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This paper covers the design of multiscale stochastic models process or random field for problems in which the measure-
that can be used to fuse measurements of a random field orment data may be of very different types and, in particular,

random process provided at multiple resolutions. Such sensor o convey information about the random phenomenon
fusion problems arise in a variety of contexts, including many

problems in remote sensing and geophysics. An example, which@t Very different scales. Problems of this type arise in
is used in this paper as a vehicle to illustrate our methodology, is @ variety of contexts, perhaps most notably in remote
the estimation of variations in hydraulic conductivity as required sensing and geophysical applications, in which spatially
Ior _thel,d:ﬁrat‘(t?;er'zﬁt'on of grOl:”(éwatetr, f'o‘t’V-dSUCh a Emb'em s distributed random fields are to be estimated for a variety
ypical in that the phenomenon to be estimated cannot be measure : - -

at fine scales throughout the region of interest, but instead must f purpo.s_es rgnglng from.th? Sl.mple prOdUCthn OT maps
be inferred from a combination of measurements of very different Of quantities like rainfall distributions to the estimation of
types, including point measurements of hydraulic conductivity at Spatial quantities to be used in the analysis of complex

irregular collections of points and indirect measurements that pro- geophysical processes like ocean currents and subsurface
vide only coarse and nonlocal information about the conductivity fid flow.

field. Fusion of such disparate and irregular measurement sets is . .
a challenging problem, especially when one includes the objective Geophysical phenomena such as these are typically not

of producing, in addition to estimates, statistics characterizing the accessible to dense, uniform measurement, and one gen-
errors in those estimates. In this paper, we show how modeling a erally must rely on a variety of measurement sources

random field at multiple resolutions allows for the natural fusion of very different types in order to obtain enough spatial

(or assimilation) of measurements that provide information of ¢,yerage to produce reliable estimates. Furthermore, while
different types and at different resolutions. The key to our approach L
is to take advantage of the fast multiscale estimation algorithms Some (_)f thes? measurem(_ants may be taken at individual
that efficiently produce both estimates and error variances even Points in the field—e.g., rain gauges, ocean measurements
for very large problems. The major innovation required in our from ships, measurements of subsurface properties in bore-
Calse, hOWeVer, is to extend the modellng 01.; random fields within holes—these measurements are typ|ca||y sparse, irregu|ar|y
this framework to accommodate multiresolution measurements. In sampled, and inadequate by themselves. Consequently, they
particular, to take advantage of the fast algorithms that the models . .
in [4] admit, we must be able to model each nonlocal measurement Must be fused with measurements that are indirect and
as the measurement of a single variable of the multiresolution provide nonlocal measurements of the phenomenon of
model at some appropriate resolution and scale. We describe howinterest over areas that are not adequately covered by
Fhis can be dong and illustrate its effectiveness for an ill-posed the |ocalized point measurements. These indirect obser-
inverse problem in groundwater hydrology. vations are usually of varying resolution. An example

I. INTRODUCTION sensor fusion problem with multiresolution measurements

In this paper we describe a methodology for the efficient, is the estimation of precipitation, which is used for nu-

statistically optimal fusion of measurements of a random Merical weather prediction (NWP). Precipitation can be
measured with rain gauges, radar sensors, and microwave
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rated [13], [26]. Another geophysical system requiring fair to say that computational complexity, especially if
the assimilation of heterogeneous measurements is oceamrror variances are desired, remains a significant and lim-
currents. Ocean currents are measured with a variety ofiting challenge. Several other researchers have attempted
sensors, including floating buoys, acoustic travel times, to make use of the multiscale nature of the problem
satellite altimetry, and direct and indirect observations of by using wavelet decompositions in order to overcome
temperature and salinity. While the floating buoys can computational limitations, for example [1], [3], [16], and
observe fine-scale fluctuations in the ocean currents, their[24]. However these efforts do not address all of the
coverage is limited. More comprehensive coverage, albeitissues of interest here as they either focus only on using
at a coarser resolution and limited to the ocean surface,wavelets to obtain estimates but not error statistics [1],
is given by the satellite data. How to fuse the many [3], [16], require regular measurements so that wavelet
different measurements in order to produce the most reliabletransforms can be applied [24], or admit only very special
descriptions of ocean currents is a very active research topicnonlocal measurements, namely those that correspond to
[11]. the explicit direct measurements of wavelet coefficients
The application used in this paper to illustrate the mul- at particular scales [1]. In contrast, the approach that
tiscale methodology is the estimation of hydraulic con- we develop here computes estimates and error statistics,
ductivity for characterizing groundwater flow. Accurately is directly applicable to arbitrary measurement sets, and
describing the flow of fluids in the earth’s subsurface allows us to use a wide variety of prior statistical models
is important due to the prevalence of contaminated soils to describe the statistical variability of the phenomenon.
in or near groundwater supplies. An accurate description The basic idea behind our approach is to develop multi-
of groundwater flow requires an accurate description of scale models for random processes and fields within the
hydraulic conductivity, which is a property of the sub- class introduced in [4]. These models describe random
surface geology known to be an important determinant phenomena using tree structures for which each level of
of groundwater flow. Geologic properties like hydraulic the tree represents a different resolution of the phenomenon
conductivity can be measured directly only at select well of interest. Analogous to one-dimensional (1-D) autore-
locations. Indirect observations are supplied by tracer travel gressive models which evolve recursively in time, these
times, pump tests, acoustic wave propagation (seismics),multiscale models evolve recursively in scale. The utility
and measurements of fluid properties like hydraulic head. of this class of models is twofold. First, the class has
These observations differ in spatial resolution and support, been shown to provide useful models for a wide variety of
and each is related to hydraulic conductivity by a physical random processes and fields, such as 1-D Markov processes
equation, i.e., a PDE. As illustrated in Section IV, point and two-dimensional (2-D) Markov random fields (MRF'’s)
samples of hydraulic head are essentially observations of[19] and self-similar and fractal processes that can be
a coarse-scale derivative of hydraulic conductivity and are used to model natural phenomena arising in geophysics
nonlocal in the sense that each head sample is sensitivg8], [9]. Second, and most importantly, just as the Markov
to the entire conductivity field to be estimated. Again, no property associated with 1-D autoregressive models leads
single measurement source can provide a reliable estimatdo a highly efficient estimation algorithm, (the Kalman
of hydraulic conductivity, and all available measurements filter), the multiscale models satisfy a Markov property
should be used. in scale and space which leads to an efficient estimation
Thus a fundamental objective of our work has been to de- algorithm. Also, the multiscale estimator automatically, i.e.,
velop methods for the fusion of such disparate measurementwith no additional computations, produces estimation error
sources, a difficult problem given the nonlocal nature of at covariances. Moreover, the efficiency of this algorithm does
least some of the measurement data. Moreover, there arenot require regular data and in particular can accommodate
several other features of such geophysical problems that addarbitrarily spaced measurements.
to the challenge. First, and most importantly, the problems In recent work this model class has met with considerable
of interest in applications such as these are extremely large,success, both in demonstrating that very rich classes of
and thus developing computationally efficient algorithms is stochastic phenomena can be represented within this frame-
absolutely crucial. Second, there is generally a strong needwork an in applying the associated estimation algorithm
for the computation not only of estimates of phenomena to several applications, including computer vision [17]
but also of error variances for these estimates so that theirand the optimal interpolation of sea level variations in
significance can be assessed. Third, there are often venthe North Pacific Ocean from satellite measurements [8].
strong reasons to think about describing phenomena atHowever, in all of this work, attention has been focused
multiple scales, both because the underlying phenomena inalmost exclusively on the finest level of the multiscale
applications such as these generally exhibit variability over representation. That is, in modeling a random phenomenon
wide ranges of scales and also because the available datén this framework the objective has been to ensure that the
may support statistically meaningful estimation at different finest scale of the model has a desired statistical structure.
resolutions in different regions, depending on the coverage Also, in estimation applications, the measurements that
and nature of the available measurements. have been considered have all been at the finest level
A variety of methods for fusing measurements in such of representation, i.e., they have corresponded to point
contexts have been used over the years [22], but it is measurements of the phenomenon. In this context, the vari-

