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Efficient Implementations of
2-D Noncausal IIR Filters

Michael M. Daniel,Student Member, IEEEANnd Alan S. Willsky,Fellow, IEEE

Abstract—In this paper, we propose a framework for the in terms of a difference equation. In either case, the difference
efficient implementation of two-dimensional (2-D)noncausalinfi-  equation by itself isn’t sufficient to completely specify the
nite impulse response (IIR) filters, i.e., filter systems described filtering algorithm, as one must also specify a setofiliary
implicitly by difference equations and boundary conditions A L ' -
number of common 2-D LS filter operations, (including low- conditions. In 1-D, for the most part these are specified
pass, high-pass, and zero-phase filters), are efficiently realizedas a set of initial conditions, leading to causally-recursive
and implemented in this paper as noncausal IR filters. The basic filtering algorithms with computational load per sample point
concepts involved in our approach include the adaptation of so- hroportional to the order of the difference equation. Moreover,

called direct methods for solving partial differential equations even for noncausal 1-D filters like zero-phase IR filters
(PDE'’s), and the introduction of an approximation methodology p ’

that is particularly well suited to signal processing applications implementation results in a per-sample computational load
and leads to very efficient implementations. In particular, for an proportional to filter order or, equivalently, to the total number
input and output with V' x N samples, the algorithm requires of guxiliary (initial and final) conditions, (assuming that the
only O(N*) storage and computations (yielding a per pixel 1 5 noncaysal IR filters are implemented through the com-
computational load that is independent of image size), and has ;. ~ . . S .
a parallel implementation (yielding a per pixel computational bination of a causal recursion requiring initial conditions and
load that decreases with increasing image size). Also, becausean anticausal recursion requiring “final” conditions).
our approach allows for the implementation of filters with space- In contrast, the dimension of the required auxiliary condi-
e o et e e o, popmyscs 107 n 2:D depends ot any an he order o e ciference
si%‘?lal processing, or any field requiring approximaté golurt)io)rgs to guation but also_ on the size of the bouhdary._ Since the size
elliptic PDE’s. of the boundary is proportional to the dimensions of the 2-
D domain of interest, an apparently significant increase in
computational complexity results. In addition, since in most
2-D applications there is no natural ordering of the sample
OR two-dimensional (2-D) signal processing applicationgpints and no natural direction for recursion, there is no reason
finite impulse response (FIR) filters have been ovete expect that the auxiliary conditions would separate into
whelmingly preferred to infinite impulse response (lIR) filteranything that might resemble “initial” or “final” conditions, but
[3], [10], [12]. Among the reasons for this preference argather would more naturally be distributed around the entire
a) FIR filters can be efficiently implemented in both oneboundary of the 2-D domain, leading to 2-D noncausal IR
dimensional (1-D) and 2-D through the use of the FFT; and-DNC-IIR) filters that are not recursively computable.
b) FIR filters are always stable and do not require any notionOn the other hand, if effective methods of implementation
of recursion or ordering of the sample points (in 1-D or ifior 2-DNC-IIR filters were available, there would be numerous
2-D) in order to be implemented. In contrast, 1- and 2-D IlRossibilities for their application. For example, one potential
filters appear to be dramatically different. First, there is usualjitivantage retained in 2-D for IIR filters is that a given set
no natural ordering of the sample points in 2-D, and 2-D I3f frequency response characteristics typically may be met by
filters are difficult to test for stability. More importantly, for an |IR filter of considerably lower order than a corresponding
2-D noncausal IIR filters the lack of efficient implementationg|g design. Moreover, 2-DNC-IIR filters arise naturally in
has both limited the investigation of these filters and led magyplications such as the modeling of random fields for image
to argue that they cannot be implemented in practice [3], mﬂrocessing [1], [2], [11] and computer vision [9]. In this

