
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, JULY 1997 549

Efficient Implementations of
2-D Noncausal IIR Filters

Michael M. Daniel,Student Member, IEEE,and Alan S. Willsky,Fellow, IEEE

Abstract—In this paper, we propose a framework for the
efficient implementation of two-dimensional (2-D)noncausalinfi-
nite impulse response (IIR) filters, i.e., filter systems described
implicitly by difference equations and boundary conditions. A
number of common 2-D LSI filter operations, (including low-
pass, high-pass, and zero-phase filters), are efficiently realized
and implemented in this paper as noncausal IIR filters. The basic
concepts involved in our approach include the adaptation of so-
called direct methods for solving partial differential equations
(PDE’s), and the introduction of an approximation methodology
that is particularly well suited to signal processing applications
and leads to very efficient implementations. In particular, for an
input and output with N � N samples, the algorithm requires
only O(N2) storage and computations (yielding a per pixel
computational load that is independent of image size), and has
a parallel implementation (yielding a per pixel computational
load that decreases with increasing image size). Also, because
our approach allows for the implementation of filters with space-
varying coefficients on irregularly shaped domains, it should have
applications in related areas like linear estimation, geophysical
signal processing, or any field requiring approximate solutions to
elliptic PDE’s.

I. INTRODUCTION

FOR two-dimensional (2-D) signal processing applications,
finite impulse response (FIR) filters have been over-

whelmingly preferred to infinite impulse response (IIR) filters
[3], [10], [12]. Among the reasons for this preference are:
a) FIR filters can be efficiently implemented in both one-
dimensional (1-D) and 2-D through the use of the FFT; and
b) FIR filters are always stable and do not require any notion
of recursion or ordering of the sample points (in 1-D or in
2-D) in order to be implemented. In contrast, 1- and 2-D IIR
filters appear to be dramatically different. First, there is usually
no natural ordering of the sample points in 2-D, and 2-D IIR
filters are difficult to test for stability. More importantly, for
2-D noncausal IIR filters the lack of efficient implementations
has both limited the investigation of these filters and led many
to argue that they cannot be implemented in practice [3], [10],
[12].

To understand these issues, as well as our approach to
dealing with them, consider an IIR filter, in 1- or 2-D, specified

Manuscript received March 24, 1995; revised October 24, 1996. This work
was supported by the Office of Naval Research under Grant N00014-91-J-
1004, by the Air Force Office of Scientific Research under Grant F49620-95-
1-0083, and by the Army Research Office under Grant DAAL03-92-G-0115
(Center for Intelligent Control Systems). This paper was recommended by
Associate Editor W.-S. Lu.

The authors are with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
willsky@mit.edu).

Publisher Item Identifier S 1057-7130(97)03652-5.

in terms of a difference equation. In either case, the difference
equation by itself isn’t sufficient to completely specify the
filtering algorithm, as one must also specify a set ofauxiliary
conditions. In 1-D, for the most part these are specified
as a set of initial conditions, leading to causally-recursive
filtering algorithms with computational load per sample point
proportional to the order of the difference equation. Moreover,
even for noncausal 1-D filters like zero-phase IIR filters,
implementation results in a per-sample computational load
proportional to filter order or, equivalently, to the total number
of auxiliary (initial and final) conditions, (assuming that the
1-D noncausal IIR filters are implemented through the com-
bination of a causal recursion requiring initial conditions and
an anticausal recursion requiring “final” conditions).

In contrast, the dimension of the required auxiliary condi-
tions in 2-D depends not only on the order of the difference
equation but also on the size of the boundary. Since the size
of the boundary is proportional to the dimensions of the 2-
D domain of interest, an apparently significant increase in
computational complexity results. In addition, since in most
2-D applications there is no natural ordering of the sample
points and no natural direction for recursion, there is no reason
to expect that the auxiliary conditions would separate into
anything that might resemble “initial” or “final” conditions, but
rather would more naturally be distributed around the entire
boundary of the 2-D domain, leading to 2-D noncausal IIR
(2-DNC-IIR) filters that are not recursively computable.

On the other hand, if effective methods of implementation
for 2-DNC-IIR filters were available, there would be numerous
possibilities for their application. For example, one potential
advantage retained in 2-D for IIR filters is that a given set
of frequency response characteristics typically may be met by
an IIR filter of considerably lower order than a corresponding
FIR design. Moreover, 2-DNC-IIR filters arise naturally in
applications such as the modeling of random fields for image
processing [1], [2], [11] and computer vision [9]. In this
paper we present an efficient implementation of 2-DNC-IIR
filters that overcomes the difficulties we have described, thus
offering the possibility of recapturing in 2-D the computational
advantages and flexibility that IIR filters have in 1-D.

The key to our approach is the recognition of both the
similarities and differences between the implementation of
2-DNC-IIR filters and the solution of finite-difference and
finite-element approximations of partial differential equations
(PDE’s). In particular, the equations resulting from such
methods are of the same form as those for 2-DNC-IIR filters,
and thus the many methods that have been developed for

1057–7130/97$10.00 1997 IEEE

550 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, JULY 1997

the efficient solution of PDE’s can be used to implement 2-
DNC-IIR filters. These methods by themselves, while offering
considerable savings in computational complexity and storage,
may not reduce these loads enough to make 2-DNC-IIR filters
attractive. However, by taking advantage of a fundamental
difference in objective between solving PDE’s and performing
2-D filtering, we can reduce the computational complexity
even further, resulting in implementations with complexity
per 2-D data point independent of domain size—the same
attractive feature as in 1-D. While the focus in PDE’s is
typically on obtaining numerically very accurate solutions to
specific 2-D difference equations, and hence accurate solutions
to the corresponding physical models, in 2-D filtering the
difference equation is not the fundamental object. Instead,
the initial criterion is a set of filter or frequency response
specifications. A 2-D difference equation is then chosen to
meet these specifications within some tolerance. Consequently,
approximations to the solution of the difference equation are
acceptable as long as they lead to filters that also meet the
desired tolerances.