DANIEL AND WILLSKY: A MULTIRESOLUTION METHODOLOGY FOR SIGNAL-LEVEL FUSION AND DATA ASSIMILATION 165



ables captured at higher (coarser) levels in the multiscale o .. Root Node
representation are simply abstract variables that are carriedResolution

along simply to ensure the statistical structure that allows
us to apply the very fast algorithms that these models admit.
Nevertheless, these algorithms actually allow measurements
and produce estimates at these coarser scales. This suggestd
that if care were taken to define multiscale models so that
these coarser scale variables also represented quantities
of interest—specifically nonlocal weighted averages of the
phenomenon that correspond to variables that are either
measured through indirect measurements or that we wish to
estimate—then we would be able to use this same efficient gine
estimation methodology for the fusion of measurements Resolution

at different resolutions. Achieving this objective, however, ¥‘—V—JJ
is not an obvious or trivial task, and one of the major Leaf Nodes
contributions of this paper is to demonstrate how this can be (@)

accomplished. The second contribution is then to use this
methodology as the basis for designing extremely efficient
and flexible data fusion algorithms that can accommodate
measurements at different resolutions and with arbitrary
spatial distribution. This capability is demonstrated by

estimating hydraulic conductivity from point measurements

of conductivity and measurements of head, which provide
nonlocal measurements of conductivity through the partial
differential equations of groundwater hydrology.

In the next section we provide a brief review the class
of multiscale models of [4] and include a description of
multiscale models for Markov processes, which will be
used throughout this paper to illustrate our results. In
Section 1ll, we present a modeling algorithm that begins
with a multiresolution model that accurately captures the s(xl sa2 sQ
finest-scale statistics of the phenomenon of interest and
augments this model in order to incorporate variables at (®)
coarser scales representing nonlocal quantities. We applyFig. 1. (a) A binary tree used to index a random process at

this methodology in Sections IV and V and conclude in Multiple resolutions and (b) the local labeling of thet- 1 nodes
Section VI connected to node.

q

II. MULTISCALE MODELS denotes thatr is a random vector with meam, and
covarianceP,.! Equation (1) defines an autoregression from
coarse to fine scale, witly(s) as the process noise of the
autoregression. The autoregression is initialized at the root
nodes = 0 by

A. Multiscale Models and the Multiscale Estimator

The class of multiscale random processes introduced in
[4] is indexed by the nodes of trees organized into scales.
The coarsest scale is indexed by the root node, while the z(0) ~ (0, Fo). (2)
finest scale is indexed by the set of leaf nodes. For example
the multiscale process defined on the binary tree illustrated
in Fig. 1(a) consists of a set of random vectefs) for each
nodes on the tree. Thecaleof nodes, which we denote by
m(s), is the distance between nodend the root node of
the tree. Define to be the upward (in scale) shift operator,
so thatsy denotes the parent of any nodgas illustrated
in (1b). The class of multiscale processes considered in this
paper satisfies the following autoregressiorscale

'Since z(0) and w(s) are zero-mean, every process value
z(s) will be a zero-meahrandom vector.

The process noises(s) is assumed to be a white-noise
process uncorrelated across scale and space and also uncor-
related with the root node state, i.&fw(s) 2(0)7] = 0.

The whiteness of the process noise implies that a multiscale
tree model is characterized completely By—the root
node covariance—and the autoregression parameters

1This paper will focus upon second-order descriptions of random

Z(S) = AsZ(S’V) + w(s) (1a) processes and on best linear estimators. Of course, if all variables are
( ) ~ (0 O ) (1b) Gaussian, this second-order description is also a complete specification
wis 1S and best linear estimators are in fact optimal over the larger class including

nonlinear estimators.

where z(s) is the process value at nF)d;eand #(s7) is 2The zero-mean assumption is made for simplicity and is easily relaxed
the process value at nodg. The notationz ~ (m., P;) by adding a deterministic term to (1a) or (2).
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and @), for all nodess # 0. (A; and @, are not defined linear function of the finest-scale process, where the finest-
for s = 0.) More importantly, the whiteness of the process scale process is the statess) at the leaf nodes of the
noise leads to a Markov property similar to the Markov tree. If f is a vector containing the finest-scale process of
property for 1-D autoregressive processes driven by white the tree, then each state of an internal realization can be
noise. Specifically, note that any noslewith ¢, defined to expressed as

be the number of children of node partitions the tree into

gs + 1 subsets of nodes [see Fig. 1(0fa,, <+, Ssay, 2(s) = Vo f. (4)

and 7, wheré Each linear functiori/, f will be referred to as ainternal
variable and each matrix, as aninternal matrix For
the example sensor fusion problem given in Section V,
the vectorf will contain a discretization of the hydraulic

S, = set of nodes descendent from and including nede
S¢ £ complement ofS,

sa; = child of nodes, i=1,---,qs. conductivity function.
_ o ) N Note that the parametei), A, and @, of an internal
We will also find it useful to writeS,,, ,, = S;. The multiscale model can be expressed completely in terms of

Markov property of multiscale tree processes is that, con- he internal matriced, and the covariance of the finest-

ditioned on the state(s), theq, +1 sets of states partitioned  scale process?;. Specifically, substituting (4) evaluated at
by nodes are conditionally uncorrelated. More formally s = 0 into Py = E[2(0) 2(0)7] yields

Elz(r) 2()T | 2(s)] = Elz(r) | 2(s)] E[2(t) | 2(s)]" Py =VoPiVo!. ()

for all 7 € Ssa;, t € Ssa;, @ # J, @and(i, j) € [1,¢s + 1] x The parameters, andQ, can then be computed by noting
[1,¢s + 1]. Because of this Markov property, the process that (1a) is just the optimal prediction ef s) based upon

value z(s) is commonly referred to as thetateat nodes. z(s%), plus the associated prediction error, i.e.,
The Markov property of the multiscale processes leads ~
to an efficient algorithm for the estimation ef-) at every #(s) = Elz(s) | 2(s7)] +w(s). (6)

node on the tree based upon measurements, each of which,
is a noise-corrupted observation of-) at an individual
node of the tree, i.e,,

y(s) = Csz(s) +u(s),  v(s) ~ (0, Rs) ®3)

sing standard equations from LLSE estimation, the model
parameters follow as

—1
As = P.(o)as%) Puis) (7a)

Qs = Pae) = Peto)aton) Pomy Petempety - (70)
wherew(-) is white and uncorrelated with(-) at all nodes

on the tree. Measurements at coarse-scale nodes will gen )
erally be equivalent to measurements of coarse-resolution! xs denotes the cross-covariance betweemnd y, and
or nonlocal functions of the finest-scale process. The mul- R’fly denotes the fcovariance of after conditioning ory.
tiscale estimation algorithm provided in [4] is a gener- Finally, the covariances in (7) follow from (4) as
alization of the Kalman filter and Rauch-Tung—Striebel Py = V. PV, T (8a)
smoother [27] for dynamic systems in time, i.e., processes p o pr —v.pvL (8b)
given by (1) for a tree withy = 1. The first sweep of the #2)2(s7) T La(sMz(s) T Vel Vs

estimator is a recursion from fine to coarse scale, which is  Although the algorithm used in Section Il assumes that
then followed by a recursion from coarse to fine scale. The an internal multiscale model is given, it is appropriate
result is that the linear least-squared error (LLSE) estimate g make several comments about these models. The con-
%(s) of the state at every node in the tree is computed stryction of an internal multiscale model for a finest-scale
in O(Nd®) computations for a tree which ha¥ node$ processf with covarianceP; consists of three steps: 1)
and constant state dimensidn Thus the efﬁciency of the mapp|ng the Components qéf to leaf nodes of the tree'
estimator depends primarily upon whether a tree model which also determineg, for each of the finest-scale nodes,
can be realized with manageable state dimension. As a2) Specifying the internal matric% at the coarser-scale
by-product, the multiresolution estimator also produces the nodes, and 3) computing the model parameters using (5)

where F,, denotes the covariance of the random veatpr

estimation error covariancB((z(s) — £(s)) (2(s) — 2(s))"] and (7). Step 1) is generally straightforward, although the
at every node. mapping can be affected by the nonlocal functions’ dd

be incorporated at coarser-scale nodes. Also, as we have
B. Internal Realizations of Multiscale Models seen, step 3) is straightforward. Consequently, the core of

