequences of this
correlation are that, for the multiscale model defined by (5)
and (7) with substituted for , the finest-scale process
will not have covariance ; also, the model will not be
internal, i.e., the state at nodewill not be equal to a linear
function of the finest-scale process.

The issue here is that the augmentation at nodeintro-
duces some coupling among field values due to the nonlocal
nature of the linear function . If the correct statistics are
to be maintained, and the state at nodeis to contain the
desired function of the finest-scale process, the effect of the
coupling must also be propagated to other nodes on the tree.

A. Maintaining the Markov Property of
the Internal Variables

For internal realizations, the Markovianity of the vari-
ables guarantees that the finest-scale process of the
multiscale model whose parameters are derived from (5)
and (7) has the desired covariance [15]. However, as just
discussed, augmenting with additional linear functions
of can destroy this Markov property and thus alter the
covariance of the finest-scale process. For instance, consider
the multiscale models for 1-D Markov processes described
in Section II-C. If the average value of the finest-scale
process is added to the state at the root node of the tree,
then the deflections and will be correlated. The
reason is that the “left” and “right” halves of the finest-scale
process are correlated after conditioning on ,
(which contains the original state and the average
value of ). This implies that some additional augmentation
will be required to account for the correlation.

Instead of directly augmenting in (12) with ,
another linear function must be found for which 1) the
augmented variable still decorrelates the sets
of internal variables partitioned by node, and 2)
contains . To understand how this linear function is
chosen, it is useful to first examine how the internal
variables are chosen in general, i.e., when the finest-scale
process is not necessarily a wide-sense Markov process.
For internal multiscale realizations of a finest-scale process

, the variables can be assumed to satisfy

(13)

where contains the finest-scale process at nodes descen-
dent from [15]. In other words, the state at nodeis a
linear function of its descendents. Note that the multiscale
models for Markov processes discussed in Section II-C
satisfy (13). Equation (13) leads to a simpler form of the
Markov property for multiscale trees. Note that, for

, each state in the set is a linear
function only of . Also, each state in the set

is a linear function only of and ,
which represents the finest-scale process which does not
descend from node. (When the number of subscripts
becomes unwieldy, we will substitute .) Thus
a state satisfies the multiscale Markov property if
and only if it conditionally decorrelates the random
vectors . Therefore, to augment with
a linear function of and not alter the covariance of the
finest-scale process, we need only ensure that the
vectors remain conditionally uncorrelated.
To do so we make use of the following corollary of
Proposition 5 in [15, Ch. 3].

Corollary: If the vectors are
uncorrelated after conditioning on some linear function

, they remain uncorrelated after conditioning on
and individual linear functions of , .

For example, the vectors are un-
correlated after conditioning on , , and ,
but they will generally be correlated after conditioning
upon and . Therefore, to add the linear
functional to , we first define the
following matrix:

...
...

...
...

...

(14a)

where is the component of which is only
a function , i.e., the sum of all the elements in
equals . The variable at node can now be augmented
as

(14b)
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without altering the Markov property. Note that if has
full support, i.e., if each term , then this
augmentation requires an additional elements in the
state at node . If some of these terms are zero, then a
lower-dimensional augmentation is required. Furthermore,
if any of the rows of are already in the row-space of

, these elements are already available in and
need not be added. Note also that since the partitioning of
into is different for each node, one might imagine that
there is a best choice for nodein terms of minimizing the
number of terms which are nonzero and hence
minimizing the dimension of the augmentation.

Define the augmented variable at each node by
, where if the state at node is not

augmented. The model parameters of the augmented model
follow as

(15a)

(15b)

(15c)

where and . This
augmented model will have a finest-scale process with
covariance identical to that of the original model.