In the next section, we introduce the class of 2-DNC-IIR
filters and discuss the role of boundary conditions in these
systems. In Section III, we make the connection between
implementations of 2-DNC-IIR filters and methods for solv-
ing sparse linear systems of equations, such as those which
arise when solving PDE’s. One of these methods involves
organizing the 2-D data points into 1-D columns, whose
dimensions are equal to the linear dimension of the filtering
domain. The PDE or filter solution is then given by processing
these columns sequentially. While this algorithm is generally
inefficient, if we view each of these sequential processing
steps as being itself a 1-D processing procedurealong the
1-D data set, we are led to the idea of approximating this
step using low-order IIR filtering methods. This idea, which is
developed in Section IV, results in very efficient 2-DNC-IIR
filtering procedures applicable to a large class of noncausal,
nonseparable filtering applications. In Section V, the efficient
implementation is applied to several 2-DNC-IIR filters, some
of which are zero-phase. Zero-phase filters are of considerable
interest in practice, and the apparent difficulty in implementing
2-D IIR filters with zero phase has often been cited as one of
the reasons that FIR filters are commonly used [10]. We now
can implement zero-phase IIR filters efficiently, removing a
major obstacle to their use in practice.

II. TWO-DIMENSIONAL IIR FILTERS

AND BOUNDARY CONDITIONS

For a rich class of 2-D IIR filters, the inputs and
outputs satisfy linear constant-coefficient difference
equations (LCCDE’s) of the form

(1)

The order of this difference equation is defined to be .
However, (1) provides only a partial specification of a system,
as it must be accompanied by a set of auxiliary conditions. If
the filter whose input and output satisfies (1) is stable, then
the auxiliary conditions cannot generally be organized as a
simple set of “initial” or “final” conditions, as considered in
[3], [12], but must be specified around the entire boundary of
the 2-D filtering domain; these auxiliary conditions are referred
to as boundary conditions (BC’s). If BC’s are specified, no
simple recursive solution is possible, and all of the output
values must in principle be computed simultaneously.
Algorithms for computing the outputs of such 2-DNC-IIR
filters are discussed in Sections III and IV. The remainder of
this section addresses the some of the issues raised by the
imposition of boundary conditions on 2-D IIR filters.

A fundamental issue is the effect of the boundary conditions
upon the response of 2-DNC-IIR filters. The effect of boundary
conditions is an important issue for any system defined on
a finite domain, even in 1-D and for FIR filters, although
this issue is rarely addressed [3], [12]. For IIR filters, both
in 1- and 2-D, the method for limiting the effect of the
BC’s upon the filter output is to require that the system be
stable. Not only does stability guarantee that the effect of
the BC’s will be limited to the boundary regions and decay
with distance from the boundary, stability implies a particular
choice of BC’s. To illustrate this subtle relationship between
the choice of BC’s and stability, first consider 1-D IIR filters,
for which analysis is simpler. For the 1-D IIR filter whose input
and output satisfy , the imposition
of stability implies that the boundary condition is either an
initial rest or a final rest condition. A value of
implies an initial rest condition and implies a final
rest condition. For higher-order filters, stability leads to three
possible boundary conditions, where again the exact choice of
boundary conditions is determined by the filter coefficients:
a) if all the poles are inside the unit circle, then the BC’s
are initial rest conditions; b) if all the poles are outside the
unit circle, then the BC’s are final rest conditions; and c) if
the poles are both inside and outside the unit circle, then the
system is noncausal and the BC’s correspond to both initial
and final rest conditions. The BC’s for the third possibility
can be seen by splitting the IIR filter into a parallel realization
of a causal filter (with poles inside the unit circle) and an
anticausal filter (with poles outside the unit circle), where the
causal filter satisfies initial rest and the anticausal filter satisfies
final rest. This parallel realization is given by a partial fraction
expansion of the system’s frequency response. The conclusion
to be drawn from this discussion is that, for 1-D IIR filters,
stability both determines the form of the boundary conditions
and limits the effect of the boundary condition upon the system
response, i.e., the transients, to the region in which the BC’s
are applied. However, the rate of decay of the transients is a
function of the filter difference equation, e.g., the magnitude
of in the first-order example.

For 2-D IIR filters, the link between stability and boundary
conditions is much the same. First of all, given a stable filter
satisfying (1), the frequency response follows immediately
from the difference equation. Stability in this case corresponds

DANIEL AND WILLSKY: EFFICIENT IMPLEMENTATIONS OF 2-DNC-IIR FILTERS 551

Fig. 1. The elements of
N (denoted by�) and@
(1; 1)
N (denoted by�),

drawn forN = 5.

to the usual notion of bounded-input bounded-output stability,
as well as to the concept that the effect due to the BC’s on
the filter response near the center of the 2-D domain decays
to zero as the boundaries recede to infinity. Again, the form
of the boundary conditions is completely determined by the
imposition of stability, and the width of the annular region near
the boundaries where the BC’s significantly effect the filter
response is determined by the coefficients of the 2-D difference
equation. However, a major difference between IIR filters in 1-
and 2-D is the ability to determine BC’s which lead to stable
systems. As noted earlier, determining such BC’s for 1-D IIR
filters is straightforward, and follows from a partial fraction
expansion of the frequency response. For 2-D IIR filters, there
is no general method for determining the BC’s which lead to a
stable system. The lack of such method is due to the inability
to factor a 2-D system function and to the complexity of the
boundaries in 2-D, which can cover large regions and have
complicated geometries. However, as shown in the Section V,
we can often find boundary conditions which lead to stable
filters. As the algorithms proposed in Sections III and IV
are motivated by numerical solutions to PDE’s, the boundary
conditions chosen in Section V are discrete equivalents of
boundary conditions which lead to stable solutions of PDE’s,
where stability again refers to limiting the region in which
the BC’s significantly effect the solution of the PDE. Two
such conditions are Dirichlet and Neumann conditions [15].
For a 2-DNC-IIR filter of order (1, 1), Dirichlet conditions
correspond to specifying the value of on the boundary
of the filtering domain. For a filter of higher order, Dirichlet
conditions correspond to setting the value of on an
annular ring around the boundary of the filtering domain. As
will be described more clearly in the next section, the width
of this annular ring is a function of the filter order.