As defined in [15], arinternal realization of a multiscale ~ constructing internal realizations is determining the internal

model is one for which each variable of the process is a MmatricesV; and the resulting covariances in (8).
As discussed in [15], internal multiscale realizations
h'Ehe On'lé ?ﬁceptions are thel ﬁtUESt refo'ugon 'ﬁ?fh”gdes which h?\/e no can, in principle, be constructed for a finest-scale random
chjcren anc T coarses’ Fesotion roo” noce WhICh has N0 PATEML  processf with any desired covariande;. However, for an
Note that a tree withV; nodes nodes at the finest scale has only bi h ks of th It . | .
O(Ny) nodes, and thus also requires oy N ¢d®) computations to be arbitrary Py the ranks of the resulting internal matrices,

estimated. which equal the dimensions of the corresponding state
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vectors z(s), may be quite large and thus negate the ' ' ' ' L
computational advantage of the tree model. Fortunately, 2 ’ 0
as developed in [9], [15], [19], there are large classes of 18- - .
processes for which either exact or adequately approximate , .| ' /,/ i
multiscale realizations can be constructed that have suffi- » 7
ciently low dimension to make the multiscale formalism 4 |
quite attractive. In the next section, such models for wide- 12+ 1
sense Markov processes and MRF’s [19] are described and Bl _ Rl |
will later be used to illustrate our methodology. :

0.8f - b
C. Example: Multiscale Models for Markov Processes 06l : e

A discrete-time processf[k] is a bilateral Markov 04 S 1
process [7] if, conditioned on the values ¢fk] at the oal |
boundaries of any interval = [k, ko], k2 > Ky, the oL
process inside the interval is uncorrelated wifk] outside o 5 0 15 20 25 0
the interval. The width of these boundaries depends upon k
the order,n, of the process. More precisely, define (@)

So =Sk | k€ [kb1 —n, ks = 1] U [k2 + 1, k2 +n]} o ' ‘ ' ‘ I
to contain f[k] at the boundaries of for an nth order 18l - ]
process. Also defing[k] = f[k]—E[f[k] | f,], which is the i '
process containing the uncertaintyjif] after conditioning o S v _ i
on the boundary values. Thefjk] is said to benth order 1af o e 1
bilateral Markov if 1ol 1 1

E[fll1fim]]=0 forallleandm ¢ I. 1t ]
Similar to the boundary values, defirfe to contain then o8y - I
present values of [k], i.e., f, = {f[k], flk+1],---, flk + 0.6t 1
n — 1]}. An nth orderunilateral Markov process is one | .’ |
for which o

0.2 -/ 1
E[flllfiml] =0 foral I<k<m S , . , .
0 5 10 15 20 25 30
where f[l] = f[I] = E[f[]] | /,], i.e., conditioned on the K
n “present” values off[k], the past and future are un- (b)

correlated. While not every bilateral Markov process is Fig. 2. Steps one (a) and two (b) of the midpoint deflection

a unilateral Markov process, every unilateral process is 2l9orithms for synthesizing Brownian motion. The dashed line
. . provides the interpolation (LLSE estimate) of the process from

a bilateral [7], so that any method for the multiscale the present boundary values, the solid line is the deflection of the

modeling of bilateral Markov processes applies equally well midpoint(s), and the dotted line is the new interpolation.

to unilateral Markov processes.

The multiscale models described in [19] are based upon
the midpoint deflection algorithm for synthesizing Brown-
ian motion [6]. The basic idea behind the midpoint deflec-
tion algorithm is that, given the values of a Markov process
at the boundaries of any interval, the midpoint value of this
interval can be synthesized independently of any values
outside the interval. As an example, consider a first-order
Markov process on the intervil, N]. Given f[0] and f[V],
then the midpoint valuef[ko], where the “midpoint”kg
can in fact be anywhere in the intenvdl V — 1], can be

writen as ] Flks) = E{fla] | 0] fholl + fll]  (202)
flko] = Elko | fi]+ flko] (92) flk2] = ELfTa] | fTkol, /I + fls] - (10b)

= Pt P72 f 9b
stio) 5 Fpy o S ol (50) for any “midpoints™k; € [1, ko—1] andkz € [ko+1, N—1].
where f, = [f[0] f[N]]*. The second equality in (9) More importantly, the two deﬂectionﬁ[kl] and f[kQ] are
follows from standard LLSE formulas. The covariance uncorrelated due to Markovianity, and thus can be gener-
matrices in (9b), as well as the covariance fikg], are ated independently. An example of the interpolation and

given by the statistics of the Markov process. Equation (9)

can be interpreted as an interpolation from the boundary

values plus a deflectiofi[ko], as illustrated in Fig. 2(a) for

a sample path of Brownian Motion on the interval [0,32].
Once f[ko] is determined, we then have the boundary

values of the two intervald; = [0, ko] and I> = [ko, N].

The values of the process at the midpoints of these two

intervals can again be generated by an interpolation and a

deflection, i.e.,
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contains samples of[k]. Therefore, the parameters for the

k scale recursive autoregression follow from (7). However,
note that the covariance matrices in (8) can be computed
without explicitly computing P, the covariance of the
entire Markov process which is to be represented at the
finest scale of the tree. The ability to compute the model
parameters without explicitly formingP; is especially
important for modeling 2-D random fields.

There is considerable flexibility in modeling 1-D Markov
processes with the multiscale autoregression. The trees do
not have to be binary, and the state dimension can vary
from node to node [19]. However, the general procedure
for developing an internal multiscale model of a Markov
process remains the same, i.e., forming states as samples
of subintervals of the Markov process and then deducing
the model parameters from (5) and (7). This flexibility also
holds in 2-D, where the midpoint deflection algorithm can
be generalized to develop internal multiscale models for

(b) Markov random fields [19]. A MRF is the 2-D generaliza-
Fig. 3. Multiscale models for first-order Markov processes, Flon of 2 1-D bilateral procgs‘s. Name_ly‘ a wide-sense MRF
where each ellipse represents the samples of the Markov process is a 2-D random procesgli, j] for which the values off
vrv1hich comp)ri_se thef_stactje(s) ata Tingltle nOdﬁ. Eor eackh model, in any connected sd? are uncorrelated with the values of
the statez(s) is confined to sample values of the Markov process ; ; "
within the intervall;. (a) A binary tree with a state dimension of f outside this set when conditioned on ,the Value# an
three, and (b) a binary tree with state dimension four. the boundary of2. Analogous to the multiscale models for

1-D Markov processes, the states of the multiscale models
) ) _ . for MRF’s contain the values of on the boundaries of
deflection associated with these two samples is |IlustratedSubregions of the entire domain on whighis defined
in Fig. 2(b). o , In other words, if{ f[i, 4] | (4,7) € Q,} is the finest-scale
AfFer the first two steps of the midpoint deflepﬂon SYN"  MRF descendent from nodethenz(s) contains the values
_thess,f[k] has been (_:omputed at th? endpoints _Of four of f[¢,7] on the boundaries of subregions which co¥gr
intervals. The synthesis process continues recursively byThe width of the boundaries again depends upon the order

generating the midpoint values of the four intervals, each of of the MRE. Once these boundaries have been determined
which can be generated independently. In what follows, we the model parameters can again follow from (5) and (7).

descrit_)e how this recursi.ve process can be re_presented by The major difference between the multiscale models for
a multlscalgl autoregression. To simplify notation, assume 1 _ny \arkoy processes and those for MRF's is that the state
tEatN =2 .hChoosmgl(jo = N/2 alsr) the first midpoint,  yimensions for MRF's grow with the size of the domain

the state at the root node Is given by of the finest-scale process. The dimension of a state in a

710] multiscale model of 1-D Markov processes depends only
2(0)= | fIN/2] | . upon the order of the process and the number of children,
FIN] qs, descending from node For 2-D MRF'’s, the dimension

of the statez(s) at a nodes corresponding to some 2-
Modeling the process on a binary tree, the process valuesD region is proportional to the linear dimension of the
at the two descendents of the root node can also be chosemoundary of that region. However, in many applications
to contain three samples g¢fk]. Namely, choose the MRF is only a model of the phenomenon of interest,
and thus exactly matching its statistics is unnecessary.