[12]. ) paper we present an efficient implementation of 2-DNC-IIR
To understand these issues, as well as our approachyifays that overcomes the difficulties we have described, thus
dealing with them, consider an IR filter, in 1- or 2-D, specifiedlftering the possibility of recapturing in 2-D the computational
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the efficient solution of PDE’s can be used to implement Z-he order of this difference equation is defined tq be, L.).
DNC-IIR filters. These methods by themselves, while offeringowever, (1) provides only a partial specification of a system,
considerable savings in computational complexity and storage, it must be accompanied by a set of auxiliary conditions. If
may not reduce these loads enough to make 2-DNC-IIR filtettee filter whose input and output satisfies (1) is stable, then
attractive. However, by taking advantage of a fundamenthle auxiliary conditions cannot generally be organized as a
difference in objective between solving PDE’s and performingimple set of “initial” or “final” conditions, as considered in
2-D filtering, we can reduce the computational complexit}d], [12], but must be specified around the entire boundary of
even further, resulting in implementations with complexityhe 2-D filtering domain; these auxiliary conditions are referred
per 2-D data point independent of domain size—the sarte as boundary conditions (BC's). If BC's are specified, no
attractive feature as in 1-D. While the focus in PDE'’s isimple recursive solution is possible, and all of the output
typically on obtaining numerically very accurate solutions tealuesyl[¢, j] must in principle be computed simultaneously.
specific 2-D difference equations, and hence accurate solutiédigorithms for computing the outputs of such 2-DNC-IIR
to the corresponding physical models, in 2-D filtering thfilters are discussed in Sections Il and IV. The remainder of
difference equation is not the fundamental object. Insteatlis section addresses the some of the issues raised by the
the initial criterion is a set of filter or frequency respons@mposition of boundary conditions on 2-D IIR filters.
specifications. A 2-D difference equation is then chosen toA fundamental issue is the effect of the boundary conditions
meet these specifications within some tolerance. Consequeniiyon the response of 2-DNC-IIR filters. The effect of boundary
approximations to the solution of the difference equation acenditions is an important issue for any system defined on
acceptable as long as they lead to filters that also meet thdinite domain, even in 1-D and for FIR filters, although
desired tolerances. this issue is rarely addressed [3], [12]. For IIR filters, both
In the next section, we introduce the class of 2-DNC-IIfh 1- and 2-D, the method for limiting the effect of the
filters and discuss the role of boundary conditions in theS®C’s upon the filter output is to require that the system be
systems. In Section Ill, we make the connection betwestable. Not only does stability guarantee that the effect of
implementations of 2-DNC-IIR filters and methods for solvthe BC’s will be limited to the boundary regions and decay
ing sparse linear systems of equations, such as those whigth distance from the boundary, stability implies a particular
arise when solving PDE’s. One of these methods involvesoice of BC’s. To illustrate this subtle relationship between
organizing the 2-D data points into 1-D columns, whosghe choice of BC's and stability, first consider 1-D IIR filters,
dimensions are equal to the linear dimension of the filterirfgr which analysis is simpler. For the 1-D IIR filter whose input
domain. The PDE or filter solution is then given by processingnd output satisfy[n] = ay[n — 1] + z[n], the imposition
these columns sequentially. While this algorithm is generalf stability implies that the boundary condition is either an
inefficient, if we view each of these sequential processingitial rest or a final rest condition. A value dh| < 1
steps as being itself a 1-D processing procedalog the implies an initial rest condition antk| > 1 implies a final
1-D data set, we are led to the idea of approximating thigst condition. For higher-order filters, stability leads to three
step using low-order IIR filtering methods. This idea, which igossible boundary conditions, where again the exact choice of
developed in Section IV, results in very efficient 2-DNC-IIRboundary conditions is determined by the filter coefficients:
filtering procedures applicable to a large class of noncausa), if all the poles are inside the unit circle, then the BC’s
nonseparable filtering applications. In Section V, the efficiegte initial rest conditions; b) if all the poles are outside the
implementation is applied to several 2-DNC-IIR filters, somgnit circle, then the BC'’s are final rest conditions; and c) if
of which are zero-phase. Zero-phase filters are of considerattie poles are both inside and outside the unit circle, then the
interest in practice, and the apparent difficulty in implementingystem is noncausal and the BC’s correspond to both initial
2-D IIR filters with zero phase has often been cited as one gifid final rest conditions. The BC'’s for the third possibility
the reasons that FIR filters are commonly used [10]. We nasn be seen by splitting the IIR filter into a parallel realization
can implement zero-phase IIR filters efficiently, removing éf a causal filter (with poles inside the unit circle) and an
major obstacle to their use in practice. anticausal filter (with poles outside the unit circle), where the
causal filter satisfies initial rest and the anticausal filter satisfies
final rest. This parallel realization is given by a partial fraction
IIl. TwO-DIMENSIONAL IIR FILTERS expansion of the system’s frequency response. The conclusion
AND BOUNDARY CONDITIONS to be drawn from this discussion is that, for 1-D IIR filters,
For a rich class of 2-D IIR filters, the inputsfi, j] and stability both determines the form of the boundary conditions
outputs y[i, j] satisfy linear constant-coefficient differenceand limits the effect of the boundary condition upon the system
equations (LCCDE'’s) of the form response, i.e., the transients, to the region in which the BC's
are applied. However, the rate of decay of the transients is a

Ly L function of the filter difference equation, e.g., the magnitude

> annyli—l, i) = of a in the first-order example.
li=—Lylo=—1Ls For 2-D IIR filters, the link between stability and boundary
M, M conditions is much the same. First of all, given a stable filter

> > bmmezli—mi, j—mal. (1) satisfying (1), the frequency response follows immediately
my=—M; mo=—Mp from the difference equation. Stability in this case corresponds
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i interval, say[ny, n2]. For instance, how would one even define
the shift of a signay[n] defined only or{n;, n2]. One option
is to definex[n] to be equal to zero outside:, n2], and
then to computey[n] for all —co < n < oo. To guarantee
e o o o o O shift-invariance, the IIR filter is implemented as a parallel
realization of a causal IR recursion initialized by initial rest
conditions and an anticausal lIR recursion initialized by final
rest conditions. However, while the resulting filter is shift-

N+1® © © o O 0 o

e o ¢ o o O invariant, such parallel realizations do not generally exist for
0 ot 2-DNC-IIR filters, unless the filter is separable. Furthermore,
0 N+1 there are no analogous notions of initial and final rest for 2-D

filters. A notion of shift-invariance which does extend to 2-
DNC-IIR filters is given by comparing the following two 1-D
signals: 1) the responsg[n] defined on[ni, ns] to an input
to the usual notion of bounded-input bounded-output stability|] defined on[ny, n,], and 2) the responsg,[n] defined
as well as to the concept that the effect due to the BC's @ [n1 + 1o, n2 + no] to the inputz[n — no] which is also
the filter response near the center of the 2-D domain decdlgfined onjny +no, n2 +no). If the system is shift-invariant,
to zero as the boundaries recede to infinity. Again, the fortienyz[n] = y1[n — nol for n € [ny + no, n2 + nol. When
of the boundary conditions is completely determined by tifétended to 2-D systems, this notion of shift-invariance applies
imposition of stability, and the width of the annular region ned@ 2-DNC-IIR filters, i.e., filters satisfying (1) and constrained
the boundaries where the BC’s significantly effect the filtdty boundary conditions.
response is determined by the coefficients of the 2-D difference
equation. However, a major difference between IIR filters in 1-
and 2-D is the ability to determine BC’s which lead to stable
systems. As noted earlier, determining such BC'’s for 1-D IR, Direct versus lterative Methods
filters is straightforward, and follows from a partial fraction . . . .

i : In this section we make precise the connection between the
expansion of the frequency response. For 2-D IIR filters, there ; . )
) L , : problem of implementing 2-DNC-IIR filters and the general
is no general method for determining the BC’s which lead to'a : . ) .