B. Maintaining an Internal Multiscale Model

The augmentation described in the preceding section,
which augments the state at a single node, does maintain
Markovianity and hence yields a model whose finest-scale
process will have the desired covariance. However,
this model will not generally be consistent; that is, the
element of the state at node that is intended to equal

may not be equal to . The reason
for this is simple: at node we are attempting topin a linear
combination of the values descending from node. In
order to ensure that this value is pinned, information must
be propagated from nodeall the way to its descendents at
the finest scale. To illustrate this problem and to motivate its
solution, consider the following example of augmenting the
root node of a multiscale model for a 1-D Markov process
with the sum of the finest-scale process.

1) Example: Multiscale Modeling the Sum of a 1-D Markov
Process: Consider a 1-D first-order Markov process on

the interval [0,15]. The multiscale model for this process
is illustrated in Fig. 3(b). Assume that the 1-D Markov
process is to be estimated, using the multiscale estimator,
from point measurements of together with a mea-
surement of the sum of the finest-scale
process. From Section III-A, we know that can be
augmented with the two linear functions

and (16)

without altering the Markov property of the tree. Thus
if the root node variable is augmented as

and no other variables are changed, then
the finest-scale process of the multiscale model derived
from (15) will have the covariance of the 1-D Markov
process.

However, the element in the state at the root node which
is intended to contain will not be equal to
the sum of the finest-scale process unless this value is
propagated from the root node to the finest-scale. This
propagation is accomplished by constraining the scale-
to-scale recursion of the multiscale model. For this 1-D
Markov example, this means constraining the midpoint de-
flections by conditioning them on the value ofgenerated
at the root node. This conditioning is accomplished by
augmenting the descendents of the root node, except for
the finest-scale states which are never augmented, with.
Again, this augmentation must also preserve Markovianity.
For example, consider the two children of the root node,
nodes and . The augmentation of these nodes
is shown in (17) at the bottom of the page. However,
these states contain more information than is needed. For
instance, on the interval [0,7] is uncorrelated with
on the interval [8,15] when conditioned on . Thus
the last element of in (17) contains no additional
information about the descendents of nodes. That is,
in order to maintain consistency, and hence an internal
realization, the state at node must only be made
consistent with , the component of corresponding to
the finest-scale descendents of node. Similarly, the state
at node must only be made consistent with . As a
result, the states in (17) can be reduced to (18), as shown on
the bottom of the previous page. For this simple example,

and (17)

and (18)
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the augmentation is now complete, and the parameters of
the augmented multiscale model can now be derived from
(15). The resulting model generates a finest-scale process
with the desired covariance and is internally consistent
so that, for example, the value of at the root node
does exactly equal the sum of the finest-scale process.

2) Example: Modeling the Sum at Scale One:Although
the sum of the finest-scale process is a function of the entire
finest-scale process, it can be advantageous, as shown in
the examples of Section V-A, to model this value at a node
other than the root node. Consider augmenting the variable
at with . The augmented variable which preserves
the Markov property of is

(19)

While, as argued in the previous example, the last element
of , namely , is unnecessary to maintain Marko-
vianity or consistency with the nodes descending from node

, it is necessary if the is to be captured at this node.
To maintain consistency, the information contained in

at node must be propagated to the other half of the tree,
i.e., that descending from node . To accomplish this, it
is necessary that the value of be available to this part
of the process; therefore, the root node must be augmented
as . The state can be
augmented exactly as in (18). Note that because we have
chosen to place the measurement at node, does
not need to include the sum over the “left” half of the tree,
(as we do not introduce the constraint on this sum at the
root node). Thus in comparison to the augmented model in
the preceding subsection, in this case the dimension of
has been reduced while that of has been increased.
The remaining states are identical in the two models. As
before, having defined the states, the model parameters can
be generated from (15).

C. An Algorithm for Augmenting Internal Multiscale
Realizations for a Single Nonlocal Measurement

Using the previous two examples for intuition, we now
present a general algorithm for adding linear functions
of to the coarser-scale variables of internal multiscale
models. This algorithm applies to a much broader class
of processes than those discussed in the previous section.
The multiscale model can have an arbitrary number of
children per node and the finest-scale process can have any
desired covariance—not just that of 1-D Markov process.
The algorithm proceeds in two stages: 1) the augmented
variables are created for each node on the tree, and
2) the model parameters are computed from (15) for the
augmented process .