£[0] fIN/2) - el - -
_ _ Indeed, in [19] low-dimensional multiscale models with
#(0a) = ﬁ%?;{ and z(0az) = f[?[jxf/ﬁ] ’ approximately the same statistics as MRF'’s have been used

with success.

The process noise generated when transitioning from scale

m = 0 to scale onew(0a;) and w(Oaz), will contain ll. AUGMENTING THE VARIABLES OF

fIN/4] and f[3N/4], respectively. From Markovianity, — INTERNAL MULTISCALE PROCESSES

these two vectors are uncorrelated with each other, and 4, internal models, (3) can be rewritten as

from the orthogonality of the LLSE they are uncorrelated

with z(0). This process can be continued recursively until y(s) = OV, f +v(s). (11)

the variables at a given level of the tree represent the entire

interval of interest, as illustrated in Fig. 3(a) foFf = 8. Therefore, given an internal multiscale model, the mul-
The multiscale models for 1-D Markov processes are tiresolution estimator described in [4] can incorporate only

internal multiscale models, since each state) simply measurements of particular linear functionsfofi.e., only
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functionsG f for which each row of is in the row space Instead of directly augmenting(r) in (12) with G,

of some internal matri¥/;. For instance, given one of the another linear function must be found for which 1) the

multiscale models for 1-D Markov processes described in augmented variablé(r) still decorrelates the.- + 1 sets

Section II-C, the multiscale estimator cannot incorporate of internal variables partitioned by node and 2)((7)

a measurement of the average value of the finest-scalecontains Gf. To understand how this linear function is

process, since no single state contains the average valuehosen, it is useful to first examine how the internal

of f. variables are chosen in general, i.e., when the finest-scale
To expand the set of functions represented by the treeprocess is not necessarily a wide-sense Markov process.

model, which will allow the multiscale estimator to fuse For internal multiscale realizations of a finest-scale process

multiple-resolution observations of the random procgss [ ~ (0, Py), the variables can be assumed to satisfy

one can imagine augmenting the internal variablgg

with additional linear functiong and then recomputing the 2(s) =Vsf = W.fs (13)

model parameters. However, doing this requires consider- . )

able care. In particular, the states must be augmented suci'herefs contains the finest-scale process at nodes descen-

that both the Markovianity of the tree process is preserved o_lent froms_[15]. I_n other words, the state at nodes a

and the resulting model is internal. For example, suppose“near function of its descendents. Note that the multiscale

we naively augment the state of our model at a single node M°dels for Markov processes discussed in Section II-C
in order to include the linear functio f. That is, suppose ~ Satisfy (13). Equation (13) leads to a simpler form of the
¢(s) = 2(s) for s # 7 and Markov property for.multlscale trees. Note Fhat, 'ffor:
1,---,¢s, each state in the s€t(t) | t € Ssq, | IS a linear

(12) function only of f,,.. Also, each state in the sgk(t) |

t € Ssa,,,, t is alinear function only ok(s) and fsa, .,
—~ which represents the finest-scale process which does not
descend from node. (When the number of subscripts
In general, this augmentation will destroy the Marko- becomes unwieldy, we will substitujg- éfsaqs+1-) Thus
vianity of the tree. For example, the stategr7), a statez(s) satisfies the multiscale Markov property if
z(tay), -+, 2(Tay) generally arecorrelated with each and only if it conditionally decorrelates thg + 1 random
other after conditioning og(7). The consequences of this  vectors{fs., }1<i<q,+1. Therefore, to augmeni(s) with
correlation are that, for the multiscale model defined by (5) a linear function off and not alter the covariance of the
and (7) withV, substituted for//,, the finest-scale process finest-scale process, we need only ensure thatthe 1
will not have covariance’s; also, the model will not be  vectors{ f,,, }1<i<q.+1 remain conditionally uncorrelated.
internal, i.e., the state at nodewill not be equal to alinear To do so we make use of the following corollary of
function of the finest-scale process. Proposition 5 in [15, Ch. 3].

The issue here is that the augmentation at nodigtro- Corollary: If the g, + 1 vectors {fsa, }1<i<q,+1 are
duces some coupling among field values due to the nonlocaluncorrelated after conditioning on some linear function
nature of the linear functioti . If the correct statistics are  V; f, they remain uncorrelated after conditioning dnf
to be maintained, and the state at nedis to contain the  and individual linear functions of,,,, ¢ =1,---,¢s + L.
desired function of the finest-scale process, the effect of the For example, the, + 1 vectors{ f.., }1<i<q,+1 are un-
coupling must also be propagated to other nodes on the treecorrelated after conditioning oW f, L1 fsa,, and Ls fsa,,

but they will generally be correlated after conditioning

A. Maintaining the Markov Property of uponV; fand L[fZ, , fL,]*. Therefore, to add the linear

the Internal Variables functional (g, f) = ¢¥f to z(7), we first define the
following matrix:

¢(m)

[
Qx
\

For internal realizations, the Markovianity of the vari-

ablesV, f guarantees that the finest-scale process of the gfal 0o - 0 0

multiscale model whose parameters are derived from (5) 0 g, O 0

and (7) has the desired covariance [15]. However, as just )

discussed, augmentirig, f with additional linear functions = 5 0 (142)
of f can destroy this Markov property and thus alter the 0 gfaq_ 0

covariance of the finest-scale process. For instance, consider 0 0 ... 0 gf%_H

the multiscale models for 1-D Markov processes described

in Section II-C. If the average value of the finest-scale Where(g..., fro.) is the component ofg, f) which is only
process is added to the state at the root node of the tree@ function f-,, i.e., the sum of all the elements @ f
then the deflectiong[k;] and f[k;] will be correlated. The  equals(g, f). The variable at node can now be augmented
reason is that the “left” and “right” halves of the finest-scale as

process are correlated after conditioning ¢i9) = V, f, w, o][f

(which contains the original state(0) and the average ((r) = { @ } {f T} (14b)
value of ). This implies that some additional augmentation ~— oS

will be required to account for the correlation. V- f

170 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 1, JANUARY 1997



without altering the Markov property. Note that 4f has
full support, i.e., if each termg, ., fr«.) Z 0, then this
augmentation requires an additioral+ 1 elements in the

the interval [0,15]. The multiscale model for this process
is illustrated in Fig. 3(b). Assume that the 1-D Markov
process is to be estimated, using the multiscale estimator,

state at noder. If some of these terms are zero, then a from point measurements of[k] together with a mea-
lower-dimensional augmentation is required. Furthermore, surement of the sum = (Eiio f[k]) of the finest-scale

if any of the rows ofG, are already in the row-space of
[W- 0], these elements are already availablez{m) and
need not be added. Note also that since the partitioning of
into f,., is different for each node, one might imagine that
there is a best choice for noden terms of minimizing the
number of termgg-.., fr«, ) Which are nonzero and hence
minimizing the dimension of the augmentation.
Define the augmented variable at each node {») =

Vsf, where((s) = z(s) if the state at nodes is not

process. From Section llI-A, we know tha{0) can be
augmented with the two linear functions

7 15
hi=> f[k and hy=>_ f[K (16)
k=0 k=8

without altering the Markov property of the tree. Thus
if the root node variable is augmented &%0) =
[2(0)T, h1, h2]* and no other variables are changed, then

augmented. The model parameters of the augmented modethe finest-scale process of the multiscale model derived

follow as
Py =V P VY (15a)
As = Peacsn Plian) (15b)
Qs = Fe(s) = Pe(syeiom) Fismy Petsmyts)  (15€)

WherePC(S) = VSPfVST and P((s)((s;/) = VSPng;/. This

augmented model will have a finest-scale process with

covariance identical to that of the original model.