Another issue raised by the imposition of boundary con-
ditions is that traditional notions of shift-invariance do not
easily extend to 2-DNC-IIR filters. To appreciate this subtle
issue, first consider 1-D IIR filters. Shift-invariance for a 1-
D difference equation requires that a) the locations of the
boundary conditions are not fixed, but instead adjust to the
location of the nonzero values of the input, e.g., initial rest
conditions, and b) both the input and output are defined for all
time, i.e., . As a consequence, the commonly
defined property of shift-invariance cannot be applied to
systems with inputs and outputs defined only over a finite

interval, say . For instance, how would one even define
the shift of a signal defined only on . One option
is to define to be equal to zero outside , and
then to compute for all . To guarantee
shift-invariance, the IIR filter is implemented as a parallel
realization of a causal IIR recursion initialized by initial rest
conditions and an anticausal IIR recursion initialized by final
rest conditions. However, while the resulting filter is shift-
invariant, such parallel realizations do not generally exist for
2-DNC-IIR filters, unless the filter is separable. Furthermore,
there are no analogous notions of initial and final rest for 2-D
filters. A notion of shift-invariance which does extend to 2-
DNC-IIR filters is given by comparing the following two 1-D
signals: 1) the response defined on to an input

defined on , and 2) the response defined
on to the input which is also
defined on . If the system is shift-invariant,
then for . When
extended to 2-D systems, this notion of shift-invariance applies
to 2-DNC-IIR filters, i.e., filters satisfying (1) and constrained
by boundary conditions.

III. N ONCAUSAL IIR FILTERS AS

LINEAR SYSTEMS OF EQUATIONS

A. Direct versus Iterative Methods

In this section we make precise the connection between the
problem of implementing 2-DNC-IIR filters and the general
problem of solving large, sparse, sets of linear equations, in
particular those arising in the solution of linear PDE’s. The
methods that result from this connection are quite broadly
applicable. For example, our methodology can be used for
linear difference equations which arenot constant-coefficient,
for regions of support which are nonsquare and irregu-
larly sampled, and for various types of boundary conditions.
However, for notational simplicity in this and the following
sections, we assume that the difference equation is LCCDE,
that the filter domain is square, and that the boundary condi-
tions are of the Dirichlet type. One square domain of
samples is . For an order

filter, the corresponding Dirichlet conditions are to
set to some known function on the annular
ring

. Note that the width of
this annular ring is determined by the order of the difference
equation. Both and are illustrated in Fig. 1 for a

and a filter of order (1, 1).
For clarity of exposition, we also assume that

in (1), where is the Kronecker delta function.
Since implementing the right-hand side of (1) is equivalent
to implementing an FIR filter, a more complicated right-hand
side adds only notational but not conceptual complexity. These
assumptions lead to 2-DNC-IIR filters whose inputs and output
satisfy the difference equation

(2)

552 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, JULY 1997

Fig. 2. The output mask for the 9-point NNM difference equation.

for all and satisfy the Dirichlet conditions
for all .

Equation (2) can be cast in matrix form as

(3)

where the nonzero elements of are the filter coefficients
. Vectors and contain the filter input and output

, respectively, in , and contains the contribution of
the Dirichlet conditions entering through the filter difference
equation. The order in which the variables appear
in is the ordering of , or the ordering of . For
direct methods (see below), this ordering can drastically alter
apparent complexity.

Note that has dimension . A nice property
of IIR filters is that they generally require a small number
of coefficients, so that and . In other
words, will be very sparse. This obviously suggests the
use of numerical methods developed for solving large sparse
systems which take advantage of this sparsity to minimize
computational and storage requirements. In particular, there
are two distinct classes of methods for calculating the output

in (3)—iterative and direct methods. Iterative methods begin
with an estimate of , and produce at each step an estimate

which theoretically converges as ; however,
in practice the series must converge within a tolerable error in
a finite number of steps. Direct methods consist of variants of
the LU factorization [6], [7], and produce the exact solution
(disregarding numerical errors) in a finite number of steps.

For signal processing applications, the same filter is typi-
cally applied to a large number of inputs, and thusmust
be factored only once for a direct method. This factorization
can be doneoff-line, i.e., the factorization costs can either
be considered part of the filter design process or amortized
over the large number of inputs. This property of direct
methods motivates us to focus here on direct implementations
of 2-DNC-IIR filter systems. Iterative methods, such as pre-

conditioned conjugate gradient or multigrid, might be just as
or more effective for some applications, (especially for 3-D
problems), but we show here that direct methods allow for
very efficient implementations of classes of 2-D filters.

The LU factorization yields a unit lower-triangular
matrix and an upper-triangular matrix. Given and ,
the solution to can be found very efficiently by sequen-
tially solving the following two triangular systems: and

. Solving for is called forward-substitution, while
solving for from is called back substitution. Assuming
has dimension , solving for by explicitly computing

and then computing requires computa-
tions (measured in terms of floating point adds and multiplies).
If is dense, the LU factorization approach yields at most
minimal computational savings, as the LU factorization alone
requires computations, while the substitutions require
only additional computations. However, if is sparse, as
for 2-DNC-IIR filter systems, the savings in both storage and
computations can be tremendous, especially if proper orderings
are used to minimize the amount of fill-in (loss of sparsity)
that occurs during the factorization (see [4]). Amortizing the
costs of the factorization over a large number of filter inputs
further decreases the effective computation requirements for
the LU approach. In our application, however, is equal to
the number of 2-D data points, , and thus computations of
order greater than linear in can still make this approach
prohibitive. Fortunately, as we will see, in the context of 2-D
filtering there are natural and very accurate approximations to
the LU factorization approach that do result in total complexity
that is linear in .

B. Columnwise Orderings

To make the following discussion explicit we focus here on
a common 2-D LCCDE of order (1, 1), the 9-point nearest
neighbor model (NNM). This difference equation also arises
quite frequently in engineering applications [6], [9], [11],
[15], most notably as the first-order and second-order finite-
difference and finite-element approximations to elliptic PDE’s.
The constant-coefficient form of the 9-point NNM is given by

(4)

The output mask of this difference equation is illustrated in
Fig. 2. Note that the LSI system characterized by the frequency
response from difference equation (4) is zero-phase if ,

...
...

...
...

...

...
...