The algorithm which follows is for adding a single
linear functional to the variable at node . This

procedure can then be applied recursively to add additional
linear functions. The initial step is to determine . As
discussed in Section III-A, the augmented variable which
preserves the Markov property of is given by (14).
The next step is to define for the remaining nodes
in the tree to guarantee that the information generated by

is passed consistently to the finest-scale process.
First consider the nodes descendent from node. Since
all the descendents of nodeare linear functions of ,
the entire process descendent from nodeis uncorrelated
with when conditioned on . Thus augmenting any
variable descendent from nodewith a linear function of

will have no effect upon the parameters derived from
(15). Consequently, since the linear function can be
decomposed as

(20)

the variables descendent from nodeonly need to be
made consistent with . In fact, because of the
conditioning property of , (where is a descendent of
), the augmented variable only needs to include .

This augmentation will guarantee that all the process noise
added to the descendents of nodeis conditioned on

. Therefore, the augmentation of which preserves
Markovianity and maintains consistency is

(21a)

and

...
...

...
...

...
(21b)

Now consider determining for nodes not in . These
nodes must be augmented to make the value of
consistent with the finest-scale process. However, if the
support of is not the entire domain, we may only need to
augment a subset of the nodes in. Specifically, define
the direct ancestors of as , and let be the
ancestor closest to nodefor which

(22)

Only nodes descendent from nodeneed to be augmented,
since, conditioned on , the variables at any node
outside the subtree descending fromare uncorrelated with

and hence with . Consider first the augmentation of
a node on the path connecting and , (i.e., is a
direct ancestor of that is either node or a descendent
of ). As always, can be expressed as

(23)

While is not needed at node to maintain
Markovianity, it must be included in to ensure that
this value is passed to the state at node. This is a
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generalization of the description of in (19), for
which the last component of the state was not required
for Markovianity but was needed to have the entire linear
functional available at node. In the more general case
here, the last component is needed to have the entire linear
functional available at adescendentof node (namely,
node ).

Turning to the other components in (23), all but one
must be included in . This component corresponds to
the child of node for which , i.e., the child
of node that is either node itself or a direct ancestor of
node . This component can be excluded without disturbing
Markovianity or consistency and can be generated at a
descendent of node. This is a generalization of the
augmentation of node zero given in Section III-B2), where

only needs to be augmented with
and not with .

The augmented variable is then given by

(24a)

where the elements of correspond to all of the elements
on the right-hand side of (23) except the one not needed
for the augmentation. For example, if is the term not
needed for the augmentation and if the elements ofare
organized as , then

...
...

...
...

... (24b)

Finally, once we have augmented each of the direct
ancestors of up to and including , the descendents of
these nodes must also be augmented. This is exactly the
same procedure used to augment the descendents of node,
i.e., each state is augmented with those elements necessary
to maintain both Markovianity and internal consistency.
The resulting overall algorithm for state augmentation can
then be summarized as follows: for each node and

not at the finest scale

1) If , then is given by (14).
2) If and is on the path from to , then

is given by (14).
3) Otherwise, is given by (21).

For or at the finest scale, then . Note
that if , i.e., if the linear function placed at nodeis
a function only of , then the augmentation is simplified.
Namely, is given by (21) for , and
for .

Once the matrices have been determined, the final
step of the augmentation algorithm is to compute the model
parameters from (15). Given the parameters of the original
multiscale model, only the parameters for
need to be recomputed for the augmented model.