. .~ problem of solving large, sparse, sets of linear equations, in

stable system. The lack of such method is due to the inabilfy°" L ) . )
rticular those arising in the solution of linear PDE’s. The

to factor.a 2.'D system.funcnon and to the complexﬂy of thmethods that result from this connection are quite broadly
boundaries in 2-D, which can cover large regions and have

) . . . plicable. For example, our methodology can be used for
complicated geometries. However, as shown in the Section V, : . . -
. - . inear difference equations which amet constant-coefficient
we can often find boundary conditions which lead to stab

e
filters. As the algorithms proposed in Sections Ill and |

r regions of suppor€? which are nonsquare and irregu-
are motivated by numerical solutions to PDE's, the boundaarly sampled, and for various types of boundary conditions.
conditions chosen in Section V are discrete equivalents

pwever, for notational simplicity in this and the following
Sections, we assume that the difference equation is LCCDE
boundary conditions which lead to stable solutions of PDE’ ' '
where stability again refers to limiting the region in whict}i

at the filter domain is square, and that the boundary condi-
the BC's significantly effect the solution of the PDE. Twg o ;are Qf(;he ?|r|ct?‘lej[‘ t);pe<. (?nr? sguz]i\rfe d(;malri\bfx év
such conditions are Dirichlet and Neumann conditions [1 amples ISty = {(@ = bHJ = ) or an order
For a 2-DNC-IIR filter of order (1, 1), Dirichlet conditions Ly, L) filter, the corresponding Dirichlet conditions are to
o - set y[¢, j] to some known functiorv[z, j] on the annular

correspond to specifying the value gfi, j] on the boundary . (Li,Ls) (e e .
of the filtering domain. For a filter of higher order, Dirichlet™9 ¥y = @D ) ¢ Qv, =Li+1 < i <
conditions correspond to setting the valuey@f;, n,] on an *' Ly, =Ly +1 < j < N+ Lp}. Note that the width of
annular ring around the boundary of the filtering domain. A@'S aﬂ““'af ring is determined b;_/ the order_ of the difference
will be described more clearly in the next section, the WidtﬁquatLon' Bothtly and 2y are illustrated in Fig. 1 for a
of this annular ring is a function of the filter order. N=3 a”?' a filter of Qrder (1, 1).

Another issue raised by the imposition of boundary con- For glarlty of exposmon,. we also assume thigt, i, -
ditions is that traditional notions of shift-invariance do nofmum= N (1), whereém,n, is the Kronecker deita function.

easily extend to 2-DNC-IIR filters. To appreciate this subtll?ir_lCe Iimplementing thef_rlight-hand side Ofl.(l) i(sj e_q::ivr?ler:jt
issue, first consider 1-D IIR filters. Shift-invariance for a 110 Implementing an FIR filter, a more complicated right-han

D difference equation requires that a) the locations of tr§éde adds only notational but not conceptual complexity. These

boundary conditions are not fixed, but instead adjust to tﬂés.umptions'lead to Z'DNC'.”R filters whose inputs and output
location of the nonzero values of the input, e.g., initial re§f“t'3fy the difference equation

conditions, and b) both the input and output are defined for all

time, i.e.,—oc < n < co. As a consequence, the commonly L1 Lo

defined property of shift-invariance cannot be applied to o> awuli-h,i-bl=ai,j] ()
systems with inputs and outputs defined only over a finite lhi=—Lile=—Ls

Fig. 1. The elements df?; (denoted byes) and 8(2%1,’ D (denoted byo),
drawn for N = 5.

I1l. NONCAUSAL IIR FILTERS AS
LINEAR SYSTEMS OF EQUATIONS
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yli+lj-1]  yhi+ljl  yli+hj+l] conditioned conjugate gradient or multigrid, might be just as

© Q P or more effective for some applications, (especially for 3-D

\T a problems), but we show here that direct methods allow for
ylyj-11 yl ici [ '

the solution tady = b can be found very efficiently by sequen-

g 2l N very efficient implementations of classes of 2-D filters.
O=—" g ~° K The LU factorizationd = LU yields a unit lower-triangular
l\ matrix L and an upper-triangular matri¥. Given L and U,

o © tially solving the following two triangular system&¢ = b and
YIELED LTyl Uy = ¢. Solving for ¢ is called forward-substitution, while
Fig. 2. The output mask for the 9-point NNM difference equation. solving for ¢ from ¢ is called back substitution. Assuming

has dimension/ x M, solving fory by explicitly computing

for all (¢, j) € Qn and satisfy the Dirichlet conditions A~ and then computingi—1b require2M?3+2M? computa-

ylé, J] = rlé, j] for all (4, j) € 895\, 1_ 2, tions (measured in terms of floating point adds and multiplies).
Equation (2) can be cast in matrix form as If A is dense, the LU factorization approach yields at most
Ay=z+r minimal computational savings, as the LU factorization alone

) 3) requires2M?/3 computations, while the substitutions require
= only 234? additional computations. However,f is sparse, as
where the nonzero elements df are the filter coefficients for 2-DNC-IIR filter systems, the savings in both storage and
ay,1,- Vectorsz andy contain the filter inputz[¢, j] and output computations can be tremendous, especially if proper orderings
yli, j], respectively, iy, andr contains the contribution of are used to minimize the amount of fill-in (loss of sparsity)
the Dirichlet conditions entering through the filter differencéhat occurs during the factorization (see [4]). Amortizing the
equation. The order in which the variablegi, k] appear costs of the factorization over a large number of filter inputs
in y is the ordering of Qu, or the ordering ofA. For further decreases the effective computation requirements for
direct methods (see below), this ordering can drastically alfée LU approach. In our application, howeva, is equal to
apparent complexity. the number of 2-D data point®Z, and thus computations of
Note that A has dimensionN2 x N2. A nice property order greater than linear in/ can still make this approach
of IIR filters is that they generally require a small numbeprohibitive. Fortunately, as we will see, in the context of 2-D
of coefficients, so that,; < N and L, < N. In other filtering there are natural and very accurate approximations to
words, A will be very sparse. This obviously suggests ththe LU factorization approach that do result in total complexity
use of numerical methods developed for solving large spaié@t is linear ini.
systems which take advantage of this sparsity to m|n|m|@
computational and storage requirements. In particular, there
are two distinct classes of methods for calculating the outputTo make the following discussion explicit we focus here on
y in (3)—iterative and direct methods. Iterative methods begth common 2-D LCCDE of order (1, 1), the 9-point nearest
with an estimatgy_ of y, and produce at each step an estimafteighbor model (NNM). This difference equation also arises
y, Which theoretically converges #isy ..y, = y; however, quite frequently in engineering applications [6], [9], [11],
|n ‘practice the series must converge within a tolerable error5], most notably as the first-order and second-order finite-
a finite number of steps. Direct methods consist of variants @ifference and finite-element approximations to elliptic PDE's.
the LU factorization [6], [7], and produce the exact solutioffhe constant-coefficient form of the 9-point NNM is given by
(disregarding numerical errors) in a finite number of steps. L g . g .
For signal processing applications, the same filter is typi- eyli, - nyli 41, 51+ syli - 1, J]
cally applied to a large number of inputs, and théismust +eyli, j+ 1 +wyli, j— U +neyli+1, 5 +1]
be factored only once for a direct method. This factorization +reyi+1, j— 1] +seyli — 1, 5+ 1]
can be QOneoﬁ—Iine, Le., thg factori;ation costs can eithfar +soyli — 1, j — 1] = a[i, j]. (4)
be considered part of the filter design process or amortized
over the large number of inputs. This property of directhe output mask of this difference equation is illustrated in
methods motivates us to focus here on direct implementatidfig. 2. Note that the LSI system characterized by the frequency
of 2-DNC-IIR filter systems. Iterative methods, such as preesponse from difference equation (4) is zero-phase s,