B. Maintaining an Internal Multiscale Model

from (15) will have the covariance of the 1-D Markov
process.

However, the element in the state at the root node which
is intended to contairh = Ay + hs will not be equal to
the sum of the finest-scale process unless this value is
propagated from the root node to the finest-scale. This
propagation is accomplished by constraining the scale-
to-scale recursion of the multiscale model. For this 1-D
Markov example, this means constraining the midpoint de-
flections by conditioning them on the value fofgenerated
at the root node. This conditioning is accomplished by
augmenting the descendents of the root node, except for

The augmentation described in the preceding section,the finest-scale states which are never augmented, Avith

which augments the state at a single neddoes maintain

Again, this augmentation must also preserve Markovianity.

Markovianity and hence yields a model whose finest-scale For example, consider the two children of the root node,

process will have the desired covarianég. However,
this model will not generally be consistent; that is, the
element of the state at node that is intended to equal
(gra:s fra;) May not be equal tdg, ., , fra,). The reason
for this is simple: at node we are attempting tpin a linear
combination of the values descending from nade. In

nodesO«; and Oaz. The augmentation of these nodes
is shown in (17) at the bottom of the page. However,
these states contain more information than is needed. For
instance f[k] on the interval [0,7] is uncorrelated wiff{%]

on the interval [8,15] when conditioned ar{0cy ). Thus

the last element of(0«;) in (17) contains no additional

order to ensure that this value is pinned, information must information about the descendents of nofles. That is,

be propagated from nodeall the way to its descendents at

in order to maintain consistency, and hence an internal

the finest scale. To illustrate this problem and to motivate its realization, the state at nodeéx; must only be made
solution, consider the following example of augmenting the consistent withh;, the component of. corresponding to
root node of a multiscale model for a 1-D Markov process the finest-scale descendents of néde. Similarly, the state

with the sum of the finest-scale process.
1) Example: Multiscale Modeling the Sum of a 1-D Markov
Process: Consider a 1-D first-order Markov procegg:] on

at nodeOas, must only be made consistent with. As a
result, the states in (17) can be reduced to (18), as shown on
the bottom of the previous page. For this simple example,

r 23(0041) I 21(10042) i
> =0 fI¥] > k=g J1K]

C(Oal) = EZ=4 f[/f] and C(OQQ) = E’tf):l? f[/f] (17)
SR LYo fIH]
i 23(0041) 21(10a2)

¢(0ay) = Ez%:o JI¥] and ((0az) = Ekzg f[¥] (18)
|2 k=s SIF] [ kZia S
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the augmentation is now complete, and the parameters ofprocedure can then be applied recursively to add additional
the augmented multiscale model can now be derived from linear functions. The initial step is to determigér). As
(15). The resulting model generates a finest-scale processliscussed in Section IlI-A, the augmented variable which
with the desired covariancE; and is internally consistent  preserves the Markov property af7) is given by (14).
so that, for example, the value &f + h, at the root node  The next step is to definé(-) for the remaining nodes
does exactly equal the sum of the finest-scale process. in the tree to guarantee that the information generated by
2) Example: Modeling the Sum at Scale On&lthough z%(t) is passed consistently to the finest-scale process.
the sum of the finest-scale process is a function of the entireFirst consider the nodes descendent from nedeSince
finest-scale process, it can be advantageous, as shown imll the descendents of nodeare linear functions off,,
the examples of Section V-A, to model this value at a node the entire process descendent from nede uncorrelated
other than the root node. Consider augmenting the variablewith f.. when conditioned orx(7). Thus augmenting any
at Oc; with A. The augmented variable which preserves variable descendent from nodewith a linear function of
the Markov property ofz(0cq) is f-< will have no effect upon the parameters derived from
(15). Consequently, since the linear functigp f) can be

[ #(0a1) ] decomposed as
3
20 /1] (9, ) = (gr f) + {gre, fre) (20)
EZ=4 f[k] the variables descendent from nodeonly need to be
made consistent withg,, f-). In fact, because of the
-E;?:s (%] conditioning property ok(s), (wheres is a descendent of

7), the augmented variable only needs to incldgg fs).
This augmentation will guarantee that all the process noise
added to the descendents of nodeis conditioned on

(g, f). Therefore, the augmentation gfs) which preserves
Markovianity and maintains consistency is

o) = g | £ =ves 212)

While, as argued in the previous example, the last element

of {(0ay ), namelyhs, is unnecessary to maintain Marko-

vianity or consistency with the nodes descending from node

Oy, it is necessary if thé is to be captured at this node.
To maintain consistency, the information containedsn

at nodela; must be propagated to the other half of the tree,

i.e., that descending from noder;. To accomplish this, it

is necessary that the value bf be available to this part

of the process; therefore, the root node must be augmente

as ¢(0)7 = [2(0)T, 2, f[k]]. The statez(0c;) can be Giew O 0 0

augmented exactly as in (18). Note that because we have 0 47 ) :

chosen to place the measurement at nade, ¢(0) does Gy=| ~ 7o - (21b)

not need to include the sum over the “left” half of the tree, : 0

(as we do not introduce the constraint on this sum at the 0o - 0 g

root node). Thus in comparison to the augmented model in

the preceding subsection, in this case the dimensigiiof

has been reduced while that ofoa, ) has been increased. consistent with the finest-scale procgss. However, if the

The remaining states are identical in the two models. As . . .

) . support ofg is not the entire domain, we may only need to
before, having defined the states, the model parameters can b f th desg ifically defi
be generated from (15) augment a subset of the nodes A. Specifically, define

' the direct ancestors af ast¥, 732, -+, and leto be the

ancestor closest to nodefor which

Now consider determining(-) for nodes not irS-. These
nodes must be augmented to make the valuégof, f, )

C. An Algorithm for Augmenting Internal Multiscale
Realizations for a Single Nonlocal Measurement g f=9rf. (22)

Using the previous two examples for intuition, we now
present a general algorithm for adding linear functions

of f o the coarser-scale variables of internal multiscale outside the subtree descending frerare uncorrelated with

models. This algorithm ap_plles to a much brqader cla_ss f,» and hence withy” . Consider first the augmentation of
of processes than those discussed in the previous section,

The multiscale model can have an arbitrary number of & nodes 7  on the path connecting ando, (i.e., s is a

children per node and the finest-scale procesg can have angireCt ancestor of that is either noder or a descendent
. ) . ] f o). As always, can be expressed as

desired covariance—not just that of 1-D Markov process. o) ysia f) P

Only nodes descendent from nogeeed to be augmented,
since, conditioned or:(s), the variables at any node

The algorithm proceeds in two stages: 1) the augmented (g, F) = (Gsars fsar) + (Gscrs Fsan)

variables{(-) are created for each node on the tree, and bt 4 {Gae. Fuc). 23
2) the model parameters are computed from (15) for the (gsaq, > [sag,) +(gsey fse).  (23)
augmented process’(:). While (gs, fsc) is not needed at node to maintain

The algorithm which follows is for adding a single Markovianity, it must be included iq(s) to ensure that
linear functional (g, f) to the variable at node. This this value is passed to the state at nodeThis is a
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generalization of the description @f(0cy) in (19), for D. Adding Multiple Nonlocal Measurements
which the last component of the state was not required For adding linear functions off, i.e., multiple linear
for Markovianity but was needed to have the entire linear fynctionals, to the state at nodeor any other node of

functional available at node. In the more general case 5 multiscale tree, the state augmentation just described can
here, the last component is needed to have the entire lineae applied recursively to individual linear functionals. This
functional available at alescendendf node s (namely,  recursive procedure can be used to represent measurements
node ). of f at multiple resolutions within the tree framework.
Turning to the othey, components in (23), all but one  Note, however, that (15) need only be executed once, after

must be included ir((s). This component corresponds to || the linear functionals have been incorporated into the
the child sa; of nodes for which 7 € S,,,, i.e., the child augmented states(-).