D. Adding Multiple Nonlocal Measurements

For adding linear functions of , i.e., multiple linear
functionals, to the state at node or any other node of
a multiscale tree, the state augmentation just described can
be applied recursively to individual linear functionals. This
recursive procedure can be used to represent measurements
of at multiple resolutions within the tree framework.
Note, however, that (15) need only be executed once, after
all the linear functionals have been incorporated into the
augmented states .

If the states of the original multiscale
model contain nontrivial functions of the processor if
the states of an internal realization are augmented with
a large number of linear functionals, it is likely that
that the state dimensions can be reduced before executing
(15). Specifically, if any of the internal matrices have
linearly dependent rows, the corresponding states can be
compressed by discarding redundant variables. Also, while
the matrix may not have precise algebraic dependency,
it may have approximate probabilistic dependency. In other
words, may be singular or ill-conditioned,
corresponding to some parts of being exactly or nearly
deterministic (and therefore zero since the processes are
assumed to be zero mean). Consequently, an eigenvalue
decomposition of can identify reduced-order state
models that yield good approximations to the desired statis-
tics. In any case, if has an ill-conditioned covariance
matrix, must be replaced by a reduced-order vector

with well-conditioned covariance before executing
(15).

E. Comments on Computational Complexity

The utility of the multiscale framework is the ability
to efficiently provide statistical analysis in the form of
optimal estimates and error covariances. This efficiency
hinges upon the number of computations required to de-
rive the model parameters from (15) and the number
of computations required to implement the corresponding
multiscale estimator. Because cannot be explicitly stored
in memory when has very large dimension, the primary
obstacle to implementing (15) is the computation of the
covariance matrices and . For instance, if
the finest-scale process corresponds to a 2-D field of 64-
by-64 elements, has approximately 17 million elements,
making it infeasible to derive directly from and

. Instead, for such applications and
must be computed implicitly. This implicit computation is
straightforward for stationary random fields, such as the
MRF’s used in Section V-B.

Assuming the model parameters can be computed effi-
ciently, the remaining question is how the state augmenta-
tions described in the previous section affect the compu-
tational efficiency of multiscale estimator. Remember that
the number of computations required by the multiscale
estimator increase cubicly with the dimension of each
state of the tree. For each linear functional placed
at node by the algorithm of Section III-C, the state
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Fig. 4. The Fréchét derivativesg(xi; x j f0) at xi = i=8,
i = 1; � � � ; 7, for the 1-D flow equation when linearized about
the log conductivity functionf0 = 0.

at each node in the subtree descending from will
increase by elements.5 While the effect of this increase
is insignificant when adding a single linear functional of

, the effect will be problematic when a large number of
linear functionals must be added. Therefore, an important
problem is to manage the dimension of the states in
the augmented multiscale model. As mentioned in the
previous subsection, the states dimensions can be reduced
whenever the augmented variables have ill-conditioned
covariance. Furthermore, if one is willing to accept models
which only approximate the desired statistics, in many cases
the state dimensions can be significantly reduced without
significantly altering the accuracy of the estimates. While
a complete framework for approximate modeling is not
described in this paper, other methods for managing the
state dimension are discussed in the examples.

IV. HYDRAULIC HEAD AS A COARSE-RESOLUTION

FUNCTION OF CONDUCTIVITY

The application which provided the original motivation
for this work [5], and which will be explored in Sections V-
A and B, is the estimation of parameters in groundwater
flow models. Accurate descriptions of groundwater flow
are very important due to the prevalence of contaminated
soils in or near groundwater supplies. A standard model for
steady-state groundwater flow, assuming no internal water
sources, is [20]

(25)

where is log hydraulic conductivity,6 is piezometric
head, and is the region of interest. Piezometric head is
a potential, in direct analogy with electrostatic potential.

5If � is a descendent of�, where� is defined in Section III-C, then the
only difference is that the state dimension at node� increases byq� + 1
and the state dimension at node� increases byq� � 1.

6Because hydraulic conductivity is often log-normally distributed [22],
it is often easier to work directly with the logarithm of hydraulic conduc-
tivity.