Columnwise Orderings

Dy E» 1 z1 b
Ci1 Dy E3 Y2 Zo by
- = : +r=1 . )
Eyx | |ynv—1 IN_1 bn_1
Cn_1 Dy YN TN b
N -~ ——— ———’
A Y z b
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e = w, ne = S, andn, = s.. Consider a 2-DNC-IIR AlthoughC;, D;, andE; are very sparse, the matricB5 and
filter which satisfies (4) orf2y and Dirichlet conditions on E; are generally full, with the exception @; = D;. Storing
895\1 Vot y[i, 5] andz[i, j] are ordered columnwise inf¥ x  each of these matrices requir€§N?) storage elements and
1 dimensional vectors; = [y[1, j], ¥[2, j], ---, ¥[NV, j]]¥ computing eactD; requiresO(NN®) computations, leading to
and z; = [z[l, 4], z[2, j], ---, =[NV, j]]¥, respectively, (3) a total of O(N?) storage elements an@(N*) computations
become’ (5), as shown at the bottom of the previous pagéor the entire factorization.

The structure of4 in (5) is block tridiagonal, and th&/ x N The lack of sparsity in the blocks of (8) also implies a large
dimensional block€”;, D;, and E; are tridiagonal. Note that computational burden for then-line solution First note that,
(5) allows for a space-varying NNM difference equation, butince the factorizatiorD; = L;;U;; is needed to compute
for the constant-coefficient difference equation the subscripts.+1 at each step of the recursion, these factors can be stored
on the blocks of4 can be dropped. In this case, the nonzeiia place of D, in (8). The solution to (5) is then given by

elements ofC, D, and E are given by forward-substitution, (initialized by, (o = 0),
Sw, l=k+1 LjjUjiG =b; = Cj—1Gj—1,  j=1,-- N (9
[C]kl: w, =k ) " T
Ny L=k —1 followed by back-substitution, (initialized byy = (n)
5, l=k+1 yJICJ_EJ-I-lyJ-l-lv J:N_1771 (10)
Dla=qc¢, 1=k , . .
n, l=k—1 Since L;; andU,; are generally full, the solution of (9) and
(10) requiresO(N?) computations per step and her@éN?)
Se, Il=k+1 A ) . 4
(Elu =4 e, 1=k total computations. Thu_s, not only is the off-line cqmputatlonal
M n’ I—Fk—1 load O(N*), but the on-line storage and computations are both

O(N?), significantly greater than thé@(N?) goal.
For filters of order(L;, L,), a columnwise ordering of2x However, if an approximate solution can be tolerated, the
leads to a matrix4 which has block bandwidtfi,, while each block LU factorization based on the columnwise ordering
of the blocks has bandwidth,. (A matrix D has bandwidth leads to an efficient approximation strategy which achieves
g if element[D];; is nonzero only fori — j| < j3.) the goal ofO(N?) storage elements ad(N?) computations

A simple recursive algorithm can be invoked to comfor both the off-line factorization and the on-line solution.
pute the factorization ofd in (5). This algorithm factorsd In particular, note that (9) requires first solving the lower
“block-by-block,” and is thus referred to as the block LUriangular equations
factorization [4], [7]. This algorithm recursively computes the

matricesD;, ---, Dy and Es, ---, En using the following Lyizi = b = CimaGma (11)
equations’ followed by solving the upper triangular system
EjEj+1 IEj+1 “ComputeEH_l" (6) Uijj =z (12)
Dj_|_1 = Dj_|_1 - CjEj+1, “computeDH_l". (7

Recall that we have organized our variables into 1-D columns,
The recursion is initialized wittD,; = D;. Solving (6) at each and thus the solution of the lower triangular system (11) can be
step is performed by an LU factorization dn;, and, as we thought as a causal 1-D recursion, beginning at the bottom of
discuss next, this factorizatioh; = L;,;U;; is needed on- the column{ = 1) and proceeding recursively to the top of the

line. For these recursions to be well-posed, the matridges column ¢ = N). The upper triangular system (12) corresponds

must be invertible for all; = 1, ---, N. Conditions which to an anticausal recursion proceeding from top to bottom. The
guarantee this are discussed in [7]. For the examples presemtack-substitution filtering, (10), requires implementing an FIR
in Section V, the matrice®; are invertible. filter, in the form of a matrix multiplication, along a single
The block LU factorization resulting from the procedureolumn of Q.
just described vyields Thus we can view (11) and (12) as 1-D recursive filtering
D, I B, operations, alpeit shift—varying recursions, since in general
c, D, o L;; and U;; will not be Toeplitz. If L;; and U;; are full,
A= . = _ |. (8 then the order of these recursive filters equals the length
- I En N of the column, and it is the need to determine (off-
Cy-1 Dy I line) and then implement (on-line) these high-order recursions

While the recursion given by (6) and (7) is conceptuall{fat leads to the severe computational bu_rden. However, if
straightforward, its computational load can be overwhelmin§l€se recursive 1-D filters can be approximated by lower-
This is a direct result of the columnwise ordering, which lead¥der recursions—e.g., ib); and henceL;; and Uj; can

to a destruction of the sparsity of during the factorization. P& approximated byanded matrices, then both the storage
and computational requirements for the forward-substitution
1For any matrix in this paper, such asin (5), block entries not indicated

are zero phase of the on-line solution can be reducedXav?). For
2The validity of the recursions (6) and (7) can be verified directly byNe back-substltunonl, t_he .Compmauonal_burden_ is governed
equatingA4 in (5) with the expression in (8). at each step by multiplication of the matri;; with y;41.
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SinceEjH is generally full and not Toeplitz, this operation This leads to the following approximation to (6) and (7).
will require O(N?) computations per step. However, if weSuppose thaf)j is an approximation t@; which is 3-banded
similarly approximateZ,;; with a lower-order FIR filter, i.e., (i.e., banded with bandwidtH). Note thatD, = D, is exactly
by approximating®';; with a banded matrix, the total com-banded, so we seb; = D;. We then compute g-banded
putational and storage requirements for the on-line soluti@pproximation off)j_l:
reduce to theO(N?) goal.