... (5)

DANIEL AND WILLSKY: EFFICIENT IMPLEMENTATIONS OF 2-DNC-IIR FILTERS 553

, , and . Consider a 2-DNC-IIR
filter which satisfies (4) on and Dirichlet conditions on

. If and are ordered columnwise into
dimensional vectors

and , respectively, (3)
becomes1 (5), as shown at the bottom of the previous page.
The structure of in (5) is block tridiagonal, and the
dimensional blocks , , and are tridiagonal. Note that
(5) allows for a space-varying NNM difference equation, but
for the constant-coefficient difference equation the subscripts
on the blocks of can be dropped. In this case, the nonzero
elements of , , and are given by

For filters of order , a columnwise ordering of
leads to a matrix which has block bandwidth , while each
of the blocks has bandwidth . (A matrix has bandwidth

if element is nonzero only for .)
A simple recursive algorithm can be invoked to com-

pute the factorization of in (5). This algorithm factors
“block-by-block,” and is thus referred to as the block LU
factorization [4], [7]. This algorithm recursively computes the
matrices and using the following
equations:2

“compute ” (6)

“compute ” (7)

The recursion is initialized with . Solving (6) at each
step is performed by an LU factorization on , and, as we
discuss next, this factorization is needed on-
line. For these recursions to be well-posed, the matrices
must be invertible for all . Conditions which
guarantee this are discussed in [7]. For the examples presented
in Section V, the matrices are invertible.

The block LU factorization resulting from the procedure
just described yields

...
...

...
... (8)

While the recursion given by (6) and (7) is conceptually
straightforward, its computational load can be overwhelming.
This is a direct result of the columnwise ordering, which leads
to a destruction of the sparsity of during the factorization.

1For any matrix in this paper, such asA in (5), block entries not indicated
are zero.

2The validity of the recursions (6) and (7) can be verified directly by
equatingA in (5) with the expression in (8).

Although , , and are very sparse, the matrices and
are generally full, with the exception of . Storing

each of these matrices requires storage elements and
computing each requires computations, leading to
a total of storage elements and computations
for the entire factorization.

The lack of sparsity in the blocks of (8) also implies a large
computational burden for theon-line solution. First note that,
since the factorization is needed to compute

at each step of the recursion, these factors can be stored
in place of in (8). The solution to (5) is then given by
forward-substitution, (initialized by),

(9)

followed by back-substitution, (initialized by)

(10)

Since and are generally full, the solution of (9) and
(10) requires computations per step and hence
total computations. Thus, not only is the off-line computational
load , but the on-line storage and computations are both

, significantly greater than the goal.
However, if an approximate solution can be tolerated, the

block LU factorization based on the columnwise ordering
leads to an efficient approximation strategy which achieves
the goal of storage elements and computations
for both the off-line factorization and the on-line solution.
In particular, note that (9) requires first solving the lower
triangular equations

(11)

followed by solving the upper triangular system

(12)

Recall that we have organized our variables into 1-D columns,
and thus the solution of the lower triangular system (11) can be
thought as a causal 1-D recursion, beginning at the bottom of
the column () and proceeding recursively to the top of the
column (). The upper triangular system (12) corresponds
to an anticausal recursion proceeding from top to bottom. The
back-substitution filtering, (10), requires implementing an FIR
filter, in the form of a matrix multiplication, along a single
column of .

Thus we can view (11) and (12) as 1-D recursive filtering
operations, albeit shift-varying recursions, since in general

and will not be Toeplitz. If and are full,
then the order of these recursive filters equals the length

of the column, and it is the need to determine (off-
line) and then implement (on-line) these high-order recursions
that leads to the severe computational burden. However, if
these recursive 1-D filters can be approximated by lower-
order recursions—e.g., if and hence and can
be approximated bybanded matrices, then both the storage
and computational requirements for the forward-substitution
phase of the on-line solution can be reduced to . For
the back-substitution, the computational burden is governed
at each step by multiplication of the matrix with .

554 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, JULY 1997

Since is generally full and not Toeplitz, this operation
will require computations per step. However, if we
similarly approximate with a lower-order FIR filter, i.e.,
by approximating with a banded matrix, the total com-
putational and storage requirements for the on-line solution
reduce to the goal.

Note, however, to reduce theoff-line computational load
to , it is not sufficient that and are well
approximated by matrices with narrow bandwidth; a method
must exist for determining these approximate matrices in

computations per stage. In the next section, we describe
such an approximation procedure in detail.

IV. EFFICIENT IMPLEMENTATIONS OF 2-DNC-IIR FILTERS

A. Development of the Approximate Block LU Algorithm

The approximate implementation of 2-DNC-IIR filters de-
scribed in this section is motivated by the fact that, for
many filters, a small number of elements in the blocks,

, and dominate the rest of the elements. An efficient
approximation to the on-line solutions follows by setting to
zero the insignificant elements of , , and . Recursions
(9) and (10) then can be implemented very efficiently if one
takes care to avoid operating on the zero elements.

However, the approach of simply discarding the insignif-
icant elements of (8) is not enough. First, the off-line fac-
torization will still require computations. Secondly,
searching for the significant elements of each block in (8) and
storing them in data structures for efficient implementation
can be a costly procedure. Many filters, however, have a
property which allows us to overcome these difficulties. For
these filters, all of the matrices of interest—, , and

—can be well approximated bybanded matrices of some
bandwidth . Thus, we knowa priori what elements of
these matrices must be stored. Sinceis not a function of ,
each of these matrices has nonzero elements.3 Since
there are such matrices, the total required storage is

, as desired. Furthermore, as we now describe, we can
compute these approximations with an overall computational
load of .

The key assumption required for these approximations to
yield good results is that, for , the blocks
are approximately banded, i.e., well approximated by setting
to zero all the elements which do not fall within a small
bandwidth of the main diagonal. If is approximately
banded, then from the recursions (6) and (7), it is apparent that
the blocks and will generally be approximately
banded as well. Furthermore, as the following corollary states,
if we have a banded approximation to , we can efficiently
compute a banded approximation of its inverse.

Corollary of [5] (See the Appendix for Proof):If is an
matrix with bandwidth , the elements of which

lie within the bandwidth can be computed (exactly) in
operations.