of nodes that is either node itself or a direct ancestor of If the statesz(s) = W,f, of the original multiscale
noder. This component can be excluded without disturbing model contain nontrivial functions of the procegsor if
Markovianity or consistency and can be generated at aihe states of an internal realization are augmented with
descendent of node. This is a generalization of the 5 |arge number of linear functionals, it is likely that
augmentation of node zero given in Section I1l-B2), where ¢ the state dimensions can be reduced before executing

#(0) only needs to be augmented with = ;2 f[k] (15). Specifically, if any of the internal matricag have
and not withh, = 31 _ f[k]- linearly dependent rows, the corresponding states can be
The augmented variablg(s) is then given by compressed by discarding redundant variables. Also, while
W, 017, the matrixV; may not have precise algebraic dependency,
((s) = { G, } |:fsf:| (24a) it may have approximate probabilistic dependency. In other
—— words, P,y = V. PyVI may be singular or ill-conditioned,
Vs s corresponding to some parts ¢(fs) being exactly or nearly

where the elements @f, f correspond to all of the elements  deterministic (and therefore zero since the processes are
on the right-hand side of (23) except the one not neededassumed to be zero mean). Consequently, an eigenvalue
for the augmentation. For exampleif 1 is the term not decomposition ofF(,) can identify reduced-order state
needed for the augmentation and if the elementg,cdire models that yield good approximations to the desired statis-
organized asfy = [fL,,, fia, -+ fi, 17, then tics. In any case, if(s) has an ill-conditioned covariance
matrix, {(s) must be replaced by a reduced-order vector

0 g% 0 - 0 ; - : .
Jsar T L{(s) with well-conditioned covariance before executing
0 0 g4, 0O ..o 0 (15)
Gy = | o .. (24b) '
0 0 g, O : .
0 0 0‘15 e E. Comments on Computational Complexity

The utility of the multiscale framework is the ability
to efficiently provide statistical analysis in the form of
optimal estimates and error covariances. This efficiency
ehinges upon the number of computations required to de-
rrive the model parameters from (15) and the number
&f computations required to implement the corresponding
multiscale estimator. Becaugg cannot be explicitly stored
in memory whenf has very large dimension, the primary
obstacle to implementing (15) is the computation of the
covariance matrices’,y and F;(,)(s5)- For instance, if

Finally, once we have augmented each of the direct
ancestors ofr up to and includings, the descendents of

same procedure used to augment the descendents ofnode
i.e., each state is augmented with those elements necessa
to maintain both Markovianity and internal consistency.

The resulting overall algorithm for state augmentation can
then be summarized as follows: for each nade S, and

s not at the finest scale

1) If s = 7, then((7) is given by (14). the finest-scale process corresponds to a 2-D field of 64-
2) If s 7 ands is on the path fromy to 7, then((s) by-64 elementsP; has approximately 17 million elements,
is given by (14). making it infeasible to der|v'eP<(.5) directly from P; and
3) Otherwise((s) is given by (21). Vs. Instead, for such application®:(,) and Py(s)c(ss)

must be computed implicitly. This implicit computation is
Fors ¢ S, or s at the finest scale, thef(s) = z(s). Note straightforward for stationary random fields, such as the
that if - = ¢, i.e., if the linear function placed at nodeis MRF’s used in Section V-B.
a function only off,, then the augmentation is simplified. Assuming the model parameters can be computed effi-
Namely,((s) is given by (21) fors € S;, and{(s) = z(s) ciently, the remaining question is how the state augmenta-
for s ¢ S;. tions described in the previous section affect the compu-

Once the matriced’; have been determined, the final tational efficiency of multiscale estimator. Remember that
step of the augmentation algorithm is to compute the model the number of computations required by the multiscale
parameters from (15). Given the parameters of the original estimator increase cubicly with the dimension of each
multiscale model, only the parameters forc {S,,o7%} state of the tree. For each linear functioral /) placed
need to be recomputed for the augmented model. at node r by the algorithm of Section llI-C, the state
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. o o ) . equation ate; = (0.5,0.5) when linearized about the log conduc-
Fig. 4. The Fecltet derivativesg(z,;,z | fo) atz;, = /8, tivity function fo = 0.
i =1,-..,7, for the 1-D flow equation when linearized about ’

the log conductivity functionfo = 0. The problem for groundwater hydrologists is to estimate

flow parameters like the functiorf(z) from irregularly
at each nodes in the subtree descending from will distributed measurements of conductivity, head, contami-
increase byy, elements. While the effect of this increase  nant concentrations, tracer tests, and the like, all providing
is insignificant when adding a single linear functional of observations off(z) at different resolutions [10], [14],
f, the effect will be problematic when a large number of [20], [22], [25]. For simplicity, we consider using the
linear functionals must be added. Therefore, an important multiscale framework for the fusion of measurements at
problem is to manage the dimension of the states in two resolutions—point measurements of head and hydraulic
the augmented multiscale model. As mentioned in the conductivity. We also assume that the boundary conditions
previous subsection, the states dimensions can be reducedf the flow model are known. These assumptions serve only
whenever the augmented variab{gs) have ill-conditioned  to simplify the analysis, and do not reflect limitations of
covariance. Furthermore, if one is willing to accept models our approach.
which only approximate the desired statistics, in many cases Note each sample (point value) of head is a nonlinear
the state dimensions can be significantly reduced without and nonlocal function of the entire hydraulic conductivity
significantly altering the accuracy of the estimates. While function. Because the multiscale estimator is only able to
a complete framework for approximate modeling is not incorporate linear measurements of the unknown process
described in this paper, other methods for managing the f(z), the head measurements must be linearized. This

state dimension are discussed in the examples. linearization is given by computing the &atet derivative

of each observed head sampléz;) with respect to the
IV. HYDRAULIC HEAD AS A COARSERESOLUTION entire conductivity function on the domaia The value of
FUNCTION OF CONDUCTIVITY h(z;) based upon the linearization about the conductivity

The application which provided the original motivation function fo(z) is

for this Work [5], and_whigh will be explored i_n Sections V- h(z;) ~ holz;) +/ g(ziz | fo)(f(@) = folz))dz (26)
A and B, is the estimation of parameters in groundwater Q

flow models. Accurate descriptions of groundwater flow whereg(z,,z | fo) is the Féchet derivative andhy is the
are very important due to the prevalence of contaminated solution to (25) whenf = fo. The FEchét derivative is
soils in or near groundwater supplies. A standard model for given by [22]

:E)euarg)e/-sst?;e[gcr)(])undwater flow, assuming no internal water gz z | fo) = =@ (Vho(z) - VG2 z | fo) (27)
’ whereG(z;, z | fo) is the Green’s function [12] of (25) for
-V (D Vh(z) =0, z€Q (25) f = fo. If y; is the initial noisy measurement of head at

z;, the linearized head measurement is given by
where f is log hydraulic conductivity, h is piezometric
head, and? is the region of interest. Piezometric head is ¥ — ho(z;) = /Qg(&,& | fo)(f(z) — folz))dz +v; (28)

a potential, in direct analogy with electrostatic potential. where the measurement noisealso includes errors in the

5if 7 is a descendent of, wheres is defined in Section I1I-C, thenthe  linearization. When discretized, (28) can be expressed in
only difference is that the state dimension at nediecreases by + 1 the form of (11)_

and the state dimension at nodencreases by, — 1. . For the constant background conductivify = 0 and
6Because hydraulic conductivity is often log-normally distributed [22],

it is often easier to work directly with the logarithm of hydraulic conduc- bou_nda.'ry conditionsh(o) =1 and h(l) =0, the Fectet .
tivity. derivatives for the 1-D flow equation are illustrated in
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@ Fig. 7. LLSE estimate of the log conductivity function (solid line)

along with the one standard deviation confidence intervals (dotted
lines). The true conductivity function is also provided (dashed line).