Note, however, to reduce theff-line computational load F(Dy, B) :{
to O(N?), it is not sufficient thatD; and E; are well
approximated by matrices with narrow bandwidth; a methqghere, from the corollaryF: RV — RM*V requires

must exist for determining these approximate matrices ¥(32N) computations. Assuming thaﬁj_l is a good approx-

O(N) computations per stage. In th_e next section, we desc”l%aation to D" and thatF(Dj, 3) is a good approximation
such an approximation procedure in detail. J —

to D', then F(D;, B) - Ejy1 ~ Ejp1. Since Ejyy is

IV. EFFICIENT IMPLEMENTATIONS OF 2-DNC-IIR HLTERS tridiagonal, the producTF(Dj, B) - Ej+1 requiresO(4N)

computations. Note, however, that this product has bandwidth

(#+1), which will in turn require a growing bandwidth at each
The approximate implementation of 2-DNC-IIR filters destep. However, under the key assumption that the matrices of

scribed in this section is motivated by the fact that, fopterest are approximately-banded, we can neglect elements

many filters, a small number of elements in the blo€ks  outside thes-bandwidth. Thus, define the truncation operator
Dj, and E; dominate the rest of the elements. An efficienf,. RN*N _, RNXN zg

approximation to the on-line solutions follows by setting to’

(D7 T, k=1<8

13
0, otherwise (13)

A. Development of the Approximate Block LU Algorithm

zero the insignificant elements bf;, U;;, andE ;. Recursions T5[H] = {sz, k=1 <8, (14)
(9) and (10) then can be implemented very efficiently if one ' 0, otherwise
takes care to avoid operating on the zero elements. which yields the following approximation to (6):

However, the approach of simply discarding the insignif- _—_ .
icant elements of (8) is not enough. First, the off-line fac- B = T[F(Dj, B) - Ejal. (15)
torization will still require O(N*) computations. Secondly, Similarly, substitutingE,; into (7) in lieu of £, yields
searchmg for 'Fhe significant elements of (—;-ach .block in (8) gqgijJrl_CjEHl ~ D41, requiringO(AN) calculations. Once
storing them in data structures for efficient mplementatmggam, this yields a matrix that ig ¢ 1)-banded, and applying

can be a costly procedure. Many filters, however, haveqgr assumption ofi-bandedness, we obtain our approximation
property which allows us to overcome these difficulties. Fgp (7):

these filters, all of the matrices of interest;, U;;, and

E;—can be well approximated hyanded matrices of some Djy1 =Tp[Djy1 — CjEj41]. (16)
bandwidth < N. Thus, we knowa priori what elements of 1p5 (15) and (16) can be repeated iteratively, each stage
these matrices must be stored. Siics not a function ofv, requiring O(42N) computations. Forj = 1, ..., N, (15)

each of these matrices h&¥3NV) nonzero elementsSince 5pq (16) form an approximation to (8) requiring a total of

there2 areO(N)_ such matrices, the total required storage i@(ﬁQNQ) computations an@(3N?) storage elements. This
O(N?), as desired. Furthermore, as we now describe, we G&fcedure results in the following approximation of (8):

compute these approximations with an overall computational b '
load of O(N?). 1 2

The key assumption required for these approximations to, .. G1 Dy . 17)
yield good results is that, foi =1, ---, N, the bIocksﬁj_1 . : : I Ey
are approximately banded.e., well approximated by setting Cy-1 Dn 1
to zero all the elements which do n_olt fall within a smakINith /J—bandedijj and Ujj stored in place Oij, where

bandwidth of the main diagonal. 1D, ~ is approximately

banded, then from the recursions (6) and (7), it is apparent t
the blocksD,; and E, 1 will generally be approximately
banded as well. Furthermore, as the following corollary stat
if we have a banded approximation 19;, we can efficiently

compute a banded approximation of its inverse.

Corollary of [5] (See the Appendix for Proof)tf D is an
N x N matrix with bandwidth3, the elements of>~! which
lie within the bandwidths can be computed (exactly) in
O(3*N) operations.

I%fﬁjj is the LU factorization ofD;. The approximate on-
line solution is given by substituting ;; andU;; into (9) for
dejj and Uj;, and £; into (10) for E;.

'Note that this approximation method extends equally well
to higher-order filters, with the elements iy are again
ordered columnwise. Each of the blocks in the block LU
factorization is analogously approximated by a banded matrix.
This extension of the approximation algorithm is demonstrated
for an order (2, 2) filter in Section V.

What follows is an example intending both to suggest the
class of filters for which this approximate implementation will
3 . . __offer significant savings and to justify why in such cases we
By O(N?) computations we mean that the number of computations .
divided by N? tends to a constant a§ — oo; writing O(3YN?) denotes expect to be able to choose a small valueﬁohdependent of
that this constant is a polynomial j& of orderq. the sizeN of the image domain.
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B. Analysis of the Block LU Approximation the tighter the clustermg of significant values about the main

Consider a 2-DNC-IIR filter satisfying (5). To make subdiagonal ofD] ,and thus the smaller the bandwidtmeeded

sequent analysis simpler, we make a slight deviation froie approxmateDl at a desired level of accuracy.

the constant-coefficient model of (4). Namely, assume thatWhile this example is particularly simple, it does serve
c=(1+a* andn = s = « for all (4, 5) € Qx and to demonstrate the intuition and plausibility of our approxi-
(i, 7) # (1, 1). For (4, j) = (1, 1), we assume: = 1 and mation. Moreover, a general guideline verified by extensive
n = s = «. For the point we wish to make, the values ofumerical simulations, some of which are given in Section V,
the other NNM coefficients are of no consequence. The fiist that the approximate factorization applies to order (1,1)
block row of (5) follows as: filters for which |n| + |s| < |¢| and becomes more accurate
(for fixed /3) as the ratio(|n| + |s|)/|c| decreases. These

1 o 0 0 0 . . . ; -
a 142 o 0 0 observations are consistent with the preceding example, since
0 o 1402 « 0 _(|n| +1s])/|e| — 0 as|a| — 0. Also note that|c|/(_|n| + |s])
i ] ) ) ] i is a measure of the “degree” of diagonal dominance of the
. : elements in the block®);. In fact, for 2-DNC-IIR filters of
0 . 0 a 1+4a? « any order, the diagonal dominance of the blodRs seems
L 0 0 a 1+a? to be a useful guideline for determining which filters can be
gl implemented by the algorithm in Section IV-A. Determining
y1 + Eays = by. (18) the exact class of filters which can be approximated by this

algorithm is beyond the scope of this paper.