3By O(Np) computations we mean that the number of computations
divided byNp tends to a constant asN ! 1; writing O(�qNp) denotes
that this constant is a polynomial in� of orderq.

This leads to the following approximation to (6) and (7).
Suppose that is an approximation to which is -banded
(i.e., banded with bandwidth). Note that is exactly
banded, so we set . We then compute a -banded
approximation of :

otherwise
(13)

where, from the corollary, requires
computations. Assuming that is a good approx-

imation to and that is a good approximation
to , then . Since is
tridiagonal, the product requires
computations. Note, however, that this product has bandwidth

, which will in turn require a growing bandwidth at each
step. However, under the key assumption that the matrices of
interest are approximately-banded, we can neglect elements
outside the -bandwidth. Thus, define the truncation operator

as

otherwise
(14)

which yields the following approximation to (6):

(15)

Similarly, substituting into (7) in lieu of yields
, requiring calculations. Once

again, this yields a matrix that is ()-banded, and applying
our assumption of -bandedness, we obtain our approximation
to (7):

(16)

Thus, (15) and (16) can be repeated iteratively, each stage
requiring computations. For (15)
and (16) form an approximation to (8) requiring a total of

computations and storage elements. This
procedure results in the following approximation of (8):

...
...

...
... (17)

with -banded and stored in place of , where
is the LU factorization of . The approximate on-

line solution is given by substituting and into (9) for
and , and into (10) for .

Note that this approximation method extends equally well
to higher-order filters, with the elements in are again
ordered columnwise. Each of the blocks in the block LU
factorization is analogously approximated by a banded matrix.
This extension of the approximation algorithm is demonstrated
for an order (2, 2) filter in Section V.

What follows is an example intending both to suggest the
class of filters for which this approximate implementation will
offer significant savings and to justify why in such cases we
expect to be able to choose a small value ofindependent of
the size of the image domain.

DANIEL AND WILLSKY: EFFICIENT IMPLEMENTATIONS OF 2-DNC-IIR FILTERS 555

B. Analysis of the Block LU Approximation

Consider a 2-DNC-IIR filter satisfying (5). To make sub-
sequent analysis simpler, we make a slight deviation from
the constant-coefficient model of (4). Namely, assume that

and for all and
. For , we assume and

. For the point we wish to make, the values of
the other NNM coefficients are of no consequence. The first
block row of (5) follows as:

...
...

...
...

...
...

(18)

The factorization of in (5) begins by factoring :4

...
...

...
...

...
...

...
...

...
...

...
...

...

(19)
The next step of the factorization is to compute. Note
that, even though and are banded, this operation
will require computations. Also note that

, where

...
...

...
...

...
...

...

(20)

The simple form of (20) leads to the expression
. From this expression, we see that

for the values of decay geometrically away
from the main diagonal. Thus, the smaller the value of,
(equivalently, the greater the diagonal dominance of),

4The Toeplitz structure ofL11 andU11 is a result of the particular choice
of difference equation, but is not a general property even of filters described
by constant-coefficient difference equations.

the tighter the clustering of significant values about the main
diagonal of , and thus the smaller the bandwidthneeded
to approximate at a desired level of accuracy.

While this example is particularly simple, it does serve
to demonstrate the intuition and plausibility of our approxi-
mation. Moreover, a general guideline verified by extensive
numerical simulations, some of which are given in Section V,
is that the approximate factorization applies to order (1,1)
filters for which and becomes more accurate
(for fixed) as the ratio decreases. These
observations are consistent with the preceding example, since

as . Also note that
is a measure of the “degree” of diagonal dominance of the
elements in the blocks . In fact, for 2-DNC-IIR filters of
any order, the diagonal dominance of the blocks seems
to be a useful guideline for determining which filters can be
implemented by the algorithm in Section IV-A. Determining
the exact class of filters which can be approximated by this
algorithm is beyond the scope of this paper.

C. A Parallel Approximate Implementation

In this section, we briefly discuss a straightforward par-
allelization of the algorithm discussed in Section IV-A. In
particular, a variant of the serial block LU factorization is
cyclic block reduction [4], which is easily implemented in
parallel. The block LU factorization proceeds by eliminating
columns sequentially from to . However,
it is possible to eliminate columns in the interior of inde-
pendently. For example, consider again the block tridiagonal
matrix given in (5). Assume, for simplicity, that is odd.
If we order the even columns last and the odd columns first,
(5) takes the form

(21)

Because of the coupling implied by the NNM difference
equation, the elimination of the odd columns of for the
block factorization of (21) can be performed in parallel.
Upon completing this step, the second block equation of (21)
becomes (22), shown at the bottom of the page, where the
superscript is used to relabel the variables after the-stage
of the cyclic block reduction. The blocks of are given by

(23)

...
...

...
...

... (22)

556 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, JULY 1997

Since is again block tridiagonal, the odd-even reordering
can continue recursively, where roughly one half of the
remaining columns are eliminated in parallel at each stage
of the algorithm. Rather than the stages required for the
block LU algorithm (and corresponding on-line solution),
approximately stages are required for block cyclic
reduction, and each of the columns in each stage can be
operated on in parallel. If more coarse-grained parallelism
is required, can be partitioned into regions, where
the columns in each region can be eliminated independent of
the other regions [6]. (In the case of cyclic block reduction,

.)
An approximate block cyclic reduction algorithm follows

for any of these parallel structures by noting the strong
similarities between implementing (23) and (6), (7). Namely,
if a processor is allocated for each of the odd columns of,
the first stage of the (parallelized) approximate cyclic block
reduction is

(a) factor and compute

on processors

(b) compute

on processors

compute

on processors

(c) compute

on processors

compute

on processors

(d) compute

on processors

compute

on processors

(e) compute

on processors

Note that Step (e) requires communication between the
processors, since and are computed on different,
but “neighboring,” processors. For the first stage, the compu-
tational load for each processor is , where the asymp-
totic complexity is determined primarily by Step (a). The
computational load for each processor will remain constant
for subsequent stages of the algorithm. Ignoring interprocessor
communication costs after each stage of the recursion, the
total factorization will require computations.
Since there are pixels, the per pixel computation time for
the fully parallel implementation is , which
decreaseswith increasing image size. This algorithm extends
to higher-order filters just as cyclic reduction can be extended
to matrices with larger block bandwidth.