Fig. 5. The Fréchét derivativesg(xi; x j f0) for the 2-D flow
equation atx

i
= (0:5; 0:5) when linearized about the log conduc-

tivity function f0 = 0.

The problem for groundwater hydrologists is to estimate
flow parameters like the function from irregularly
distributed measurements of conductivity, head, contami-
nant concentrations, tracer tests, and the like, all providing
observations of at different resolutions [10], [14],
[20], [22], [25]. For simplicity, we consider using the
multiscale framework for the fusion of measurements at
two resolutions—point measurements of head and hydraulic
conductivity. We also assume that the boundary conditions
of the flow model are known. These assumptions serve only
to simplify the analysis, and do not reflect limitations of
our approach.

Note each sample (point value) of head is a nonlinear
and nonlocal function of the entire hydraulic conductivity
function. Because the multiscale estimator is only able to
incorporate linear measurements of the unknown process

, the head measurements must be linearized. This
linearization is given by computing the Fréch́et derivative
of each observed head sample with respect to the
entire conductivity function on the domain. The value of

based upon the linearization about the conductivity
function is

(26)

where is the Fŕech́et derivative and is the
solution to (25) when . The Fréchét derivative is
given by [22]

(27)

where is the Green’s function [12] of (25) for
. If is the initial noisy measurement of head at

, the linearized head measurement is given by

(28)

where the measurement noisealso includes errors in the
linearization. When discretized, (28) can be expressed in
the form of (11).

For the constant background conductivity and
boundary conditions and , the Fréchét
derivatives for the 1-D flow equation are illustrated in
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(a)

(b)

Fig. 6. (a) A sample path of the log conductivity function and
(b) the corresponding head function. The noisy measurements are
indicated by�’s.

Fig. 4. Note that the Fréch́et kernels are nonzero over the
entire domain, indicating that each head measurement is
sensitive to the entire conductivity function. A Fréch́et
derivative for the 2-D flow equation is illustrated in Fig. 5
for . Define to be the 2-D spatial
coordinate. The boundary conditions assumed in this case
are that along and along , and
that the flux normal to the boundaries and
is equal to zero. The 2-D Fréch́et derivative indicates
that is more sensitive to local conductivity values
in 2-D than in 1-D. However, both the 1-D and 2-D
Fréch́et derivatives illustrate that head samples essentially
measure a coarse-scale derivative of.

V. APPLYING THE MULTISCALE FRAMEWORK

TO GROUNDWATER FLOW

In this section,7 the multiscale estimator is used to
fuse measurements of log conductivity and head into an

7The MATLAB code used to generate the examples in this section can
be obtained by anonymous ftp at the Website lids.mit.edu in the directory
pub/ssg/code/groundwater.

Fig. 7. LLSE estimate of the log conductivity function (solid line)
along with the one standard deviation confidence intervals (dotted
lines). The true conductivity function is also provided (dashed line).

estimate of the log conductivity function. The log con-
ductivity function is assumed to be wide-sense Markov,
and thus can be realized using the multiscale models
of Section II-C. (Remember that the class of multiscale
models isnot restricted to having a Markov process or
MRF at the finest scale.) The following examples serve
three purposes. First, we demonstrate the utility of the
multiscale framework for data fusion problems. Second, we
provide some enhancements to the algorithm of Section III-
C for managing the growth in state dimension due to the
addition of nonlocal measurements. Third, the conductivity
estimates and the corresponding error variances provide
some insight into the problems encountered in automatic
flow modeling. In particular, we demonstrate why the
incorporation of additional measurements like tracer travel
times and pump tests is necessary for producing reliable
estimates of hydraulic conductivity.