0.8 b

estimate of the log conductivity function. The log con-

08 ° o ] ductivity function is assumed to be wide-sense Markov,
and thus can be realized using the multiscale models
2 o4l ° | of Section II-C. (Remember that the class of multiscale

models isnot restricted to having a Markov process or
MRF at the finest scale.) The following examples serve
three purposes. First, we demonstrate the utility of the
multiscale framework for data fusion problems. Second, we

0.2r 1

or o provide some enhancements to the algorithm of Section IlI-

C for managing the growth in state dimension due to the

o2 . ‘ . . . . . ‘ . addition of nonlocal measurements. Third, the conductivity

0 0.1 0.2 0.3 04 0.5 06 0.7 0.8 0.9 1 . . . .
x estimates and the corresponding error variances provide

(b) some insight into the problems encountered in automatic

Fig. 6. (a) A sample path of the log conductivity function and TlOW mOd?“ng' In pgrtlcular, we demons,trate why the
(b) the corresponding head function. The noisy measurements are incorporation of additional measurements like tracer travel

indicated byo’s. times and pump tests is necessary for producing reliable

) . estimates of hydraulic conductivity.
Fig. 4. Note that the Fchet kernels are nonzero over the

entire domain, indicating that each head measurement is
sensitive to the entire conductivity functioh A Fréctét A. One-Dimensional Flow

derivative for the 2-D flow equation is illustrated in Fig. 5 For steady-state flow in 1-D, consider estimating log

for fo = 0. Define z = (x1,27) to be the 2-D spatial  conductivity on the intervak € [0,1]. Assume thatf(z)
coordinate. The boundary conditions assumed in this casejs g 1-D first-order Markov process with zero mean and

are thath = 1 alongzs = 1 andh = 0 alongz, = 0, and covariance
that the flux normal to the boundaries = 0 andz; =1
is equal to zero. The 2-D Ecrét derivative indicates E[f(x)f(z+7)] —— (29)
that h(xz;) is more sensitive to local conductivity values
in 2-D than in 1-D. However, both the 1-D and 2-D Samples of this 1-D Markov process can be mapped to
Fréctet derivatives illustrate that head samples essentially the finest scale of one of the multiscale models described
measure a coarse-scale derivativefof in Section II-C. In particular, assume a binary tree with
six scales, four samples per state, aWd= 128 elements
at the finest scale. [The model f&¥ = 16 is illustrated
in Fig. 3(b).] A sample path off and the corresponding
head function are illustrated in Fig. 6, along with the noisy
point measurements. The#eatét derivatives of the seven
7 — _ head measurements are illustrated in Fig. 4, i.e., the head
The MATLAB code used to generate the examples in this section can . . .
be obtained by anonymous ftp at the Website lids.mit.edu in the directory samples are linearized about the mean of the CondUC“V'ty
pub/ssg/code/groundwater. function, my = 0.

V. APPLYING THE MULTISCALE FRAMEWORK
TO GROUNDWATER FLOW

In this sectior’, the multiscale estimator is used to
fuse measurements of log conductivity and head into an
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Fig. 8. The states of the first three scales of the multiscale model for a 1-D Markov process
after the inclusion of the seven linear functionals illustrated in Fig. 4. The brackets in each state
represent local averages of the finest scale process.

The variables of the multiscale representation of the statez(s) for m(s) > 2 is given by the two local averages
1-D Markov process can be augmented so that all of over the two finest-scale intervals descendent from node
the head measurements are modeled at the root node of. This augmentation is illustrated in Fig. 8. The seven
the tree. The estimaté(x) of the finest-scale process of measurements are thus incorporated with only a minor
the multiscale model is given in Fig. 7. The multiscale increase in the state dimension, especially at the finer scale
estimator also computes the estimation estimation errornodes. These increases are considerably less than would be
variancesE[( f(z) — f(z))2], which are included in Fig. 7  predicted from a repeated application of the algorithm of
in the form of confidence intervals. The confidence intervals Section IlI-C, and are due to the local linear dependence of
are equal to the LLSE estimate plus or minus a single the kernelsg® over the finest-scale intervals partitioned by
standard deviation of the estimation error. As would be the nodes of the tree. Thus one can imagine modifying the
expected, most of the true conductivity function lies within structure of the tree models, i.e., tailoring the descendents
the confidence interval. of each node, to maximize this linear dependence and

A closer look at the state augmentation for incorporating minimize the effect of the augmentation on the estimation
the head measurements illustrates how the state dimensionglgorithm.
of the augmented model can be reduced, even when no Another way to reduce the effect of the state aug-
approximations are made. Assume that all seven heagmentation on the multiscale estimator is to distribute the
measurements are placed at the root node of the tree bymeasurements at various nodes on the tree. One problem
recursively applying the algorithm of Section IlI-C. The With placing all the measurements at a single node is that
seven head measurements are represented by the inndf€ dimension of this node can become quite large, and the
products(g’, f), where(g’, f) is the 128 sample Riemann Ccomputations required by the multlscale estimator increase
sum approximation Off;l:o g(zi,z | fo)f(z)dz. Using cu4b|cly with each state dimension. I2:or this exaﬁmple, keep
a naive application of the augmentation algorithm, the (¢*;.f) at the root node, but placg®, f) and (¢°, /) at
dimension of each state of the multiscale tree will increase "°d€s0a1 andOa, and place(¢*, f) for ¢« = 1,3,5,7 at

by 14. However, all of these dimensions can be reduced. € four nodes at scale: = 2. In this case, by repeatedly
To see this, first note that the severeéhet derivatives can  2PPlying the algorithm of Section 11I-C and also accounting
be represented by linear combinations of the eight local for local linear dependence, the dimension of the state at the

root node increases by only two, the states at scales 1

averages andm = 2 increase by three, and the remaining states for
i/8 scalesm > 2 increase by two. Thus a redistribution of the
a; = / flz)dz, i=1,---,8. coarse-resolution functionals leads in this case to nontrivial
(i—1)/8 computational savings.

The statez(0) can be augmented with each of these local

averages without destroying the Markov property of this

state. Secondlyz(0c;) only needs to be augmented with B. Two-Dimensional Flow

ai,---,aq, and z(0c) only needs to be augmented with For steady-state flow in 2-D, consider estimatjf{g:) on
as,- -, ag. Finally, note that the discontinuities of all seven the square domaif® = [0, 1] x [0, 1]. Assume thatf(z) is
Fréchet derivatives lie at the boundaries of the eight finest- a Markov Random Field with zero mean and covariance
scale intervals partitioned by the four nodes at seale 2.

Over each of these intervals, theéEret derivatives are Elf(x)flz+1)] = p2elrl"d (30)
constant, and thus linearly dependent. This “local linear
dependence” means th&’, fs) o (g, fs) for all nodes  where|r|T = [|r1], |r2|]. Assume thaiz? = 1 and that

s at scalesn(s) > 2. Therefore, the augmentation of any d¥ = [5/3,6]. The rectangularly spaced samples of this
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Fig. 10. The locations of the conductivity measurements)
and head measurements’s).