V. EXAMPLES

In this section, 2-DNC-IIR filters are implemented5 using
the approximation algorithm of Section IV-A. The 2-DNC-
IIR filters are assumed to satisfy (2) on and homogeneous
Dirichlet conditions on . The system functions of
these filters have the form

...

...
...

...

...
(24)

where is the frequency in the-direction and is the
frequency in the -direction. Adding a polynomial
to the numerator of (24) would obviously allow one to
sharpen the filter frequency responses, such as by narrowing
the transition regions or placing zeros in the stopbands [8],
[16]; however, the purpose of the following examples is
only to demonstrate the utility of the approximation given in
Section IV-A and the viability of 2-DNC-IIR filters. Thus it
makes sense to implement only the recursive portion of the
difference equation.

Some example filters are given by the following coefficient
matrices:

(25)

(26)

5All of the Matlab files used to generate the examples in the section are
available by anonymousftp at lids.mit.edu in the directorypub/ssg/outgoing.

DANIEL AND WILLSKY: EFFICIENT IMPLEMENTATIONS OF 2-DNC-IIR FILTERS 557

(a) (b)

(c) (d)

Fig. 3. 64� 64 point sampling ofHi(ej! ; ej!) for four filters. (a) Low-pass filterH1 given byJ1. (b) High-pass filterH2 given byJ2. (c) Fan filter
H3 given byJ3. (d) Low-pass filterH4 given byJ4. Note that the only frequency with nonzero phase isH3, in which case the magnitude ofH3 is plotted.

where . The coefficients of each
filter are normalized such that . The frequency
responses of all four difference equations are
illustrated in Fig. 3. Filters and are low-pass filters,
is the edge-enhancing filter given in [13], and corresponds
to a primitive (low-order) fan filter [8]. Note that filters ,

, and have zero phase.
Note that, while filters , , and have relatively

nonsharp transition bands, they have many practical applica-
tions. Edge enhancement is one application requiring filters
with nonsharp transition bands. In fact, all of the edge-
enhancing filters given in [12], [13], including system ,
have frequency responses with nonsharp transition bands.
When enhancing edges, the width of the transition band is
determined by the model of the smooth edges which are to be
enhanced. This model usually implies a frequency response
with a smooth transition band. The smooth transition band
can also be used to avoid “over-enhancing” the image, or to
make the enhanced image less sensitive to noisy data. Another
application requiring filters with smooth frequency responses
is optimal linear estimation. The low-pass filters given by
and are of exactly the same order and structure as those
commonly arising in the estimation of Markov random fields
from noisy measurements [1], [14].

In the following examples, the four 2-DNC-IIR filters are
implemented exactly (to within round-off error) using the
nested dissection algorithm [6] and approximately using the
algorithm of Section IV-A. For analyzing the errors introduced
by the approximate implementation, define the error signal
to be , where is the exact
filter output and is the output obtained with an
approximation bandwidth of . Two of the error measures
used are

and

(27)

where is a vector containing for all ,
and is the standard norm.
Example 1. The Response of 2-DNC-IIR Filters to Sinusoidal
Inputs: In this example, we consider the response of the
2-DNC-IIR example filters to sinusoidal inputs of the form

(28)

558 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, JULY 1997

(a) (b)

(c) (d)

(e) (f)

Fig. 4. The DFT magnitude of the exact responses and the approximation errors for a passband input (left column) and a stopband input (right column) to
the 2-DNC-IIR low-passfilter given byH1(ej! ; ej!). The inputs are given by (28) for(k1; k2) = (3, 2) and(k1; k2) = (25, 20). Note the scalings
of the vertical axes. (a) Response to pass-band signal. (b) Response to stop-band signal. (c) Error in pass-band response for� = 2. (d) Error in stop-band
response for� = 2. (e) Error in pass-band response for� = 4. (f) Error in stop-band response for� = 4.

The term serves only to normalize the discrete Fourier
transform (DFT) of . Assume for this example that
64. Consider first the low-pass filter . For (3,
2), the sinusoidal input lies in the filter’s passband, while
for (25, 20) the input lies in the stopband.
The exact responses to these two inputs are illustrated by

Fig. 4(a) and (b). The Fourier transform is
shown in lieu of in order to demonstrate the 9-to-1
(passband to stopband) selection ratio of the low-pass filter.
The small ridges in the DFT’s of the filter responses are
due to the transients introduced by the Dirichlet boundary
conditions. These ridges are barely noticeable for the response

DANIEL AND WILLSKY: EFFICIENT IMPLEMENTATIONS OF 2-DNC-IIR FILTERS 559

(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) The impulse response of thefan filter H3. (b) The impulse response of thelow-passfilter H4. (c) The error in thefan filter impulse response
for � = 2. (d) The error in thelow-pass filter impulse response for� = 2. (e) The error in thefan filter impulse response for� = 4. (f) The error
in the low-pass filter impulse response for� = 4.

to the stopband input. The effect of these transient signals is
negligible near the center of the filter domain , and in fact
becomes zero as the boundaries recede to infinity ().

The accuracy of the algorithm of Section IV-A is also
demonstrated in Fig. 4 for approximation bandwidths
2 and 4. The DFT of the approximation error is
illustrated for both inputs and both values of. Note that
the approximation errors are small even when 2, and they
decrease by an order of magnitude whenincreases from 2 to
4. (In terms of the error metrics, 16 and 22

for the response to the passband input.) A similar geometric
decrease in the error signal is obtained for larger values of.

As verified by extensive numerical simulation, these results
generalize to every sinusoidal signal input to each of the
four example filters. Namely, for every sinusoidal input to
the 2-DNC-IIR example filters, the filter response is given
by a weighting of the input by the frequency response, plus
some transients whose effect is limited to the boundaries of
the filtering domain. The effect of these transients on the filter
output near the center of decreases to zero as the boundary

560 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, JULY 1997

Fig. 6. Approximation errors"� versus�, for N = 64 and a unit impulse
input applied at(i; j) = (32, 32).

recedes to infinity (). Also, for each sinusoidal input,
the approximate response is accurate even for small values
of . More importantly, the approximation errors decrease
geometrically in magnitude with . This geometric decrease
is further demonstrated in the following examples.