The factorization of4 in (5) begins by factoringD; :* ) .
(5) beg y @ C. A Parallel Approximate Implementation

1 0 0 ..07fl a 0 0 In this section, we briefly discuss a straightforward par-
o a 10 - 0 01 « : allelization of the algorithm discussed in Section IV-A. In
Dy 0 o« 1 . o0 1 . 0f- particular, a variant of the serial block LU factorization is
L : R B B T SR cyclic block reduction [4], which is easily implemented in
0 0 o 1llo o ... 0 1 parallel. The block LU factorization proceeds by eliminating

~ e ~ > columnsy; sequentially fromj = 1 to ;7 = N. However,

(19) it is possible to eliminate columns in the interior @f inde-
pendently. For example, consider again the block tridiagonal

matrix A given in (5). Assume, for simplicity, tha¥ is odd.

If we order the even columns last and the odd columns first,

(5) takes the form

The next step of the factorization is to compuis. Note
that, even thoughl,;; and U/;; are banded, this operation
will require O(N?) computations. Also note thab;, = =
ULtULY, where

- Arr A2 || Yodd | _ | bodd
1 - 062 (—Oé?]\ ' |:A21 A22 Yeven o beven ) (21)
. 0 1 —-a : Because of the coupling implied by the NNM difference
Uir=1lo o 1 . a2 . (20) equation, the elimination of the odd columns ®f for the
: —w block factorization of (21) can be performed in parallel.

Upon completing this step, the second block equation of (21)
becomes (22), shown at the bottom of the page, where the

The simple form of (20) leads to the expressih_hl_l]kl — superscript?) is used to relabel the variables after thstage
(—a)lk Ef\;ﬁl (—a)%. From this expression, we see thaf the cyclic block reduction. The blocks al‘%) are given by

jen]
jen]
Ju—

——1 .
for |o| < 1 the values ofD;  decay geometrically away D](,l) =D; - Cj—le__llEj
from the main diagonal. Thus, the smaller the value|cgf E..D-LC. i—9 4 N1
(equivalently, the greater the diagonal dominanceldf), W At AR A ’
1 .

4The Toeplitz structure o1, andU; is a result of the particular choice C = J+1DJ+10 J=2,4,-, N=3,
of difference equation, but is not a general property even of filters described (1) L o _
by constant-coefficient difference equations. E - M- 1DJ lE =46, N -1 (23)

D(l) E(l) b(l)
Pl g v 0
6 Yq 4
L= (22)
o, pP, B, | || i,
1 1 ) 1
O NS T
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SinceA%) is again block tridiagonal, the odd-even reordering
can continue recursively, where roughly one half of the
remaining columns are eliminated in parallel at each stagne
of the algorithm. Rather than th& stages required for the

block LU algorithm (and corresponding on-line sqution)DiriChlet conditions ongQEt
N

V. EXAMPLES

approximatelylog, N stages are required for block cycliciese filters have the form

reduction, and each of the columns in each stage can be

operated on in parallel. If more coarse-grained parallelisnt (=1, z2) =

is required, {2y can be partitioned intal/ regions, where
the columns in each region can be eliminated independent of
the other regions [6]. (In the case of cyclic block reduction,
M = |(N +1)/2])

An approximate block cyclic reduction algorithm follows
for any of these parallel structures by noting the strong
similarities between implementing (23) and (6), (7). Namely,
if a processor is allocated for each of the odd columng of
the first stage of the (parallelized) approximate cyclic block
reduction is

1

2Tz,

- L1
1

Li—1
A1

—Lq
L %1

QLy,—Lo
L, —1,—Lo

LA—Ly,—L,
- —Ls
%2

—Lo+1
%2

Lo
%2

ALy, —La+1
aL1—1,—L2+1

A—Ly,—Ly+1
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In this section, 2-DNC-IIR filters are implemenfedsing

e approximation algorithm of Section IV-A. The 2-DNC-
IIR filters are assumed to satisfy (2) 6hy and homogeneous
L2) ‘The system functions of

ALy, Ly
Or,—1,L,

Q—Ly,Ly

(24)

where z; is the frequency in the-direction andz. is the
frequency in thej-direction. Adding a polynomiak? Pz,

to the numerator of (24) would obviously allow one to

sharpen the filter frequency responses, such as by narrowing
the transition regions or placing zeros in the stopbands [8],
[16]; however, the purpose of the following examples is
only to demonstrate the utility of the approximation given in
Section IV-A and the viability of 2-DNC-IIR filters. Thus it
makes sense to implement only the recursive portion of the
difference equation.

Some example filters are given by the following coefficient

(a) factorD;and computel’'(D;, 3)
on processorg =1, 3, ---, N;
(b) computeC;_; = F(D;, 8)C;j_1
on processorg =3, 5, ---, N;
computeE; 1 = F(D;, ) Ej+1
on processorg =1, 3, ---, N — 2;
(c) computeE'Y, = ~T5[E;E;4]
on processorg =3, 5, ---, N — 2;
computeC(", = ~T4[C;C;_1]
on processorg =3, 5, ---, N — 2;
(d) computeG,1 = CiE;41
on processorg =1, 3, ---, N — 2;
computeJ;_; = E;C;_;
on processorg =3, 5, ---, N;
(e) computeD\y; = T5[Dj41 — Gii1 — Jj]
on processorg =1, 3, ---, N — 2.