Fig. 10. This measurement geometry mimics that given
by full and partially penetrating wells. The noise added
to the conductivity measurements has standard deviation
oy = 0.32, while the noise added to the head measurements
has standard deviatios, = 0.071. For incorporation into

the multiscale framework, the head measurements are lin-
earized about the conductivity mean; = 0. The variables

of the multiscale model are augmented with the linearized
head measurements according to Section IlI-C. However,
similar to the Féctet kernels in 1-D, the 2-D kernels
g(z;,z | my) are probabilistically dependent over some of
the finest-scale domains partitioned by the tree nodes. As a
consequence, by placing the head measurements somewhat
arbitrarily about the states at scales = 1 andm = 2,

the maximum increase in the dimension of any state is 37.
(The state dimensions can be reduced further if slight errors
in the model can be tolerated.) The estimate of the finest-
scale procesgf(a:), and the corresponding estimation error
variance are plotted in Fig. 11.

x1

(b)

Fig. 9. (a) A sample path of the log conductivity function and
(b) the corresponding head function.

process form a discrete-index Markov random ffeldhich

can be mapped to the finest scale of the multiscale models ) )

for MRF's discussed in Section II-C. In particular, assume C- Discussion of Examples and Method

a quad-tre€q, = 4) with five scales and 33-by-33 elements .

at the finest scale. A sample path of this process is given in For poth 1-D and 2-D flow, the head samples contribute
Fig. 9(a). Note that the conductivity function is anisotropic, _relatlvely little information about the hydraullc conductiv-
with stronger correlation in the horizontal than the vertical %y function. For 1-D flow, the contribution of the head
direction. Such horizontal stratification is typical of ground- Measurements is evidenced by the “mild” inflections in
water aquifers which arise from sedimentary deposition. the conductivity estimate of Fig. 7 near the locations of
The corresponding head function is given in Fig. 9(b), the head measurements; yet the reduction in uncertainty

assuming the following boundary conditiorfs:= 1 along ~ due 0 @ head measurement is less than that due to a
x, = 0, h = 0 alongz; = 1, and the water flux normal conductivity measurement. For 2-D flow, the insensitivity
to the boundariess = 1 andz, = 0 is equal to zero. of head samples to hydraulic conductivity variations is

Note that the head function is considerably smoother than €videnced in regions of dense head measurements by both
the conductivity function. the smoothness of the 2-D head function illustrated in

The locations of the measurements from which the con- Fig- 9(b) and the error variance shown in Fig. 11(b). Note
ductivity function is to be estimated are illustrated in that the error variance in regions of dense conductivity
measurements decreases much more dramatically than in
areas of dense head measurements. This insensitivity of

8In general, sampling a continuous-index MRF does not produce a o ) )
the head measurements to local variations in hydraulic

discrete-index MRF [2].

DANIEL AND WILLSKY: A MULTIRESOLUTION METHODOLOGY FOR SIGNAL-LEVEL FUSION AND DATA ASSIMILATION 177



varying resolution can be selected which possesses some
optimal trade-off between resolution, number of parameters,
and variance. Within a full nonlinear optimization, where
for each iteration the head measurements are linearized
about the current conductivity estimate, this approach might
eventually be used to reduce the number of parameters used
to re-linearize the head measurements, and hence reduce the
number of computations require for the inversion.

As for the efficiency of the multiscale framework, for
the 33-by-33 example the multiscale estimator requires
slightly fewer computations (38@4-flops) than does a
direct solution to the normal equations (47@-flops)
for producing the LLSE estimate and the corresponding
error variances. However, this differential will become
more pronounced for larger domains or if the number of
measurements is increased. (The 33-by-33 example was the
largest sized problem for which we could directly compute
on a workstation the solution to the normal equations
and the corresponding error variance.) Also, while the

“\‘\\\\
% S\ \e
/"59:‘\\“‘ N \"‘ number of computations required to implement the normal
o8 /‘3 “‘\‘\ ‘ ‘“\‘///// equations increases cubicly with the number of finest-scale
EM [ ““‘“\\ \‘ “,;.;;%;;'i{" measurements, the number of finest-scale measurements
§ /,'%:.‘:‘\\‘\\\“\‘ 'I"”{'{""’I/’,’”I/, has only minimal effect upon the number of computations
502 > ':";"“\‘\‘\‘\“:“-!“:“5 !{{'/l?':‘"/l//l%/’l,/""l/ required by the multiscale estimator [23]. Note that the
QW%WQ!QW overall sampling density of the finest-scale process for
[UN| ',;;;;‘A}\.. _ . . . .
; \%%&{\.{,,/;I/ 0/,'&,0.0‘0" “"‘\‘""*;Q\\\ﬁ\(\{c,{'/,/ll our 2-D example is low, as illustrated in Fig. 10, so the
Y

multiscale framework will compare more favorably as the
number of finest-scale measurements increases.

TSN
'«:‘«’»3;'/
08

0.8
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(b)

Fig. 11. (a) The LLSE estimate of the log conductivity function In_thIS paper, we showed how the efficient ml_JItlscaIe est-

in Fig. 9(a), and (b) the variance of the estimation errors. mation framework can be extended to data fusion problems.
The basic idea is to model each measurement as a point
value of the multiscale process, where the location in scale
and space of this point value depends upon the resolution
and region of support of the measurement. The method
we proposed was to augment the variables of an internal
multiscale model with linear functions of the finest-scale

conductivity is due in part to the poor linearization given by
the mean conductivity function as the point of linearization,
and is improved by successively relinearizing about the

current conductivity estimate. However, the real problem process derived from the nonlocal functions which are to
is that the estimation of hydraulic conductivity from head be measured. Furthermore, we showed how probabilistic
!s an extremely ill-posed problem [21]. For thg examples ependence among the n;)nlocal measurements and the
in this paper, the head mgasurements were mcorpora’tedgxiSting state variables(s) = W, f, leads to reduced-
only to verify that the multiscale framework can be used o 4or augmentations, and therefore to efficient solutions
to fuse measurements _of varying s'pat|al resolution. (In our ¢ the corresponding data fusion problems. In particular,
present work we are using the multiscale framework to also he multiresolution framework was used to estimate hy-

incorporate tracer travel time data.) - _ draulic conductivity from point observations of hydraulic
Another feature of the hydraulic conductivity estimates conductivity and head.

f(z) is that they have fine-scale fluctuations only where |y terms of the data fusion problems described, the
such variations can be inferred from the data, e.g., near themu|tisca|e framework is attractive for a number of rea-
line 2z = 0.12in Fig. 11(a). In terms of the error variance, sons. First, the resolution and spatial distributions of the
conductivity is estimated with fine-scale features only in measurements can be completely arbitrary, which poses
areas where the uncertainty is small. This suggests reducingproblems for many of the standard tools used to solve large
the number of parameters used to describe the conductivityestimation problems. For instance, Fourier based methods
estimate in areas where the estimate is smooth. Because théor implementing the normal equations assume that the
multiscale estimator produces both estimates and error vari-measurements are both regularly spaced and at a single
ances at each scale of the process, an estimate with spaceesolution. Second, the multiresolution estimator provides
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error variances without any increase in computations. These [2]
error variances are useful for evaluating the reduction in 3]
uncertainty supplied by the measurements, or for selecting
the location and resolution of additional measurements.
Also, the estimation errors can be modeled by a multiscale (4]
tree whose parameters are a by-product of the multiscale
estimator [18]. These error models can be used to efficiently
compute multiple conditional simulations of the hydraulic
conductivity function, which are useful for characterizing
the behavior of groundwater aquifers. In contrast, condi-
tional simulations computed by standard implementations (6]
of the LLSE estimator require the Cholesky factorization [7]
of a large and nonstationary estimation error covariance. i8]
Third, note that the multiscale estimator can be used
within a complete nonlinear inversion. Each iteration of a
Gauss—Newton optimization is equivalent to implementing
a LLSE estimator [22], where the nonlinear measurements
are linearized at each iteration about the present estimate
of the conductivity function. Therefore, the multiscale mod-
eling and estimation can be used to efficiently implement [11]
each iteration of the optimization. (In the examples, we
considered only the initial iteration, with the mean as the [12
point of linearization.) Furthermore, multiscale estimates
have been shown to be useful for both accelerating and[13l]
improving the accuracy of these nonlinear optimizations
[16].

The challenge for the multiscale framework in the context [14]
of data fusion is to apply it to truly large problems, e.g., to
estimatef over a large spatial domain and to incorporate
other measurements, like contaminant concentrations. This!1®]
will require developing a comprehensive framework for
managing the dimensions of the state augmentations. Thig/16]
is a complicated problem, since, as shown in the examples,
the dimension of the augmentations is affected by the [17]
support of the nonlocal measurements, the location at
which the measurements are placed on the tree, and the
regions descending from each tree node. Another method[18]
for managing the state dimensions is to consider build-
ing approximate models which trade off statistical fidelity [19]
for computational efficiency. Because the prior model is
usually only a description of the phenomena of interest,
approximating the statistics is reasonable and necessar);
when the problems are large enough. [21]

9]
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