A. One-Dimensional Flow

For steady-state flow in 1-D, consider estimating log
conductivity on the interval . Assume that
is a 1-D first-order Markov process with zero mean and
covariance

(29)

Samples of this 1-D Markov process can be mapped to
the finest scale of one of the multiscale models described
in Section II-C. In particular, assume a binary tree with
six scales, four samples per state, and elements
at the finest scale. [The model for is illustrated
in Fig. 3(b).] A sample path of and the corresponding
head function are illustrated in Fig. 6, along with the noisy
point measurements. The Fréch́et derivatives of the seven
head measurements are illustrated in Fig. 4, i.e., the head
samples are linearized about the mean of the conductivity
function, .
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Fig. 8. The states of the first three scales of the multiscale model for a 1-D Markov process
after the inclusion of the seven linear functionals illustrated in Fig. 4. The brackets in each state
represent local averages of the finest scale process.

The variables of the multiscale representation of the
1-D Markov process can be augmented so that all of
the head measurements are modeled at the root node of
the tree. The estimate of the finest-scale process of
the multiscale model is given in Fig. 7. The multiscale
estimator also computes the estimation estimation error
variances , which are included in Fig. 7
in the form of confidence intervals. The confidence intervals
are equal to the LLSE estimate plus or minus a single
standard deviation of the estimation error. As would be
expected, most of the true conductivity function lies within
the confidence interval.

A closer look at the state augmentation for incorporating
the head measurements illustrates how the state dimensions
of the augmented model can be reduced, even when no
approximations are made. Assume that all seven head
measurements are placed at the root node of the tree by
recursively applying the algorithm of Section III-C. The
seven head measurements are represented by the inner
products , where is the 128 sample Riemann
sum approximation of . Using
a naive application of the augmentation algorithm, the
dimension of each state of the multiscale tree will increase
by 14. However, all of these dimensions can be reduced.
To see this, first note that the seven Fréch́et derivatives can
be represented by linear combinations of the eight local
averages

The state can be augmented with each of these local
averages without destroying the Markov property of this
state. Secondly, only needs to be augmented with

, and only needs to be augmented with
. Finally, note that the discontinuities of all seven

Fréchét derivatives lie at the boundaries of the eight finest-
scale intervals partitioned by the four nodes at scale .
Over each of these intervals, the Fréch́et derivatives are
constant, and thus linearly dependent. This “local linear
dependence” means that for all nodes

at scales . Therefore, the augmentation of any

state for is given by the two local averages
over the two finest-scale intervals descendent from node
. This augmentation is illustrated in Fig. 8. The seven

measurements are thus incorporated with only a minor
increase in the state dimension, especially at the finer scale
nodes. These increases are considerably less than would be
predicted from a repeated application of the algorithm of
Section III-C, and are due to the local linear dependence of
the kernels over the finest-scale intervals partitioned by
the nodes of the tree. Thus one can imagine modifying the
structure of the tree models, i.e., tailoring the descendents
of each node, to maximize this linear dependence and
minimize the effect of the augmentation on the estimation
algorithm.

Another way to reduce the effect of the state aug-
mentation on the multiscale estimator is to distribute the
measurements at various nodes on the tree. One problem
with placing all the measurements at a single node is that
the dimension of this node can become quite large, and the
computations required by the multiscale estimator increase
cubicly with each state dimension. For this example, keep

at the root node, but place and at
nodes and and place for at
the four nodes at scale . In this case, by repeatedly
applying the algorithm of Section III-C and also accounting
for local linear dependence, the dimension of the state at the
root node increases by only two, the states at scales
and increase by three, and the remaining states for
scales increase by two. Thus a redistribution of the
coarse-resolution functionals leads in this case to nontrivial
computational savings.