Example 2. The Impulse Response of 2-DNC-IIR Filters:
Because LSI filters are completely characterized by their
impulse responses, we now consider the impulse responses
of both the exact and the approximate implementations of the
example 2-DNC-IIR filters. The impulse response is the
filter output in response to a unit impulse applied at the center
of . For 64, this input is . The
impulse response of both the fan filter and the order (2,2)
low-pass filter are plotted at the top of Fig. 5. Because
the impulse responses are essentially zero outside the region
{ 48}, the responses are not plotted outside
this region. The error signals plotted in Fig. 5 correspond to
the difference between the true impulse responses and those
of the approximate implementations for 2 and 4.
Like the approximate responses to the sinusoidal inputs given
in Example 1, the approximate impulse responses are accurate
even for 2, and the errors the decrease geometrically
with increasing . Note especially the accuracy of the-
banded approximation for the order (2,2) low-pass filter. While
the frequency response of this system is very sensitive to
the values of the coefficients stored in, the approximate
implementation is quite accurate even for small. For 4,
the maximum value of is on the order of .

To illustrate that the errors decrease geometrically as
increases beyond four, is plotted versus in Fig. 6 for

ranging from two to ten. Fig. 6 also demonstrates that the
geometric decrease in the error with increasingapplies to
the other three example filters. [Recall that in Section IV-
B we argued that the approximation errors will be small
when . For these order (1,1) filters, the
elements in the blocks and decreased geometrically
in magnitude with distance from the diagonal. Thus, for-
banded approximations of these blocks, one would expect the

Fig. 7. Approximation errors"� versusN . The approximation bandwidth is
fixed at� = 4 and the input is a unit impulse applied at(i; j) = (N=2; N=2).

approximation errors to decrease geometrically with increasing
approximation bandwidth.]

Example 3. The Independence of the Approximation Accu-
racy upon : In Section IV-A, the computational and storage
loads of the approximation algorithm were shown to be

and , respectively, meaning that theper
pixel computational and storage loads converge to polynomials
in of order two and one, respectively. However, if the
per pixel computational and storage loads are to be truly
constant, the approximation bandwidth needed for a desired
approximation accuracy must not be an increasing function
of . For a unit impulse applied at the center of , Fig. 7
shows that the approximation error metricremains constant
over a wide range of for a fixed value of 4. Identical
results are obtained for other values of. The independence
of upon for a desired solution accuracy is consistent
with the analysis of Section IV-B, where the rate of decrease
with distance from the diagonal of the elements in the blocks

and was shown to be independent of. Thus, the
approximation algorithm has constant per pixel computational
and storage loads.

Example 4. Edge Enhancement of a Square Pulse:For this
example, we examine the response of the edge-enhancing filter

to a square pulse. The square pulse input and the response
of the edge-enhancing filter are illustrated at the top of Fig. 8.
Note that the response to the square input is analogous to
the step response of the filter. The approximate responses for

2 and 4, and the corresponding approximation errors,
are also illustrated in Fig. 8. Again, the approximation errors
are small and visually unrecognizable even for these small
approximation bandwidths, and the errors decrease by an order
of magnitude as increases from 2 to 4.

VI. CONCLUSION

In this paper we describe an approach to the efficient imple-
mentations of 2-DNC-IIR filters. In addition to efficiency, we
were also motivated to consider filters specified by boundary
rather than initial conditions, as the former are frequently the

DANIEL AND WILLSKY: EFFICIENT IMPLEMENTATIONS OF 2-DNC-IIR FILTERS 561

(a) (b)

(c) (d)

(e) (f)

Fig. 8. (a) Square pulse input signal. (b) Exact response of edge-enhancing filter. (c)–(d) Filter output and error signals for� = 2. (e)–(f) Filter output
and error signal for� = 4. Note the scalings of the vertical axes.

natural choice and are required, for example, if zero-phase
filtering is desired. Indeed, some methodologies now exist for
designing 2-D difference equations to meet desired frequency-
selective specifications, and we demonstrated that imposing
boundary conditions upon these difference equations can lead
to the desired frequency selectivity.

The approach we developed for efficiently implementing 2-
DNC-IIR filters involves a combination of two things: a) the

application of concepts from the direct solution of PDE’s to the
calculation of the solution of a 2-D difference equation; and
b) the development of new approximations, motivated by and
appropriate for filtering applications, that reduce complexity
to desired levels. In particular, the algorithms resulting from
our procedure have constant computational complexity per
pixel and, if implemented in maximally parallel form, have
total computation time per pixel that decreases as image size

562 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, JULY 1997

increases. In particular, our approximation is based on the
columnwise ordering of data points and the block LU fac-
torization of the linear system that results from this ordering.
While exact factorization is still complex computationally, the
observation that each successive block of computation could
be viewed as a 1-D filtering operationalong a column of the
image led to the idea of a reduced-order approximation of
each of these 1-D columnwise filters. In matrix terms, this
corresponds to a banded approximation to each of the blocks
in the block LU factorization, with bandwidth (and 1-D filter
order) . The resulting algorithm was shown both to achieve
the computational levels mentioned previously and to yield
excellent results using small values of for a number of
low-order frequency-selective filters.

The approach that we have described is, in principle, appli-
cable to a broad range of filtering problems, e.g., higher-order
or nonconstant-coefficient difference equations and irregularly
shaped regions. Indeed, the success we have demonstrated here
together with the guidelines we have described for situations
in which our approximation should work well provide ample
motivation for the application of this methodology and for a
complete investigation of general conditions on the difference
equation coefficients under which our approach is guaranteed
to provide accurate answers for small values of. However,
the implementations of 2-DNC-IIR filters are certainly not
limited to direct methods. Many of the efficient iterative
algorithms developed for solving PDE’s will likely provide
efficient solutions to 2-DNC-IIR filters, and perhaps to a
different class of filters than can be implemented by the
algorithm of Section IV-A.