Note that Step (e) requires communication between the
processors, sinc&’; 1, andJ,;;; are computed on different,
but “neighboring,” processors. For the first stage, the compu-
tational load for each processor@¥ 3N ), where the asymp-
totic complexity is determined primarily by Step (a). The

matrices:

computational load for each processor will remain constarfs =

for subsequent stages of the algorithm. Ignoring interprocessor
communication costs after each stage of the recursion, the
total factorization will require?(5%N log, IN) computations.
Since there aréV? pixels, the per pixel computation time for
the fully parallel implementation i€(/3? log, N/N), which
decreaseswith increasing image size. This algorithm extends

—0.2304
0.3426
0.6967
0.3426

—0.2304

-1 -1 -1
J=|-1 9 -1

-1 -1 -1

010
Jo=%|1 5 1

010

-0.13 0.5 —0.37
J3=[-050 2.0 —0.50

-0.13 0.5 —0.37
0.3426  0.6967  0.3426
—-1.1575 —2.0846 —1.1575
—2.0846  9.3618 —2.0846
—1.1575 —2.0846 —1.1575
0.3426  0.6967  0.3426

(25)

—0.2304
0.3426
0.6967
0.3426

—0.2304

(26)

to higher-order filters just as cyclic reduction can be extendec5|AII of the Matlab files used to generate the examples in the section are

to matricesA with larger block bandwidth.

available by anonymousp atlids.mit.edu in the directorypub/ssg/outgoing
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Fig. 3. 64x 64 point sampling offf; (e7*1, /2 ) for four filters. (a) Low-pass filteF7; given by .J1. (b) High-pass filter7> given by J2. (c) Fan filter
Hj; given by Js. (d) Low-pass filterH4 given by .J4. Note that the only frequency with nonzero phaséfis in which case the magnitude éf3 is plotted.

where H;(z1, z2) = (23 J;2;)71. The coefficients of each

In the following examples, the four 2-DNC-IIR filters are

filter are normalized such thaf (1, 1) = 1. The frequency implemented exactly (to within round-off error) using the
responsedd;(c’*1, ¢/*2) of all four difference equations arenested dissection algorithm [6] and approximately using the

illustrated in Fig. 3. Filterdd; andH, are low-pass filtersd,

algorithm of Section IV-A. For analyzing the errors introduced

is the edge-enhancing filter given in [13], afld corresponds by the approximate implementation, define the error signal

to a primitive (low-order) fan filter [8]. Note that filter&/,

H,, and H, have zero phase.

to beesli, 5] = yli, 5] — yslé, j], wherey[z, j] is the exact
filter output andygli, j] is the output obtained with an

Note that, while filtersH,, H,, and H; have relatively approximation bandwidth ofs. Two of the error measures

nonsharp transition bands, they have many practical applicesed are

tions. Edge enhancement is one application requiring filters lesll2

with nonsharp transition bands. In fact, all of the edge- 8= ||y’||2

enhancing filters given in [12], [13], including systefi,, =

have frequency responses with nonsharp transition banﬁ@.d

When enhancing edges, the width of the transition band is ng = ”HQ@”HI
YliL

determined by the model of the smooth edges which are to be

enhanced. This model usually implies a frequency responSfere e

with a smooth transition band. The smooth transition bang 4 I __"ﬁ is the standard.. norm
p I4 }

(27)

is a vector containingg[¢, 5] for all (4, j) € Qn,

can also be used to avoid “over-enhancing” the image, or g3 mpje 1. The Response of 2-DNC-IIR Filters to Sinusoidal

make the enhanced image less sensitive to noisy data. Anotm%ruts:

In this example, we consider the response of the

application requiring filters with smooth frequency responsespnc-|IR example filters to sinusoidal inputs of the form

is optimal linear estimation. The low-pass filters given By
and H, are of exactly the same order and structure as those
commonly arising in the estimation of Markov random fields

from noisy measurements [1], [14].

(i, J) € Q.

.. 1 2rky .
x[i, 7] =7z 08 |~ t) cos

(28)
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Fig. 4. The DFT magnitude of the exact responses and the approximation errors for a passband input (left column) and a stopband input (right column) to
the 2-DNC-IIR low-passfilter given by H;(e’«1, e7*2). The inputs are given by (28) fdqik, k2) = (3, 2) and(ky, k2) = (25, 20). Note the scalings

of the vertical axes. (a) Response to pass-band signal. (b) Response to stop-band signal. (c) Error in pass-band re$perse(dyrError in stop-band

response for3 = 2. (e) Error in pass-band response for= 4. (f) Error in stop-band response for = 4.

The 1/N? term serves only to normalize the discrete Fourigfig. 4(a) and (b). The Fourier transforii(e/“:, ¢i«2) is
transform (DFT) ofz[¢, j]. Assume for this example thaf = shown in lieu ofyli, j] in order to demonstrate the 9-to-1
64. Consider first the low-pass filtéd;. For (k1, k2) = (3, (passband to stopband) selection ratio of the low-pass filter.
2), the sinusoidal input lies in the filter's passband, whil€he small ridges in the DFT’s of the filter responses are
for (k1, k2) = (25, 20) the input lies in the stopbanddue to the transients introduced by the Dirichlet boundary
The exact responses to these two inputs are illustrated dmynditions. These ridges are barely noticeable for the response
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(e)
(a) The impulse response of tfan filter H3. (b) The impulse response of thew-passfilter H4. (c) The error in thefan filter impulse response

The accuracy of the algorithm of Section IV-A is als@eneralize to every sinusoidal signal

demonstrated in Fig. 4 for approximation bandwidthis—=

2 and 4. The DFT of the approximation erreg[i, j] is
decrease by an order of magnitude witeimcreases from 2 to the filtering domain. The effect of these transients on the filter

the approximation errors are small even whita: 2, and they some transients whose effect is limited to the boundaries of
4. (In terms of the error metricsy /24

for 3 = 2. (d) The error in thdow-passfilter impulse response fof = 2. (e) The error in thdan filter impulse response fo6 = 4. (f) The error

in the low-pass filter impulse response fop
illustrated for both inputs and both values @f Note that by a weighting of the input by the frequency response, plus

negligible near the center of the filter domdM,, and in fact decrease in the error signal is obtained for larger values. of

to the stopband input. The effect of these transient signalsfas the response to the passband input

becomes zero as the boundaries recede to infidty« oc).