B. Two-Dimensional Flow

For steady-state flow in 2-D, consider estimating on
the square domain . Assume that is
a Markov Random Field with zero mean and covariance

(30)

where . Assume that and that
. The rectangularly spaced samples of this
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(a)

(b)

Fig. 9. (a) A sample path of the log conductivity function and
(b) the corresponding head function.

process form a discrete-index Markov random field,8 which
can be mapped to the finest scale of the multiscale models
for MRF’s discussed in Section II-C. In particular, assume
a quad-tree with five scales and 33-by-33 elements
at the finest scale. A sample path of this process is given in
Fig. 9(a). Note that the conductivity function is anisotropic,
with stronger correlation in the horizontal than the vertical
direction. Such horizontal stratification is typical of ground-
water aquifers which arise from sedimentary deposition.
The corresponding head function is given in Fig. 9(b),
assuming the following boundary conditions: along

, along , and the water flux normal
to the boundaries and is equal to zero.
Note that the head function is considerably smoother than
the conductivity function.

The locations of the measurements from which the con-
ductivity function is to be estimated are illustrated in

8In general, sampling a continuous-index MRF does not produce a
discrete-index MRF [2].

Fig. 10. The locations of the conductivity measurements (�’s)
and head measurements (�’s).

Fig. 10. This measurement geometry mimics that given
by full and partially penetrating wells. The noise added
to the conductivity measurements has standard deviation

, while the noise added to the head measurements
has standard deviation . For incorporation into
the multiscale framework, the head measurements are lin-
earized about the conductivity mean, . The variables
of the multiscale model are augmented with the linearized
head measurements according to Section III-C. However,
similar to the Fŕech́et kernels in 1-D, the 2-D kernels

are probabilistically dependent over some of
the finest-scale domains partitioned by the tree nodes. As a
consequence, by placing the head measurements somewhat
arbitrarily about the states at scales and ,
the maximum increase in the dimension of any state is 37.
(The state dimensions can be reduced further if slight errors
in the model can be tolerated.) The estimate of the finest-
scale process, , and the corresponding estimation error
variance are plotted in Fig. 11.

C. Discussion of Examples and Method

For both 1-D and 2-D flow, the head samples contribute
relatively little information about the hydraulic conductiv-
ity function. For 1-D flow, the contribution of the head
measurements is evidenced by the “mild” inflections in
the conductivity estimate of Fig. 7 near the locations of
the head measurements; yet the reduction in uncertainty
due to a head measurement is less than that due to a
conductivity measurement. For 2-D flow, the insensitivity
of head samples to hydraulic conductivity variations is
evidenced in regions of dense head measurements by both
the smoothness of the 2-D head function illustrated in
Fig. 9(b) and the error variance shown in Fig. 11(b). Note
that the error variance in regions of dense conductivity
measurements decreases much more dramatically than in
areas of dense head measurements. This insensitivity of
the head measurements to local variations in hydraulic
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(a)

(b)

Fig. 11. (a) The LLSE estimate of the log conductivity function
in Fig. 9(a), and (b) the variance of the estimation errors.

conductivity is due in part to the poor linearization given by
the mean conductivity function as the point of linearization,
and is improved by successively relinearizing about the
current conductivity estimate. However, the real problem
is that the estimation of hydraulic conductivity from head
is an extremely ill-posed problem [21]. For the examples
in this paper, the head measurements were incorporated
only to verify that the multiscale framework can be used
to fuse measurements of varying spatial resolution. (In our
present work we are using the multiscale framework to also
incorporate tracer travel time data.)

Another feature of the hydraulic conductivity estimates
is that they have fine-scale fluctuations only where

such variations can be inferred from the data, e.g., near the
line in Fig. 11(a). In terms of the error variance,
conductivity is estimated with fine-scale features only in
areas where the uncertainty is small. This suggests reducing
the number of parameters used to describe the conductivity
estimate in areas where the estimate is smooth. Because the
multiscale estimator produces both estimates and error vari-
ances at each scale of the process, an estimate with space-

varying resolution can be selected which possesses some
optimal trade-off between resolution, number of parameters,
and variance. Within a full nonlinear optimization, where
for each iteration the head measurements are linearized
about the current conductivity estimate, this approach might
eventually be used to reduce the number of parameters used
to re-linearize the head measurements, and hence reduce the
number of computations require for the inversion.