APPENDIX

COMPUTING CERTAIN ELEMENTS OF

THE INVERSE OF A BANDED MATRIX

A special application of the results in [5] allows for the
efficient computation of certain elements of the inverse of
a banded matrix. Namely, if is an dimensional

matrix with bandwidth and , then the elements
of which lie within a bandwidth of the diagonal can
be computed in computations. The results of [5]
are based on the following observation: given
(where and are unit lower-triangular and upper-triangular,
respectively), then

(29)

(30)

From these relations, for is given by (31),
which does not depend upon computing any elements in

and .

(31)

For certain matrices, such as those discussed in Section IV-A,
the elements of which fall within the bandwidth can be
seen as a reasonable approximation to.

To implement this algorithm, note that must be
the first element computed of . Also, to compute any
element , all elements such that ,

, and must already have been computed.
With these restrictions placed on the recursion, the number
of computations to compute within a bandwidth is
bounded above closely by , where the first
term represents the computations for the diagonal elements
only. The computational complexity of the algorithm is thus

.

REFERENCES

[1] R. Chellappa and S. Chatterjee, “Classification of textures using gaussian
Markov random fields,”IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-33, pp. 959–963, 1985.

[2] H. Derin and P. A. Kelly, “Discrete-index Markov-type random pro-
cesses,”Proc. IEEE,vol. 77, Oct. 1989.

[3] D. E. Dudgeon and R. M. Mersereau,Multidimensional Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[4] I. S. Duff, A. M. Erisman, and J. K. Reid,Direct Methods for Sparse
Matrices. Oxford, England: Oxford Univ. Press, 1987.

[5] A. M. Erisman and W. F. Tinney, “On computing certain elements of
the inverse of a sparse matrix,”Commun. ACM,vol. ACM-18, no. 3,
1975.

[6] A. George and J. W. Liu,Computer Solution of Large and Sparse
Positive Definite Systems.Englewood Cliffs, NJ: Prentice-Hall, 1981.

[7] G. H. Golub and C. F. Van Loan,Matrix Computations. Baltimore,
MD: John Hopkins Univ. Press, 1990.

[8] Q. Gu and M. N. S. Swamy, “On the design of a broad class of 2D
recursive digitial filters with fan, diamond, and elliptically-symmetric
responses,”IEEE Trans. Circuits Syst. II,vol. 41, pp. 603–614, 1994.

[9] B. K. Horn and B. G. Schunck, “Determining optical flow,”Artif. Intell.,
vol. 17, pp. 185–203, 1981.

[10] Mathworks Inc.,Matlab Image Processing Toolbox, 4.1 ed. Natick,
MA, June 1993.

[11] B. C. Levy, M. B. Adams, and A. S. Willsky, “Solution and linear
estimation of 2-D nearest-neighbor models,”Proc. IEEE, vol. 78,
1990.

[12] J. S. Lim,Two-Dimensional Signal and Image Processing.Englewood
Cliffs, NJ: Prentice-Hall, 1990.

[13] W. Lu and A. Antoniou,Two-dimensional Digital Fitlers. New York:
Marcel Dekker, 1992.

[14] M. R. Luettgen, W. C. Karl, A. S. Willsky, and R. R. Tenney,
“Multiscale representations of Markov random fields,”IEEE Trans.
Signal Processing,vol. 41, p. 3377, Dec. 1993.

[15] A. R. Mitchell and D. F. Griffiths,The Finite Difference Method in
Partial Differential Equations. New York: Wiley, 1980.

[16] N. A. Pendergrass, S. K. Mitra, and E. I. Jury, “Spectral transformations
for two-dimensional digital filters,”IEEE Trans. Circuits Syst.,vol.
CAS-23, pp. 26–35, 1976.

Michael M. Daniel (S’93) received the B.S. degree
from the University of California, Berkeley, in
1990 and the Ph.D. degree from the Massachusetts
Institute of Technology (MIT), Cambridge, in
1997.

He has been with Schlumberger–Doll Research,
Ridgefield, CT, and the Cambex Corporation,
Waltham, MA, and has been a teaching assistant for
the Circuits, Signals, and Systems and the Discrete-
Time Signal Processing courses at MIT. He recently
coauthored the undergraduate-level bookComputer

Explorations for Signals and Systems UsingMATLAB. His research interests
include signal and image processing, stochastic processes and uncertainty
analysis, and geophysical inverse problems.

Dr. Daniel is a member of SIAM, Sigma Xi, Tau Beta Pi, and Eta Kappa Nu.

DANIEL AND WILLSKY: EFFICIENT IMPLEMENTATIONS OF 2-DNC-IIR FILTERS 563

Alan S. Willsky (S’70–M’73–SM’82–F’86)
received the S.B. and Ph.D. degrees from the
Massachusetts Institute of Technology (MIT),
Cambridge, in 1969 and 1973, respectively.

He joined the MIT faculty in 1973 and is
currently a Professor of electrical engineering.
From 1974 to 1981, he served as Assistant Director
of the Laboratory for Information and Decision
Systems, MIT. He is also a founder and member
of the Board of Directors for Alphatech, Inc.,
Burlington, MA. He is the author of the research

monographDigital Signal Processing and Control and Estimation Theory
and is coauthor of the undergraduate textSignals and Systems. He has held
visiting positions at Imperial College, London, U.K., l’Université de Paris-Sud,
and INRIA, France. His present research interests are in problems involving
multidimensional and multiresolution signal processing and imaging, discrete-
event systems, and the asymptotic analysis of control and estimation systems.

Dr. Willsky was program chair for the 17th IEEE Conference on Decision
and Control, and has been an Associate Editor for several journals. He has
served as a member of the Board of Governors and was Vice President for
Technical Affairs of the IEEE Control Systems Society. He was program
chairman for the 1981 Bilateral Seminar on Control Systems held in the
People’s Republic of China, and was a Special Guest Editor in 1992 for
the IEEE TRANSACTIONS ON INFORMATION THEORY. In 1988, he was made
a Distinguished Member of the IEEE Control Systems Society. He has
given several plenary lectures at major scientific meetings, including the
1992 Inaugural Workshop for the National Center for Robust and Adaptive
Systems, Canberra, Australia. In 1975, he received the Donald P. Eckman
Award, in 1979 the Alfred Nobel Prize, and in 1980 the Broder S. Thompson
Memorial Prize recognizing a paper excerpted from his monograph.