Fig. 5.
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Fig. 6. Approximation errors 3 versus3, for N = 64 and a unit impulse Fig. 7. Approximation errorsz versusN. The approximation bandwidth is
input applied at(i, j) = (32, 32). fixed at3 = 4 and the input is a unitimpulse appliedat j) = (N/2, N/2).

recedes to infinity /' — oo). Also, for each sinusoidal input, @pproximation errors to decrease geometrically with increasing
the approximate response is accurate even for small val@@proximation bandwidth.]
of . More importantly, the approximation errors decrease Example 3. The Independence of the Approximation Accu-
geometrically in magnitude with3. This geometric decreaseracy uponN: In Section IV-A, the computational and storage
is further demonstrated in the following examples. loads of the approximation algorithm were shown to be
Example 2. The Impulse Response of 2-DNC-IIR Filter€(3*N?) and O(3N?), respectively, meaning that theer
Because LS| filters are completely characterized by thdlixel computational and storage loads converge to polynomials
impulse responses, we now consider the impulse responieg? of order two and one, respectively. However, if the
of both the exact and the approximate implementations of tRe" pixel computational and storage loads are to be truly
example 2-DNC-IIR filters. The impulse resporige, j] is the constant, the approximation bandwidth needed for a desired
filter output in response to a unit impulse applied at the cen®@pproximation accuracy must not be an increasing function
of Q. For N = 64, this input isz[i, j] = 6[i—32, j—32]. The of V. For a unit impulse applied at the centerof;, Fig. 7
impulse response of both the fan filt&f; and the order (2,2) shows that the approximation error metrigremains constant
low-pass filter H, are plotted at the top of Fig. 5. Becaus@®Ver a wide range ofV for a fixed value of3 = 4. Identical
the impulse responses are essentially zero outside the red@sHits are obtained for other values@fThe independence
{(4, 7)]16 < i, j < 48}, the responses are not plotted outsidef $ upon N for a desired solution accuracy is consistent
this region_ The error Signa|5 p|0tted in F|g 5 Correspond mlth the analySiS of Section IV-B, where the rate of decrease
the difference between the true impulse responses and thyéé distance from the diagonal of the elements in the blocks
of the approximate implementations for = 2 and8 = 4. LD; and E; was shown to be independent &f. Thus, the
Like the approximate responses to the sinusoidal inputs giv@pproximation algorithm has constant per pixel computational
in Example 1, the approximate impulse responses are accuflél storage loads.
even for3 = 2, and the errors the decrease geometrically Example 4. Edge Enhancement of a Square Pulser. this
with increasing3. Note especially the accuracy of the example, we examine the response of the edge-enhancing filter
banded approximation for the order (2,2) low-pass filter. Whilfz to a square pulse. The square pulse input and the response
the frequency response of this System is very sensitive Qt)the edge—enhancing filter are illustrated at the top of Flg 8.
the values of the coefficients stored jh, the approximate Note that the response to the square input is analogous to
implementation is quite accurate even for smalFor 8 = 4, the step response of the filter. The approximate responses for
the maximum value ofe,[¢, 5]| is on the order ofl0—*. # = 2 and 4, and the corresponding approximation errors,
To illustrate that the errors decrease geometricallygasare also illustrated in Fig. 8. Again, the approximation errors
increases beyond fouk is plotted versus? in Fig. 6 for are small and visually unrecognizable even for these small
3 ranging from two to ten. Fig. 6 also demonstrates that ti@proximation bandwidths, and the errors decrease by an order
geometric decrease in the error with increasih@pplies to Of magnitude ag3 increases from 2 to 4.
the other three example filters. [Recall that in Section IV-
B we argued that the approximation errors will be small VI. CONCLUSION
when |n| + |s| < |¢|. For these order (1,1) filters, the In this paper we describe an approach to the efficient imple-
elements in the blockd; and E; decreased geometricallymentations of 2-DNC-IIR filters. In addition to efficiency, we
in magnitude with distance from the diagonal. Thus, for were also motivated to consider filters specified by boundary
banded approximations of these blocks, one would expect tta¢her than initial conditions, as the former are frequently the
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Fig. 8. (a) Square pulse input signal. (b) Exact response of edge-enhancing filter. (c)—(d) Filter output and error sighatsZo(e)—(f) Filter output
and error signal for3 = 4. Note the scalings of the vertical axes.

natural choice and are required, for example, if zero-phaapplication of concepts from the direct solution of PDE’s to the
filtering is desired. Indeed, some methodologies now exist foalculation of the solution of a 2-D difference equation; and
designing 2-D difference equations to meet desired frequenty-the development of new approximations, motivated by and
selective specifications, and we demonstrated that imposeygpropriate for filtering applications, that reduce complexity
boundary conditions upon these difference equations can leaddesired levels. In particular, the algorithms resulting from
to the desired frequency selectivity. our procedure have constant computational complexity per
The approach we developed for efficiently implementing Zixel and, if implemented in maximally parallel form, have
DNC-IIR filters involves a combination of two things: a) thetotal computation time per pixel that decreases as image size
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increases. In particular, our approximation is based on tker certain matrices, such as those discussed in Section IV-A,
columnwise ordering of data points and the block LU fadhe elements ofZ which fall within the bandwidth3 can be
torization of the linear system that results from this orderingeen as a reasonable approximatiomia
While exact factorization is still complex computationally, the To implement this algorithm, note thd¥]yxy must be
observation that each successive block of computation cotie first element computed of. Also, to compute any
be viewed as a 1-D filtering operati@ong a column of the element[Z];, all elements[Z],.,, such thatm > [, n >
image led to the idea of a reduced-order approximation &f and |l — k| < /S must already have been computed.
each of these 1-D columnwise filters. In matrix terms, thi/ith these restrictions placed on the recursion, the number
corresponds to a banded approximation to each of the bloads computations to computeZ within a bandwidth 3 is
in the block LU factorization, with bandwidth (and 1-D filterbounded above closely h¥[(3 + 1) + 23%], where the first
order) 3. The resulting algorithm was shown both to achievierm represents the computations for the diagonal elements
the computational levels mentioned previously and to yielshly. The computational complexity of the algorithm is thus
excellent results using small values gf for a number of O(32N).
low-order frequency-selective filters.
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