As for the efficiency of the multiscale framework, for
the 33-by-33 example the multiscale estimator requires
slightly fewer computations (380 -flops) than does a
direct solution to the normal equations (470 -flops)
for producing the LLSE estimate and the corresponding
error variances. However, this differential will become
more pronounced for larger domains or if the number of
measurements is increased. (The 33-by-33 example was the
largest sized problem for which we could directly compute
on a workstation the solution to the normal equations
and the corresponding error variance.) Also, while the
number of computations required to implement the normal
equations increases cubicly with the number of finest-scale
measurements, the number of finest-scale measurements
has only minimal effect upon the number of computations
required by the multiscale estimator [23]. Note that the
overall sampling density of the finest-scale process for
our 2-D example is low, as illustrated in Fig. 10, so the
multiscale framework will compare more favorably as the
number of finest-scale measurements increases.

VI. CONCLUSION

In this paper, we showed how the efficient multiscale esti-
mation framework can be extended to data fusion problems.
The basic idea is to model each measurement as a point
value of the multiscale process, where the location in scale
and space of this point value depends upon the resolution
and region of support of the measurement. The method
we proposed was to augment the variables of an internal
multiscale model with linear functions of the finest-scale
process derived from the nonlocal functions which are to
be measured. Furthermore, we showed how probabilistic
dependence among the nonlocal measurements and the
existing state variables leads to reduced-
order augmentations, and therefore to efficient solutions
of the corresponding data fusion problems. In particular,
the multiresolution framework was used to estimate hy-
draulic conductivity from point observations of hydraulic
conductivity and head.

In terms of the data fusion problems described, the
multiscale framework is attractive for a number of rea-
sons. First, the resolution and spatial distributions of the
measurements can be completely arbitrary, which poses
problems for many of the standard tools used to solve large
estimation problems. For instance, Fourier based methods
for implementing the normal equations assume that the
measurements are both regularly spaced and at a single
resolution. Second, the multiresolution estimator provides
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error variances without any increase in computations. These
error variances are useful for evaluating the reduction in
uncertainty supplied by the measurements, or for selecting
the location and resolution of additional measurements.
Also, the estimation errors can be modeled by a multiscale
tree whose parameters are a by-product of the multiscale
estimator [18]. These error models can be used to efficiently
compute multiple conditional simulations of the hydraulic
conductivity function, which are useful for characterizing
the behavior of groundwater aquifers. In contrast, condi-
tional simulations computed by standard implementations
of the LLSE estimator require the Cholesky factorization
of a large and nonstationary estimation error covariance.
Third, note that the multiscale estimator can be used
within a complete nonlinear inversion. Each iteration of a
Gauss–Newton optimization is equivalent to implementing
a LLSE estimator [22], where the nonlinear measurements
are linearized at each iteration about the present estimate
of the conductivity function. Therefore, the multiscale mod-
eling and estimation can be used to efficiently implement
each iteration of the optimization. (In the examples, we
considered only the initial iteration, with the mean as the
point of linearization.) Furthermore, multiscale estimates
have been shown to be useful for both accelerating and
improving the accuracy of these nonlinear optimizations
[16].

The challenge for the multiscale framework in the context
of data fusion is to apply it to truly large problems, e.g., to
estimate over a large spatial domain and to incorporate
other measurements, like contaminant concentrations. This
will require developing a comprehensive framework for
managing the dimensions of the state augmentations. This
is a complicated problem, since, as shown in the examples,
the dimension of the augmentations is affected by the
support of the nonlocal measurements, the location at
which the measurements are placed on the tree, and the
regions descending from each tree node. Another method
for managing the state dimensions is to consider build-
ing approximate models which trade off statistical fidelity
for computational efficiency. Because the prior model is
usually only a description of the phenomena of interest,
approximating the statistics is reasonable and necessary
when the problems are large enough.
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